CINXE.COM

Search results for: days after flowering

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: days after flowering</title> <meta name="description" content="Search results for: days after flowering"> <meta name="keywords" content="days after flowering"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="days after flowering" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="days after flowering"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3573</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: days after flowering</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3573</span> Longan Tree Flowering and Bearing Induction Based on Chemicals and Growing Degree-Days Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Li">Hong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tingxian%20Li"> Tingxian Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Wang"> Xudong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Fengliang%20Zhao"> Fengliang Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unreliable flowering of chilling-required longan (Dimocarpus longan) due to increased air-temperatures have been the common concerns in the tropical areas. Our objectives were to assess the efficiency of chemicals in longan tree flowering and bearing using Growing Degree Days (GDD). The 2-year study was contacted in the tropical Haihan Island during 2012-2013. At pruning (August) the GDD values were started to count. The KClO3 treatments were applied to the root zones under the canopies at GDD 1300ºC while KH2PO4 rates were applied to the leaves at fruit setting at GDD 3000ºC and GDD 4000ºC. The results showed that total cumulative GDD was 6050ºC for longan. The GDD-guided KClO3 applications induced significant tree budding and flowering. The GDD-guided KH2PO4 applications stimulated higher leaf photosynthesis, carbonxylation efficiency, marketable fruit yield and quality (K+ and sugar) (P<0.05). It was concluded that the GDD-based model could efficiently support longan reliable flowering and bearing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=canopy%20nutrition" title="canopy nutrition">canopy nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=flowering%20induction" title=" flowering induction"> flowering induction</a>, <a href="https://publications.waset.org/abstracts/search?q=growing%20degree%20days" title=" growing degree days"> growing degree days</a>, <a href="https://publications.waset.org/abstracts/search?q=longan" title=" longan"> longan</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidant%20KClO3" title=" oxidant KClO3"> oxidant KClO3</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20physiology" title=" tree physiology"> tree physiology</a> </p> <a href="https://publications.waset.org/abstracts/10236/longan-tree-flowering-and-bearing-induction-based-on-chemicals-and-growing-degree-days-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3572</span> The Effect of Dry Matter Production Growth Rate, Temperature Rapeseed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vadood%20Mobini">Vadood Mobini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansoreh%20Agazadeh%20Shahrivar"> Mansoreh Agazadeh Shahrivar</a>, <a href="https://publications.waset.org/abstracts/search?q=Parvin%20Hashemi%20Gelenjkhanlo"> Parvin Hashemi Gelenjkhanlo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Vazifah"> Hassan Vazifah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seed number is a function of dry matter accumulation, crop growth rate (CGR), photothermal quotient (PTQ) and temperature during a critical developmental period, which is around flowering in canola (Brassica napus L.). The objective of this experiment was to determine factors such as dry matter, CGR, temperature, and PTQ around flowering which affect seed number. The experiment was conducted at Agricultural Research Station of Gonbad, Iran, between 2005 and 2007. Two cultivars of canola (Hyola401 and RGS003), as subplots were grown at 5 sowing dates as main plots, spaced approximately 30 days apart, to obtain different environmental conditions during flowering. The experiment was arranged in two conditions, i.e., supplemental irrigation and rainfed. Seed number per unit area was a key factor for increasing seed yield. Late sowing dates made the critical period of flowering coincide with high temperatures, decreased days to the flowering, seed number per unit area and seed yield. Seed number was driven by the availability of carbohydrates around flowering. Seed number per unit area was maximized for the cultivars when exposed to the highest PTQ, and to the lowest temperature between the beginning of flowering to that of seed filling. The relationship of seed number with aboveground dry matter, CGR, temperature, and PTQ around flowering, over different environmental conditions, showed these variables were generally applicable to seed number determination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flowering" title="flowering">flowering</a>, <a href="https://publications.waset.org/abstracts/search?q=cultivar" title=" cultivar"> cultivar</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20filling" title=" seed filling"> seed filling</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20conditions" title=" environmental conditions"> environmental conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20yield" title=" seed yield"> seed yield</a> </p> <a href="https://publications.waset.org/abstracts/31797/the-effect-of-dry-matter-production-growth-rate-temperature-rapeseed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3571</span> Effect of Nitrogen and Gibberellic Acid at Different Level and their Interaction on Calendula</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pragnyashree%20Mishra">Pragnyashree Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Shradhanjali%20Mohapatra"> Shradhanjali Mohapatra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigation is carried out to know the effect of foliar feeding of nitrogen and gibberellic acid on vegetative growth, flowering behaviour and yield of calendula variety ‘Golden Emporer’. The experiment was laid out in RBD in rabi season of 2013-14. There are 16 treatments are taken at different level such as nitrogen (at 0%,1%,2%,3%) and GA3 (at 50 ppm,100ppm,150 ppm). Among them maximum height at bud initiation stage was obtained at 3% nitrogen (27.00 cm) and at 150 ppm GA3 (26.5 cm), fist flowering was obtained at 3% nitrogen(60.00 days) and at 150 ppm GA3 (63.75 days), maximum flower stalk length was obtained at 3% nitrogen(3.50 cm) and at 150 ppm GA3 (5.42 cm),maximum duration of flowering was obtained at 3% nitrogen(46.00 days) and at 150 ppm GA3 (46.50days), maximum number of flower was obtained at 3% nitrogen (89.00per plant) and at 150 ppm GA3 (83.50 per plant), maximum flower weight was obtained at 3% nitrogen(1.25 gm per flower) and at 150 ppm GA3 (1.50 gm per flower), maximum yield was was obtained at 3% nitrogen (110.00 gm per plant) and at 150 ppm GA3 (105.00gm per plant) and minimum of all character was obtained when 0% nitrogen0 ppm GA3. All interaction between nitrogen and GA3 was found in significant except the yield . <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calendula" title="calendula">calendula</a>, <a href="https://publications.waset.org/abstracts/search?q=golden%20emporer" title=" golden emporer"> golden emporer</a>, <a href="https://publications.waset.org/abstracts/search?q=GA3" title=" GA3"> GA3</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20and%20gibberellic%20acid" title=" nitrogen and gibberellic acid "> nitrogen and gibberellic acid </a> </p> <a href="https://publications.waset.org/abstracts/19334/effect-of-nitrogen-and-gibberellic-acid-at-different-level-and-their-interaction-on-calendula" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3570</span> Flowering Response of a Red Pitaya Germplasm Collection to Lighting Addition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dinh-Ha%20Tran">Dinh-Ha Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung-Ruey%20Yen"> Chung-Ruey Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Kuang%20H.%20Chen"> Yu-Kuang H. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A collection of thirty cultivars/clones of red pitaya was used to investigate flowering response to lighting supplementation in the winter season of 2013-2014 in southern Taiwan. The night-breaking treatment was conducted during the period of 10 Oct. 2013 to 5 Mar. 2014 with 4-continuous hours (22.00–02.00 hrs) of additional lighting daily using incandescent bulbs (100W). Among cultivars and clones tested, twenty-three genotypes, most belonging to the red-magenta flesh type, were found to have positive flowering response to the lighting treatment. The duration of night-breaking treatment for successful flowering initiation varied from 33 - 48 days. The lighting-sensitive genotypes bore 1-2 flowering flushes. Floral and fruiting stages took 21-26 and 46-59 days, respectively. Among sixteen fruiting genotypes, the highest fruit set rates were found in Damao 9, D4, D13, Chaozou large, Chaozhou 5, Small Nick and F22. Five cultivars and clones (Orejona, D4, Chaozhou large, Chaozhou 5, and Small Nick) produced fruits with an average weight of more than 300 g per fruit which was higher than those of the fruits formed in the summer of 2013. Fruits produced during off-season contain total soluble solids (TSS) from 17.5 to 20.7 oBrix, which was higher than those produced in-season. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flowering%20response" title="flowering response">flowering response</a>, <a href="https://publications.waset.org/abstracts/search?q=long-day%20plant" title=" long-day plant"> long-day plant</a>, <a href="https://publications.waset.org/abstracts/search?q=night-breaking%20treatment" title=" night-breaking treatment"> night-breaking treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=off-season%20production" title=" off-season production"> off-season production</a>, <a href="https://publications.waset.org/abstracts/search?q=pitaya" title=" pitaya"> pitaya</a> </p> <a href="https://publications.waset.org/abstracts/24456/flowering-response-of-a-red-pitaya-germplasm-collection-to-lighting-addition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3569</span> Thidiazuron&#039;s Role in Murraya paniculata and Fortunella hindsii&#039;s in vitro Flowering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Basri%20Jumin">Hasan Basri Jumin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mardaleni"> Mardaleni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fortunella hindsii and Muraya paniculata are family members of Rutaceae and have potentially improved genetic diversity. Isolated protoplasts were cultured with media supplemented with 2.0 % glucose and 0.0, 0.001, 0.01, 0.1 or 1.0. 10.0 mg/1 thidiazuron (TDZ) and, thickened with 0.9% gelrite, and maintained under 16 h photoperiod at 52.9 μmol/m²/s light intensity. The media supplemented with 0.00 mg/l TDZ yielded the maximum plating efficiency, while 0.001 mg/l TDZ produced the highest percentage of shoot formation, approximately 80%. After being cultured on the same TDZ concentration for 12 days, the protoplasts that survived developed cell walls. Ninety days following the culture of protoplasts, Fortunella hindsii and Murraya paniculata underwent somatic embryogenesis to grow into plantlets. Thidiazuron has demonstrated efficacy in forming flower buds that grow normally. Fortunella hindsii and Murraya paniculata shoots that emerged from branch internodes flowered in vitro on half-strength MT basal media containing 0.001 to 0.01 mg/l TDZ and 2-3% sucrose after two months of culture, and they eventually went on to flower. Seventy five percent of the plants displayed flowering on medium supplemented with 0.001 mg/l TDZ. Among the segments of Fortunella hindsii and Murraya paniculata generated from branch internodes, a possible precocious and floral gradient was found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fortunella-hindsii" title="Fortunella-hindsii">Fortunella-hindsii</a>, <a href="https://publications.waset.org/abstracts/search?q=in-vitro%20flowering" title=" in-vitro flowering"> in-vitro flowering</a>, <a href="https://publications.waset.org/abstracts/search?q=Murraya-paniculata" title=" Murraya-paniculata"> Murraya-paniculata</a>, <a href="https://publications.waset.org/abstracts/search?q=protoplast" title=" protoplast"> protoplast</a>, <a href="https://publications.waset.org/abstracts/search?q=thidiazuron" title=" thidiazuron"> thidiazuron</a> </p> <a href="https://publications.waset.org/abstracts/186596/thidiazurons-role-in-murraya-paniculata-and-fortunella-hindsiis-in-vitro-flowering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">47</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3568</span> Somatic Embryogenesis Derived from Protoplast of Murraya Paniculata L. Jack and Their Regeneration into Plant Flowering in vitro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Basri%20Jumin">Hasan Basri Jumin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The in vitro flowering of orange jessamine plantlets derived from protoplast was affected by the manipulation of plant growth regulators, sugar and light conditions. MT basal medium containing 5% sucrose and supplemented with 0.001 mg 1-1 indole-acetic-acid was found to be a suitable medium for development of globular somatic embryos derived from protoplasts to form heart-shaped somatic embryos with cotyledon-like structures. The highest percentage (85 %) of flowering was achieved with plantlet on half-strength MT basal medium containing 5% sucrose and 0.001 mg1-1 indole-acetic-acid in light. Exposure to darkness for more than 3 weeks followed by re-exposure to light reduced flowering. Flowering required a 10-day exposure to indole-acetic-acid. Photoperiod with 18 h and 79.4 µmol m-2 s-1 light intensity promoted in vitro flowering in high frequencies. The sucrose treatment affected the flower bud size distribution. Flower buds originating from plantlet derived from protoplasts developed into normal flowers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indole-acetc-acid" title="indole-acetc-acid">indole-acetc-acid</a>, <a href="https://publications.waset.org/abstracts/search?q=light-intensity" title=" light-intensity"> light-intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=Murraya-paniculata" title=" Murraya-paniculata"> Murraya-paniculata</a>, <a href="https://publications.waset.org/abstracts/search?q=photoperiod" title=" photoperiod"> photoperiod</a>, <a href="https://publications.waset.org/abstracts/search?q=plantlet" title=" plantlet"> plantlet</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeatin" title=" Zeatin"> Zeatin</a> </p> <a href="https://publications.waset.org/abstracts/28393/somatic-embryogenesis-derived-from-protoplast-of-murraya-paniculata-l-jack-and-their-regeneration-into-plant-flowering-in-vitro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3567</span> Genetic Variability and Heritability Among Indigenous Pearl Millet (Pennisetum Glaucum L. R. BR.) in Striga Infested Fields of Sudan Savanna, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adamu%20Usman">Adamu Usman</a>, <a href="https://publications.waset.org/abstracts/search?q=Grace%20Stanley%20Balami"> Grace Stanley Balami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pearl millet (Pennisetum glaucum L. R. Br.) is a cereal cultivated in arid and semi-arid areas of the world. It supports more than 100 million people around the world. Parasitic weed (Striga hermonthica Del. Benth) is a major constraint to its production. Estimated yield losses are put at 10 - 95% depending on variety, ecology and cultural practices. Potentials in selection of traits in pearl millets for grain yield have been reported and it depends on genotypic variability and heritability among landraces. Variability and heritability among cultivars could offer opportunities for improvement. The study was conducted to determine the genetic variability among cultivars and estimate broad sense heritability among grain yield and related traits. F1 breeding populations were generated with 9 parental cultivars, viz; Ex-Gubio, Ex-Monguno, Ex-Baga as males and PEO 5984, Super-SOSAT, SOSAT-C88, Ex-Borno and LCIC9702 as females through Line × Tester mating during 2017 dry season at Lushi Irrigation Station, Bauchi Metropolitan in Bauchi State, Nigeria. The F1 population and the parents were evaluated during cropping season of 2018 at Bauchi and Maiduguri. Data collected were subjected to analysis of variance. Results showed significant difference among cultivars and among traits indicating variability. Number of plants at emergence, days to 50% flowering, days to 100% flowering, plant height, panicle length, number of plants at harvest, Striga count at 90 days after sowing, panicle weight and grain yield were significantly different. Significant variability offer opportunity for improvement as superior individuals can be isolated. Genotypic variance estimates of traits were largely greater than environmental variances except in plant height and 1000 seed weight. Environmental variances were low and in some cases negligible. The phenotypic variances of all traits were higher than genotypic variances. Similarly phenotypic coefficient of variation (PCV) was higher than genotypic coefficient of variation (GCV). High heritability was found in days to 50% flowering (90.27%), Striga count at 90 days after sowing (90.07%), number of plants at harvest (87.97%), days to 100% flowering (83.89%), number of plants at emergence (82.19%) and plant height (73.18%). Greater heritability estimates could be due to presence of additive gene. The result revealed wider variability among genotypes and traits. Traits having high heritability could easily respond to selection. High value of GCV, PCV and heritability estimates indicate that selection for these traits are possible and could be effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=variability" title="variability">variability</a>, <a href="https://publications.waset.org/abstracts/search?q=heritability" title=" heritability"> heritability</a>, <a href="https://publications.waset.org/abstracts/search?q=phenotypic" title=" phenotypic"> phenotypic</a>, <a href="https://publications.waset.org/abstracts/search?q=genotypic" title=" genotypic"> genotypic</a>, <a href="https://publications.waset.org/abstracts/search?q=striga" title=" striga"> striga</a> </p> <a href="https://publications.waset.org/abstracts/182395/genetic-variability-and-heritability-among-indigenous-pearl-millet-pennisetum-glaucum-l-r-br-in-striga-infested-fields-of-sudan-savanna-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3566</span> Molecular Dissection of Late Flowering under a Photoperiod-Insensitive Genetic Background in Soybean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fei%20Sun">Fei Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Meilan%20Xu"> Meilan Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianghui%20Zhu"> Jianghui Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Stefanie%20Dwiyanti"> Maria Stefanie Dwiyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheolwoo%20Park"> Cheolwoo Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Fanjiang%20Kong"> Fanjiang Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=Baohui%20Liu"> Baohui Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetsuya%20Yamada"> Tetsuya Yamada</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Abe"> Jun Abe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reduced or lack of sensitivity to long daylengths is a key character for soybean, a short-day crop, to adapt to higher latitudinal environments. However, the photoperiod-insensitivity often results in a reduction of the duration of vegetative growth and final yield. To overcome this limitation, a photoperiod insensitive line (RIL16) was developed in this study that delayed flowering from the recombinant inbred population derived from a cross between a photoperiod-insensitive cultivar AGS292 and a late-flowering Thai cultivar K3. Expression analyses under SD and LD conditions revealed that the expression levels of FLOWERING LOCUS T (FT) orthologues, FT2a and FT5a, were lowered in RIL16 relative to AGS292, although the expression of E1, a soybean-specific suppressor for FTs, was inhibited in both conditions. A soybean orthologue of TARGET OF EAT1 (TOE1), another suppressor of FT, showed an upregulated expression in RIL16, which appeared to reflect a lower expression of miR172a. Our data suggest that the delayed flowering of RIL16 most likely is controlled by genes involved in an age-dependent pathway in flowering. The QTL analysis based on 1,125 SNPs obtained from Restriction Site Associated DNA Sequencing revealed two major QTLs for flowering dates in Chromosome 16 and two minor QTLs in Chromosome 4, all of which accounted for 55% and 48% of the whole variations observed in natural day length and artificially-induced long day length conditions, respectively. The intervals of the major QTLs harbored FT2a and FT5a, respectively, on the basis of annotated genes in the Williams 82 reference genome. Sequencing analysis further revealed a nonsynonymous mutation in FT2a and an SNP in the 3′ UTR region of FT5a. A further study may elucidate a detailed mechanism underlying the QTL for late flowering. The alleles from K3 at the two QTLs can be used singly or in combination to retain an appropriate duration of vegetative growth to maximize the final yield of photoperiod-insensitive soybeans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FT%20genes" title="FT genes">FT genes</a>, <a href="https://publications.waset.org/abstracts/search?q=miR72a" title=" miR72a"> miR72a</a>, <a href="https://publications.waset.org/abstracts/search?q=photoperiod-insensitive" title=" photoperiod-insensitive"> photoperiod-insensitive</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean%20flowering" title=" soybean flowering"> soybean flowering</a> </p> <a href="https://publications.waset.org/abstracts/86669/molecular-dissection-of-late-flowering-under-a-photoperiod-insensitive-genetic-background-in-soybean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3565</span> Investigation of Drought Resistance in Iranian Sesamum Germpelasm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Najafi">Fatemeh Najafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major stress factor limiting crop growth and development of sesame (Sesamum indicum L.) is drought stress in arid and semiarid regions of the world. For this study the effects of water stress on some qualitative and quantitative traits in sesame germplasm was conducted in the Research Farm of Seed and Plant Improvement Institute, Karaj, in the crop year. Genotypes in a randomized complete block design with three replications in two environments (moisture stress and normal) were studied in regard of the seed weight, capsule weight, grain yield, biomass, plant height, number of capsules per plant, etc. The characteristics were evaluated based on the combined analysis. Irrigation was based on first class evaporation basin. After flowering stage drought stress was applied. The water deficit reduced growth period. Days to reach full ripening decreased so that the reduction was significant at the five percent level. Drought stress reduces yield and plant biomass. Genotypes based on combined analysis of these two traits were significant at the one percent level. Genotypes differ in terms of yield stress in terms of density plots, grain yield, days to first flowering and days to the half of the cap on the confidence level of five percent and traits of days to emergence of the first capsule and days to reach full ripening at the one percent level were significant. Other traits were not significant. The correlation of traits in circumstances of stress the number of seeds per capsule has the greatest impact on performance. The sensitivity and stress tolerance index was calculated. Based on the indicators, (Fars variety) and variety Karaj were identified as the most tolerant genotypes among the studied genotypes to drought stress. The highest sensitivity indicator of stress was related to genotype (FARS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sesamum" title="sesamum">sesamum</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=germplasm" title=" germplasm"> germplasm</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/171841/investigation-of-drought-resistance-in-iranian-sesamum-germpelasm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3564</span> Greywater Reuse for Sunflower Irrigation Previously Radiated with Helium-Neon Laser: Evaluation of Growth, Flowering, and Chemical Constituents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sami%20Ali%20Metwally">Sami Ali Metwally</a>, <a href="https://publications.waset.org/abstracts/search?q=Bedour%20Helmy%20Abou-Leila"> Bedour Helmy Abou-Leila</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussien%20Ibrahim%20Abdel-Shafy"> Hussien Ibrahim Abdel-Shafy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was carried out at the pilot plant area in the National Research Centre during the two successive seasons, 2020 and 2022. The aim is to investigate the response of vegetative growth and chemical constituents of sunflowers plants irrigated by two types of wastewater, namely: black wastewater W1 (Bathroom) and grey wastewater W1, under irradiation conditions of helium-neon (He-Ne) laser. The examined data indicated that irrigation of W1 significantly increased the growth and flowering parameters (plant height, leaves number, leaves area, leaves fresh and dry weight, flower diameter, flower stem length, flower stem thickness, number of days to flower, and total chlorophyll). Treated sunflower plants with 0 to 10 min. recorded an increase in the fresh weight and dry weight of leaves. However, the superiority of increasing vase life and delaying flowers were recorded by prolonging exposure time by up to 10 min. Regarding the effect of interaction treatments, the data indicated that the highest values on almost growth parameters were obtained from plants treated with W1+0 laser followed by W2+10 min. laser, compared with all interaction treatments. As for flowering parameters, the interactions between W2+2 min. time exposure, W1+0 time, w1+10 min., and w1+2 min. exposures recorded the highest values on flower diameter, flower stem length, flower stem thickness, vase life, and delaying flowering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=greywater" title="greywater">greywater</a>, <a href="https://publications.waset.org/abstracts/search?q=sunflower%20plant" title=" sunflower plant"> sunflower plant</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20reuse" title=" water reuse"> water reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetative%20growth" title=" vegetative growth"> vegetative growth</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20radiation" title=" laser radiation"> laser radiation</a> </p> <a href="https://publications.waset.org/abstracts/160570/greywater-reuse-for-sunflower-irrigation-previously-radiated-with-helium-neon-laser-evaluation-of-growth-flowering-and-chemical-constituents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3563</span> Integration of Rapid Generation Technology in Pulse Crop Breeding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeid%20H.%20Mobini">Saeid H. Mobini</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Lulsdorf"> Monika Lulsdorf</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20D.%20Warkentin"> Thomas D. Warkentin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The length of the breeding cycle from seed to seed is a limiting factor in the development of improved homozygous lines for breeding or recombinant inbred lines (RILs) for genetic analysis. The objective of this research was to accelerate the production of field pea RILs through application of rapid generation technology (RGT). RGT is based on the principle of growing miniature plants in an artificial medium under controlled conditions, and allowing them to produce a few flowers which develop seeds that are harvested prior to normal seed maturity. We aimed to maintain population size and genetic diversity in regeneration cycles. The effects of flurprimidol (a gibberellin synthesis inhibitor), plant density, hydroponic system, scheduled fertilizer applications, artificial light spectrum, photoperiod, and light/dark temperature were evaluated in the development of RILs from a cross between cultivars CDC Dakota and CDC Amarillo. The main goal was to accelerate flowering while reducing maintenance and space costs. In addition, embryo rescue of immature seeds was tested for shortening the seed fill period. Data collected over seven generations included plant height, the percentage of plant survival, flowering rate, seed setting rate, the number of seeds per plant, and time from seed to seed. Applying 0.6 µM flurprimidol reduced the internode length. Plant height was decreased to approximately 32 cm allowing for higher plant density without a delay in flowering and seed setting rate. The three light systems (T5 fluorescent bulbs, LEDs, and High Pressure Sodium +Metal-halide lamp) evaluated did not differ significantly in terms of flowering time in field pea. Collectively, the combination of 0.6 µM flurprimidol, 217 plant. m-2, 20 h photoperiod, 21/16 oC light/dark temperature in a hydroponic system with vermiculite substrate, applying scheduled fertilizer application based on growth stage, and 500 µmole.m-2.s-1 light intensity using T5 bulbs resulted in 100% of plants flowering within 34 ± 3 days and 96.5% of plants completed seed setting in 68.2 ± 3.6 days, i.e., 30-45 days/generation faster than conventional single seed descent (SSD) methods. These regeneration cycles were reproducible consistently. Hence, RGT could double (5.3) generations per year, using 3% occupying space, compared to SSD (2-3 generation/year). Embryo rescue of immature seeds at 7-8 mm stage, using commercial fertilizer solutions (Holland’s Secret™) showed seed setting rate of 95%, while younger embryos had lower germination rate. Mature embryos had a seed setting rate of 96.5% without either hormones or sugar added. So, considering the higher cost of embryo rescue using a procedure which requires skill, additional materials, and expenses, it could be removed from RGT with a further cost saving, and the process could be stopped between generations if required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=field%20pea" title="field pea">field pea</a>, <a href="https://publications.waset.org/abstracts/search?q=flowering" title=" flowering"> flowering</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20regeneration" title=" rapid regeneration"> rapid regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20inbred%20lines" title=" recombinant inbred lines"> recombinant inbred lines</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20seed%20descent" title=" single seed descent"> single seed descent</a> </p> <a href="https://publications.waset.org/abstracts/27418/integration-of-rapid-generation-technology-in-pulse-crop-breeding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3562</span> S. S. L. Andrade, E. A. Souza, L. C. L. Santos, C. Moraes, A. K. C. L. Lobato</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fazal%20Said">Fazal Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Mian%20Inayatullah"> Mian Inayatullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various insect visitors in common and honeybees in particular are considered to be accountable for 80-85% of pollination services for numerous crops worldwide. Pollinators not only increase crop yield but also improve quality of produce as well. The present investigation is therefore, an endeavor to assess the visitation pattern of honeybees, Apis florea (Hymenopterae: Apidae) in sunflower (Helianthus annuus L.). The current research trial was carried out at New Developmental Farm (NDF), The University of Agriculture Peshawar, (34.01° N, 71.53° E) Khyber Pakhtunkhwa-Pakistan during 2012 and 2013. Different observations on the foraging behavior of A. florea’s individuals were made from 0800 hr in the morning and continued until 1800 hr in the evening. Hence, total duration of foraging activity of A. florea individuals was comprised of 10 hours. It was found that two peaks of visitation/foraging occurred between 1400 to 1600 hr of the day. First peak of foraging was recorded at 1600hr, where 15 individuals of honeybees/3 m2 were counted to be engaged in foraging sunflower blooms. Second peak visitation was recorded with a total of 12 bees/3 m2 at 1400 hrs of the day. Visitations of A. florea were observed to its minimum intensity of only 07 individuals during late hours of the day as evening approached after 1800 hrs. Similarly, due to more number of pollens and nectars on flowers, high frequency of A. florea were found engaged in foraging during 20th and 25th day after initiation of blooms on sunflower. Minimum numbers of honeybees were recorded during initial and very last days of flowering due to less number of plants with blooms and less availability of pollen and nectar on flowers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apis%20florea" title="apis florea">apis florea</a>, <a href="https://publications.waset.org/abstracts/search?q=days%20after%20flowering" title=" days after flowering"> days after flowering</a>, <a href="https://publications.waset.org/abstracts/search?q=daily%20hours" title=" daily hours"> daily hours</a>, <a href="https://publications.waset.org/abstracts/search?q=sunflower" title=" sunflower"> sunflower</a>, <a href="https://publications.waset.org/abstracts/search?q=visitation%20pattern" title=" visitation pattern "> visitation pattern </a> </p> <a href="https://publications.waset.org/abstracts/40011/s-s-l-andrade-e-a-souza-l-c-l-santos-c-moraes-a-k-c-l-lobato" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">636</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3561</span> Influence of Different Light Levels in Amaryllis (Hippeastrum X hybridum Hort.) Development and Flowering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Regina%20Maria%20M.%20Castilho">Regina Maria M. Castilho</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabela%20M.%20Morita"> Isabela M. Morita</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Carolina%20T.%20Malavolta"> Ana Carolina T. Malavolta</a>, <a href="https://publications.waset.org/abstracts/search?q=Maximiliano%20K.%20Pagliarini"> Maximiliano K. Pagliarini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An essential factor for flower production is solar radiation, which is part of plant vital processes. As excess as shortage of light can harm the development of the culture leading to loss in product quality, Unfeasible or decreasing their commercial value. The objective of this research was to evaluate different light levels and their influence on Amaryllis (Hippeastrum X hybridum Hort.) development and flowering. The experiment was conducted at UNESP, São Paulo State, Brazil from August to October 2014. The bulbs were placed in black vases of 1.2 L filled with commercial substrate and divided into 4 different lighting environments (treatments): T1–greenhouse, T2–greenhouse with shade cloth (50%), T3–low lights indoor (until 500 lx) and T4–medium lights indoor (between 500–1000 lx). The used design was completely randomized with ten repetitions and three vessels (bulbs), totalling 30 vessels (bulbs) per treatment. The evaluated characteristics were: Chlorophyll content, number of leaves, length of leaf, number of simultaneous rods, rod length, rod diameter, number of flowers, flowers diameter, beginning of flowering and flowering duration. The results showed that in greenhouse provided Amaryllis better quality plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=a%C3%A7ucena" title="açucena">açucena</a>, <a href="https://publications.waset.org/abstracts/search?q=bulbs" title=" bulbs"> bulbs</a>, <a href="https://publications.waset.org/abstracts/search?q=light" title=" light"> light</a>, <a href="https://publications.waset.org/abstracts/search?q=ornamental%20plants" title=" ornamental plants"> ornamental plants</a> </p> <a href="https://publications.waset.org/abstracts/25296/influence-of-different-light-levels-in-amaryllis-hippeastrum-x-hybridum-hort-development-and-flowering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3560</span> Response of Chickpea (Cicer arietinum L.) Genotypes to Drought Stress at Different Growth Stages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali.%20Marjani">Ali. Marjani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Farsi"> M. Farsi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rahimizadeh"> M. Rahimizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chickpea (<em>Cicer arietinum</em> L.) is one of the important grain legume crops in the world. However, drought stress is a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Field experiments were conducted to evaluate the response of 8 chickpea genotypes (MCC* 696, 537, 80, 283, 392, 361, 252, 397) and drought stress (S1: non-stress, S2: stress at vegetative growth stage, S3: stress at early bloom, S4: stress at early pod visible) at different growth stages. Experiment was arranged in split plot design with four replications. Difference among the drought stress time was found to be significant for investigated traits except biological yield. Differences were observed for genotypes in flowering time, pod information time, physiological maturation time and yield. Plant height reduced due to drought stress in vegetative growth stage. Stem dry weight reduced due to drought stress in pod visibly. Flowering time, maturation time, pod number, number of seed per plant and yield cause of drought stress in flowering was also reduced. The correlation between yield and number of seed per plant and biological yield was positive. The MCC283 and MCC696 were the high-tolerance genotypes. These results demonstrated that drought stress delayed phonological growth in chickpea and that flowering stage is sensitive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chickpea" title="chickpea">chickpea</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title=" drought stress"> drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20stage" title=" growth stage"> growth stage</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance" title=" tolerance"> tolerance</a> </p> <a href="https://publications.waset.org/abstracts/55202/response-of-chickpea-cicer-arietinum-l-genotypes-to-drought-stress-at-different-growth-stages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3559</span> Effects of Nitroxin Fertilizer on Physiological Characters Forage Millet under Drought Stress Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Darbani">Mohammad Darbani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jafar%20Masoud%20Sinaki"> Jafar Masoud Sinaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Armaghan%20Abedzadeh%20Neyshaburi"> Armaghan Abedzadeh Neyshaburi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experiment was conducted as split plot factorial design using randomized complete block design in Damghan in 2012-2013 in order to investigate the effects of irrigation cut off (based on the Phenological stages of plants) on physiological properties of forage millet cultivars. The treatments included three irrigation levels (control with full irrigation, irrigation cut off when flowering started, and irrigation cut off when flowering ended) in the main plots, and applying nitroxin biofertilizer (+), not applying nitroxin biofertilizer (control), and Iranian forage millet cultivars (Bastan, Pishahang, and Isfahan) in the subplots. The highest rate of ashes and water-soluble carbohydrates content were observed in the cultivar Bastan (8.22 and 8.91%, respectively), the highest content of fiber and water (74.17 and 48.83%, respectively) in the treatment of irrigation cut off when flowering started, and the largest proline concentration (μmol/gfw-1) was seen in the treatment of irrigation cut off when flowering started. very rapid growth of millet, its short growing season, drought tolerance, its unique feature regarding harvest time, and its response to nitroxin biofertilizer can help expanding its cultivation in arid and semi-arid regions of Iran. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation%20cut%20off" title="irrigation cut off">irrigation cut off</a>, <a href="https://publications.waset.org/abstracts/search?q=forage%20millet" title=" forage millet"> forage millet</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitroxin%20fertilizer" title=" Nitroxin fertilizer"> Nitroxin fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological%20properties" title=" physiological properties"> physiological properties</a> </p> <a href="https://publications.waset.org/abstracts/18026/effects-of-nitroxin-fertilizer-on-physiological-characters-forage-millet-under-drought-stress-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">609</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3558</span> Protoplast Cultures of Murraya paniculata L. Jack and Their Regeneration into Plant Precocious Flowering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Basri%20Jumin">Hasan Basri Jumin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protoplasts isolated from embryogenic callus of Murraya paniculata (L. Jack.) were cultured in MT (Murashige and Tucker, 1969) basal medium containing 5% sucrose supplemented with kinetin, malt extract (ME) and 0.6 M sorbitol. About 85% of the surviving protoplasts formed a cell wall within 6 d of culture and the first cell division was observed 7 days after isolation. The highest plating effi¬ciency was obtained on MT basal medium containing 5% sucrose supplemented with 0.01 mg 1-1 kinetin 600 mg 1-1 ME, MT basal medium containing 5% sucrose and supplemented with 0.01 mg 1-1 Indole-acetic-acid (IAA) was found to be a medium suitable for the development somatic embryos into heart-shaped somatic embryos. The highest percentage of shoot formation was obtained using 0.1 mg 1-1 Indole-acitic-acid (IAA) 0..1 mg 1-1 gibberellic acid (GA3). In this investigation 40 plants were survived and grew normally in the soil. After two months maitained in the soil plants formed flower and flower developed into fruits on the soil treated with BA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gibberellic-acid" title="gibberellic-acid">gibberellic-acid</a>, <a href="https://publications.waset.org/abstracts/search?q=indole-acetic-acid" title=" indole-acetic-acid"> indole-acetic-acid</a>, <a href="https://publications.waset.org/abstracts/search?q=protoplast" title=" protoplast"> protoplast</a>, <a href="https://publications.waset.org/abstracts/search?q=precocious-flowering" title=" precocious-flowering"> precocious-flowering</a>, <a href="https://publications.waset.org/abstracts/search?q=somatic-embryo" title=" somatic-embryo"> somatic-embryo</a> </p> <a href="https://publications.waset.org/abstracts/45902/protoplast-cultures-of-murraya-paniculata-l-jack-and-their-regeneration-into-plant-precocious-flowering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3557</span> Effect of Deficit Irrigation on Photosynthesis Pigments, Proline Accumulation and Oil Quantity of Sweet Basil (Ocimum basilicum L.) in Flowering and Seed Formation Stages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Batoul%20Mohamed%20Abdullatif">Batoul Mohamed Abdullatif</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouf%20Ali%20Asiri"> Nouf Ali Asiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> O. basilicum plant was subjected to deficit irrigation using four treatments viz. control, irrigated with 70% of soil water capacity (SWC), Treatment 1, irrigated with 50% SWC, Treatment 2, irrigated with 30% SWC and Treatment 3, irrigated with 10 % SWC. Photosynthesis pigments viz. chlorophyll a, b, and the carotenoids, proline accumulation, and oil quantity were investigated under these irrigation treatments. The results indicate that photosynthesis pigments and oil content of deficit irrigation treatments did not significantly reduced than that of the full irrigation control. Photosynthesis pigments were affected by the stage of growth and not by irrigation treatments. They were high during flowering stage and low during seed formation stage for all treatments. The lowest irrigation plants (10 % SWC) achieved, during flowering stage, 0.72 mg\g\fresh weight of chlorophyll a, compared to 0.43 mg\g\fresh weight in control plant, 0.40 mg\g\fresh weight of chlorophyll b, compared to 0.19 mg\g\fresh weight in control plants and 0.29 mg\g\fresh weight of carotenoids, compared to 0.21 mg\g\fresh weight in control plants. It has been shown that reduced irrigation rates tend to enhance O. basilicum to have high oil quantity reaching a value of 63.37 % in a very low irrigation rate (10 % SWC) compared to 45.38 of control in seeds. Proline was shown to be accumulated in roots to almost double the amount in shoot during flowering stage in treatment 3. This accumulation seems to have a pronounce effect on O. basilicum acclimation to deficit irrigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deficit%20irrigation" title="deficit irrigation">deficit irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=photosynthesis%20pigments" title=" photosynthesis pigments"> photosynthesis pigments</a>, <a href="https://publications.waset.org/abstracts/search?q=proline%20accumulation" title=" proline accumulation"> proline accumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20quantity" title=" oil quantity"> oil quantity</a>, <a href="https://publications.waset.org/abstracts/search?q=sweet%20basil%20flowering%20formation" title=" sweet basil flowering formation"> sweet basil flowering formation</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20formation" title=" seed formation"> seed formation</a> </p> <a href="https://publications.waset.org/abstracts/2422/effect-of-deficit-irrigation-on-photosynthesis-pigments-proline-accumulation-and-oil-quantity-of-sweet-basil-ocimum-basilicum-l-in-flowering-and-seed-formation-stages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3556</span> Developing Drought and Heat Stress Tolerant Chickpea Genotypes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Derya%20Yucel">Derya Yucel</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigar%20Ang%C4%B1n"> Nigar Angın</a>, <a href="https://publications.waset.org/abstracts/search?q=D%C3%BCrdane%20Mart"> Dürdane Mart</a>, <a href="https://publications.waset.org/abstracts/search?q=Meltem%20Turkeri"> Meltem Turkeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Volkan%20Catalkaya"> Volkan Catalkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Celal%20Yucel"> Celal Yucel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chickpea (Cicer arietinum L.) with high protein content is a vital food, especially in under-developed and developing countries for the people who do not consume enough meat due to low-income level. The objective of the proposed study is to evaluate growing, yield and yield components of chickpea genotypes under Mediterranean condition so determine tolerance of chickpea genotypes against drought and heat stress. For this purpose, a total of 34 chickpea genotypes were used as material. The experiment was conducted according to factorial randomized complete block design with 3 reps at the Eastern Mediterranean Research Institute, Adana, TURKEY for 2014-15 growing season under three different growing conditions (Winter sowing, irrigated-late sowing and non-irrigated- late sowing). According to results of this experiment, vegetative period, flowering time, poding time, maturity time, plant height, height of first pod, seed yield and 100 seed weight were ranged between 68.33 to 78.77 days, 94.22 to 85.00 days, 94.11 to 106.44 days, 198.56 to 214.44 days, 37.18 to 64.89 cm, 18.33 to 34.83 cm, 417.1 to 1746.4 kg/ha and 14.02 to 45.02 g, respectively. Among the chickpea genotypes, the Aksu, Arda, Çakır, F4 09 (X 05 TH 21-16189), FLIP 03-108 were least affected by drought and heat stress. Therefore, these genotypes can be used as sources of drought and heat tolerance in further breeding programme for evolving the drought and heat tolerant genotypes in chickpea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chickpea" title="chickpea">chickpea</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title=" drought stress"> drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20stress" title=" heat stress"> heat stress</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/55823/developing-drought-and-heat-stress-tolerant-chickpea-genotypes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3555</span> Morphological Characteristics and Pollination Requirement in Red Pitaya (Hylocereus Spp.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dinh%20Ha">Dinh Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Tran"> Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung-Ruey%20Yen"> Chung-Ruey Yen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explored the morphological characteristics and effects of pollination methods on fruit set and characteristics in four red pitaya (Hylocereus spp.) clones. The distinctive morphological recognition and classification among pitaya clones were confirmed by the stem, flower and fruit features. The fruit production season was indicated from the beginning of May to the end of August, the beginning of September with 6-7 flowering cycles per year. The floral stage took from 15-19 days and fruit duration spent 30–32 days. VN White, fully self-compatible, obtained high fruit set rates (80.0-90.5 %) in all pollination treatments and the maximum fruit weight (402.6 g) in hand self- and (403.4 g) in open-pollination. Chaozhou 5 was partially self-compatible while Orejona and F11 were completely self-incompatible. Hand cross-pollination increased significantly fruit set (95.8; 88.4 and 90.2 %) and fruit weight (374.2; 281.8 and 416.3 g) in Chaozhou 5, Orejona, and F11, respectively. TSS contents were not much influenced by pollination methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hylocereus%20spp." title="Hylocereus spp.">Hylocereus spp.</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=floral%20phenology" title=" floral phenology"> floral phenology</a>, <a href="https://publications.waset.org/abstracts/search?q=pollination%20requirement" title=" pollination requirement"> pollination requirement</a> </p> <a href="https://publications.waset.org/abstracts/6947/morphological-characteristics-and-pollination-requirement-in-red-pitaya-hylocereus-spp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3554</span> Determination of Genotypic Relationship among 12 Sugarcane (Saccharum officinarum) Varieties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faith%20Eweluegim%20Enahoro-Ofagbe">Faith Eweluegim Enahoro-Ofagbe</a>, <a href="https://publications.waset.org/abstracts/search?q=Alika%20Eke%20Joseph"> Alika Eke Joseph</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Information on genetic variation within a population is crucial for utilizing heterozygosity for breeding programs that aim to improve crop species. The study was conducted to ascertain the genotypic similarities among twelve sugarcane (Saccharum officinarum) varieties to group them for purposes of hybridizations for cane yield improvement. The experiment was conducted at the University of Benin, Faculty of Agriculture Teaching and Research Farm, Benin City. Twelve sugarcane varieties obtained from National Cereals Research Institute, Badeggi, Niger State, Nigeria, were planted in three replications in a randomized complete block design. Each variety was planted on a five-row plot of 5.0 m in length. Data were collected on 12 agronomic traits, including; the number of millable cane, cane girth, internode length, number of male and female flowers (fuss), days to flag leaf, days to flowering, brix%, cane yield, and others. There were significant differences, according to the findings among the twelve genotypes for the number of days to flag leaf, number of male and female flowers (fuss), and cane yield. The relationship between the twelve sugarcane varieties was expressed using hierarchical cluster analysis. The twelve genotypes were grouped into three major clusters based on hierarchical classification. Cluster I had five genotypes, cluster II had four, and cluster III had three. Cluster III was dominated by varieties characterized by higher cane yield, number of leaves, internode length, brix%, number of millable stalks, stalk/stool, cane girth, and cane length. Cluster II contained genotypes with early maturity characteristics, such as early flowering, early flag leaf development, growth rate, and the number of female and male flowers (fuss). The maximum inter-cluster distance between clusters III and I indicated higher genetic diversity between the two groups. Hybridization between the two groups could result in transgressive recombinants for agronomically important traits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sugarcane" title="sugarcane">sugarcane</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharum%20officinarum" title=" Saccharum officinarum"> Saccharum officinarum</a>, <a href="https://publications.waset.org/abstracts/search?q=genotype" title=" genotype"> genotype</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster%20analysis" title=" cluster analysis"> cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20components%20analysis" title=" principal components analysis"> principal components analysis</a> </p> <a href="https://publications.waset.org/abstracts/152893/determination-of-genotypic-relationship-among-12-sugarcane-saccharum-officinarum-varieties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3553</span> Use of Plant Growth Regulators in the Amaryllis Production (Hippeastrum X Hybridum Hort. CV Orange Souvereign)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maximiliano%20K.%20Pagliarini">Maximiliano K. Pagliarini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Carolina%20T.%20Malavolta"> Ana Carolina T. Malavolta</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabela%20M.%20Morita"> Isabela M. Morita</a>, <a href="https://publications.waset.org/abstracts/search?q=Regina%20Maria%20M.%20Castilho"> Regina Maria M. Castilho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the ornamental plants, the Amaryllis (Hippeastrum X hybridum Hort.) is one of the most cultivated plants in Brazil because of their large and showy flowers. Thus, the consumer market wants better quality plants or to flourish more in less time. One of the devices that can make such improvements or accelerate the flowering process is the use of growth regulators. The objective of this research was to evaluate the use of different Stimulate® growth regulator doses and its constituents separately in the development and flowering of Hippeastrum X hybridum Hort. Cv Orange Souvereign. The experiment was conducted in a Pad & Fan greenhouse at UNESP, São Paulo State, Brazil from August to October 2014. The bulbs were placed in black vases of 1.2 L filled with commercial substrate and divided into 9 treatments: T1 – 10 mL L-1 of Stimulate®, T2 – 5 mL L-1 of Stimulate®, T3 – 0.5 mg L-1 of gibberellic acid (GA), T4 – 0.25 mg L-1 of GA, T5 – 0.45 mg L-1 of kinetin, T6 – 0.9 mg L-1 of kinetin, T7 – 0.5 mg L-1 of indolbutiric acid (IBA), T8 – 0.25 mg L-1 of IBA and T9 – distilled water (control). All treatments were diluted in water. The used design was completely randomized with six repetitions and two vessels, totalling 12 vessels per treatment. The evaluated characteristics were: number of leaves, length of leaf, number of rods, maximum height of rods, maximum diameter of rods, maximum number of flowers, beginning of flowering, flowering duration, and weight of bulbs. The results showed that the Stimulate® was not efficient in the conducted experiment conditions. However, the best treatment was 0.5 mg L-1 of IBA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bulbs" title="bulbs">bulbs</a>, <a href="https://publications.waset.org/abstracts/search?q=gibberellic%20acid" title=" gibberellic acid"> gibberellic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=indolbutiric%20acid" title=" indolbutiric acid"> indolbutiric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetin" title=" kinetin"> kinetin</a>, <a href="https://publications.waset.org/abstracts/search?q=ornamental%20plants" title=" ornamental plants"> ornamental plants</a> </p> <a href="https://publications.waset.org/abstracts/25291/use-of-plant-growth-regulators-in-the-amaryllis-production-hippeastrum-x-hybridum-hort-cv-orange-souvereign" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3552</span> The Study of Genetic Diversity in Canola Cultivars of Kashmar-Iran Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Habib%20Shojaei">Seyed Habib Shojaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Eivazi"> Reza Eivazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mir%20Sajad%20Shojaei"> Mir Sajad Shojaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Akbari"> Alireza Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooria%20Mazloom"> Pooria Mazloom</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyede%20Mitra%20Sadati"> Seyede Mitra Sadati</a>, <a href="https://publications.waset.org/abstracts/search?q=Mir%20Zeinalabedin%20Shojaei"> Mir Zeinalabedin Shojaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Farnaz%20Farbakhsh"> Farnaz Farbakhsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study the genetic diversity in rapeseeds and agronomic traits, an experiment was conducted using multivariate statistical methods at Agricultural Research Station of Kashmar in 2012-2013.In this experiment, ten genotypes of rapeseed in a Randomized Complete Block designs with three replications were evaluated. The following traits were studied: seed yield, number of days to the fifty percent of flowering, plant height, number of pods on main stem, length of the pod, seed yield per plant, number of seed in pod, harvest index, weight of 100 seeds, number of pods on lateral branch, number of lateral branches. In analyzing the variance, differences between cultivars were significant. The average comparative revealed that the most valuable variety was Licord regarding to the traits while the least valuable variety was Opera. In stepwise regression, harvest index, grain yield per plant and number of pods per lateral branches were entering to model. Correlation analysis showed that the grain yield with the number of pods per lateral branches and seed yield per plant have positive and significant correlation. In the factor analysis, the first five components explained more than 83% of the variance in the data. In the first factor, seed yield and the number of pods per lateral branches were of the highest importance. The traits, seed yield per plant, and pod per main stem were of a great significance in the second factor. Moreover, in the third factor, plant height and the number of lateral branches were more important. In the fourth factor, plant height and one hundred seeds weight were of the highest variance. Finally, days to fifty percent of flowering and one hundred seeds weight were more important in fifth factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rapeseed" title="rapeseed">rapeseed</a>, <a href="https://publications.waset.org/abstracts/search?q=variance%20analysis" title=" variance analysis"> variance analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20analysis" title=" factor analysis"> factor analysis</a> </p> <a href="https://publications.waset.org/abstracts/80385/the-study-of-genetic-diversity-in-canola-cultivars-of-kashmar-iran-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3551</span> Impact of Organic Fertilizer, Inorganic Fertilizer and Soil Conditioner on Growth and Yield of Cowpea (Vigna unguiculata L. Walp) in Sudan Savannah, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Bello%20Sokoto">Mohammed Bello Sokoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Adewumi%20Babatunde%20Adebayo"> Adewumi Babatunde Adebayo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajit%20Singh"> Ajit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field experiment was conducted at the dry land Teaching and Research Farm of Usmanu Danfodiyo University, Sokoto, during the 2023 rainy season to determine the effects of organic, inorganic, soil conditioner and integrated use of soil conditioners (Agzyme) with organic (super gro) and inorganic fertilizers on the growth and yield of cowpea varieties. The research consisted of two cowpea varieties (SAMPEA-20-T and ex-GidanYunfa) and six combinations of organic and inorganic fertilizers and soil conditioners factorially combined and laid out in a Randomized Complete Block Design (RCBD) replicated three times. Data were collected on plant height, leaf area index, number of pods per plant, number of seeds per pod, days to 50% flowering, grain yield, and 100 seed weight. Results indicated that the 100% inorganic fertilizer had a significantly increased growth parameter such as plant height and number of leaves, while combined application of the organic fertilizer and soil conditioner resulted in a significant increase in yield parameters such as number of pods per plant, number of seeds per pod, 100 seed weight and grain yield. The study observed that the use of soil conditioner in combination with fertilizers supports sustainable cowpea production. Application of 50% recommended inorganic + 50% soil conditioner or 50% liquid organic + 50% soil conditioner was better in increasing the number of pods/plant, seeds/pod, 100 seed weight and grain yield. The ex-Gidan Yunfa cowpea variety generally performed better in most parameters measured, such as plant height, days to 50% flowering, number of pods per plant, number of seeds per pod, 100 seed weight and grain yield. Therefore, the combined application of 50% recommended inorganic + 50% soil conditioner or 50% liquid organic + 50% soil conditioner is effective for the sustainable production of cowpeas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrated" title="integrated">integrated</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizers" title=" fertilizers"> fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=cowpea" title=" cowpea"> cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudan%20Savannah" title=" Sudan Savannah"> Sudan Savannah</a> </p> <a href="https://publications.waset.org/abstracts/186529/impact-of-organic-fertilizer-inorganic-fertilizer-and-soil-conditioner-on-growth-and-yield-of-cowpea-vigna-unguiculata-l-walp-in-sudan-savannah-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3550</span> Chemical Compositon and Antimicrobial Activity of Daucus aristidis Coss. Essential Oil in Pre-Flowering Stage from Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Lamamra">M. Lamamra</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Laouer"> H. Laouer</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Adjaoud"> A. Adjaoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahli%20Farida"> Sahli Farida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Essential oils can have significant antimicrobial activities and can successfully replace antibiotics that show their ineffectiveness against resistant germs. The chemical composition of the essential oil obtained by hydrodistillation from the aerial part of Daucus aristidis (Apiaceae) at the pre-flowering stage was investigated for the first time, by GC and GC-MS and evaluated for in vitro antimicrobial activity by the disk diffusion method. The Main components of D. aristidis oil were α-pinene (20.13%), cedrol (20.11%), and E- asarone (18.53%). The oil exhibited an antibacterial activity against almost strains tested except for Klebsiella pneumoniae ATCC 700603 K6 and Enterococcus faecalis ATCC 49452, the oil of D. aristidis had no activity against all fungi tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-pinene" title="α-pinene">α-pinene</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Daucus%20aridtidis" title=" Daucus aridtidis"> Daucus aridtidis</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil "> essential oil </a> </p> <a href="https://publications.waset.org/abstracts/32988/chemical-compositon-and-antimicrobial-activity-of-daucus-aristidis-coss-essential-oil-in-pre-flowering-stage-from-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3549</span> Effects of Drought Stress on Red Bean (Phaseolus vulgaris L.) Cultivars during Post-Flowering Growth Stage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariborz%20Shekari">Fariborz Shekari</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdollah%20Javanmard"> Abdollah Javanmard</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Abbasi"> Amin Abbasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A pot experiment conducted to evaluate the response of two red bean cultivars, Sayad and Derakhshan, to water deficit stress during post-flowering growth stage and recovery potential of plants after stress. Treatments were included regular irrigation or control, water deficit during flowering stage, water deficit during pod formation and water deficit during pod filling period. Results showed that plant height had positive effects on yield of cultivars so that, the tall cultivar, ‘Sayad’, had higher yields. Stress application during flowering stage showed the highest negative impact on plant height and subsequently yield. The longest and the higher number of pods as well as the greatest number of seeds in pods were recorded in control treatment in ‘Sayad’. Stress application during pod formation resulted in the minimum amount of all studied traits in both cultivars. Stress encountered during seed filling period had the least effect on number and length of pods and seed/pod. However, 100 seeds weight significantly decreased. The highest amount for 100 seeds weight was record in control plants in ‘Derakhshan’. Under all treatments, ‘Sayad’ had higher biologic and seed yield compared to ‘Derakhshan’. The least amount of yield was recorded during stress application in pod formation and flowering period for ‘Sayad’ and ‘Derakhshan’ respectively. Harvest index of ‘Sayad’ was more affect by stress application. Data related to photosynthetic rate showed that during stress application, ‘Derakhshan’ owned rapid decline in photosynthesis. Beyond stress alleviation and onset of irrigation, recovery potential of ‘Sayad’ was higher than ‘Derakhshan’ and this cultivar was able to rapidly restore the photosynthesis rate of stress faced plants near control ones. In total, stress had lower impacts on photosynthetic rate of ‘Sayad’ cultivar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=common%20bean" title="common bean">common bean</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress" title=" water stress"> water stress</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20components" title=" yield components"> yield components</a>, <a href="https://publications.waset.org/abstracts/search?q=photosynthetic%20rate" title=" photosynthetic rate"> photosynthetic rate</a> </p> <a href="https://publications.waset.org/abstracts/3558/effects-of-drought-stress-on-red-bean-phaseolus-vulgaris-l-cultivars-during-post-flowering-growth-stage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3548</span> Response of Yield and Morphological Characteristic of Rice Cultivars to Heat Stress at Different Growth Stages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Taghi%20Karbalaei%20Aghamolki">Mohammad Taghi Karbalaei Aghamolki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Khanif%20Yusop"> Mohd Khanif Yusop</a>, <a href="https://publications.waset.org/abstracts/search?q=Fateh%20Chand%20Oad"> Fateh Chand Oad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Zakikhani"> Hamed Zakikhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hawa%20Zee%20Jaafar"> Hawa Zee Jaafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharifh%20Kharidah"> Sharifh Kharidah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hanafi%20Musa"> Mohamed Hanafi Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Soltani">Shahram Soltani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high temperatures during sensitive growth phases are changing rice morphology as well as influencing yield. In the glass house study, the treatments were: growing conditions [normal growing (32oC+2) and heat stress (38oC+2) day time and 22oC+2 night time], growth stages (booting, flowering and ripening) and four cultivars (Hovaze, Hashemi, Fajr, as exotic and MR219 as indigenous). The heat chamber was prepared covered with plastic, and automatic heater was adjusted at 38oC+2 (day) and 22oC+2 (night) for two weeks in every growth stages. Rice morphological and yield under the influence of heat stress during various growth stages showed taller plants in Hashsemi due to its tall character. The total tillers per hill were significantly higher in Fajr receiving heat stress during booting stage. In all growing conditions and growth stages, Hashemi recorded higher panicle exertion and flag leaf length. The flag leaf width in all situations was found higher in Hovaze. The total tillers per hill were more in Fajr, although heat stress was imposed during booting and flowering stages. The indigenous MR219 in all situations of growing conditions, growth stages recorded higher grain yield. However, its grain yield slightly decreased when heat stress was imposed during booting and flowering. Similar results were found in all other exotic cultivars recording to lower grain yield in the heat stress condition during booting and flowering. However, plants had no effect on heat stress during ripening stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice" title="rice">rice</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=heat" title=" heat"> heat</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/2332/response-of-yield-and-morphological-characteristic-of-rice-cultivars-to-heat-stress-at-different-growth-stages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3547</span> Differentially Response of Superoxide Dismutase in Wheat Susceptible and Resistant Cultivars against FHB</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sorahi%20Nobar">M. Sorahi Nobar</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Niknam"> V. Niknam</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ebrahimzadeh"> H. Ebrahimzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Soltanloo"> H. Soltanloo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fusarium graminearum is one of the most destructive crop diseases in the world. Infection occurs during the flowering period in warm and humid conditions. It causes reduction in yield. Moreover, harvested grain is often contaminated with mycotoxins and its acetylated derivatives. Fusarium mycotoxines are potent inhibitor of protein synthesis, and thereby presents hazards for both human and animal health. A rapid production of reactive oxygen intermediates, primarily superoxide and hydrogen peroxide at the site of attempted infection considered as key feature underlying successful pathogen recognition. Here, we compared the time course activity of superoxide dismutase (SOD) as a first line of defenses against ROS- induced oxidative burst between FHB- resistant Sumai3 and susceptible Falat at 48, 96 and 144 hours after infection. Our results showed that Sumai3 SOD activity increased with time and reached the highest-level 4 days after infection while in susceptible cultivar Falat, SOD activity decreased during the first 96 h. after infection. Decreased was followed by an increased at 6 days after infection. According to our results rapid induction of SOD activity in resistant cultivar may play an important role in resistance against FHB in wheat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fusarium%20graminearum" title="Fusarium graminearum">Fusarium graminearum</a>, <a href="https://publications.waset.org/abstracts/search?q=mycotoxins" title=" mycotoxins"> mycotoxins</a>, <a href="https://publications.waset.org/abstracts/search?q=resistant%20cultivar" title=" resistant cultivar"> resistant cultivar</a>, <a href="https://publications.waset.org/abstracts/search?q=superoxide%20dismutase" title=" superoxide dismutase"> superoxide dismutase</a> </p> <a href="https://publications.waset.org/abstracts/22573/differentially-response-of-superoxide-dismutase-in-wheat-susceptible-and-resistant-cultivars-against-fhb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3546</span> Effects of Irrigation Applications during Post-Anthesis Period on Flower Development and Pyrethrin Accumulation in Pyrethrum </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dilnee%20D.%20Suraweera">Dilnee D. Suraweera</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20Groom"> Tim Groom</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20Chung"> Brian Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Brendan%20Bond"> Brendan Bond</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Schipp"> Andrew Schipp</a>, <a href="https://publications.waset.org/abstracts/search?q=Marc%20E.%20Nicolas"> Marc E. Nicolas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pyrethrum (Tanacetum cinerariifolium) is a perennial plant belongs to family Asteraceae. This is cultivated commercially for extraction of natural insecticide pyrethrins, which accumulates in their flower head achenes. Approximately 94% of the pyrethrins are produced within secretory ducts and trichomes of achenes of the mature pyrethrum flower. This is the most widely used botanical insecticide in the world and Australia is the current largest pyrethrum producer in the world. Rainfall in pyrethrum growing regions in Australia during pyrethrum flowering period, in late spring and early summer is significantly less. Due to lack of adequate soil moisture and under elevated temperature conditions during post-anthesis period, resulting in yield reductions. Therefore, understanding of yield responses of pyrethrum to irrigation is important for Pyrethrum as a commercial crop. Irrigation management has been identified as a key area of pyrethrum crop management strategies that could be manipulated to increase yield. Pyrethrum is a comparatively drought tolerant plant and it has some ability to survive in dry conditions due to deep rooting. But in dry areas and in dry seasons, the crop cannot reach to its full yield potential without adequate soil moisture. Therefore, irrigation is essential during the flowering period prevent crop water stress and maximise yield. Irrigation during the water deficit period results in an overall increased rate of water uptake and growth by the plant which is essential to achieve the maximum yield benefits from commercial crops. The effects of irrigation treatments applied at post-anthesis period on pyrethrum yield responses were studied in two irrigation methods. This was conducted in a first harvest commercial pyrethrum field in Waubra, Victoria, during 2012/2013 season. Drip irrigation and overhead sprinkler irrigation treatments applied during whole flowering period were compared with ‘rainfed’ treatment in relation to flower yield and pyrethrin yield responses. The results of this experiment showed that the application of 180mm of irrigation throughout the post-anthesis period, from early flowering stages to physiological maturity under drip irrigation treatment increased pyrethrin concentration by 32%, which combined with the 95 % increase in the flower yield to give a total pyrethrin yield increase of 157%, compared to the ‘rainfed’ treatment. In contrast to that overhead sprinkler irrigation treatment increased pyrethrin concentration by 19%, which combined with the 60 % increase in the flower yield to give a total pyrethrin yield increase of 91%, compared to the ‘rainfed’ treatment. Irrigation treatments applied throughout the post-anthesis period significantly increased flower yield as a result of enhancement of number of flowers and flower size. Irrigation provides adequate soil moisture for flower development in pyrethrum which slows the rate of flower development and increases the length of the flowering period, resulting in a delayed crop harvest (11 days) compared to the ‘rainfed’ treatment. Overall, irrigation has a major impact on pyrethrin accumulation which increases the rate and duration of pyrethrin accumulation resulting in higher pyrethrin yield per flower at physiological maturity. The findings of this study will be important for future yield predictions and to develop advanced agronomic strategies to maximise pyrethrin yield in pyrethrum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=achene" title="achene">achene</a>, <a href="https://publications.waset.org/abstracts/search?q=drip%20irrigation" title=" drip irrigation"> drip irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=overhead%20irrigation" title=" overhead irrigation"> overhead irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrethrin" title=" pyrethrin"> pyrethrin</a> </p> <a href="https://publications.waset.org/abstracts/14886/effects-of-irrigation-applications-during-post-anthesis-period-on-flower-development-and-pyrethrin-accumulation-in-pyrethrum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3545</span> Regional Response of Crop Productivity to Global Warming - A Case Study of the Heat Stress and Cold Stress on UK Rapeseed Crop Over 1961-2020</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biao%20Hu">Biao Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20E.%20J.%20Cutler"> Mark E. J. Cutler</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20C.%20Morel"> Alexandra C. Morel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global climate change introduces both opportunities and challenges for crop productivity, with differences in temperature stress across latitudes and crop types, one of the most important meteorological factors impacting crop productivity. The development and productivity of crops are particularly impacted when temperatures occur outwith their preferred ranges, which has implications for global agri-food sector. This study investigated the spatiotemporal dynamics of heat stress and cold stress on UK arable lands for rapeseed cropping between 1961 and 2020, using a 1 km spatial resolution temperature dataset. Stress indices, including heat stress index (fHS) defined as the ratio of “Tmax - Tcrit_h” to “Tlimit_h - Tcrit_h” where Tmax, Tcrit_h and Tlimit_h represent the daily maximum temperature (°C), critical high temperature threshold (°C) and limiting high temperature threshold (°C) of rapeseed crop respectively; cold degree days (CDD) as the difference between daily Tmin (minimum temperature) and Tcrit_l (critical low temperature threshold); and a normalized rapeseed production loss index (fRPL) as the product of fHS and attainable rapeseed yield in the same land pixel were established. The values of fHS and CDD, percentages of days experiencing each stress and fRPL were investigated. Results found increasing fHS and the areas impacted by heat stress during flowering (from April to May) and reproductive (from April to July) stages over time, with the mean fHS being negatively correlated with latitude. This pattern of increased heat stress agrees with previous research on rapeseed cropping, which have been noted at global scale in response to changes in climate. The decreasing number of CDD and frequency of cold stress suggest cold stress decreased during flowering, vegetative (from September to March next year) and reproductive stages, and the magnitude of cold stress in the south of the UK was smaller to that compared to northern regions over the studied periods. The decreasing CDD matches observed declining cold stress of global rapeseed and of other crops such as rice in the northern hemisphere. Notably, compared with previous studies which mainly tracked the trends of heat stress and cold stress individually, this study conducted a comparative analysis of the rate of their changes and found heat stress of rapeseed crops in the UK was increasing at a faster rate than cold stress, which was seen to decrease during flowering. The increasing values of fRPL, with statistically significant differences (p < 0.05) between regions of the UK, suggested an increasing loss in rapeseed due to heat stress in the studied period. The largest increasing trend in heat stress was observed in South-eastern England, where a decreasing cold stress was taking place. While the present study observed a relatively slowly increasing heat stress, there is a worrying trend of increasing heat stress for rapeseed cropping into the future, as the cases of other main rapeseed cropping systems in the northern hemisphere including China, European counties, the US, and Canada. This study demonstrates the negative impact of global warming on rapeseed cropping, highlighting the adaptation and mitigations strategies for sustainable rapeseed cultivation across the globe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rapeseed" title="rapeseed">rapeseed</a>, <a href="https://publications.waset.org/abstracts/search?q=UK" title=" UK"> UK</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20stress" title=" heat stress"> heat stress</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20stress" title=" cold stress"> cold stress</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20climate%20change" title=" global climate change"> global climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=spatiotemporal%20analysis" title=" spatiotemporal analysis"> spatiotemporal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20loss%20index" title=" production loss index"> production loss index</a> </p> <a href="https://publications.waset.org/abstracts/185811/regional-response-of-crop-productivity-to-global-warming-a-case-study-of-the-heat-stress-and-cold-stress-on-uk-rapeseed-crop-over-1961-2020" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3544</span> The Effect of Different Cucumber (Cucumis sativus L.) Varieties on Growth and Development Time of Aphis gossypii Glover (Hemiptera: Aphididae)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rochelyn%20Dona">Rochelyn Dona</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20F.%20Nur"> Mohamed F. Nur</a>, <a href="https://publications.waset.org/abstracts/search?q=Serdar%20Satar"> Serdar Satar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The biological response of Aphis gossypii Glover (Hom. Aphididae) was investigated on the effects of seven cucumber varieties (Cucumis sativus L.) such as Kitir, Muhika, Ayda, Beit, 14-F1, Ruzgar, and Ptk in the laboratory condition at 24±1°C, 65±5% relative humidity (RH) and a photoperiod of 16:8 (L:D) hour. The results were related that the developmental time of A. gossypii at the nymphal stages was presented a significant difference only on the first instar stage. From the lowest to the highest respectively, 0.98 days on ruzgar to 1.18 days on Kitir, the second nymphal stage 0.98 days to Beit alfa, 1.08 days on Muhika, the third from 0.94 days to Kitir, from 1.16 days to 14-F1, and the last instar 1.22 days on Ptk, 1.48 days on Kitir were investigated. The total development time was evaluated at 4.46 days Beit on alfa 4.72 days on Kitir. The offspring number was 60.42 aphids on ayda and 83.72 aphids on muhika, the significant differences between varieties were based on one-way ANOVA (Tukey test). The lifetime of A. gossypii was recorded 19.10 days on Kitir, 27.64 days on Ptk. The results showed that cucumber cultivars were affected by the biological life of A. gossypii. The combination of this study with the other methods of the IPM tactics can serve as the best strategy for controlling this pest on cucumber varieties into the greenhouse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cucumber%20cultivars" title="cucumber cultivars">cucumber cultivars</a>, <a href="https://publications.waset.org/abstracts/search?q=fecundity" title=" fecundity"> fecundity</a>, <a href="https://publications.waset.org/abstracts/search?q=intrinsic%20rate" title=" intrinsic rate"> intrinsic rate</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/140349/the-effect-of-different-cucumber-cucumis-sativus-l-varieties-on-growth-and-development-time-of-aphis-gossypii-glover-hemiptera-aphididae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=days%20after%20flowering&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=days%20after%20flowering&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=days%20after%20flowering&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=days%20after%20flowering&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=days%20after%20flowering&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=days%20after%20flowering&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=days%20after%20flowering&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=days%20after%20flowering&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=days%20after%20flowering&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=days%20after%20flowering&amp;page=119">119</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=days%20after%20flowering&amp;page=120">120</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=days%20after%20flowering&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10