CINXE.COM

Search results for: saddle

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: saddle</title> <meta name="description" content="Search results for: saddle"> <meta name="keywords" content="saddle"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="saddle" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="saddle"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: saddle</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Design of Saddle Support for Horizontal Pressure Vessel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar">Vinod Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Navin%20Kumar"> Navin Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Surjit%20Angra"> Surjit Angra</a>, <a href="https://publications.waset.org/abstracts/search?q=Prince%20Sharma"> Prince Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design analysis of saddle support of a horizontal pressure vessel. Since saddle have the vital role to support the pressure vessel and to maintain its stability, it should be designed in such a way that it can afford the vessel load and internal pressure of the vessel due to liquid contained in the vessel. A model of horizontal pressure vessel and saddle support is created in Ansys. Stresses are calculated using mathematical approach and Ansys software. The analysis reveals the zone of high localized stress at the junction part of the pressure vessel and saddle support due to operating conditions. The results obtained by both the methods are compared with allowable stress value for safe designing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20vessel" title=" pressure vessel"> pressure vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=saddle" title=" saddle"> saddle</a>, <a href="https://publications.waset.org/abstracts/search?q=support" title=" support"> support</a> </p> <a href="https://publications.waset.org/abstracts/14966/design-of-saddle-support-for-horizontal-pressure-vessel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">742</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> X-Corner Detection for Camera Calibration Using Saddle Points</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20S.%20Alturki">Abdulrahman S. Alturki</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20S.%20Loomis"> John S. Loomis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses a corner detection algorithm for camera calibration. Calibration is a necessary step in many computer vision and image processing applications. Robust corner detection for an image of a checkerboard is required to determine intrinsic and extrinsic parameters. In this paper, an algorithm for fully automatic and robust X-corner detection is presented. Checkerboard corner points are automatically found in each image without user interaction or any prior information regarding the number of rows or columns. The approach represents each X-corner with a quadratic fitting function. Using the fact that the X-corners are saddle points, the coefficients in the fitting function are used to identify each corner location. The automation of this process greatly simplifies calibration. Our method is robust against noise and different camera orientations. Experimental analysis shows the accuracy of our method using actual images acquired at different camera locations and orientations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camera%20calibration" title="camera calibration">camera calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=corner%20detector" title=" corner detector"> corner detector</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20detector" title=" edge detector"> edge detector</a>, <a href="https://publications.waset.org/abstracts/search?q=saddle%20points" title=" saddle points"> saddle points</a> </p> <a href="https://publications.waset.org/abstracts/40538/x-corner-detection-for-camera-calibration-using-saddle-points" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Evaluation of Outpatient Management of Proctological Surgery under Saddle Block</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouhouf%20Atef">Bouhouf Atef</a>, <a href="https://publications.waset.org/abstracts/search?q=Beloulou%20Mohamed%20Lamine"> Beloulou Mohamed Lamine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Outpatient surgery is continually developing compared to conventional inpatient surgery; its rate is constantly increasing every year due to global socio-economic pressure. Most hospitals continue to perform proctologic surgery in conventional hospitalization. Purpose: As part of a monocentric prospective descriptive study, we examined the feasibility of proctologic surgery under saddle block on an outpatient basis with the same safety conditions as in traditional hospitalization. Material and methods: This is a monocentric prospective descriptive study spread over a period of 24 months, from December 2018 to December 2020 including 150 patients meeting the medico-surgical and socio-environmental criteria of eligibility for outpatient surgery, operated for proctological pathologies under saddle block in outpatient mode, in the surgery department of the regional military hospital of Constantine Algeria. The data were collected and analyzed by the biomedical statistics software Epi-info and Microsoft Excel, then compared with other related studies. Results: This study involved over a period of two years, 150 male patients with an average age of 32 years (20-64). Most patients (95,33%) were ASA I class, and 4,67% ASA II class. All patients received saddle blocks. The average length of stay of patients was six hours. The quality indicators in outpatient surgery in our study were: zero (0)% of deprogrammings, three (3)% of conversions to full hospitalization, 0,7% of readmissions, an average waiting time before access to the operating room of 83 minutes without delay of discharge, a satisfaction rate of 90,8% and a reduction in the cost compared to conventional inpatient surgery in proportions ranging from – 32,6% and – 48,75%. Conclusions: The outpatient management of proctological surgery under saddle block is very beneficial in terms of safety, efficiency, simplicity, and economy. Our results are in line with those of the literature and our work deserves to be continued to include many patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=outpatient%20surgery" title="outpatient surgery">outpatient surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=proctological%20surgery" title=" proctological surgery"> proctological surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=saddle%20block" title=" saddle block"> saddle block</a>, <a href="https://publications.waset.org/abstracts/search?q=satisfaction" title=" satisfaction"> satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=cost" title=" cost"> cost</a> </p> <a href="https://publications.waset.org/abstracts/192146/evaluation-of-outpatient-management-of-proctological-surgery-under-saddle-block" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Geological Characteristics and Hydrocarbon Potential of M’Rar Formation Within NC-210, Atshan Saddle Ghadamis-Murzuq Basins, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadeg%20M.%20Ghnia">Sadeg M. Ghnia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmud%20Alghattawi"> Mahmud Alghattawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The NC-210 study area is located in Atshan Saddle between both Ghadamis and Murzuq basins, west Libya. The preserved Palaeozoic successions are predominantly clastics reaching thickness of more than 20,000 ft in northern Ghadamis Basin depocenter. The Carboniferous series consist of interbedded sandstone, siltstone, shale, claystone and minor limestone deposited in a fluctuating shallow marine to brackish lacustrine/fluviatile environment which attain maximum thickness of over 5,000ft in the area of Atshan Saddle and recorded 3,500 ft. in outcrops of Murzuq Basin flanks. The Carboniferous strata was uplifted and eroded during Late Paleozoic and early Mesozoic time in northern Ghadamis Basin and Atshan Saddle. The M'rar Formation age is Tournaisian to Late Serpukhovian based on palynological markers and contains about 12 cycles of sandstone and shale deposited in shallow to outer neritic deltaic settings. The hydrocarbons in the M'rar reservoirs possibly sourced from the Lower Silurian and possibly Frasinian radioactive hot shales. The M'rar Formation lateral, vertical and thickness distribution is possibly influenced by the reactivation of Tumarline Strik-Slip fault and its conjugate faults. A pronounced structural paleohighs and paleolows, trending SE & NW through the Gargaf Saddle, is possibly indicative of the present of two sub-basins in the area of Atshan Saddle. A number of identified seismic reflectors from existing 2D seismic covering Atshan Saddle reflect M’rar deltaic 12 sandstone cycles. M’rar7, M’rar9, M’rar10 and M’rar12 are characterized by high amplitude reflectors, while M’rar2 and M’rar6 are characterized by medium amplitude reflectors. These horizons are productive reservoirs in the study area. Available seismic data in the study area contributed significantly to the identification of M’rar potential traps, which are prominently 3- way dip closure against fault zone. Also seismic data indicates the presence of a significant strikeslip component with the development of flower-structure. The M'rar Formation hydrocarbon discoveries are concentrated mainly in the Atshan Saddle located in southern Ghadamis Basin, Libya and Illizi Basin in southeast of Algeria. Significant additional hydrocarbons may be present in areas adjacent to the Gargaf Uplift, along structural highs and fringing the Hoggar Uplift, providing suitable migration pathways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20potential" title="hydrocarbon potential">hydrocarbon potential</a>, <a href="https://publications.waset.org/abstracts/search?q=stratigraphy" title=" stratigraphy"> stratigraphy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghadamis%20basin" title=" Ghadamis basin"> Ghadamis basin</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20data%20integration" title=" well data integration"> well data integration</a> </p> <a href="https://publications.waset.org/abstracts/161649/geological-characteristics-and-hydrocarbon-potential-of-mrar-formation-within-nc-210-atshan-saddle-ghadamis-murzuq-basins-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Form-Finding of Tensioned Fabric Structure in Mathematical Monkey Saddle Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yee%20Hooi%20Min">Yee Hooi Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Hadi"> Abdul Hadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N."> M. N.</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Kay%20Dora"> A. G. Kay Dora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Form-finding has to be carried out for tensioned fabric structure in order to determine the initial equilibrium shape under prescribed support condition and pre-stress pattern. Tensioned fabric structures are normally designed to be in the form of equal tensioned surface. Tensioned fabric structure is highly suited to be used for realizing surfaces of complex or new forms. However, research study on a new form as a tensioned fabric structure has not attracted much attention. Another source of inspiration minimal surface which could be adopted as form for tensioned fabric structure is very crucial. The aim of this study is to propose initial equilibrium shape of tensioned fabric structures in the form of Monkey Saddle. Computational form-finding is frequently used to determine the possible form of uniformly stressed surfaces. A tensioned fabric structure must curve equally in opposite directions to give the resulting surface a three dimensional stability. In an anticlastic doubly curved surface, the sum of all positive and all negative curvatures is zero. This study provides an alternative choice for structural designer to consider the Monkey Saddle applied in tensioned fabric structures. The results on factors affecting initial equilibrium shape can serve as a reference for proper selection of surface parameter for achieving a structurally viable surface. Such in-sight will lead to improvement of rural basic infrastructure, economic gains, sustainability of built environment and green technology initiative. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anticlastic" title="anticlastic">anticlastic</a>, <a href="https://publications.waset.org/abstracts/search?q=curvatures" title=" curvatures"> curvatures</a>, <a href="https://publications.waset.org/abstracts/search?q=form-finding" title=" form-finding"> form-finding</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20equilibrium%20shape" title=" initial equilibrium shape"> initial equilibrium shape</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20surface" title=" minimal surface"> minimal surface</a>, <a href="https://publications.waset.org/abstracts/search?q=tensioned%20fabric%20structure" title=" tensioned fabric structure"> tensioned fabric structure</a> </p> <a href="https://publications.waset.org/abstracts/20781/form-finding-of-tensioned-fabric-structure-in-mathematical-monkey-saddle-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> “Thou Shalt Surely Die”: A Game Theory Analysis of the Book of Genesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Kampmann%20Walther">Bo Kampmann Walther</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This essay examines the narratives of the Book of Genesis through the lens of game theory, a mathematical framework for analyzing strategic interactions among rational actors. By treating key figures in Genesis as players in a game, this analysis sheds light on their decisions and the resulting consequences. Focusing primarily on the story of Adam and Eve, the essay utilizes concepts such as game state, saddle point, optimal strategy, and Nash equilibrium to explore the dynamics at play and scrutinize the existence of two kinds of game rules in Genesis: one being global and post-Fall oriented, the other being local and relegated to life in the Garden. The serpent's intervention and the subsequent actions of Adam and Eve are modeled as strategic moves, revealing the complexities and shifts in the game state from harmony in Eden to a world marked by toil and mortality post-Fall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=game%20theory" title="game theory">game theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Genesis" title=" Genesis"> Genesis</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy" title=" strategy"> strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=saddle%20point" title=" saddle point"> saddle point</a>, <a href="https://publications.waset.org/abstracts/search?q=nash%20equilibrium" title=" nash equilibrium"> nash equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=New%20Game%20State" title=" New Game State"> New Game State</a> </p> <a href="https://publications.waset.org/abstracts/186277/thou-shalt-surely-die-a-game-theory-analysis-of-the-book-of-genesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Cauda Equina Syndrome: An Audit on Referral Adequacy and its Impact on Delay to Surgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Mafullul">David Mafullul</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiang%20Lei"> Jiang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Goacher"> Edward Goacher</a>, <a href="https://publications.waset.org/abstracts/search?q=Jibin%20Francis"> Jibin Francis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PURPOSE: Timely decompressive surgery for cauda equina syndrome (CES) is dependent on efficient referral pathways for patients presenting at local primary or secondary centres to tertiary spinal centres in the United Kingdom (UK). Identifying modifiable points of delay within this process is important as minimising time between presentation and surgery may improve patient outcomes. This study aims to analyse whether adequacy of referral impacts on time to surgery in CES. MATERIALS AND METHODS: Data from all cases of confirmed CES referred to a single tertiary UK hospital between August 2017 to December 2019, via a suspected CES e-referral pathway, were obtained retrospectively. Referral adequacy was defined by the inclusion of sufficient information to determine the presence or absence of several NICE ‘red flags’. Correlation between referral adequacy and delay from referral-to-surgery was then analysed. RESULTS: In total, 118 confirmed CES cases were included. Adequate documentation for saddle anaesthesia was associated with reduced delays of more than 48 hours from referral-to-surgery [X2(1, N=116)=7.12, p=.024], an effect partly attributable to these referrals being accepted sooner [U=16.5; n1=27, n2=4, p=.029, r=.39]. Other red flags had poor association with delay. Referral adequacy was better for somatic red flags [bilateral sciatica (97.5%); severe or progressive bilateral neurological deficit of the legs (95.8%); saddle anaesthesia (91.5%)] compared to autonomic red flags [loss of anal tone (80.5%); urinary retention (79.7%); faecal incontinence or lost sensation of rectal fullness (57.6%)]. Although referral adequacy for urinary retention was 79.7%, only 47.5% of referrals documented a post-void residual numerical value. CONCLUSIONS: Adequate documentation of saddle anaesthesia in e-referrals is associated with reduced delay-to-surgery for confirmed CES, partly attributable to these referrals being accepted sooner. Other red flags had poor association with delay to surgery. Referral adequacy for autonomic red flags, including documentation for post-void residuals, has significant room for improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cauda%20equina" title="cauda equina">cauda equina</a>, <a href="https://publications.waset.org/abstracts/search?q=cauda%20equina%20syndrome" title=" cauda equina syndrome"> cauda equina syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=neurosurgery" title=" neurosurgery"> neurosurgery</a>, <a href="https://publications.waset.org/abstracts/search?q=spinal%20surgery" title=" spinal surgery"> spinal surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=decompression" title=" decompression"> decompression</a>, <a href="https://publications.waset.org/abstracts/search?q=delay" title=" delay"> delay</a>, <a href="https://publications.waset.org/abstracts/search?q=referral" title=" referral"> referral</a>, <a href="https://publications.waset.org/abstracts/search?q=referral%20adequacy" title=" referral adequacy"> referral adequacy</a> </p> <a href="https://publications.waset.org/abstracts/190192/cauda-equina-syndrome-an-audit-on-referral-adequacy-and-its-impact-on-delay-to-surgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Accelerated Molecular Simulation: A Convolution Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jannes%20Quer">Jannes Quer</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Niknejad"> Amir Niknejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcus%20Weber"> Marcus Weber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computational Drug Design is often based on Molecular Dynamics simulations of molecular systems. Molecular Dynamics can be used to simulate, e.g., the binding and unbinding event of a small drug-like molecule with regard to the active site of an enzyme or a receptor. However, the time-scale of the overall binding event is many orders of magnitude longer than the time-scale of simulation. Thus, there is a need to speed-up molecular simulations. In order to speed up simulations, the molecular dynamics trajectories have to be &rdquo;steared&rdquo; out of local minimizers of the potential energy surface &ndash; the so-called metastabilities &ndash; of the molecular system. Increasing the kinetic energy (temperature) is one possibility to accelerate simulated processes. However, with temperature the entropy of the molecular system increases, too. But this kind &rdquo;stearing&rdquo; is not directed enough to stear the molecule out of the minimum toward the saddle point. In this article, we give a new mathematical idea, how a potential energy surface can be changed in such a way, that entropy is kept under control while the trajectories are still steared out of the metastabilities. In order to compute the unsteared transition behaviour based on a steared simulation, we propose to use extrapolation methods. In the end we mathematically show, that our method accelerates the simulations along the direction, in which the curvature of the potential energy surface changes the most, i.e., from local minimizers towards saddle points. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extrapolation" title="extrapolation">extrapolation</a>, <a href="https://publications.waset.org/abstracts/search?q=Eyring-Kramers" title=" Eyring-Kramers"> Eyring-Kramers</a>, <a href="https://publications.waset.org/abstracts/search?q=metastability" title=" metastability"> metastability</a>, <a href="https://publications.waset.org/abstracts/search?q=multilevel%20sampling" title=" multilevel sampling"> multilevel sampling</a> </p> <a href="https://publications.waset.org/abstracts/67617/accelerated-molecular-simulation-a-convolution-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> A Game Theory Analysis of The Enuma Elish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Kampmann%20Walther">Bo Kampmann Walther</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This essay provides an in-depth interpretation of the ancient Babylonian origin narrative, The Enuma Elish, through the lens of game theory. It examines the strategic interactions among the deities in the myth as if they were players in a game, focusing on understanding the dynamics of conflict, cooperation, and equilibrium within the narrative. The pivotal game theory concept known as Nash Equilibrium is given prominent consideration, but saddle points and optimal strategies will also be employed to uncover the decision-making processes of the divine figures, particularly in the cosmic battle for supremacy. This analysis demonstrates that the ancient narrative, beyond its mythological content, illustrates timeless principles of strategic behavior in the pursuit of game success. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enuma%20Elish" title="Enuma Elish">Enuma Elish</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20theory" title=" game theory"> game theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Nash%20Equilibrium" title=" Nash Equilibrium"> Nash Equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=Babylonian%20mythology" title=" Babylonian mythology"> Babylonian mythology</a>, <a href="https://publications.waset.org/abstracts/search?q=strategic%20interaction" title=" strategic interaction"> strategic interaction</a> </p> <a href="https://publications.waset.org/abstracts/191404/a-game-theory-analysis-of-the-enuma-elish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Two Steady States and Two Movement Patterns under the Balanced Budget Rule: An Economy with Divisible Labor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fujio%20Takata">Fujio Takata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When governments levy taxes on labor income on the basis of a balanced budget rule, two steady states in an economy exist, of which one can cause two movement patterns, namely, indeterminacy paths and a saddle path. However, in this paper, we assume an economy with divisible labor, in which labor adjustment is made by an intensive margin. We demonstrate that there indeed exist the two paths in the economy and that there exists a critical condition dividing them. This is proved by establishing the relationship between a finite elasticity of labor with regard to real wages and the share of capital in output. Consequently, we deduce the existence of an upper limit in the share of capital in output for indeterminacy to occur. The largest possible value of that share is less than 0.5698. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balanced%20budget%20rule" title="balanced budget rule">balanced budget rule</a>, <a href="https://publications.waset.org/abstracts/search?q=divisible%20labor" title=" divisible labor"> divisible labor</a>, <a href="https://publications.waset.org/abstracts/search?q=labor%20income%20taxation" title=" labor income taxation"> labor income taxation</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20movement%20patterns" title=" two movement patterns"> two movement patterns</a> </p> <a href="https://publications.waset.org/abstracts/134178/two-steady-states-and-two-movement-patterns-under-the-balanced-budget-rule-an-economy-with-divisible-labor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Study on Dynamic Stiffness Matching and Optimization Design Method of a Machine Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%20Xi">Lu Xi</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Pan"> Li Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen%20Mengmeng"> Wen Mengmeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stiffness of each component has different influences on the stiffness of the machine tool. Taking the five-axis gantry machining center as an example, we made the modal analysis of the machine tool, followed by raising and lowering the stiffness of the pillar, slide plate, beam, ram and saddle so as to study the stiffness matching among these components on the standard of whether the stiffness of the modified machine tool changes more than 50% relative to the stiffness of the original machine tool. The structural optimization of the machine tool can be realized by changing the stiffness of the components whose stiffness is mismatched. For example, the stiffness of the beam is mismatching. The natural frequencies of the first six orders of the beam increased by 7.70%, 0.38%, 6.82%, 7.96%, 18.72% and 23.13%, with the weight increased by 28Kg, leading to the natural frequencies of several orders which had a great influence on the dynamic performance of the whole machine increased by 1.44%, 0.43%, 0.065%, which verified the correctness of the optimization method based on stiffness matching proposed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20tool" title="machine tool">machine tool</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness%20matching" title=" stiffness matching"> stiffness matching</a> </p> <a href="https://publications.waset.org/abstracts/169087/study-on-dynamic-stiffness-matching-and-optimization-design-method-of-a-machine-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Development and Modeling of a Geographic Information System Solar Flux in Adrar, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Benatiallah">D. Benatiallah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benatiallah"> A. Benatiallah</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bouchouicha"> K. Bouchouicha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Harouz"> A. Harouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development and operation of renewable energy known an important development in the world with significant growth potential. Estimate the solar radiation on terrestrial geographic locality is of extreme importance, firstly to choose the appropriate site where to place solar systems (solar power plants for electricity generation, for example) and also for the design and performance analysis of any system using solar energy. In addition, solar radiation measurements are limited to a few areas only in Algeria. Thus, we use theoretical approaches to assess the solar radiation on a given location. The Adrar region is one of the most favorable sites for solar energy use with a medium flow that exceeds 7 kWh / m2 / d and saddle of over 3500 hours per year. Our goal in this work focuses on the creation of a data bank for the given data in the energy field of the Adrar region for the period of the year and the month then the integration of these data into a geographic Information System (GIS) to estimate the solar flux on a location on the map. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrar" title="Adrar">Adrar</a>, <a href="https://publications.waset.org/abstracts/search?q=flow" title=" flow"> flow</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=deposit%20potential" title=" deposit potential"> deposit potential</a> </p> <a href="https://publications.waset.org/abstracts/47606/development-and-modeling-of-a-geographic-information-system-solar-flux-in-adrar-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Comparative Analysis of Turbulent Plane Jets from a Sharp-Edged Orifice, a Beveled-Edge Orifice and a Radially Contoured Nozzle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravinesh%20C.%20Deo">Ravinesh C. Deo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article investigates through experiments the flow characteristics of plane jets from sharp-edged orifice-plate, beveled-edge and radially contoured nozzle. The first two configurations exhibit saddle-backed velocity profiles while the third shows a top-hat. A vena contracta is found for the jet emanating from orifice at x/h = 3 while the contoured case displays a potential core extending to the range x/h = 5. A spurt in jet pressure on the centerline supports vena contracta for the orifice-jet. Momentum thicknesses and integral length scales elongate linearly with x although the growth of the shear-layer and large-scale eddies for the orifice are greater than the contoured case. The near-field spectrum exhibits higher frequency of the primary eddies that concur with enhanced turbulence intensity. Importantly, highly “turbulent” state of the orifice-jet prevails in the far-field where the spectra confirm more energetic secondary eddies associated with greater flapping amplitude of the orifice-jet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orifice" title="orifice">orifice</a>, <a href="https://publications.waset.org/abstracts/search?q=beveled-edge-orifice" title=" beveled-edge-orifice"> beveled-edge-orifice</a>, <a href="https://publications.waset.org/abstracts/search?q=radially%20contoured%20nozzle" title=" radially contoured nozzle"> radially contoured nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=plane%20jets" title=" plane jets "> plane jets </a> </p> <a href="https://publications.waset.org/abstracts/2295/comparative-analysis-of-turbulent-plane-jets-from-a-sharp-edged-orifice-a-beveled-edge-orifice-and-a-radially-contoured-nozzle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Complex Dynamics in a Model of Management of the Protected Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Russu">Paolo Russu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the economic and ecological dynamics that emerge in Protected Areas (PAs) due to interactions between visitors and the animals that live there. The PAs contain two species whose interactions are determined by the Lotka-Volterra equations system. Visitors' decisions to visit PAs are influenced by the entrance cost required to enter the park and the chance of witnessing the species living there. Visitors have contradictory effects on the species and thus on the sustainability of the protected areas: on the one hand, an increase in the number of tourists damages the natural habitat of the regions and thus the species living there; on the other hand, it increases the total amount of entrance fees that the managing body of the PAs can use to perform defensive expenditures that protect the species from extinction. For a given set of parameter values, saddle-node bifurcation, Hopf bifurcation, homoclinic orbits, and a Bogdanov–Takens bifurcation of codimension two has been investigated. The system displays periodic doubling and chaotic solutions, as numerical examples demonstrate. Pontryagin's Maximum Principle was utilised to develop an optimal admission charge policy that maximised social gain and ecosystem conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chaos" title="chaos">chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=bifurcation%20points" title=" bifurcation points"> bifurcation points</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20model" title=" dynamical model"> dynamical model</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title=" optimal control"> optimal control</a> </p> <a href="https://publications.waset.org/abstracts/164280/complex-dynamics-in-a-model-of-management-of-the-protected-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Iterative Solver for Solving Large-Scale Frictional Contact Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thierno%20Diop">Thierno Diop</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Fortin"> Michel Fortin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Deteix"> Jean Deteix</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the precise formulation of the elastic part is irrelevant for the description of the algorithm, we shall consider a generic case. In practice, however, we will have to deal with a non linear material (for instance a Mooney-Rivlin model). We are interested in solving a finite element approximation of the problem, leading to large-scale non linear discrete problems and, after linearization, to large linear systems and ultimately to calculations needing iterative methods. This also implies that penalty method, and therefore augmented Lagrangian method, are to be banned because of their negative effect on the condition number of the underlying discrete systems and thus on the convergence of iterative methods. This is in rupture to the mainstream of methods for contact in which augmented Lagrangian is the principal tool. We shall first present the problem and its discretization; this will lead us to describe a general solution algorithm relying on a preconditioner for saddle-point problems which we shall describe in some detail as it is not entirely standard. We will propose an iterative approach for solving three-dimensional frictional contact problems between elastic bodies, including contact with a rigid body, contact between two or more bodies and also self-contact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frictional%20contact" title="frictional contact">frictional contact</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional" title=" three-dimensional"> three-dimensional</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale" title=" large-scale"> large-scale</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20method" title=" iterative method"> iterative method</a> </p> <a href="https://publications.waset.org/abstracts/90130/iterative-solver-for-solving-large-scale-frictional-contact-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> A 3D Model of the Sustainable Management of the Natural Environment in National Parks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Russu">Paolo Russu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the economic and ecological dynamics that emerge in Protected Areas (PAs) as a result of interactions between visitors to the area and the animals that live there. We suppose that the PAs contain two species whose interactions are determined by the Lotka-Volterra equations system. Visitors' decisions to visit PAs are influenced by the entrance cost required to enter the park as well as the chance of witnessing the species that live there. Visitors have contradictory effects on the species and thus on the sustainability of the protected areas: on the one hand, an increase in the number of tourists damages the natural habitat of the areas and thus the species living there; on the other hand, it increases the total amount of entrance fees that the managing body of the PAs can use to perform defensive expenditures that protect the species from extinction. For a given set of parameter values, the existence of saddle-node bifurcation, Hopf bifurcation, homoclinic orbits, and a Bogdanov–Takens bifurcation of codimension two has been investigated. The system displays periodic doubling and chaotic solutions, as demonstrated by numerical examples. Pontryagin's Maximum Principle was utilized to develop an optimal admission charge policy that maximized both social gain and ecosystem conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20preferences" title="environmental preferences">environmental preferences</a>, <a href="https://publications.waset.org/abstracts/search?q=singularities%20point" title=" singularities point"> singularities point</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20system" title=" dynamical system"> dynamical system</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos" title=" chaos"> chaos</a> </p> <a href="https://publications.waset.org/abstracts/150481/a-3d-model-of-the-sustainable-management-of-the-natural-environment-in-national-parks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Degree of Bending in Axially Loaded Tubular KT-Joints of Offshore Structures: Parametric Study and Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Ahmadi">Hamid Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shadi%20Asoodeh"> Shadi Asoodeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fatigue life of tubular joints commonly found in offshore industry is not only dependent on the value of hot-spot stress (HSS), but is also significantly influenced by the through-the-thickness stress distribution characterized by the degree of bending (DoB). The determination of DoB values in a tubular joint is essential for improving the accuracy of fatigue life estimation using the stress-life (S–N) method and particularly for predicting the fatigue crack growth based on the fracture mechanics (FM) approach. In the present paper, data extracted from finite element (FE) analyses of tubular KT-joints, verified against experimental data and parametric equations, was used to investigate the effects of geometrical parameters on DoB values at the crown 0˚, saddle, and crown 180˚ positions along the weld toe of central brace in tubular KT-joints subjected to axial loading. Parametric study was followed by a set of nonlinear regression analyses to derive DoB parametric formulas for the fatigue analysis of KT-joints under axial loads. The tubular KT-joint is a quite common joint type found in steel offshore structures. However, despite the crucial role of the DoB in evaluating the fatigue performance of tubular joints, this paper is the first attempt to study and formulate the DoB values in KT-joints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tubular%20KT-joint" title="tubular KT-joint">tubular KT-joint</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20bending%0D%0A%28DoB%29" title=" degree of bending (DoB)"> degree of bending (DoB)</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20loading" title=" axial loading"> axial loading</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20formula" title=" parametric formula "> parametric formula </a> </p> <a href="https://publications.waset.org/abstracts/26817/degree-of-bending-in-axially-loaded-tubular-kt-joints-of-offshore-structures-parametric-study-and-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Multi-Point Dieless Forming Product Defect Reduction Using Reliability-Based Robust Process Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misganaw%20Abebe%20Baye">Misganaw Abebe Baye</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Woo%20Park"> Ji-Woo Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Beom-Soo%20Kang"> Beom-Soo Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The product quality of multi-point dieless forming (MDF) is identified to be dependent on the process parameters. Moreover, a certain variation of friction and material properties may have a substantially worse influence on the final product quality. This study proposed on how to compensate the MDF product defects by minimizing the sensitivity of noise parameter variations. This can be attained by reliability-based robust optimization (RRO) technique to obtain the optimal process setting of the controllable parameters. Initially two MDF Finite Element (FE) simulations of AA3003-H14 saddle shape showed a substantial amount of dimpling, wrinkling, and shape error. FE analyses are consequently applied on ABAQUS commercial software to obtain the correlation between the control process setting and noise variation with regard to the product defects. The best prediction models are chosen from the family of metamodels to swap the computational expensive FE simulation. Genetic algorithm (GA) is applied to determine the optimal process settings of the control parameters. Monte Carlo Analysis (MCA) is executed to determine how the noise parameter variation affects the final product quality. Finally, the RRO FE simulation and the experimental result show that the amendment of the control parameters in the final forming process leads to a considerably better-quality product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dimpling" title="dimpling">dimpling</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-point%20dieless%20forming" title=" multi-point dieless forming"> multi-point dieless forming</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability-based%20robust%20optimization" title=" reliability-based robust optimization"> reliability-based robust optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20error" title=" shape error"> shape error</a>, <a href="https://publications.waset.org/abstracts/search?q=variation" title=" variation"> variation</a>, <a href="https://publications.waset.org/abstracts/search?q=wrinkling" title=" wrinkling"> wrinkling</a> </p> <a href="https://publications.waset.org/abstracts/54851/multi-point-dieless-forming-product-defect-reduction-using-reliability-based-robust-process-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Standardization of the Roots of Gnidia stenophylla Gilg: A Potential Medicinal Plant of South Eastern Ethiopia Traditionally Used as an Antimalarial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mebruka%20Mohammed">Mebruka Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Bisrat"> Daniel Bisrat</a>, <a href="https://publications.waset.org/abstracts/search?q=Asfaw%20Debella"> Asfaw Debella</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarekegn%20Birhanu"> Tarekegn Birhanu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lack of quality control standards for medicinal plants and their preparations is considered major barrier to their integration in to effective primary health care in Ethiopia. Poor quality herbal preparations led to countless adverse reactions extending to death. Denial of penetration for the Ethiopian medicinal plants in to the world’s booming herbal market is also another significant loss resulting from absence of herbal quality control system. Thus, in the present study, Gnidia stenophylla Gilg (popular antimalarial plant of south eastern Ethiopia), is standardized and a full monograph is produced that can serve as a guideline in quality control of the crude drug. Morphologically, the roots are found to be cylindrical and tapering towards the end. It has a hard, corky and friable touch with saddle brown color externally and it is relatively smooth and pale brown internally. It has got characteristic pungent odor and very bitter taste. Microscopically it has showed lignified xylem vessels, wider medullary rays with some calcium oxalate crystals, reddish brown secondary metabolite contents and slender shaped long fibres. Physicochemical standards quantified and resulted: foreign matter (5.25%), moisture content (6.69%), total ash (40.80%), acid insoluble ash (8.00%), water soluble ash (2.30%), alcohol soluble extractive (15.27%), water soluble extractive (10.98%), foaming index (100.01 ml/g), swelling index (7.60 ml/g). Phytochemically: Phenols, flavonoids, steroids, tannins and saponins were detected in the root extract; TLC and HPLC fingerprints were produced and an analytical marker was also tentatively characterized as 3-(3,4-dihydro-3,5-dihydroxy-2-(4-hydroxy-5-methylhex-1-en-2-yl)-7-methoxy-4-oxo-2H-chromen-8-yl)-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one. Residue wise pesticides (i.e. DDT, DDE, g-BHC) and radiochemical levels fall below the WHO limit while Heavy metals (i.e. Co, Ni, Cr, Pb, and Cu), total aerobic count and fungal load lie way above the WHO limit. In conclusion, the result can be taken as signal that employing non standardized medicinal plants could cause many health risks of the Ethiopian people and Africans’ at large (as 80% of inhabitants in the continent depends on it for primary health care). Therefore, following a more universal approach to herbal quality by adopting the WHO guidelines and developing monographs using the various quality parameters is inevitable to minimize quality breach and promote effective herbal drug usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gnidia%20stenophylla%20Gilg" title="Gnidia stenophylla Gilg">Gnidia stenophylla Gilg</a>, <a href="https://publications.waset.org/abstracts/search?q=standardization%2Fmonograph" title=" standardization/monograph"> standardization/monograph</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacognostic" title=" pharmacognostic"> pharmacognostic</a>, <a href="https://publications.waset.org/abstracts/search?q=residue%2Fimpurity" title=" residue/impurity"> residue/impurity</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/7458/standardization-of-the-roots-of-gnidia-stenophylla-gilg-a-potential-medicinal-plant-of-south-eastern-ethiopia-traditionally-used-as-an-antimalarial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10