CINXE.COM

Search results for: monolayers

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: monolayers</title> <meta name="description" content="Search results for: monolayers"> <meta name="keywords" content="monolayers"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="monolayers" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="monolayers"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 32</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: monolayers</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Chemical Vapor Deposition (CVD) of Molybdenum Disulphide (MoS2) Monolayers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Omar">Omar Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Jun"> Yuan Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Jinghua"> Hong Jinghua</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Chuanhong"> Jin Chuanhong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work molybdenum dioxide (MoO2) and sulphur powders are used to grow MoS2 mono layers at elevated temperatures T≥800 °C. Centimetre scale continues thin films with grain size up to 410 µm have been grown using chemical vapour deposition. To our best knowledge, these domains are the largest that have been grown so far. Advantage of our approach is not only because of the high quality films with large domain size one can produce, but also the procedure is potentially less hazardous than other methods tried. The thin films have been characterized using transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molybdenum%20disulphide%20%28MoS2%29" title="molybdenum disulphide (MoS2)">molybdenum disulphide (MoS2)</a>, <a href="https://publications.waset.org/abstracts/search?q=monolayers" title=" monolayers"> monolayers</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapour%20deposition%20%28CVD%29" title=" chemical vapour deposition (CVD)"> chemical vapour deposition (CVD)</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20and%20characterization" title=" growth and characterization"> growth and characterization</a> </p> <a href="https://publications.waset.org/abstracts/43757/chemical-vapor-deposition-cvd-of-molybdenum-disulphide-mos2-monolayers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Role of Interlayer Coupling for the Power Factor of CuSbS2 and CuSbSe2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najebah%20Alsaleh">Najebah Alsaleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Nirpendra%20Singh"> Nirpendra Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Udo%20Schwingenschlogl"> Udo Schwingenschlogl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electronic and transport properties of bulk and monolayer CuSbS2 and CuSbSe2 are determined by using density functional theory and semiclassical Boltzmann transport theory, in order to investigate the role of interlayer coupling for the thermoelectric properties. The calculated band gaps of the bulk compounds are in agreement with experiments and significantly higher than those of the monolayers, which thus show lower Seebeck coefficients. Since also the electrical conductivity is lower, the monolayers are characterized by lower power factors. Therefore, interlayer coupling is found to be essential for the excellent thermoelectric response of CuSbS2 and CuSbSe2, even though it is weak. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title="density functional theory">density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric" title=" thermoelectric"> thermoelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20properties" title=" electronic properties"> electronic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=monolayer" title=" monolayer"> monolayer</a> </p> <a href="https://publications.waset.org/abstracts/60142/role-of-interlayer-coupling-for-the-power-factor-of-cusbs2-and-cusbse2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Controlling Excitons Complexes in Two Dimensional MoS₂ Monolayers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arslan%20Usman">Arslan Usman</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Sattar"> Abdul Sattar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Latif"> Hamid Latif</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshan%20Ashfaq"> Afshan Ashfaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rafique"> Muhammad Rafique</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Koch"> Martin Koch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two-dimensional materials have promising applications in optoelectronic and photonics; MoS₂ is the pioneer 2D material in the family of transition metal dichalcogenides. Its optical, optoelectronic, and structural properties are of practical importance along with its exciton dynamics. Exciton, along with exciton complexes, plays a vital role in realizing quantum devices. MoS₂ monolayers were synthesized using chemical vapour deposition (CVD) technique on SiO₂ and hBN substrates. Photoluminescence spectroscopy (PL) was used to identify the monolayer, which also reflects the substrate based peak broadening due to screening effects. In-plane and out of plane characteristic vibrational modes E¹₂g and A₁g, respectively, were detected in a different configuration on the substrate. The B-excitons and trions showed a dominant feature at low temperatures due to electron-phonon coupling effects, whereas their energies are separated by 100 meV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20materials" title="2D materials">2D materials</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=AFM" title=" AFM"> AFM</a>, <a href="https://publications.waset.org/abstracts/search?q=excitons" title=" excitons"> excitons</a> </p> <a href="https://publications.waset.org/abstracts/114832/controlling-excitons-complexes-in-two-dimensional-mos2-monolayers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Biomimetic Systems to Reveal the Action Mode of Epigallocatechin-3-Gallate in Lipid Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Pires">F. Pires</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Geraldo"> V. Geraldo</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20N.%20Oliveira%20Jr."> O. N. Oliveira Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Raposo"> M. Raposo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Catechins are powerful antioxidants which have attractive properties useful for tumor therapy. Considering their antioxidant activity, these molecules can act as a scavenger of the reactive oxygen species (ROS), alleviating the damage of cell membrane induced by oxidative stress. The complexity and dynamic nature of the cell membrane compromise the analysis of the biophysical interactions between drug and cell membrane and restricts the transport or uptake of the drug by intracellular targets. To avoid the cell membrane complexity, we used biomimetic systems as liposomes and Langmuir monolayers to study the interaction between catechin and membranes at the molecular level. Liposomes were formed after the dispersion of anionic 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)(sodium salt) (DPPG) phospholipids in an aqueous solution, which mimic the arrangement of lipids in natural cell membranes and allows the entrapment of catechins. Langmuir monolayers were formed after dropping amphiphilic molecules, DPPG phospholipids, dissolved in an organic solvent onto the water surface. In this work, we mixed epigallocatechin-3-gallate (EGCG) with DPPG liposomes and exposed them to ultra-violet radiation in order to evaluate the antioxidant potential of these molecules against oxidative stress induced by radiation. The presence of EGCG in the mixture decreased the rate of lipid peroxidation, proving that EGCG protects membranes through the quenching of the reactive oxygen species. Considering the high amount of hydroxyl groups (OH groups) on structure of EGCG, a possible mechanism to these molecules interact with membrane is through hydrogen bonding. We also investigated the effect of EGCG at various concentrations on DPPG Langmuir monolayers. The surface pressure isotherms and infrared reflection-absorption spectroscopy (PM-IRRAS) results corroborate with absorbance results preformed on liposome-model, showing that EGCG interacts with polar heads of the monolayers. This study elucidates the physiological action of EGCG which can be incorporated in lipid membrane. These results are also relevant for the improvement of the current protocols used to incorporate catechins in drug delivery systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catechins" title="catechins">catechins</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20membrane" title=" lipid membrane"> lipid membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=anticancer%20agent" title=" anticancer agent"> anticancer agent</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20interactions" title=" molecular interactions"> molecular interactions</a> </p> <a href="https://publications.waset.org/abstracts/63473/biomimetic-systems-to-reveal-the-action-mode-of-epigallocatechin-3-gallate-in-lipid-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Fabrication of Highly Stable Low-Density Self-Assembled Monolayers by Thiolyne Click Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Safazadeh">Leila Safazadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Brad%20Berron"> Brad Berron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Self-assembled monolayers have tremendous impact in interfacial science, due to the unique opportunity they offer to tailor surface properties. Low-density self-assembled monolayers are an emerging class of monolayers where the environment-interfacing portion of the adsorbate has a greater level of conformational freedom when compared to traditional monolayer chemistries. This greater range of motion and increased spacing between surface-bound molecules offers new opportunities in tailoring adsorption phenomena in sensing systems. In particular, we expect low-density surfaces to offer a unique opportunity to intercalate surface bound ligands into the secondary structure of protiens and other macromolecules. Additionally, as many conventional sensing surfaces are built upon gold surfaces (SPR or QCM), these surfaces must be compatible with gold substrates. Here, we present the first stable method of generating low-density self assembled monolayer surfaces on gold for the analysis of their interactions with protein targets. Our approach is based on the 2:1 addition of thiol-yne chemistry to develop new classes of y-shaped adsorbates on gold, where the environment-interfacing group is spaced laterally from neighboring chemical groups. This technique involves an initial deposition of a crystalline monolayer of 1,10 decanedithiol on the gold substrate, followed by grafting of a low-packed monolayer on through a photoinitiated thiol-yne reaction in presence of light. Orthogonality of the thiol-yne chemistry (commonly referred to as a click chemistry) allows for preparation of low-density monolayers with variety of functional groups. To date, carboxyl, amine, alcohol, and alkyl terminated monolayers have been prepared using this core technology. Results from surface characterization techniques such as FTIR, contact angle goniometry and electrochemical impedance spectroscopy confirm the proposed low chain-chain interactions of the environment interfacing groups. Reductive desorption measurements suggest a higher stability for the click-LDMs compared to traditional SAMs, along with the equivalent packing density at the substrate interface, which confirms the proposed stability of the monolayer-gold interface. In addition, contact angle measurements change in the presence of an applied potential, supporting our description of a surface structure which allows the alkyl chains to freely orient themselves in response to different environments. We are studying the differences in protein adsorption phenomena between well packed and our loosely packed surfaces, and we expect this data will be ready to present at the GRC meeting. This work aims to contribute biotechnology science in the following manner: Molecularly imprinted polymers are a promising recognition mode with several advantages over natural antibodies in the recognition of small molecules. However, because of their bulk polymer structure, they are poorly suited for the rapid diffusion desired for recognition of proteins and other macromolecules. Molecularly imprinted monolayers are an emerging class of materials where the surface is imprinted, and there is not a bulk material to impede mass transfer. Further, the short distance between the binding site and the signal transduction material improves many modes of detection. My dissertation project is to develop a new chemistry for protein-imprinted self-assembled monolayers on gold, for incorporation into SPR sensors. Our unique contribution is the spatial imprinting of not only physical cues (seen in current imprinted monolayer techniques), but to also incorporate complementary chemical cues. This is accomplished through a photo-click grafting of preassembled ligands around a protein template. This conference is important for my development as a graduate student to broaden my appreciation of the sensor development beyond surface chemistry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low-density%20self-assembled%20monolayers" title="low-density self-assembled monolayers">low-density self-assembled monolayers</a>, <a href="https://publications.waset.org/abstracts/search?q=thiol-yne%20click%20reaction" title=" thiol-yne click reaction"> thiol-yne click reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20imprinting" title=" molecular imprinting"> molecular imprinting</a> </p> <a href="https://publications.waset.org/abstracts/11355/fabrication-of-highly-stable-low-density-self-assembled-monolayers-by-thiolyne-click-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Improvement in Quality-Factor Superconducting Co-Planer Waveguide Resonators by Passivation Air-Interfaces Using Self-Assembled Monolayers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleem%20Rao">Saleem Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Al-Ghadeer"> Mohammed Al-Ghadeer</a>, <a href="https://publications.waset.org/abstracts/search?q=Archan%20Banerjee"> Archan Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Fariborzi"> Hossein Fariborzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Materials imperfection, particularly two-level-system (TLS) defects in planer superconducting quantum circuits, contributes significantly to decoherence, ultimately limiting the performance of quantum computation and sensing. Oxides at air interfaces are among the host of TLS, and different material has been used to reduce TLS losses. Passivation with an inorganic layer is not an option to reduce these interface oxides; however, they can be etched away, but their regrowth remains a problem. Here, we report the chemisorption of molecular self-assembled monolayers (SAMs) at air interfaces of superconducting co-planer waveguide (CPW) resonators that suppress the regrowth of oxides and also modify the dielectric constant of the interface. With SAMs, we observed sustained order of magnitude improvement in quality factor -better than oxide etched interfaces. Quality factor measurements at millikelvin temperature and at single photon, XPS data, and TEM images of SAM passivated air interface sustenance our claim. Compatibility of SAM with micro-/nano-fabrication processes opens new ways to improve the coherence time in cQED. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superconducting%20circuits" title="superconducting circuits">superconducting circuits</a>, <a href="https://publications.waset.org/abstracts/search?q=quality-factor" title=" quality-factor"> quality-factor</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembled%20monolayer" title=" self-assembled monolayer"> self-assembled monolayer</a>, <a href="https://publications.waset.org/abstracts/search?q=coherence" title=" coherence"> coherence</a> </p> <a href="https://publications.waset.org/abstracts/176785/improvement-in-quality-factor-superconducting-co-planer-waveguide-resonators-by-passivation-air-interfaces-using-self-assembled-monolayers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Excitation Density and Energy Dependent Relaxation Dynamics of Charge Carriers in Large Area 2D TMDCs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Soni">Ashish Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=Suman%20Kalyan%20Pal"> Suman Kalyan Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transition metal dichalcogenides (TMDCs) are an emerging paradigm for the generation of advanced materials which are capable of utilizing in future device applications. In recent years TMDCs have attracted researchers for their unique band structure in monolayers. Large-area monolayers could become the most appropriate candidate for flexible and thin optoelectronic devices. For this purpose, it is crucial to understand the generation and transport of charge carriers in low dimensions. A deep understanding of photo-generated hot charges and trapped charges is essential to improve the performance of optoelectronic devices. Carrier trapping by the defect states that are introduced during the growth process of the monolayer could influence the dynamical behaviour of charge carriers. Herein, we investigated some aspects of the ultrafast evolution of the initially generated hot carriers and trapped charges in large-area monolayer WS₂ by measuring transient absorption at energies above and below the band gap energy. Our excitation density and energy-dependent measurements reveal the trapping of the initially generated charge carrier. Our results could be beneficial for the development of TMDC-based optoelectronic devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transient%20absorption" title="transient absorption">transient absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronics" title=" optoelectronics"> optoelectronics</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20materials" title=" 2D materials"> 2D materials</a>, <a href="https://publications.waset.org/abstracts/search?q=TMDCs" title=" TMDCs"> TMDCs</a>, <a href="https://publications.waset.org/abstracts/search?q=exciton" title=" exciton"> exciton</a> </p> <a href="https://publications.waset.org/abstracts/146122/excitation-density-and-energy-dependent-relaxation-dynamics-of-charge-carriers-in-large-area-2d-tmdcs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Quantum Dots Incorporated in Biomembrane Models for Cancer Marker</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thiago%20E.%20Goto">Thiago E. Goto</a>, <a href="https://publications.waset.org/abstracts/search?q=Carla%20C.%20Lopes"> Carla C. Lopes</a>, <a href="https://publications.waset.org/abstracts/search?q=Helena%20B.%20Nader"> Helena B. Nader</a>, <a href="https://publications.waset.org/abstracts/search?q=Anielle%20C.%20A.%20Silva"> Anielle C. A. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Noelio%20O.%20Dantas"> Noelio O. Dantas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20R.%20Siqueira%20Jr."> José R. Siqueira Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Luciano%20Caseli"> Luciano Caseli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum dots (QD) are semiconductor nanocrystals that can be employed in biological research as a tool for fluorescence imagings, having the potential to expand in vivo and in vitro analysis as cancerous cell biomarkers. Particularly, cadmium selenide (CdSe) magic-sized quantum dots (MSQDs) exhibit stable luminescence that is feasible for biological applications, especially for imaging of tumor cells. For these facts, it is interesting to know the mechanisms of action of how such QDs mark biological cells. For that, simplified models are a suitable strategy. Among these models, Langmuir films of lipids formed at the air-water interface seem to be adequate since they can mimic half a membrane. They are monomolecular films formed at liquid-gas interfaces that can spontaneously form when organic solutions of amphiphilic compounds are spread on the liquid-gas interface. After solvent evaporation, the monomolecular film is formed, and a variety of techniques, including tensiometric, spectroscopic and optic can be applied. When the monolayer is formed by membrane lipids at the air-water interface, a model for half a membrane can be inferred where the aqueous subphase serve as a model for external or internal compartment of the cell. These films can be transferred to solid supports forming the so-called Langmuir-Blodgett (LB) films, and an ampler variety of techniques can be additionally used to characterize the film, allowing for the formation of devices and sensors. With these ideas in mind, the objective of this work was to investigate the specific interactions of CdSe MSQDs with tumorigenic and non-tumorigenic cells using Langmuir monolayers and LB films of lipids and specific cell extracts as membrane models for diagnosis of cancerous cells. Surface pressure-area isotherms and polarization modulation reflection-absorption spectroscopy (PM-IRRAS) showed an intrinsic interaction between the quantum dots, inserted in the aqueous subphase, and Langmuir monolayers, constructed either of selected lipids or of non-tumorigenic and tumorigenic cells extracts. The quantum dots expanded the monolayers and changed the PM-IRRAS spectra for the lipid monolayers. The mixed films were then compressed to high surface pressures and transferred from the floating monolayer to solid supports by using the LB technique. Images of the films were then obtained with atomic force microscopy (AFM) and confocal microscopy, which provided information about the morphology of the films. Similarities and differences between films with different composition representing cell membranes, with or without CdSe MSQDs, was analyzed. The results indicated that the interaction of quantum dots with the bioinspired films is modulated by the lipid composition. The properties of the normal cell monolayer were not significantly altered, whereas for the tumorigenic cell monolayer models, the films presented significant alteration. The images therefore exhibited a stronger effect of CdSe MSQDs on the models representing cancerous cells. As important implication of these findings, one may envisage for new bioinspired surfaces based on molecular recognition for biomedical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomembrane" title="biomembrane">biomembrane</a>, <a href="https://publications.waset.org/abstracts/search?q=langmuir%20monolayers" title=" langmuir monolayers"> langmuir monolayers</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=surfaces" title=" surfaces"> surfaces</a> </p> <a href="https://publications.waset.org/abstracts/55263/quantum-dots-incorporated-in-biomembrane-models-for-cancer-marker" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Inhalable Lipid-Coated-Chitosan Nano-Embedded Microdroplets of an Antifungal Drug for Deep Lung Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ranjot%20Kaur">Ranjot Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Om%20P.%20Katare"> Om P. Katare</a>, <a href="https://publications.waset.org/abstracts/search?q=Anupama%20Sharma"> Anupama Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20R.%20Dennison"> Sarah R. Dennison</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamalinder%20K.%20Singh"> Kamalinder K. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhupinder%20Singh"> Bhupinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Respiratory microbial infections being among the top leading cause of death worldwide are difficult to treat as the microbes reside deep inside the airways, where only a small fraction of drug can access after traditional oral or parenteral routes. As a result, high doses of drugs are required to maintain drug levels above minimum inhibitory concentrations (MIC) at the infection site, unfortunately leading to severe systemic side-effects. Therefore, delivering antimicrobials directly to the respiratory tract provides an attractive way out in such situations. In this context, current study embarks on the systematic development of lung lia pid-modified chitosan nanoparticles for inhalation of voriconazole. Following the principles of quality by design, the chitosan nanoparticles were prepared by ionic gelation method and further coated with major lung lipid by precipitation method. The factor screening studies were performed by fractional factorial design, followed by optimization of the nanoparticles by Box-Behnken Design. The optimized formulation has a particle size range of 170-180nm, PDI 0.3-0.4, zeta potential 14-17, entrapment efficiency 45-50% and drug loading of 3-5%. The presence of a lipid coating was confirmed by FESEM, FTIR, and X-RD. Furthermore, the nanoparticles were found to be safe upto 40µg/ml on A549 and Calu-3 cell lines. The quantitative and qualitative uptake studies also revealed the uptake of nanoparticles in lung epithelial cells. Moreover, the data from Spraytec and next-generation impactor studies confirmed the deposition of nanoparticles in lower airways. Also, the interaction of nanoparticles with DPPC monolayers signifies its biocompatibility with lungs. Overall, the study describes the methodology and potential of lipid-coated chitosan nanoparticles in futuristic inhalation nanomedicine for the management of pulmonary aspergillosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dipalmitoylphosphatidylcholine" title="dipalmitoylphosphatidylcholine">dipalmitoylphosphatidylcholine</a>, <a href="https://publications.waset.org/abstracts/search?q=nebulization" title=" nebulization"> nebulization</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPC%20monolayers" title=" DPPC monolayers"> DPPC monolayers</a>, <a href="https://publications.waset.org/abstracts/search?q=quality-by-design" title=" quality-by-design"> quality-by-design</a> </p> <a href="https://publications.waset.org/abstracts/103730/inhalable-lipid-coated-chitosan-nano-embedded-microdroplets-of-an-antifungal-drug-for-deep-lung-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Simple Fabrication of Au (111)-Like Electrode and Its Applications to Electrochemical Determination of Dopamine and Ascorbic Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahrah%20Thamer%20Althagafi">Zahrah Thamer Althagafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20I.%20Awad"> Mohamed I. Awad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple method for the fabrication of Au (111)-like electrode via controlled reductive desorption of a pre-adsorbed cysteine monolayer onto polycrystalline gold (poly-Au) electrode is introduced. Then, the voltammetric behaviour of dopamine (DA) and ascorbic acid (AA) on the thus modified electrode is investigated. Electrochemical characterization of the modified electrode is achieved using cyclic voltammetry and square wave voltammetry. For the binary mixture of DA and AA, the results showed that Au (111)-like electrode exhibits excellent electrocatalytic activity towards the oxidation of DA and AA. This allows highly selective and simultaneous determination of DA and AA. The effect of various experimental parameters on the voltammetric responses of DA and AA was investigated. The enrichment of the Au (111) facet of the poly-Au electrode is thought to be behind the electrocatalytic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold%20electrode" title="gold electrode">gold electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=electroanalysis" title=" electroanalysis"> electroanalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalysis" title=" electrocatalysis"> electrocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=monolayers" title=" monolayers"> monolayers</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembly" title=" self-assembly"> self-assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=cysteine" title=" cysteine"> cysteine</a>, <a href="https://publications.waset.org/abstracts/search?q=dopamine" title=" dopamine"> dopamine</a>, <a href="https://publications.waset.org/abstracts/search?q=ascorbic%20acid" title=" ascorbic acid"> ascorbic acid</a> </p> <a href="https://publications.waset.org/abstracts/117052/simple-fabrication-of-au-111-like-electrode-and-its-applications-to-electrochemical-determination-of-dopamine-and-ascorbic-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Anticancer Activity of Gnidia glauca Extracts in Human Breast Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vandana%20Gawande">Vandana Gawande</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandani%20Satija"> Chandani Satija</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gnidia glauca is a semi-woody herb of thymelaeaceae family traditionally used as fish poison in India. It is also found in Sri lanka and Africa. In the present study, potential anticancer effect of n-hexane and ethanolic extracts of Gnidia glauca in human breast cancer cells was investigated. Human breast cancer cells (MCF-7) were cultured as monolayers in RPMI 1640 medium. The cells were cultured for 48 hours to allow growth and achieve about 80% confluence in 96-well culture plates. The cells were treated with various concentrations of Gnidia glauca (0.1-100 mg/mL) for 72 hours. Percentage of viable cells after treatment was assessed using a sulforhodamine B colorimetric assay. Both n-hexane and ethanolic extract showed significant cytotoxic activity on MCF-7 cancer cells. This study supports the notion of using Gnidia glauca as a novel anticancer agent for breast cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=96%20well%20plate" title="96 well plate">96 well plate</a>, <a href="https://publications.waset.org/abstracts/search?q=anticancer%20activity" title=" anticancer activity"> anticancer activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Gnidia%20glauca" title=" Gnidia glauca"> Gnidia glauca</a>, <a href="https://publications.waset.org/abstracts/search?q=MCF-7" title=" MCF-7"> MCF-7</a> </p> <a href="https://publications.waset.org/abstracts/8569/anticancer-activity-of-gnidia-glauca-extracts-in-human-breast-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Self-Assembly of Monodisperse Oleic Acid-Capped Superparamagnetic Iron Oxide Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huseyin%20Kavas">Huseyin Kavas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oleic acid (OA) capped superparamagnetic iron oxide nanoparticles (SPION) were synthesized by a thermal decomposition method. The composition of nanoparticles was confirmed by X-ray powder diffraction, and the morphology of particles was investigated by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and Transmission electron microscopy (TEM). The crystalline and particle size distribution of SPIONS capped with OA were investigated with a mean size of 6.99 nm and 8.9 nm, respectively. It was found that SPIONS have superparamagnetic characteristics with a saturation magnetization value of 64 emu/g. The thin film form of self-assembled SPIONS was fabricated by coating techniques of spin coating and dip coating. SQUID-VSM magnetometer and FMR techniques were performed in order to evaluate the magnetic properties of thin films, especially the existence of magnetic anisotropy. The thin films with magnetic anisotropy were obtained by self-assembled monolayers of SPION. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20materials" title="magnetic materials">magnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembly" title=" self-assembly"> self-assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=FMR" title=" FMR"> FMR</a> </p> <a href="https://publications.waset.org/abstracts/158967/self-assembly-of-monodisperse-oleic-acid-capped-superparamagnetic-iron-oxide-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Preparation and Study of Pluronic F127 Monolayers at Air-Water Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Kanodia">Neha Kanodia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kamil"> M. Kamil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Properties of mono layers of Pluronic F127 at air/water interface have been investigated by using Langmuir trough method. Pluronic F127 is a triblock copolymer of poly (ethyleneoxide) (PEO groups)– poly (propylene oxide) (PO groups)–poly(ethylene oxide) (PEO groups). Surface pressure versus mean molecular area isotherms is studied. The isotherm of the mono layer showed the characteristics of a pancake-to-brush transition upon compression of the mono layer. The effect of adding surfactant (SDS) to polymer and the effect of increasing loading on polymer was also studied. The effect of repeated compression and expansion cycle (or hysteresis curve) is investigated to know about stability of the film formed. Static elasticity of mono layer gives information about molecular arrangement, phase structure and phase transition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface-pressure" title="surface-pressure">surface-pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20molecular%20area%20isotherms" title=" mean molecular area isotherms"> mean molecular area isotherms</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis" title=" hysteresis"> hysteresis</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20elasticity" title=" static elasticity"> static elasticity</a> </p> <a href="https://publications.waset.org/abstracts/19248/preparation-and-study-of-pluronic-f127-monolayers-at-air-water-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Corrosion Control of Carbon Steel Surface by Phosphonic Acid Nano-Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Abohalkuma">T. Abohalkuma</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Telegdi"> J. Telegdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Preparation, characterization, and application of self-assembled monolayers (SAM) formed by fluorophosphonic and undecenyl phosphonic acids on carbon steel surfaces as anticorrosive nanocoatings were demonstrated. The anticorrosive efficacy of these SAM layers was followed by atomic force microscopy, as the change in the surface morphology caused by layer deposition and corrosion processes was monitored. The corrosion process was determined by electrochemical potentiodynamic polarization, whereas the surface wettability of the carbon steel samples was tested with the use of static and dynamic contact angle measurements. Results showed that both chemicals produced good protection against corrosion as they performed as anodic inhibitors, especially with increasing the time of layer formation, which results in a more compact molecular film. According to the atomic force microscope (AFM) images, the fluoro-phosphonic acid self-assembled molecular layer can control the general as well as the pitting corrosion, but the SAM layers of the undecenyl-phosphonic acid cannot inhibit the pitting corrosion. The AFM and the contact angle measurements confirmed the results achieved by electrochemical measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanolayers" title="nanolayers">nanolayers</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphonic%20acids" title=" phosphonic acids"> phosphonic acids</a>, <a href="https://publications.waset.org/abstracts/search?q=coatings" title=" coatings"> coatings</a> </p> <a href="https://publications.waset.org/abstracts/142385/corrosion-control-of-carbon-steel-surface-by-phosphonic-acid-nano-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Two-Dimensional Transition Metal Dichalcogenides for Photodetection and Biosensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Badmus">Mariam Badmus</a>, <a href="https://publications.waset.org/abstracts/search?q=Bothina%20Manasreh"> Bothina Manasreh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transition metal dichalcogenides (TMDs) have gained significant attention as two-dimensional (2D) materials due to their intrinsic band gaps and unique properties, which make them ideal candidates for electronic and photonic applications. Unlike graphene, which lacks a band gap, TMDs (MX₂, where M is a transition metal and X is a chalcogen such as sulfur, selenium, or tellurium) exhibit semiconductor behavior and can be exfoliated into monolayers, enhancing their properties. The properties of these materials are investigated using density functional theory, a quantum mechanical computational method to solve Schrodinger equation for many body problems to calculate electron density of the atoms involved on which the energy and properties of a system depend. They show promise for use in photodetectors, biosensors, memory devices, and other technologies in communications, health, and energy sectors. In particular, metallic TMDs, which lack an intrinsic band gap, benefit from doping with transition metals, this improves their electronic and optical properties. Doping monolayer TMDs yields more significant improvements than doping bulk materials. Notably, doping with metals such as vanadium enhances the magnetization of TMDs, expanding their potential applications in spintronics. This work highlights the effects of doping on TMDs and explores strategies for optimizing their performance for advanced technological applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentration" title="concentration">concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization" title=" magnetization"> magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=monolayer" title=" monolayer"> monolayer</a> </p> <a href="https://publications.waset.org/abstracts/193868/two-dimensional-transition-metal-dichalcogenides-for-photodetection-and-biosensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Controlling Interactions and Non-Equilibrium Steady State in Spinning Active Matter Monolayers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Paul%20Steimel">Joshua Paul Steimel</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Pappas"> Michael Pappas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ethan%20Hall"> Ethan Hall</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particle-particle interactions are critical in determining the state of an active matter system. Unique and ubiquitous non-equilibrium behavior like swarming, vortexing, spiraling, and much more is governed by interactions between active units or particles. In hybrid active-passive matter systems, the attraction between spinning active units in a 2D monolayer of passive particles is controlled by the mechanical behavior of the passive monolayer. We demonstrate here that the range and dynamics of this attraction can be controlled by changing the composition of the passive monolayer by adding dopant passive particles. These dopant passive particles effectively pin the movement of dislocation motion in the passive media and reduce the probability of defect motion required to erode the bridge of passive particles between active spinners, thus reducing the range of attraction. Additionally, by adding an out of plane component to the magnetic moment and creating a top-like motion a short range repulsion emerges between the top-like particle. At inter-top distances less than four particle diameters apart, the tops repel but beyond that, distance attract up to 13 particle diameters apart. The tops were also able to locally and transiently anneal the passive monolayer. Thus we demonstrate that by tuning several parameters of the hybrid active matter system, one can observe very different emergent behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20matter" title="active matter">active matter</a>, <a href="https://publications.waset.org/abstracts/search?q=colloids" title=" colloids"> colloids</a>, <a href="https://publications.waset.org/abstracts/search?q=ferromagnetic" title=" ferromagnetic"> ferromagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=annealing" title=" annealing"> annealing</a> </p> <a href="https://publications.waset.org/abstracts/155350/controlling-interactions-and-non-equilibrium-steady-state-in-spinning-active-matter-monolayers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Surface Modification of TiO2 Layer with Phosphonic Acid Monolayer in Perovskite Solar Cells: Effect of Chain Length and Terminal Functional Group</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seid%20Yimer%20Abate">Seid Yimer Abate</a>, <a href="https://publications.waset.org/abstracts/search?q=Ding-Chi%20%20Huang"> Ding-Chi Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Tai%20Tao"> Yu-Tai Tao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, charge extraction characteristics at the perovskite/TiO2 interface in the conventional perovskite solar cell is studied by interface engineering. Self-assembled monolayers of phosphonic acids with different chain length and terminal functional group were used to modify mesoporous TiO2 surface to modulate the surface property and interfacial energy barrier to investigate their effect on charge extraction and transport from the perovskite to the mp-TiO2 and then the electrode. The chain length introduces a tunnelling distance and the end group modulate the energy level alignment at the mp-TiO2 and perovskite interface. The work function of these SAM-modified mp-TiO2 varied from −3.89 eV to −4.61 eV, with that of the pristine mp-TiO2 at −4.19 eV. A correlation of charge extraction and transport with respect to the modification was attempted. The study serves as a guide to engineer ETL interfaces with simple SAMs to improve the charge extraction, carrier balance and device long term stability. In this study, a maximum PCE of ~16.09% with insignificant hysteresis was obtained, which is 17% higher than the standard device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Energy%20level%20alignment" title="Energy level alignment">Energy level alignment</a>, <a href="https://publications.waset.org/abstracts/search?q=Interface%20engineering" title=" Interface engineering"> Interface engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=Perovskite%20solar%20cells" title=" Perovskite solar cells"> Perovskite solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=Phosphonic%20acid%20monolayer" title=" Phosphonic acid monolayer"> Phosphonic acid monolayer</a>, <a href="https://publications.waset.org/abstracts/search?q=Tunnelling%20distance" title=" Tunnelling distance"> Tunnelling distance</a> </p> <a href="https://publications.waset.org/abstracts/125966/surface-modification-of-tio2-layer-with-phosphonic-acid-monolayer-in-perovskite-solar-cells-effect-of-chain-length-and-terminal-functional-group" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Investigation of an Alkanethiol Modified Au Electrode as Sensor for the Antioxidant Activity of Plant Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dana%20A.%20Thal">Dana A. Thal</a>, <a href="https://publications.waset.org/abstracts/search?q=Heike%20Kahlert"> Heike Kahlert</a>, <a href="https://publications.waset.org/abstracts/search?q=Fritz%20Scholz"> Fritz Scholz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thiol molecules are known to easily form self-assembled monolayers (SAM) on Au surfaces. Depending on the thiol’s structure, surface modifications via SAM can be used for electrode sensor development. In the presented work, 1-decanethiol coated polycrystalline Au electrodes were applied to indirectly assess the radical scavenging potential of plant compounds and extracts. Different plant compounds with reported antioxidant properties as well as an extract from the plant Gynostemma pentaphyllum were tested for their effectiveness to prevent SAM degradation on the sensor electrodes via photolytically generated radicals in aqueous media. The SAM degradation was monitored over time by differential pulse voltammetry (DPV) measurements. The results were compared to established antioxidant assays. The obtained data showed an exposure time and concentration dependent degradation process of the SAM at the electrode’s surfaces. The tested substances differed in their capacity to prevent SAM degradation. Calculated radical scavenging activities of the tested plant compounds were different for different assays. The presented method poses a simple system for radical scavenging evaluation and, considering the importance of the test system in antioxidant activity evaluation, might be taken as a bridging tool between in-vivo and in-vitro antioxidant assay in order to obtain more biologically relevant results in antioxidant research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkanethiol%20SAM" title="alkanethiol SAM">alkanethiol SAM</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20antioxidant" title=" plant antioxidant"> plant antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=polycrystalline%20Au" title=" polycrystalline Au"> polycrystalline Au</a>, <a href="https://publications.waset.org/abstracts/search?q=radical%20scavenger" title=" radical scavenger"> radical scavenger</a> </p> <a href="https://publications.waset.org/abstracts/69246/investigation-of-an-alkanethiol-modified-au-electrode-as-sensor-for-the-antioxidant-activity-of-plant-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> A Photoemission Study of Dye Molecules Deposited by Electrospray on rutile TiO2 (110)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nouf%20Alharbi">Nouf Alharbi</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20O%27shea"> James O&#039;shea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For decades, renewable energy sources have received considerable global interest due to the increase in fossil fuel consumption. The abundant energy produced by sunlight makes dye-sensitised solar cells (DSSCs) a promising alternative compared to conventional silicon and thin film solar cells due to their transparency and tunable colours, which make them suitable for applications such as windows and glass facades. The transfer of an excited electron onto the surface is an important procedure in the DSSC system, so different groups of dye molecules were studied on the rutile TiO2 (110) surface. Currently, the study of organic dyes has become an interest of researchers due to ruthenium being a rare and expensive metal, and metal-free organic dyes have many features, such as high molar extinction coefficients, low manufacturing costs, and ease of structural modification and synthesis. There are, of course, some groups that have developed organic dyes and exhibited lower light-harvesting efficiency ranging between 4% and 8%. Since most dye molecules are complicated or fragile to be deposited by thermal evaporation or sublimation in the ultra-high vacuum (UHV), all dyes (i.e, D5, SC4, and R6) in this study were deposited in situ using the electrospray deposition technique combined with X-ray photoelectron spectroscopy (XPS) as an alternative method to obtain high-quality monolayers of titanium dioxide. These organic molecules adsorbed onto rutile TiO2 (110) are explored by XPS, which can be used to obtain element-specific information on the chemical structure and study bonding and interaction sites on the surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dyes" title="dyes">dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition" title=" deposition"> deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospray" title=" electrospray"> electrospray</a>, <a href="https://publications.waset.org/abstracts/search?q=molecules" title=" molecules"> molecules</a>, <a href="https://publications.waset.org/abstracts/search?q=organic" title=" organic"> organic</a>, <a href="https://publications.waset.org/abstracts/search?q=rutile" title=" rutile"> rutile</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitised" title=" sensitised"> sensitised</a>, <a href="https://publications.waset.org/abstracts/search?q=XPS" title=" XPS"> XPS</a> </p> <a href="https://publications.waset.org/abstracts/164476/a-photoemission-study-of-dye-molecules-deposited-by-electrospray-on-rutile-tio2-110" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Engineering a Band Gap Opening in Dirac Cones on Graphene/Tellurium Heterostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beatriz%20Mu%C3%B1iz%20Cano">Beatriz Muñiz Cano</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Ripoll%20Sau"> J. Ripoll Sau</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Pacile"> D. Pacile</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20Sheverdyaeva"> P. M. Sheverdyaeva</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Moras"> P. Moras</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Camarero"> J. Camarero</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Miranda"> R. Miranda</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Garnica"> M. Garnica</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Valbuena"> M. A. Valbuena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene, in its pristine state, is a semiconductor with a zero band gap and massless Dirac fermions carriers, which conducts electrons like a metal. Nevertheless, the absence of a bandgap makes it impossible to control the material’s electrons, something that is essential to perform on-off switching operations in transistors. Therefore, it is necessary to generate a finite gap in the energy dispersion at the Dirac point. Intense research has been developed to engineer band gaps while preserving the exceptional properties of graphene, and different strategies have been proposed, among them, quantum confinement of 1D nanoribbons or the introduction of super periodic potential in graphene. Besides, in the context of developing new 2D materials and Van der Waals heterostructures, with new exciting emerging properties, as 2D transition metal chalcogenides monolayers, it is fundamental to know any possible interaction between chalcogenide atoms and graphene-supporting substrates. In this work, we report on a combined Scanning Tunneling Microscopy (STM), Low Energy Electron Diffraction (LEED), and Angle-Resolved Photoemission Spectroscopy (ARPES) study on a new superstructure when Te is evaporated (and intercalated) onto graphene over Ir(111). This new superstructure leads to the electronic doping of the Dirac cone while the linear dispersion of massless Dirac fermions is preserved. Very interestingly, our ARPES measurements evidence a large band gap (~400 meV) at the Dirac point of graphene Dirac cones below but close to the Fermi level. We have also observed signatures of the Dirac point binding energy being tuned (upwards or downwards) as a function of Te coverage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angle%20resolved%20photoemission%20spectroscopy" title="angle resolved photoemission spectroscopy">angle resolved photoemission spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=ARPES" title=" ARPES"> ARPES</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=spintronics" title=" spintronics"> spintronics</a>, <a href="https://publications.waset.org/abstracts/search?q=spin-orbitronics" title=" spin-orbitronics"> spin-orbitronics</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20materials" title=" 2D materials"> 2D materials</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal%20dichalcogenides" title=" transition metal dichalcogenides"> transition metal dichalcogenides</a>, <a href="https://publications.waset.org/abstracts/search?q=TMDCs" title=" TMDCs"> TMDCs</a>, <a href="https://publications.waset.org/abstracts/search?q=TMDs" title=" TMDs"> TMDs</a>, <a href="https://publications.waset.org/abstracts/search?q=LEED" title=" LEED"> LEED</a>, <a href="https://publications.waset.org/abstracts/search?q=STM" title=" STM"> STM</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20materials" title=" quantum materials"> quantum materials</a> </p> <a href="https://publications.waset.org/abstracts/146640/engineering-a-band-gap-opening-in-dirac-cones-on-graphenetellurium-heterostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Development of New Localized Surface Plasmon Resonance Interfaces Based on ITO Au NPs/ Polymer for Nickel Detection </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Z.%20Tighilt">F. Z. Tighilt</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Belhaneche-Bensemra"> N. Belhaneche-Bensemra</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Belhousse"> S. Belhousse</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sam"> S. Sam</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Lasmi"> K. Lasmi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Gabouze"> N. Gabouze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the gold nanoparticles (Au NPs) became an active multidisciplinary research topic. First, Au thin films fabricated by alkylthiol-functionalized Au NPs were found to have vapor sensitive conductivities, they were hence widely investigated as electrical chemiresistors for sensing different vapor analytes and even organic molecules in aqueous solutions. Second, Au thin films were demonstrated to have speciallocalized surface plasmon resonances (LSPR), so that highly ordered 2D Au superlattices showed strong collective LSPR bands due to the near-field coupling of adjacent nanoparticles and were employed to detect biomolecular binding. Particularly when alkylthiol ligands were replaced by thiol-terminated polymers, the resulting polymer-modified Au NPs could be readily assembled into 2D nanostructures on solid substrates. Monolayers of polystyrene-coated Au NPs showed typical dipolar near-field interparticle plasmon coupling of LSPR. Such polymer-modified Au nanoparticle films have an advantage that the polymer thickness can be feasibly controlled by changing the polymer molecular weight. In this article, the effect of tin-doped indium oxide (ITO) coatings on the plasmonic properties of ITO interfaces modified with gold nanostructures (Au NSs) is investigated. The interest in developing ITO overlayers is multiple. The presence of a con-ducting ITO overlayer creates a LSPR-active interface, which can serve simultaneously as a working electrode in an electro-chemical setup. The surface of ITO/ Au NPs contains hydroxyl groups that can be used to link functional groups to the interface. Here the covalent linking of nickel /Au NSs/ITO hybrid LSPR platforms will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymer" title="conducting polymer">conducting polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20nanoparticles%20%28NPs%29" title=" metal nanoparticles (NPs)"> metal nanoparticles (NPs)</a>, <a href="https://publications.waset.org/abstracts/search?q=LSPR" title=" LSPR"> LSPR</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20%283-%28pyrrolyl%29%E2%80%93carboxylic%20acid%29" title=" poly (3-(pyrrolyl)–carboxylic acid)"> poly (3-(pyrrolyl)–carboxylic acid)</a>, <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title=" polypyrrole"> polypyrrole</a> </p> <a href="https://publications.waset.org/abstracts/10691/development-of-new-localized-surface-plasmon-resonance-interfaces-based-on-ito-au-nps-polymer-for-nickel-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Role of Micro-Patterning on Stem Cell-Material Interaction Modulation and Cell Fate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lay%20Poh%20Tan">Lay Poh Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chor%20Yong%20Tay"> Chor Yong Tay</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiyang%20Yu"> Haiyang Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro-contact printing is a form of soft lithography that uses the relief patterns on a master polydimethylsiloxane (PDMS) stamp to form patterns of self-assembled monolayers (SAMs) of ink on the surface of a substrate through conformal contact technique. Here, we adopt this method to print proteins of different dimensions on our biodegradable polymer substrates. We started off with printing 20-500 μm scale lanes of fibronectin to engineer the shape of bone marrow derived human mesenchymal stem cell (hMSCs). After 8 hours of culture, the hMSCs adopted elongated shapes, and upon analysis of the gene expressions, genes commonly associated with myogenesis (GATA-4, MyoD1, cTnT and β-MHC) and neurogenesis (NeuroD, Nestin, GFAP, and MAP2) were up-regulated but gene expression associated to osteogenesis (ALPL, RUNX2, and SPARC) were either down modulated or remained at the nominal level. This is the first evidence that cellular morphology control via micropatterning could be used to modulate stem cell fate without external biochemical stimuli. We further our studies to modulate the focal adhesion (FA) instead of the macro shape of cells. Micro-contact printed islands of different smaller dimensions were investigated. We successfully regulated the FAs into dense FAs and elongated FAs by micropatterning. Additionally, the combined effects of hard (40.4 kPa), and intermediate (10.6 kPa) PA gel and FAs patterning on hMSCs differentiation were studied. Results showed that FA and matrix compliance plays an important role in hMSCs differentiation, and there is a cross-talk between different physical stimulants and the significance of these stimuli can only be realized if they are combined at the optimum level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-contact%20printing" title="micro-contact printing">micro-contact printing</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20substrate" title=" polymer substrate"> polymer substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-material%20interaction" title=" cell-material interaction"> cell-material interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell%20differentiation" title=" stem cell differentiation"> stem cell differentiation</a> </p> <a href="https://publications.waset.org/abstracts/92615/role-of-micro-patterning-on-stem-cell-material-interaction-modulation-and-cell-fate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Airborne Pollutants and Lung Surfactant: Biophysical Impacts of Surface Oxidation Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahana%20Selladurai">Sahana Selladurai</a>, <a href="https://publications.waset.org/abstracts/search?q=Christine%20DeWolf"> Christine DeWolf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lung surfactant comprises a lipid-protein film that coats the alveolar surface and serves to prevent alveolar collapse upon repeated breathing cycles. Exposure of lung surfactant to high concentrations of airborne pollutants, for example tropospheric ozone in smog, can chemically modify the lipid and protein components. These chemical changes can impact the film functionality by decreasing the film’s collapse pressure (minimum surface tension attainable), altering it is mechanical and flow properties and modifying lipid reservoir formation essential for re-spreading of the film during the inhalation process. In this study, we use Langmuir monolayers spread at the air-water interface as model membranes where the compression and expansion of the film mimics the breathing cycle. The impact of ozone exposure on model lung surfactant films is measured using a Langmuir film balance, Brewster angle microscopy and a pendant drop tensiometer as a function of film and sub-phase composition. The oxidized films are analyzed using mass spectrometry where lipid and protein oxidation products are observed. Oxidation is shown to reduce surface activity, alter line tension (and film morphology) and in some cases visibly reduce the viscoelastic properties of the film when compared to controls. These reductions in functionality of the films are highly dependent on film and sub-phase composition, where for example, the effect of oxidation is more pronounced when using a physiologically relevant buffer as opposed to water as the sub-phase. These findings can lead to a better understanding on the impact of continuous exposure to high levels of ozone on the mechanical process of breathing, as well as understanding the roles of certain lung surfactant components in this process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lung%20surfactant" title="lung surfactant">lung surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone" title=" ozone"> ozone</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelasticity" title=" viscoelasticity"> viscoelasticity</a> </p> <a href="https://publications.waset.org/abstracts/26812/airborne-pollutants-and-lung-surfactant-biophysical-impacts-of-surface-oxidation-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Information Visualization Methods Applied to Nanostructured Biosensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osvaldo%20N.%20Oliveira%20Jr.">Osvaldo N. Oliveira Jr.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The control of molecular architecture inherent in some experimental methods to produce nanostructured films has had great impact on devices of various types, including sensors and biosensors. The self-assembly monolayers (SAMs) and the electrostatic layer-by-layer (LbL) techniques, for example, are now routinely used to produce tailored architectures for biosensing where biomolecules are immobilized with long-lasting preserved activity. Enzymes, antigens, antibodies, peptides and many other molecules serve as the molecular recognition elements for detecting an equally wide variety of analytes. The principles of detection are also varied, including electrochemical methods, fluorescence spectroscopy and impedance spectroscopy. In this presentation an overview will be provided of biosensors made with nanostructured films to detect antibodies associated with tropical diseases and HIV, in addition to detection of analytes of medical interest such as cholesterol and triglycerides. Because large amounts of data are generated in the biosensing experiments, use has been made of computational and statistical methods to optimize performance. Multidimensional projection techniques such as Sammon´s mapping have been shown more efficient than traditional multivariate statistical analysis in identifying small concentrations of anti-HIV antibodies and for distinguishing between blood serum samples of animals infected with two tropical diseases, namely Chagas´ disease and Leishmaniasis. Optimization of biosensing may include a combination of another information visualization method, the Parallel Coordinate technique, with artificial intelligence methods in order to identify the most suitable frequencies for reaching higher sensitivity using impedance spectroscopy. Also discussed will be the possible convergence of technologies, through which machine learning and other computational methods may be used to treat data from biosensors within an expert system for clinical diagnosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clinical%20diagnosis" title="clinical diagnosis">clinical diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20visualization" title=" information visualization"> information visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructured%20films" title=" nanostructured films"> nanostructured films</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-by-layer%20technique" title=" layer-by-layer technique "> layer-by-layer technique </a> </p> <a href="https://publications.waset.org/abstracts/19287/information-visualization-methods-applied-to-nanostructured-biosensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Coupled Exciton - Surface Plasmon Polariton Enhanced Photoresponse of Two-Dimensional Hydrogenated Honeycomb Silicon Boride</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzaneh%20Shayeganfar">Farzaneh Shayeganfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ramazani"> Ali Ramazani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exciton (strong electronic interaction of electron-hole) and hot carriers created by surface plasmon polaritons has been demonstrated in nanoscale optoelectronic devices, enhancing the photoresponse of the system. Herein, we employ a quantum framework to consider coupled exciton- hot carriers effects on photovoltaiv energy distribution, scattering process, polarizability and light emission of 2D-semicnductor. We use density functional theory (DFT) to design computationally a semi-functionalized 2D honeycomb silicon boride (SiB) monolayer with H atoms, suitable for photovoltaics. The dynamical stability, electronic and optical properties of SiB and semi-hydrogenated SiB structures were investigated utilizing the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The calculated phonon dispersion shows that while an unhydrogenated SiB monolayer is dynamically unstable, surface semi-hydrogenation improves the stability of the structure and leads to a transition from metallic to semiconducting conductivity with a direct band gap of about 1.57 eV, appropriate for photovoltaic applications. The optical conductivity of this H-SiB structure, determined using the random phase approximation (RPA), shows that light adsorption should begin at the boundary of the visible range of light. Additionally, due to hydrogenation, the reflectivity spectrum declines sharply with respect to the unhydrogenated reflectivity spectrum in the IR and visible ranges of light. The energy band gap remains direct, increasing from 0.9 to 1.8 eV, upon increasing the strain from -6% (compressive) to +6% (tensile). Additionally, compressive and tensile strains lead, respectively, to red and blue shifts of optical the conductivity threshold around the visible range of light. Overall, this study suggests that H-SiB monolayers are suitable as two-dimensional solar cell materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon" title="surface plasmon">surface plasmon</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20carrier" title=" hot carrier"> hot carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20engineering" title=" strain engineering"> strain engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=valley%20polariton" title=" valley polariton"> valley polariton</a> </p> <a href="https://publications.waset.org/abstracts/128547/coupled-exciton-surface-plasmon-polariton-enhanced-photoresponse-of-two-dimensional-hydrogenated-honeycomb-silicon-boride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Elastic Behaviour of Graphene Nanoplatelets Reinforced Epoxy Resin Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Srivastava">V. K. Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene has recently attracted an increasing attention in nanocomposites applications because it has 200 times greater strength than steel, making it the strongest material ever tested. Graphene, as the fundamental two-dimensional (2D) carbon structure with exceptionally high crystal and electronic quality, has emerged as a rapidly rising star in the field of material science. Graphene, as defined, as a 2D crystal, is composed of monolayers of carbon atoms arranged in a honeycombed network with six-membered rings, which is the interest of both theoretical and experimental researchers worldwide. The name comes from graphite and alkene. Graphite itself consists of many graphite-sheets stacked together by weak van der Waals forces. This is attributed to the monolayer of carbon atoms densely packed into honeycomb structure. Due to superior inherent properties of graphene nanoplatelets (GnP) over other nanofillers, GnP particles were added in epoxy resin with the variation of weight percentage. It is indicated that the DMA results of storage modulus, loss modulus and tan δ, defined as the ratio of elastic modulus and imaginary (loss) modulus versus temperature were affected with addition of GnP in the epoxy resin. In epoxy resin, damping (tan δ) is usually caused by movement of the molecular chain. The tan δ of the graphene nanoplatelets/epoxy resin composite is much lower than that of epoxy resin alone. This finding suggests that addition of graphene nanoplatelets effectively impedes movement of the molecular chain. The decrease in storage modulus can be interpreted by an increasing susceptibility to agglomeration, leading to less energy dissipation in the system under viscoelastic deformation. The results indicates the tan δ increased with the increase of temperature, which confirms that tan δ is associated with magnetic field strength. Also, the results show that the nanohardness increases with increase of elastic modulus marginally. GnP filled epoxy resin gives higher value than the epoxy resin, because GnP improves the mechanical properties of epoxy resin. Debonding of GnP is clearly observed in the micrograph having agglomeration of fillers and inhomogeneous distribution. Therefore, DMA and nanohardness studies indiacte that the elastic modulus of epoxy resin is increased with the addition of GnP fillers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agglomeration" title="agglomeration">agglomeration</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus" title=" elastic modulus"> elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title=" epoxy resin"> epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20nanoplatelet" title=" graphene nanoplatelet"> graphene nanoplatelet</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20modulus" title=" loss modulus"> loss modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=nanohardness" title=" nanohardness"> nanohardness</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20modulus" title=" storage modulus"> storage modulus</a> </p> <a href="https://publications.waset.org/abstracts/36868/elastic-behaviour-of-graphene-nanoplatelets-reinforced-epoxy-resin-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Rice Mycotoxins Fate During In vitro Digestion and Intestinal Absorption: the Effect of Individual and Combination Exposures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolina%20S.%20Monteiro">Carolina S. Monteiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Eug%C3%A9nia%20Pinto"> Eugénia Pinto</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20A.%20Faria"> Miguel A. Faria</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20C.%20Cunha"> Sara C. Cunha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> About half of the world's population eats rice daily, making it the primary food source for billions of people. Besides its nutrition potential, rice can be a significant route of exposure to many contaminants. Mycotoxins are an example of such contaminants that can be present in rice. Among them, ochratoxin (OTA), citrinin (CIT), and zearalenone (ZEN) are frequently reported in rice. During digestion, only a fraction of mycotoxins from food can be absorbed (bioaccessible fraction), influencing their ability to cause toxic effects. Insufficient knowledge of the bioavailability of mycotoxins, alone and in combination, may hinder an accurate risk assessment of contaminants ingested by humans. In this context, two different rice (Oryza sativa) varieties, Carolino white and Carolino brown, both with and without turmeric, were boiled and individually spiked with OTA, CIT, and ZEN plus with its combination. Subsequently, samples were submitted to the INFOGEST harmonized in vitro digestion protocol to evaluate the bioaccessibility of mycotoxins. Afterward, the in vitro intestinal transport of the mycotoxins, both alone and in combination, was evaluated in digests of Carolino white rice with and without turmeric. Assays were performed with a monolayers of of Caco-2 and HT-29 cells. Bioaccessibility of OTA and ZEN, alone and in combination, were similar in Carolino white and brown rice with or without turmeric. For CIT, when Carolino white rice was used, the bioaccessibility was higher alone than in combination (62.00% vs. 25.00%, without turmeric; 87.56% vs. 53.87%, with turmeric); however, with Carolino brown rice was the opposite (66.38% vs. 75.20%, without turmeric; 43.89% vs. 59.44%, with turmeric). All the mycotoxins, isolated, reached the higher bioaccessibility in the Carolino white rice with turmeric (CIT: 87.56%; OTA: 59.24%; ZEN: 58.05%). When mycotoxins are co-present, the higher bioaccessibility of each one varies with the type of rice. In general, when turmeric is present, bioaccessibility increases, except for CIT, using Carolino brown rice. Concerning the intestinal absorption in vitro, after 3 hours of transport, all mycotoxins were detected in the basolateral compartment being thus transported through the cells monolayer. ZEN presented the highest fraction absorbed isolated and combined, followed by CIT and OTA. These findings highlight that the presence of other components in the complex dietary matrix, like turmeric, and the co-presence of mycotoxins can affect its final bioavailability with obvious implications for health risk. This work provides new insights to qualitatively and quantitatively describe mycotoxin in rice fate during human digestion and intestinal absorption and further contribute to better risk assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioaccessibility" title="bioaccessibility">bioaccessibility</a>, <a href="https://publications.waset.org/abstracts/search?q=digestion" title=" digestion"> digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=intestinal%20absorption" title=" intestinal absorption"> intestinal absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=mycotoxins" title=" mycotoxins"> mycotoxins</a> </p> <a href="https://publications.waset.org/abstracts/179300/rice-mycotoxins-fate-during-in-vitro-digestion-and-intestinal-absorption-the-effect-of-individual-and-combination-exposures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Controlled Doping of Graphene Monolayer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vedanki%20Khandenwal">Vedanki Khandenwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawan%20Srivastava"> Pawan Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Kartick%20Tarafder"> Kartick Tarafder</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhasis%20Ghosh"> Subhasis Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present here the experimental realization of controlled doping of graphene monolayers through charge transfer by trapping selected organic molecules between the graphene layer and underlying substrates. This charge transfer between graphene and trapped molecule leads to controlled n-type or p-type doping in monolayer graphene (MLG), depending on whether the trapped molecule acts as an electron donor or an electron acceptor. Doping controllability has been validated by a shift in corresponding Raman peak positions and a shift in Dirac points. In the transfer characteristics of field effect transistors, a significant shift of Dirac point towards positive or negative gate voltage region provides the signature of p-type or n-type doping of graphene, respectively, as a result of the charge transfer between graphene and the organic molecules trapped within it. In order to facilitate the charge transfer interaction, it is crucial for the trapped molecules to be situated in close proximity to the graphene surface, as demonstrated by findings in Raman and infrared spectroscopies. However, the mechanism responsible for this charge transfer interaction has remained unclear at the microscopic level. Generally, it is accepted that the dipole moment of adsorbed molecules plays a crucial role in determining the charge-transfer interaction between molecules and graphene. However, our findings clearly illustrate that the doping effect primarily depends on the reactivity of the constituent atoms in the adsorbed molecules rather than just their dipole moment. This has been illustrated by trapping various molecules at the graphene−substrate interface. Dopant molecules such as acetone (containing highly reactive oxygen atoms) promote adsorption across the entire graphene surface. In contrast, molecules with less reactive atoms, such as acetonitrile, tend to adsorb at the edges due to the presence of reactive dangling bonds. In the case of low-dipole moment molecules like toluene, there is a lack of substantial adsorption anywhere on the graphene surface. Observation of (i) the emergence of the Raman D peak exclusively at the edges for trapped molecules without reactive atoms and throughout the entire basal plane for those with reactive atoms, and (ii) variations in the density of attached molecules (with and without reactive atoms) to graphene with their respective dipole moments provides compelling evidence to support our claim. Additionally, these observations were supported by first principle density functional calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20transfer" title=" charge transfer"> charge transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20phase%20exfoliation" title=" liquid phase exfoliation"> liquid phase exfoliation</a> </p> <a href="https://publications.waset.org/abstracts/175625/controlled-doping-of-graphene-monolayer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Inertial Spreading of Drop on Porous Surfaces </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shilpa%20Sahoo">Shilpa Sahoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Louge"> Michel Louge</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Reeves"> Anthony Reeves</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Desjardins"> Olivier Desjardins</a>, <a href="https://publications.waset.org/abstracts/search?q=Susan%20Daniel"> Susan Daniel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadik%20Omowunmi"> Sadik Omowunmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The microgravity on the International Space Station (ISS) was exploited to study the imbibition of water into a network of hydrophilic cylindrical capillaries on time and length scales long enough to observe details hitherto inaccessible under Earth gravity. When a drop touches a porous medium, it spreads as if laid on a composite surface. The surface first behaves as a hydrophobic material, as liquid must penetrate pores filled with air. When contact is established, some of the liquid is drawn into pores by a capillarity that is resisted by viscous forces growing with length of the imbibed region. This process always begins with an inertial regime that is complicated by possible contact pinning. To study imbibition on Earth, time and distance must be shrunk to mitigate gravity-induced distortion. These small scales make it impossible to observe the inertial and pinning processes in detail. Instead, in the International Space Station (ISS), astronaut Luca Parmitano slowly extruded water spheres until they touched any of nine capillary plates. The 12mm diameter droplets were large enough for high-speed GX1050C video cameras on top and side to visualize details near individual capillaries, and long enough to observe dynamics of the entire imbibition process. To investigate the role of contact pinning, a text matrix was produced which consisted nine kinds of porous capillary plates made of gold-coated brass treated with Self-Assembled Monolayers (SAM) that fixed advancing and receding contact angles to known values. In the ISS, long-term microgravity allowed unambiguous observations of the role of contact line pinning during the inertial phase of imbibition. The high-speed videos of spreading and imbibition on the porous plates were analyzed using computer vision software to calculate the radius of the droplet contact patch with the plate and height of the droplet vs time. These observations are compared with numerical simulations and with data that we obtained at the ESA ZARM free-fall tower in Bremen with a unique mechanism producing relatively large water spheres and similarity in the results were observed. The data obtained from the ISS can be used as a benchmark for further numerical simulations in the field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=droplet%20imbibition" title="droplet imbibition">droplet imbibition</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilic%20surface" title=" hydrophilic surface"> hydrophilic surface</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20phase" title=" inertial phase"> inertial phase</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium"> porous medium</a> </p> <a href="https://publications.waset.org/abstracts/123483/inertial-spreading-of-drop-on-porous-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Beneficial Effect of Autologous Endometrial Stromal Cell Co-Culture on Day 3 Embryo Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Bochev">I. Bochev</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shterev"> A. Shterev</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kyurkchiev"> S. Kyurkchiev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the factors associated with poor success rates in human in vitro fertilization (IVF) is the suboptimal culture conditions in which fertilization and early embryonic growth occur. Co-culture systems with helper cell lines appear to enhance the in vitro conditions and allow embryos to demonstrate improved in vitro development. The co-culture of human embryos with monolayers of autologous endometrial stromal cell (EnSCs) results in increased blastocyst development with a larger number of blastomeres, lower incidence of fragmentation and higher pregnancy rates in patients with recurrent implantation failure (RIF). The aim of the study was to examine the influence of autologous endometrial stromal cell (EnSC) co-culture on day 3 embryo quality by comparing the morphological status of the embryos from the same patients undergoing consecutive IVF/Intracytoplasmic sperm injection (ICSI) cycles without and with EnSC co-culture. This retrospective randomized study (2015-2017) includes 20 couples and a total of 46 IVF/ICSI cycles. Each patient couple included had at least two IVF/ICSI procedures – one with and one without autologous EnSC co-culture. Embryo quality was assessed at 68±1 hours in culture, according to Istanbul consensus criteria (2010). Day 3 embryos were classified into three groups: good – grade 1; fair – grade 2; poor – grade 3. Embryos from all cycles were divided into two groups (A – co-cultivated; B – not co-cultivated) and analyzed. Second, for each patient couple, embryos from matched IVF/ICSI cycles (with and without co-culture) were analyzed separately. When an analysis of co-cultivated day 3 embryos from all cycles was performed (n=137; group A), 43.1% of the embryos were graded as “good”, which was not significantly different from the respective embryo quality rate of 42.2% (p = NS) in group B (n=147) with non-co-cultivated embryos. The proportions of fair and poor quality embryos in group A and group B were similar as well – 11.7% vs 10.2% and 45.2% vs 47.6% (p=NS), respectively. Nevertheless, the separate embryo analysis by matched cycles for each couple revealed that in 65% of the cases the proportion of morphologically better embryos was increased in cycles with co-culture in comparison with those without co-culture. A decrease in this proportion after endometrial stromal cell co-cultivation was found in 30% of the cases, whereas no difference was observed in only one couple. The results demonstrated that there is no marked difference in the overall morphological quality between co-cultured and non-co-cultured embryos on day 3. However, in significantly greater percentage of couples the process of autologous EnSC co-culture could increase the proportion of morphologically improved day 3 embryos. By mimicking the in vivo relationship between embryo and maternal environment, co-culture in autologous EnSC system represents a perspective approach to improve the quality of embryos in cases with elevated risk for development of embryos with impaired morphology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autologous%20endometrial%20stromal%20cells" title="autologous endometrial stromal cells">autologous endometrial stromal cells</a>, <a href="https://publications.waset.org/abstracts/search?q=co-culture" title=" co-culture"> co-culture</a>, <a href="https://publications.waset.org/abstracts/search?q=day%203%20embryo" title=" day 3 embryo"> day 3 embryo</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20quality" title=" morphological quality"> morphological quality</a> </p> <a href="https://publications.waset.org/abstracts/88663/beneficial-effect-of-autologous-endometrial-stromal-cell-co-culture-on-day-3-embryo-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monolayers&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=monolayers&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10