CINXE.COM
More Transformations of Integer Sequences
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"> <html> <head> <link rel="stylesheet" href="/styles.css"> <meta name="format-detection" content="telephone=no"> <meta http-equiv="content-type" content="text/html; charset=utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta name="keywords" content="OEIS,integer sequences,Sloane" /> <title>More Transformations of Integer Sequences</title> <link rel="search" type="application/opensearchdescription+xml" title="OEIS" href="/oeis.xml"> <script> var myURL = "\/transforms2.html" function redir() { var host = document.location.hostname; if(host != "oeis.org" && host != "127.0.0.1" && !/^([0-9.]+)$/.test(host) && host != "localhost" && host != "localhost.localdomain") { document.location = "https"+":"+"//"+"oeis"+".org/" + myURL; } } function sf() { if(document.location.pathname == "/" && document.f) document.f.q.focus(); } </script> </head> <body bgcolor=#ffffff onload="redir();sf()"> <div class=loginbar> <div class=login> <a href="/login?redirect=%2ftransforms2.html">login</a> </div> </div> <div class=center><div class=top> <center> <div class=donors> The OEIS is supported by <a href="http://oeisf.org/#DONATE">the many generous donors to the OEIS Foundation</a>. </div> <div class=banner> <a href="/"><img class=banner border="0" width="600" src="/banner2021.jpg" alt="More Transformations of Integer Sequences"></a> </div> </center> </div></div> <div class=center><div class=pagebody> <div class=searchbarcenter> <form name=f action="/search" method="GET"> <div class=searchbargreet> <div class=searchbar> <div class=searchq> <input class=searchbox maxLength=1024 name=q value="" title="Search Query"> </div> <div class=searchsubmit> <input type=submit value="Search" name=go> </div> <div class=hints> <span class=hints><a href="/hints.html">Hints</a></span> </div> </div> <div class=searchgreet> (Greetings from <a href="/welcome">The On-Line Encyclopedia of Integer Sequences</a>!) </div> </div> </form> </div> <div align="center"> <h1>Further Transformations of Integer Sequences</h1> </div> <p> This page was created by Christian G. Bower and is a sub-page of the <a href="https://oeis.org">On-Line Encyclopedia of Integer Sequences</a>. <p> <IMG SRC="BluePinLeft.gif" ALT=" "> <STRONG>Keywords</STRONG>: AFJ, AFK, AGJ, AGK, AIJ, BFJ, BFK, BGJ, BGK, BHJ, BHK, BIJ, BIK, CFJ, CFK, CGJ, CGK, CHJ, CHK, CIJ, CIK, DFJ, DFK, DGJ, DGK, DHJ, DHK, DIJ, DIK, EFJ, EFK, EGJ. <p> <font size=4><STRONG>Table of Contents</STRONG></font> <ol> <li><a href="#definition">Definition.</a> </li> <li><a href="#algorithm">Algorithms.</a> </li> <li><a href="#catalogue">Catalogue of Sequences.</a> </li> <li><a href="index.html">Back to Integer Sequences.</a> </li> </ol> <hr> <p> <a name="definition"></a> <font size=4><STRONG>Part 1: Definition</STRONG></font> <p> This is a generalization of transforms that count the ways objects can be partitioned. <p> Say we have boxes of different colors and sizes. <p> The sequence {a<sub>n</sub>;n>=1} represents the number of colors a box holding n balls can be. The transformed sequence {b<sub>n</sub>;n>=1} represents the number of ways we can have a collection of boxes so that the total number of balls is n, subject to the following rules. <p> <center><TABLE border=1 cellpadding=10 width="80%"> <caption><STRONG>The boxes are ordered in one of the following ways:</STRONG></caption> <tr><td> <STRONG>A. Linear (ordered)</STRONG> <br> The boxes are in a line from beginning to end. <p> <STRONG>B. Linear with turning over (reversible)</STRONG> <br> The boxes are in a line that can be read in either direction. <p> <STRONG>C. Circular (necklace)</STRONG> <br> The boxes are in a circle. <p> <STRONG>D. Circular with turning over (bracelet)</STRONG> <br> The boxes are in a circle that can be read in either direction. <p> <STRONG>E. None (unordered)</STRONG> <br> The order of the boxes is not important. </td></tr></TABLE></center> <p> <center><TABLE border=1 cellpadding=10 width="80%"> <caption><STRONG>One of the following distinctness rules applies:</STRONG></caption> <tr><td> <STRONG>F. Size</STRONG> <br> No two boxes are the same size. <p> <STRONG>G. Element</STRONG> <br> No two boxes are the same size and color. <p> <STRONG>H. Identity</STRONG> <br> Any two boxes can be distinguished by size, color and position. <p> <STRONG>I. None (indistinct)</STRONG> <br> No restriction. </td></tr></TABLE></center> <p> Distinctness H (identity) has different implications depending on the chosen order. <p> <ul> <li>If order A is chosen, distinctness H is the same as distinctness I. <p> </li> <li>If order B is chosen, the boxes cannot form a palindrome of length greater than one. <br> <font color="#E00000">Red 1</font> <font color="#0000FF">Blue 2</font> <font color="#E00000">Red 1</font> is not allowed. <p> </li> <li>If order C is chosen, the sequence of boxes is aperiodic. It cannot be a repitition of a shorter subsequence. <br> <font color="#E00000">Red 1</font> <font color="#0000FF">Blue 2</font> <font color="#E00000">Red 1</font> <font color="#0000FF">Blue 2</font> is not allowed. <p> </li> <li>If order D is chosen, the boxes are aperiodic and cannot be a palindrome of length greater than two. <p> </li> <li>If order E is chosen, distinctness H is the same as distinctness G. </li> </ul> <center><TABLE border=1 cellpadding=10 width="80%"> <caption><STRONG>One of the following labelling rules applies:</STRONG></caption> <tr><td> <STRONG>J. Labeled</STRONG> <br> The balls in the boxes are labeled. <p> <STRONG>K. Unlabeled</STRONG> <br> The balls in the boxes are not labeled. </td></tr></TABLE></center> <p><p> Each transform is identified by a 3 letter code, e.g. <font color="#0000F0"> B</font><font color="#008000">G</font><font color="#E00000">J</font> to represent <font color="#0000F0">linear order with turning over,</font> <font color="#008000">each object distinct,</font> <font color="#E00000">labeled</font>. <br> An <font color="#008000">X</font> is a wild card as in <font color="#0000F0"> C</font><font color="#008000">X</font><font color="#E00000">K</font>, <font color="#E00000">unlabeled</font> <font color="#0000F0">necklace</font> transforms. <p> AIK is the transform <a href="transforms.html">INVERT</a>. <br> EGK is the transform <a href="transforms.html">WEIGH</a>. <br> EIJ is the transform <a href="transforms.html">EXP</a>. <br> EIK is the transform <a href="transforms.html">EULER</a>. <p> There are 5×4×2=40 of these transforms. <p> However, the AHX and EHX transforms are redundant, leaving 36. Four of them are named. As far as I know, the other 32 are not. The new and old sequence listed illustrate the 32 new transforms. <p> <STRONG>Terminology:</STRONG> <p> <ul> <li><i>XXX<sub>k</sub></i> means the transform XXX with exactly k boxes. <br> These are denoted by <i>XXX[k]</i> in the <a href="index.html"> On-Line Encyclopedia of Integer Sequences</a>. <br> AIK<sub>2</sub> is the transform <a href="transforms.html">CONV</a>. <p> </li> <li><i>Bracelet</i> means necklace that can be turned over. <p> <a href="http://www.theory.csc.uvic.ca/~cos/inf/neck/NecklaceInfo.html">More information about necklaces</a>. <p> </li> <li><i>Compound windmill</i> is a rooted planar tree where the sub-rooted tree extending from a node can be rotated independently of the rest of the tree. Much like some children's toys or carnival rides. Compound windmills can be <i>dyslexic</i>. <p> </li> <li><i>Dyslexic planar tree</i> is a planar tree where each sub-rooted tree extending from a node can be read from left to right or right to left. It can be thought of as viewed by an observer who does not know left from right or as sub-rooted trees that can be turned around independent of the rest of the tree. <p> </li> <li><i>Eigensequence</i> means a sequence that is stable under a given transform or is modified in some simple way. Eigensequences are covered in detail in: <p> M. Bernstein & N. J. A. Sloane, <a href="http://www.research.att.com/~njas/doc/eigen.ps"> Some canonical sequences of integers</a>, <i>Linear Algebra and its Applications</i>, <STRONG>226-228</STRONG> (1995), 57-72. <p> <a href="A000081">A000081</a>, rooted trees, 1,1,2,4,9,20,48,115... is an eigensequence of the transform <a href="transforms.html">EULER</a>. because the transformed sequence, 1,2,4,9,20,48,115,286,..., is the original sequence shifted left one place. <p> </li> <li><i>Identity bracelet</i> means bracelet where every bead is distinguished by position and color, i.e. a bracelet generated by the transform DHK. </li> </ul> <p> <hr> <p> <a name="algorithm"></a> <font size=4><STRONG>Part 2: Algorithms</STRONG></font> <p> a<sub>n</sub> is the input sequence. <p> b<sub>n</sub> is the output sequence. <p> <i>A</i>(x) is the generating function of a<sub>n</sub>. <p> <i>B</i>(x) is the generating function of b<sub>n</sub>. <p> (<STRONG>XXX</STRONG> a)<sub>n</sub> = sum{k=1 to n} (<STRONG>XXX<sub>k</sub></STRONG> a)<sub>n</sub> <p> <STRONG>MÖBIUS</STRONG> · <STRONG>XXX</STRONG> refers to the Möbius transform of the sequence transformed by <STRONG>XXX</STRONG>. Similarly for <STRONG>MÖBIUS<sup>-1</sup> · XXX</STRONG>. However, <STRONG>(MÖBIUS · XXX)<sub>k</sub></STRONG> and <STRONG>(MÖBIUS<sup>-1</sup> · XXX)<sub>k</sub></STRONG> are defined as follows: <p> <STRONG>(MÖBIUS · XXX)<sub>k</sub></STRONG>a<sub>n</sub> = sum{d|k and d|n} (µ(d) × <STRONG>XXX<sub>k/d</sub></STRONG>a<sub>n/d</sub>) <p> <STRONG>(MÖBIUS<sup>-1</sup> · XXX)<sub>k</sub></STRONG>a<sub>n</sub> = sum{d|k and d|n} (<STRONG>XXX<sub>k/d</sub></STRONG>a<sub>n/d</sub>) <p> <STRONG>AIK</STRONG> = <STRONG>INVERT</STRONG> <br> <i>B</i>(x) = <i>A</i>(x) / (1-<i>A</i>(x)) <p> <STRONG>AIK<sub>k</sub></STRONG> <br> <i>B</i>(x) = <i>A</i>(x)<sup>k</sup> <p> <STRONG>LPAL<sub>k</sub></STRONG> (Linear palindrome) <br> If n, k even: b<sub>n</sub> = (<STRONG>AIK<sub>k/2</sub></STRONG>a)<sub>n/2</sub> <br> If n odd, k even: b<sub>n</sub> = 0 <br> If n even, k odd: b<sub>n</sub> = sum{i>0 and i<n/2} (a<sub>2i</sub> × (<STRONG>AIK<sub>(k-1)/2</sub></STRONG>a)<sub>n/2-i</sub>) <br> if n,k odd: b<sub>n</sub> = sum{i>0 and i<n/2} (a<sub>2i-1</sub> × (<STRONG>AIK<sub>(k-1)/2</sub></STRONG>a)<sub>(n+1)/2-i</sub>) <p> <STRONG>BIK<sub>k</sub></STRONG> <br> b<sub>n</sub> = ((<STRONG>AIK<sub>k</sub></STRONG>a)<sub>n</sub> + (<STRONG>LPAL<sub>k</sub></STRONG>a)<sub>n</sub>) / 2 <p> <STRONG>BHK<sub>k</sub></STRONG> <br> k=1: b<sub>n</sub> = a<sub>n</sub> <br> k>1: b<sub>n</sub> = ((<STRONG>AIK<sub>k</sub></STRONG>a)<sub>n</sub> - (<STRONG>LPAL<sub>k</sub></STRONG>a)<sub>n</sub>) / 2 <p> <STRONG>CHK<sub>k</sub></STRONG> <br> b<sub>n</sub> = <STRONG>(MÖBIUS · AIK)<sub>k</sub></STRONG>a<sub>n</sub> / n <p> <STRONG>CIK</STRONG> <br> <STRONG>CIK</STRONG> = <STRONG>MÖBIUS<sup>-1</sup> · CHK</STRONG> <p> <STRONG>CPAL<sub>k</sub></STRONG> (Circular palindrome) <br> <STRONG>CPAL<sub>1</sub></STRONG> = <STRONG>IDENTITY</STRONG> <br> <STRONG>CPAL<sub>2</sub></STRONG> = <STRONG>CIK<sub>2</sub></STRONG> <br> k>2: <br> If n, k even: b<sub>n</sub> = (I+J)/2+K+L+M where: <br> (No boxes joined) <br> I=(<STRONG>AIK<sub>k/2</sub></STRONG>a)<sub>n/2</sub> <br> (2 boxes joined are identical) <br> J=sum{i=1 to n/2}(<STRONG>AIK<sub>k/2-1</sub></STRONG>a)<sub>(n-2i)/2</sub> <br> (2 boxes joined are even and different sizes) <br> K=sum{i,j even, j>i, i+j<n} (a<sub>i</sub> × a<sub>j</sub> × (<STRONG>AIK<sub>k/2-1</sub></STRONG>a)<sub>(n-i-j)/2</sub>) <br> (2 boxes joined are odd and different sizes) <br> L=sum{i,j odd, j>i, i+j<n} (a<sub>i</sub> × a<sub>j</sub> × (<STRONG>AIK<sub>k/2-1</sub></STRONG>a)<sub>(n-i-j)/2</sub>) <br> (2 boxes joined are the same size and different colors) <br> M=sum{i>0 and i<n/2} ((a<sub>i</sub><sup>2</sup>-a<sub>i</sub>)/2 × (<STRONG>AIK<sub>k/2-1</sub></STRONG>a)<sub>(n-2i)/2</sub>) <br> If n odd, k even: <br> b<sub>n</sub> = sum{i odd, j even, i+j<n} (a<sub>i</sub> × a<sub>j</sub> × ((<STRONG>AIK<sub>k/2-1</sub></STRONG>a)<sub>(n-i-j)/2</sub>) <br> If n even, k odd: <br> b<sub>n</sub> = sum{i>0 and i<n/2} (a<sub>2i</sub> × (<STRONG>AIK<sub>(k-1)/2</sub></STRONG>a)<sub>n/2-i</sub>) <br> if n,k odd: <br> b<sub>n</sub> = sum{i>0 and i<n/2} (a<sub>2i-1</sub> × (<STRONG>AIK<sub>(k-1)/2</sub></STRONG>a)<sub>(n+1)/2-i</sub>) <p> <STRONG>DIK<sub>k</sub></STRONG> <br> b<sub>n</sub> = ((<STRONG>CIK<sub>k</sub></STRONG>a)<sub>n</sub> + (<STRONG>CPAL<sub>k</sub></STRONG>a)<sub>n</sub>) / 2 <p> <STRONG>DHK<sub>k</sub></STRONG> <br> <STRONG>DHK<sub>1</sub></STRONG> = <STRONG>IDENTITY</STRONG> <br> <STRONG>DHK<sub>2</sub></STRONG> = <STRONG>CHK<sub>2</sub></STRONG> <br> For k>2: <br> <STRONG>DHK<sub>k</sub></STRONG> = <STRONG>(MÖBIUS · (CIK - CPAL)/2)<sub>k</sub></STRONG> <p> If <STRONG>EXX</STRONG> is one of: {<STRONG>EFJ</STRONG>, <STRONG>EFK</STRONG>, <STRONG>EGJ</STRONG>, <STRONG>EGK</STRONG>, <STRONG>EIJ</STRONG>} then: <br> <STRONG>AXX<sub>k</sub></STRONG> = k! × <STRONG>EXX<sub>k</sub></STRONG> <br> <STRONG>BXX<sub>k</sub></STRONG> = max(1,k!/2) × <STRONG>EXX<sub>k</sub></STRONG> <br> <STRONG>CXX<sub>k</sub></STRONG> = (k-1!) × <STRONG>EXX<sub>k</sub></STRONG> <br> <STRONG>DXX<sub>k</sub></STRONG> = max(1,(k-1)!/2) × <STRONG>EXX<sub>k</sub></STRONG> <p> To calculate (<STRONG>EFX<sub>k</sub></STRONG>a)<sub>n</sub>, enumerate the distinct partitions of n into k parts as terms of the following form: <br> p<sub>1</sub>+p<sub>2</sub>+...+p<sub>k</sub> <br> Sum the terms calculated as follows: <br> <STRONG>EFJ<sub>k</sub></STRONG>: prod{i=1 to k}a<sub>p<sub>i</sub></sub> × n! / prod{i=1 to k}p<sub>i</sub>! <br> <STRONG>EFK<sub>k</sub></STRONG>: prod{i=1 to k}a<sub>p<sub>i</sub></sub> <p> <STRONG>EFK</STRONG> can also be calculated as: <br> <i>B</i>(x)=prod{k=1 to infinity}(1+a<sub>k</sub>x<sup>k</sup>). <p> To calculate (<STRONG>AIJ<sub>k</sub></STRONG>a)<sub>n</sub>, (<STRONG>BHJ<sub>k</sub></STRONG>a)<sub>n</sub>, (<STRONG>CHJ<sub>k</sub></STRONG>a)<sub>n</sub> or (<STRONG>EGX<sub>k</sub></STRONG>a)<sub>n</sub>, enumerate the partitions of of n into k parts as terms of the following form: <br> p<sub>1</sub>q<sub>1</sub>+p<sub>2</sub>q<sub>2</sub>+...+p<sub>j</sub>q<sub>j</sub> where all the p<sub>i</sub>'s are distinct. <br> Sum the terms calculated as follows: <br> <STRONG>AIJ<sub>k</sub></STRONG>: prod{i=1 to j}a<sub>p<sub>i</sub></sub><sup>q<sub>i</sub></sup> × n! × k! / ((prod{i=1 to j}p<sub>i</sub>!q<sub>i</sub>) × (prod{i=1 to j}q<sub>i</sub>!)) <br> <STRONG>BHJ<sub>k</sub></STRONG>: <br> term<sub>1</sub> = prod{i=1 to j}a<sub>p<sub>i</sub></sub><sup>q<sub>i</sub></sup> × k! / (prod{i=1 to j}q<sub>i</sub>!) <br> term<sub>2</sub> = prod{i=1 to j}a<sub>p<sub>i</sub></sub><sup>[q<sub>i</sub>/2]</sup> × [k/2]! / (prod{i=1 to j}[q<sub>i</sub>/2]!) <br> If more than 1 q<sub>i</sub> is odd: term<sub>3</sub> = term<sub>1</sub> <br> otherwise: term<sub>3</sub> = term<sub>1</sub> - term<sub>2</sub> <br> term = term<sub>3</sub> × n! / prod{i=1 to j}p<sub>i</sub>!q<sub>i</sub> / 2 <br> <STRONG>CHJ<sub>k</sub></STRONG>: <br> term<sub>2</sub> = sum{d|q<sub>m</sub> for all m} (µ(d) × prod{i=1 to j}a<sub>p<sub>i</sub></sub><sup>[q<sub>i</sub>/d]</sup> × [k/d]! / (prod{i=1 to j}[q<sub>i</sub>/d]!)) <br> term = term<sub>2</sub> × n! / prod{i=1 to j}p<sub>i</sub>!q<sub>i</sub> / k <br> <STRONG>EGJ<sub>k</sub></STRONG>: prod{i=1 to j}C(a<sub>p<sub>i</sub></sub>,q<sub>i</sub>) × n! / prod{i=1 to j}p<sub>i</sub>!q<sub>i</sub> <br> <STRONG>EGK<sub>k</sub></STRONG>: prod{i=1 to j}C(a<sub>p<sub>i</sub></sub>,q<sub>i</sub>) <p> <STRONG>DHJ</STRONG>: <br> Work is in progress. <p> <hr> <p> <a name="catalogue"></a> <font size=4><STRONG>Part 3: Catalogue of sequences</STRONG></font> <p> This table identifies a formula for each sequence, usually based on one of the transforms. This should provide a convenient way to browse the sequences and see how the transforms apply to a broad class of mathematics. <p> <STRONG>The base sequences:</STRONG> <p> These transforms have been applied to one of the <i>base sequences</i> defined in the following table or to sequences in the <a href=""> <i>On-line Encyclopedia of Integer Sequences</i></a>, identified by number. <p> <TABLE cellspacing=10> <tr> <td> s<sup>1</sup>, s<sup>2</sup>, s<sup>3</sup>... </td><td> s<sup>k</sup><sub>1</sub> = k, s<sup>k</sup><sub>n</sub>=0 for n>1 </td> </tr><tr> <td> all<sup>1</sup>, all<sup>2</sup>, all<sup>3</sup>,... </td><td> all<sup>k</sup><sub>n</sub> = k for all n </td> </tr><tr> <td> codd <i>(characteristic of odd)</i> </td><td> codd<sub>n</sub> = 1 if n is odd, 0 otherwise </td> </tr><tr> <td> noone </td><td> noone<sub>1</sub>=0, noone<sub>n</sub>=1 for n>1 </td> </tr><tr> <td> twoone </td><td> twoone<sub>1</sub>=2, twoone<sub>n</sub>=1 for n>1 </td> </tr><tr> <td> iden </td><td> iden<sub>n</sub>=n </td> </tr><tr> <td> odd </td><td> odd<sub>n</sub>=2n-1 </td> </tr><tr> <td> even </td><td> even<sub>n</sub>=2n </td></tr></TABLE> <p> If <STRONG>T</STRONG> is a transform: <p> Left(n;k<sub>1</sub>, k<sub>2</sub>,..., k<sub>n</sub>)<STRONG>T</STRONG> <i>is the <a href="http://www.research.att.com/~njas/doc/eigen.ps">eigensequence</a> that shifts left n places under </i><STRONG>T</STRONG><i> and has </i>a<sub>i</sub>=k<sub>i</sub><i> for</i> 1<=i<=n. <br> M2(n)<STRONG>T</STRONG> <i>is the <a href="http://www.research.att.com/~njas/doc/eigen.ps">eigensequence</a> that doubles the terms whose indices are greater than 1 under </i><STRONG>T</STRONG>. <p> <STRONG>AFJ sequences</STRONG> <TABLE> <tr> <td> <a href="A032000">A032000</a> </td><td> <STRONG>AFJ</STRONG> all<sup>2</sup> </td> </tr><tr> <td> <a href="A032001">A032001</a> </td><td> <STRONG>AFJ</STRONG> twoone </td> </tr><tr> <td> <a href="A032002">A032002</a> </td><td> <STRONG>AFJ</STRONG> iden </td> </tr><tr> <td> <a href="A032003">A032003</a> </td><td> <STRONG>AFJ</STRONG> odd </td> </tr><tr> <td> <a href="A032004">A032004</a> </td><td> Left(1;1)<STRONG>AFJ</STRONG> </td> </tr></TABLE> <p> <STRONG>AFK sequences</STRONG> <TABLE> <tr> <td> <a href="A032005">A032005</a> </td><td> <STRONG>AFK</STRONG> all<sup>2</sup> </td> </tr><tr> <td> <a href="A032006">A032006</a> </td><td> <STRONG>AFK</STRONG> twoone </td> </tr><tr> <td> <a href="A032007">A032007</a> </td><td> <STRONG>AFK</STRONG> iden </td> </tr><tr> <td> <a href="A032008">A032008</a> </td><td> <STRONG>AFK</STRONG> odd </td> </tr><tr> <td> <a href="A032009">A032009</a> </td><td> Left(1;1)<STRONG>AFK</STRONG> </td> </tr><tr> <td> <a href="A032010">A032010</a> </td><td> (<STRONG>CFK</STRONG> <a href="A032009">A032009</a> )<sub>n-1</sub> </td> </tr></TABLE> <p> <STRONG>AGJ sequences</STRONG> <TABLE> <tr> <td> <a href="A032011">A032011</a> </td><td> <STRONG>AGJ</STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032012">A032012</a> </td><td> <STRONG>AGJ</STRONG> codd </td> </tr> <tr> <td> <a href="A032013">A032013</a> </td><td> <STRONG>AGJ</STRONG> noone </td> </tr> <tr> <td> <a href="A032014">A032014</a> </td><td> <STRONG>AGJ</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032015">A032015</a> </td><td> <STRONG>AGJ</STRONG> twoone </td> </tr> <tr> <td> <a href="A032016">A032016</a> </td><td> <STRONG>AGJ</STRONG> iden </td> </tr> <tr> <td> <a href="A032017">A032017</a> </td><td> <STRONG>AGJ</STRONG> odd </td> </tr> <tr> <td> <a href="A032018">A032018</a> </td><td> Left(1;1)<STRONG>AGJ</STRONG> </td> </tr> <tr> <td> <a href="A032019">A032019</a> </td><td> M2(2)<STRONG>AGJ</STRONG> </td> </tr> </TABLE> <p> <STRONG>AGK sequences</STRONG> <TABLE> <tr> <td> <a href="A032020">A032020</a> </td><td> <STRONG>AGK</STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032021">A032021</a> </td><td> <STRONG>AGK</STRONG> codd </td> </tr> <tr> <td> <a href="A032022">A032022</a> </td><td> <STRONG>AGK</STRONG> noone </td> </tr> <tr> <td> <a href="A032023">A032023</a> </td><td> <STRONG>AGK</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032024">A032024</a> </td><td> <STRONG>AGK</STRONG> twoone </td> </tr> <tr> <td> <a href="A032025">A032025</a> </td><td> <STRONG>AGK</STRONG> iden </td> </tr> <tr> <td> <a href="A032026">A032026</a> </td><td> <STRONG>AGK</STRONG> odd </td> </tr> <tr> <td> <a href="A032027">A032027</a> </td><td> Left(1;1)<STRONG>AGK</STRONG> </td> </tr> <tr> <td> <a href="A032028">A032028</a> </td><td> (<STRONG>CGK</STRONG> <a href="A032027">A032027</a> )<sub>n-1</sub> </td> </tr> <tr> <td> <a href="A032029">A032029</a> </td><td> Left(2;1,1)<STRONG>AGK</STRONG> </td> </tr> <tr> <td> <a href="A032030">A032030</a> </td><td> M2(2)<STRONG>AGK</STRONG> </td> </tr> </TABLE> <p> <STRONG>AIJ sequences</STRONG> <TABLE> <tr> <td> <a href="A000142">A000142</a> </td><td> <STRONG>AIJ</STRONG> s<sup>1</sup> </td> </tr> <tr> <td> <a href="A000165">A000165</a> </td><td> <STRONG>AIJ</STRONG> s<sup>2</sup> </td> </tr> <tr> <td> <a href="A032031">A032031</a> </td><td> <STRONG>AIJ</STRONG> s<sup>3</sup> </td> </tr> <tr> <td> <a href="A000670">A000670</a> </td><td> <STRONG>AIJ</STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A000918">A000918</a> </td><td> <STRONG>AIJ<sub>2</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A001117">A001117</a> </td><td> <STRONG>AIJ<sub>3</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A000919">A000919</a> </td><td> <STRONG>AIJ<sub>4</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A001118">A001118</a> </td><td> <STRONG>AIJ<sub>5</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A000920">A000920</a> </td><td> <STRONG>AIJ<sub>6</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A006154">A006154</a> </td><td> <STRONG>AIJ</STRONG> codd </td> </tr> <tr> <td> <a href="A032032">A032032</a> </td><td> <STRONG>AIJ</STRONG> noone </td> </tr> <tr> <td> <a href="A004123">A004123</a> </td><td> <STRONG>AIJ</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A006155">A006155</a> </td><td> <STRONG>AIJ</STRONG> twoone </td> </tr> <tr> <td> <a href="A032033">A032033</a> </td><td> <STRONG>AIJ</STRONG> all<sup>3</sup> </td> </tr> <tr> <td> <a href="A006153">A006153</a> </td><td> <STRONG>AIJ</STRONG> iden </td> </tr> <tr> <td> <a href="A000354">A000354</a> </td><td> <STRONG>AIJ</STRONG> odd </td> </tr> <tr> <td> <a href="A001147">A001147</a> </td><td> Left(1;1)<STRONG>AIJ</STRONG> </td> </tr> <tr> <td> <a href="A032034">A032034</a> </td><td> Left(1;2)<STRONG>AIJ</STRONG> </td> </tr> <tr> <td> <a href="A032035">A032035</a> </td><td> Left(2;1,1)<STRONG>AIJ</STRONG> </td> </tr> <tr> <td> <a href="A032036">A032036</a> </td><td> Left(3;1,1,1)<STRONG>AIJ</STRONG> </td> </tr> <tr> <td> <a href="A032037">A032037</a> </td><td> M2(1)<STRONG>AIJ</STRONG> </td> </tr> </TABLE> <p> <STRONG>BFJ sequences</STRONG> <TABLE> <tr> <td> <a href="A032038">A032038</a> </td><td> <STRONG>BFJ</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032039">A032039</a> </td><td> <STRONG>BFJ</STRONG> twoone </td> </tr> <tr> <td> <a href="A032040">A032040</a> </td><td> <STRONG>BFJ</STRONG> iden </td> </tr> <tr> <td> <a href="A032041">A032041</a> </td><td> <STRONG>BFJ</STRONG> odd </td> </tr> <tr> <td> <a href="A032042">A032042</a> </td><td> Left(1;1)<STRONG>BFJ</STRONG> </td> </tr> </TABLE> <p> <STRONG>BFK sequences</STRONG> <TABLE> <tr> <td> <a href="A032043">A032043</a> </td><td> <STRONG>BFK</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032044">A032044</a> </td><td> <STRONG>BFK</STRONG> twoone </td> </tr> <tr> <td> <a href="A032045">A032045</a> </td><td> <STRONG>BFK</STRONG> iden </td> </tr> <tr> <td> <a href="A032046">A032046</a> </td><td> <STRONG>BFK</STRONG> odd </td> </tr> <tr> <td> <a href="A032047">A032047</a> </td><td> Left(1;1)<STRONG>BFK</STRONG> </td> </tr> <tr> <td> <a href="A032048">A032048</a> </td><td> (<STRONG>CFK</STRONG> <a href="A032047">A032047</a> )<sub>n-1</sub> </td> </tr> </TABLE> <p> <STRONG>BGJ sequences</STRONG> <TABLE> <tr> <td> <a href="A032049">A032049</a> </td><td> <STRONG>BGJ</STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032050">A032050</a> </td><td> <STRONG>BGJ</STRONG> codd </td> </tr> <tr> <td> <a href="A032051">A032051</a> </td><td> <STRONG>BGJ</STRONG> noone </td> </tr> <tr> <td> <a href="A032052">A032052</a> </td><td> <STRONG>BGJ</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032053">A032053</a> </td><td> <STRONG>BGJ</STRONG> twoone </td> </tr> <tr> <td> <a href="A032054">A032054</a> </td><td> <STRONG>BGJ</STRONG> iden </td> </tr> <tr> <td> <a href="A032055">A032055</a> </td><td> <STRONG>BGJ</STRONG> odd </td> </tr> <tr> <td> <a href="A032056">A032056</a> </td><td> Left(1;1)<STRONG>BGJ</STRONG> </td> </tr> <tr> <td> <a href="A032057">A032057</a> </td><td> M2(2)<STRONG>BGJ</STRONG> </td> </tr> </TABLE> <p> <STRONG>BGK sequences</STRONG> <TABLE> <tr> <td> <a href="A032058">A032058</a> </td><td> <STRONG>BGK</STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032059">A032059</a> </td><td> <STRONG>BGK</STRONG> codd </td> </tr> <tr> <td> <a href="A032060">A032060</a> </td><td> <STRONG>BGK</STRONG> noone </td> </tr> <tr> <td> <a href="A032061">A032061</a> </td><td> <STRONG>BGK</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032062">A032062</a> </td><td> <STRONG>BGK</STRONG> twoone </td> </tr> <tr> <td> <a href="A032063">A032063</a> </td><td> <STRONG>BGK</STRONG> iden </td> </tr> <tr> <td> <a href="A032064">A032064</a> </td><td> <STRONG>BGK</STRONG> odd </td> </tr> <tr> <td> <a href="A032065">A032065</a> </td><td> Left(1;1)<STRONG>BGK</STRONG> </td> </tr> <tr> <td> <a href="A032066">A032066</a> </td><td> (<STRONG>CGK</STRONG> <a href="A032065">A032065</a> )<sub>n-1</sub> </td> </tr> <tr> <td> <a href="A032067">A032067</a> </td><td> Left(2;1,1)<STRONG>BGK</STRONG> </td> </tr> <tr> <td> <a href="A032068">A032068</a> </td><td> M2(2)<STRONG>BGK</STRONG> </td> </tr> </TABLE> <p> <STRONG>BHJ sequences</STRONG> <TABLE> <tr> <td> <a href="A032069">A032069</a> </td><td> <STRONG>BHJ</STRONG> s<sup>2</sup> </td> </tr> <tr> <td> <a href="A032070">A032070</a> </td><td> <STRONG>BHJ</STRONG> s<sup>3</sup> </td> </tr> <tr> <td> <a href="A032071">A032071</a> </td><td> <STRONG>BHJ</STRONG> s<sup>4</sup> </td> </tr> <tr> <td> <a href="A032072">A032072</a> </td><td> <STRONG>BHJ</STRONG> s<sup>5</sup> </td> </tr> <tr> <td> <a href="A032073">A032073</a> </td><td> <STRONG>BHJ</STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032074">A032074</a> </td><td> <STRONG>BHJ</STRONG> codd </td> </tr> <tr> <td> <a href="A032075">A032075</a> </td><td> <STRONG>BHJ</STRONG> noone </td> </tr> <tr> <td> <a href="A032076">A032076</a> </td><td> <STRONG>BHJ</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032077">A032077</a> </td><td> <STRONG>BHJ</STRONG> twoone </td> </tr> <tr> <td> <a href="A032078">A032078</a> </td><td> <STRONG>BHJ</STRONG> all<sup>3</sup> </td> </tr> <tr> <td> <a href="A032079">A032079</a> </td><td> <STRONG>BHJ</STRONG> iden </td> </tr> <tr> <td> <a href="A032080">A032080</a> </td><td> <STRONG>BHJ</STRONG> odd </td> </tr> <tr> <td> <a href="A032081">A032081</a> </td><td> Left(1;1)<STRONG>BHJ</STRONG> </td> </tr> <tr> <td> <a href="A032082">A032082</a> </td><td> Left(1;2)<STRONG>BHJ</STRONG> </td> </tr> <tr> <td> <a href="A032083">A032083</a> </td><td> Left(2;1,1)<STRONG>BHJ</STRONG> </td> </tr> <tr> <td> <a href="A032084">A032084</a> </td><td> M2(2)<STRONG>BHJ</STRONG> </td> </tr> </TABLE> <p> <STRONG>BHK sequences</STRONG> <TABLE> <tr> <td> <a href="A032085">A032085</a> </td><td> <STRONG>BHK</STRONG> s<sup>2</sup> </td> </tr> <tr> <td> <a href="A032086">A032086</a> </td><td> <STRONG>BHK</STRONG> s<sup>3</sup> </td> </tr> <tr> <td> <a href="A032087">A032087</a> </td><td> <STRONG>BHK</STRONG> s<sup>4</sup> </td> </tr> <tr> <td> <a href="A032088">A032088</a> </td><td> <STRONG>BHK</STRONG> s<sup>5</sup> </td> </tr> <tr> <td> <a href="A032089">A032089</a> </td><td> <STRONG>BHK</STRONG> codd </td> </tr> <tr> <td> <a href="A032090">A032090</a> </td><td> <STRONG>BHK</STRONG> noone </td> </tr> <tr> <td> <a href="A002620">A002620</a> </td><td> (<STRONG>BHK<sub>3</sub></STRONG> all<sup>1</sup>)<sub>n+2</sub> </td> </tr> <tr> <td> <a href="A006584">A006584</a> </td><td> (<STRONG>BHK<sub>4</sub></STRONG> all<sup>1</sup>)<sub>n+2</sub> </td> </tr> <tr> <td> <a href="A032091">A032091</a> </td><td> <STRONG>BHK<sub>5</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032092">A032092</a> </td><td> <STRONG>BHK<sub>6</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032093">A032093</a> </td><td> <STRONG>BHK<sub>7</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032094">A032094</a> </td><td> <STRONG>BHK<sub>8</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032095">A032095</a> </td><td> (<STRONG>BHK<sub>n</sub></STRONG> all<sup>1</sup>)<sub>2n-1</sub> </td> </tr> <tr> <td> <a href="A032096">A032096</a> </td><td> <STRONG>BHK</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032097">A032097</a> </td><td> <STRONG>BHK</STRONG> twoone </td> </tr> <tr> <td> <a href="A032098">A032098</a> </td><td> <STRONG>BHK</STRONG> all<sup>3</sup> </td> </tr> <tr> <td> <a href="A032099">A032099</a> </td><td> <STRONG>BHK</STRONG> iden </td> </tr> <tr> <td> <a href="A032100">A032100</a> </td><td> <STRONG>BHK</STRONG> odd </td> </tr> <tr> <td> <a href="A032101">A032101</a> </td><td> Left(1;1)<STRONG>BHK</STRONG> </td> </tr> <tr> <td> <a href="A032102">A032102</a> </td><td> (<STRONG>DHK</STRONG> <a href="A032101">A032101</a> )<sub>n-1</sub> </td> </tr> <tr> <td> <a href="A032103">A032103</a> </td><td> Left(1;2)<STRONG>BHK</STRONG> </td> </tr> <tr> <td> <a href="A032104">A032104</a> </td><td> Left(1;1,1)<STRONG>BHK</STRONG> </td> </tr> <tr> <td> <a href="A032105">A032105</a> </td><td> M2(2)<STRONG>BHK</STRONG> </td> </tr> <tr> <td> <a href="A032106">A032106</a> </td><td> (<STRONG>BHK<sub>n</sub></STRONG> all<sup>1</sup>)<sub>2n</sub> </td> </tr> </TABLE> <p> <STRONG>BIJ sequences</STRONG> <TABLE> <tr> <td> <a href="A001710">A001710</a> </td><td> <STRONG>BIJ</STRONG> s<sup>1</sup> </td> </tr> <tr> <td> <a href="A032107">A032107</a> </td><td> <STRONG>BIJ</STRONG> s<sup>2</sup> </td> </tr> <tr> <td> <a href="A032108">A032108</a> </td><td> <STRONG>BIJ</STRONG> s<sup>3</sup> </td> </tr> <tr> <td> <a href="A032109">A032109</a> </td><td> <STRONG>BIJ</STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A009568">A009568</a> </td><td> (-1)<sup>n+1</sup> × <STRONG>BIJ</STRONG> codd </td> </tr> <tr> <td> <a href="A032110">A032110</a> </td><td> <STRONG>BIJ</STRONG> noone </td> </tr> <tr> <td> <a href="A032111">A032111</a> </td><td> <STRONG>BIJ</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032112">A032112</a> </td><td> <STRONG>BIJ</STRONG> twoone </td> </tr> <tr> <td> <a href="A032113">A032113</a> </td><td> <STRONG>BIJ</STRONG> all<sup>3</sup> </td> </tr> <tr> <td> <a href="A032114">A032114</a> </td><td> <STRONG>BIJ</STRONG> iden </td> </tr> <tr> <td> <a href="A032115">A032115</a> </td><td> <STRONG>BIJ</STRONG> odd </td> </tr> <tr> <td> <a href="A032116">A032116</a> </td><td> Left(1;1)<STRONG>BIJ</STRONG> </td> </tr> <tr> <td> <a href="A032117">A032117</a> </td><td> Left(1;2)<STRONG>BIJ</STRONG> </td> </tr> <tr> <td> <a href="A032118">A032118</a> </td><td> Left(2;1,1)<STRONG>BIJ</STRONG> </td> </tr> <tr> <td> <a href="A032119">A032119</a> </td><td> M2(1)<STRONG>BIJ</STRONG> </td> </tr> </TABLE> <p> <STRONG>BIK sequences</STRONG> <TABLE> <tr> <td> <a href="A005418">A005418</a> </td><td> (<STRONG>BIK</STRONG> s<sup>2</sup>)<sub>n-1</sub> </td> </tr> <tr> <td> <a href="A005418">A005418</a> </td><td> <STRONG>BIK</STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032120">A032120</a> </td><td> <STRONG>BIK</STRONG> s<sup>3</sup> </td> </tr> <tr> <td> <a href="A032121">A032121</a> </td><td> <STRONG>BIK</STRONG> s<sup>4</sup> </td> </tr> <tr> <td> <a href="A032122">A032122</a> </td><td> <STRONG>BIK</STRONG> s<sup>5</sup> </td> </tr> <tr> <td> <a href="A001224">A001224</a> </td><td> (<STRONG>BIK</STRONG> codd)<sub>n+1</sub> </td> </tr> <tr> <td> <a href="A001224">A001224</a> </td><td> (<STRONG>BIK</STRONG> noone)<sub>n+2</sub> </td> </tr> <tr> <td> <a href="A002620">A002620</a> </td><td> (<STRONG>BIK<sub>3</sub></STRONG> all<sup>1</sup>)<sub>n+1</sub> </td> </tr> <tr> <td> <a href="A005993">A005993</a> </td><td> (<STRONG>BIK<sub>4</sub></STRONG> all<sup>1</sup>)<sub>n+4</sub> </td> </tr> <tr> <td> <a href="A005994">A005994</a> </td><td> (<STRONG>BIK<sub>5</sub></STRONG> all<sup>1</sup>)<sub>n+5</sub> </td> </tr> <tr> <td> <a href="A005995">A005995</a> </td><td> (<STRONG>BIK<sub>6</sub></STRONG> all<sup>1</sup>)<sub>n+6</sub> </td> </tr> <tr> <td> <a href="A018210">A018210</a> </td><td> (<STRONG>BIK<sub>7</sub></STRONG> all<sup>1</sup>)<sub>n+7</sub> </td> </tr> <tr> <td> <a href="A018211">A018211</a> </td><td> (<STRONG>BIK<sub>8</sub></STRONG> all<sup>1</sup>)<sub>n+8</sub> </td> </tr> <tr> <td> <a href="A018212">A018212</a> </td><td> (<STRONG>BIK<sub>9</sub></STRONG> all<sup>1</sup>)<sub>n+9</sub> </td> </tr> <tr> <td> <a href="A018213">A018213</a> </td><td> (<STRONG>BIK<sub>10</sub></STRONG> all<sup>1</sup>)<sub>n+10</sub> </td> </tr> <tr> <td> <a href="A018214">A018214</a> </td><td> (<STRONG>BIK<sub>11</sub></STRONG> all<sup>1</sup>)<sub>n+11</sub> </td> </tr> <tr> <td> <a href="A032123">A032123</a> </td><td> (<STRONG>BIK<sub>n</sub></STRONG> all<sup>1</sup>)<sub>2n-1</sub> </td> </tr> <tr> <td> <a href="A005654">A005654</a> </td><td> (<STRONG>BIK<sub>n</sub></STRONG> all<sup>1</sup>)<sub>2n</sub> </td> </tr> <tr> <td> <a href="A005656">A005656</a> </td><td> (<STRONG>BIK<sub>n-3</sub></STRONG> all<sup>1</sup>)<sub>2n-3</sub> </td> </tr> <tr> <td> <a href="A032124">A032124</a> </td><td> <STRONG>BIK</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032125">A032125</a> </td><td> <STRONG>BIK</STRONG> all<sup>3</sup> </td> </tr> <tr> <td> <a href="A005207">A005207</a> </td><td> <STRONG>BIK</STRONG> twoone </td> </tr> <tr> <td> <a href="A032126">A032126</a> </td><td> <STRONG>BIK</STRONG> iden </td> </tr> <tr> <td> <a href="A032127">A032127</a> </td><td> <STRONG>BIK</STRONG> odd </td> </tr> <tr> <td> <a href="A032128">A032128</a> </td><td> Left(1;1)<STRONG>BIK</STRONG> </td> </tr> <tr> <td> <a href="A032129">A032129</a> </td><td> (<STRONG>DIK</STRONG> <a href="A032128">A032128</a> )<sub>n-1</sub> </td> </tr> <tr> <td> <a href="A032130">A032130</a> </td><td> Left(1;2)<STRONG>BIK</STRONG> </td> </tr> <tr> <td> <a href="A032131">A032131</a> </td><td> Left(2;1,1)<STRONG>BIK</STRONG> </td> </tr> <tr> <td> <a href="A032132">A032132</a> </td><td> M2(1)<STRONG>BIK</STRONG> </td> </tr> <tr> <td> <a href="A032133">A032133</a> </td><td> M2(2)<STRONG>BIK</STRONG> </td> </tr> </TABLE> <p> <STRONG>CFJ sequences</STRONG> <TABLE> <tr> <td> <a href="A032134">A032134</a> </td><td> <STRONG>CFJ</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032135">A032135</a> </td><td> <STRONG>CFJ</STRONG> twoone </td> </tr> <tr> <td> <a href="A032136">A032136</a> </td><td> <STRONG>CFJ</STRONG> iden </td> </tr> <tr> <td> <a href="A032137">A032137</a> </td><td> <STRONG>CFJ</STRONG> odd </td> </tr> <tr> <td> <a href="A032138">A032138</a> </td><td> Left(1;1)<STRONG>CFJ</STRONG> </td> </tr> </TABLE> <p> <STRONG>CFK sequences</STRONG> <TABLE> <tr> <td> <a href="A032139">A032139</a> </td><td> <STRONG>CFK</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032140">A032140</a> </td><td> <STRONG>CFK</STRONG> twoone </td> </tr> <tr> <td> <a href="A032141">A032141</a> </td><td> <STRONG>CFK</STRONG> iden </td> </tr> <tr> <td> <a href="A032142">A032142</a> </td><td> <STRONG>CFK</STRONG> odd </td> </tr> <tr> <td> <a href="A032143">A032143</a> </td><td> Left(1;1)<STRONG>CFK</STRONG> </td> </tr> </TABLE> <p> <STRONG>CGJ sequences</STRONG> <TABLE> <tr> <td> <a href="A032144">A032144</a> </td><td> <STRONG>CGJ</STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032145">A032145</a> </td><td> <STRONG>CGJ</STRONG> codd </td> </tr> <tr> <td> <a href="A032146">A032146</a> </td><td> <STRONG>CGJ</STRONG> noone </td> </tr> <tr> <td> <a href="A032147">A032147</a> </td><td> <STRONG>CGJ</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032148">A032148</a> </td><td> <STRONG>CGJ</STRONG> twoone </td> </tr> <tr> <td> <a href="A032149">A032149</a> </td><td> <STRONG>CGJ</STRONG> iden </td> </tr> <tr> <td> <a href="A032150">A032150</a> </td><td> <STRONG>CGJ</STRONG> odd </td> </tr> <tr> <td> <a href="A032151">A032151</a> </td><td> Left(1;1)<STRONG>CGJ</STRONG> </td> </tr> <tr> <td> <a href="A032152">A032152</a> </td><td> M2(2)<STRONG>CGJ</STRONG> </td> </tr> </TABLE> <p> <STRONG>CGK sequences</STRONG> <TABLE> <tr> <td> <a href="A032153">A032153</a> </td><td> <STRONG>CGK</STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032154">A032154</a> </td><td> <STRONG>CGK</STRONG> codd </td> </tr> <tr> <td> <a href="A032155">A032155</a> </td><td> <STRONG>CGK</STRONG> noone </td> </tr> <tr> <td> <a href="A032156">A032156</a> </td><td> <STRONG>CGK</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032157">A032157</a> </td><td> <STRONG>CGK</STRONG> twoone </td> </tr> <tr> <td> <a href="A032158">A032158</a> </td><td> <STRONG>CGK</STRONG> iden </td> </tr> <tr> <td> <a href="A032159">A032159</a> </td><td> <STRONG>CGK</STRONG> odd </td> </tr> <tr> <td> <a href="A032160">A032160</a> </td><td> Left(1;1)<STRONG>CGK</STRONG> </td> </tr> <tr> <td> <a href="A032161">A032161</a> </td><td> Left(1;2)<STRONG>CGK</STRONG> </td> </tr> <tr> <td> <a href="A032162">A032162</a> </td><td> Left(2;1,1)<STRONG>CGK</STRONG> </td> </tr> <tr> <td> <a href="A032163">A032163</a> </td><td> M2(2)<STRONG>CGK</STRONG> </td> </tr> </TABLE> <p> <STRONG>CHJ sequences</STRONG> <TABLE> <tr> <td> <a href="A032321">A032321</a> </td><td> <STRONG>CHJ</STRONG> s<sup>2</sup> </td> </tr> <tr> <td> <a href="A032322">A032322</a> </td><td> <STRONG>CHJ</STRONG> s<sup>3</sup> </td> </tr> <tr> <td> <a href="A032323">A032323</a> </td><td> <STRONG>CHJ</STRONG> s<sup>4</sup> </td> </tr> <tr> <td> <a href="A032324">A032324</a> </td><td> <STRONG>CHJ</STRONG> s<sup>5</sup> </td> </tr> <tr> <td> <a href="A032325">A032325</a> </td><td> <STRONG>CHJ</STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032326">A032326</a> </td><td> <STRONG>CHJ</STRONG> codd </td> </tr> <tr> <td> <a href="A032327">A032327</a> </td><td> <STRONG>CHJ</STRONG> noone </td> </tr> <tr> <td> <a href="A032328">A032328</a> </td><td> <STRONG>CHJ</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032329">A032329</a> </td><td> <STRONG>CHJ</STRONG> twoone </td> </tr> <tr> <td> <a href="A032330">A032330</a> </td><td> <STRONG>CHJ</STRONG> all<sup>3</sup> </td> </tr> <tr> <td> <a href="A032331">A032331</a> </td><td> <STRONG>CHJ</STRONG> iden </td> </tr> <tr> <td> <a href="A032332">A032332</a> </td><td> <STRONG>CHJ</STRONG> odd </td> </tr> <tr> <td> <a href="A032333">A032333</a> </td><td> Left(1;1)<STRONG>CHJ</STRONG> </td> </tr> <tr> <td> <a href="A032334">A032334</a> </td><td> Left(1;2)<STRONG>CHJ</STRONG> </td> </tr> <tr> <td> <a href="A032335">A032335</a> </td><td> Left(2;1,1)<STRONG>CHJ</STRONG> </td> </tr> <tr> <td> <a href="A032336">A032336</a> </td><td> M2(2)<STRONG>CHJ</STRONG> </td> </tr> </TABLE> <p> <STRONG>CHK sequences</STRONG> <TABLE> <tr> <td> <a href="A001037">A001037</a> </td><td> <STRONG>CHK</STRONG> s<sup>2</sup> </td> </tr> <tr> <td> <a href="A001037">A001037</a> </td><td> (<STRONG>CHK</STRONG> all<sup>1</sup>) + s<sup>1</sup> </td> </tr> <tr> <td> <a href="A027376">A027376</a> </td><td> <STRONG>CHK</STRONG> s<sup>3</sup> </td> </tr> <tr> <td> <a href="A027376">A027376</a> </td><td> (<STRONG>CHK</STRONG> all<sup>2</sup>) + s<sup>1</sup> </td> </tr> <tr> <td> <a href="A027376">A027376</a> </td><td> (<STRONG>CHK</STRONG> odd) + s<sup>2</sup> </td> </tr> <tr> <td> <a href="A027377">A027377</a> </td><td> <STRONG>CHK</STRONG> s<sup>4</sup> </td> </tr> <tr> <td> <a href="A027377">A027377</a> </td><td> (<STRONG>CHK</STRONG> all<sup>3</sup>) + s<sup>1</sup> </td> </tr> <tr> <td> <a href="A001692">A001692</a> </td><td> <STRONG>CHK</STRONG> s<sup>5</sup> </td> </tr> <tr> <td> <a href="A027378">A027378</a> </td><td> <STRONG>CHK</STRONG> s<sup>5</sup> </td> </tr> <tr> <td> <a href="A032164">A032164</a> </td><td> <STRONG>CHK</STRONG> s<sup>6</sup> </td> </tr> <tr> <td> <a href="A001693">A001693</a> </td><td> <STRONG>CHK</STRONG> s<sup>7</sup> </td> </tr> <tr> <td> <a href="A027379">A027379</a> </td><td> <STRONG>CHK</STRONG> s<sup>7</sup> </td> </tr> <tr> <td> <a href="A027380">A027380</a> </td><td> <STRONG>CHK</STRONG> s<sup>8</sup> </td> </tr> <tr> <td> <a href="A027381">A027381</a> </td><td> <STRONG>CHK</STRONG> s<sup>9</sup> </td> </tr> <tr> <td> <a href="A032165">A032165</a> </td><td> <STRONG>CHK</STRONG> s<sup>10</sup> </td> </tr> <tr> <td> <a href="A032166">A032166</a> </td><td> <STRONG>CHK</STRONG> s<sup>11</sup> </td> </tr> <tr> <td> <a href="A032167">A032167</a> </td><td> <STRONG>CHK</STRONG> s<sup>12</sup> </td> </tr> <tr> <td> <a href="A006206">A006206</a> </td><td> (<STRONG>CHK</STRONG> codd) + <STRONG>CHAR</STRONG>({2}) </td> </tr> <tr> <td> <a href="A006206">A006206</a> </td><td> (<STRONG>CHK</STRONG> noone) + s<sup>1</sup> </td> </tr> <tr> <td> <a href="A001840">A001840</a> </td><td> (<STRONG>CHK<sub>3</sub></STRONG> all<sup>1</sup>)<sub>n+4</sub> </td> </tr> <tr> <td> <a href="A006918">A006918</a> </td><td> (<STRONG>CHK<sub>4</sub></STRONG> all<sup>1</sup>)<sub>n+4</sub> </td> </tr> <tr> <td> <a href="A011795">A011795</a> </td><td> (<STRONG>CHK<sub>5</sub></STRONG> all<sup>1</sup>)<sub>n+1</sub> </td> </tr> <tr> <td> <a href="A011796">A011796</a> </td><td> (<STRONG>CHK<sub>6</sub></STRONG> all<sup>1</sup>)<sub>n+6</sub> </td> </tr> <tr> <td> <a href="A011797">A011797</a> </td><td> (<STRONG>CHK<sub>7</sub></STRONG> all<sup>1</sup>)<sub>n+1</sub> </td> </tr> <tr> <td> <a href="A031164">A031164</a> </td><td> (<STRONG>CHK<sub>8</sub></STRONG> all<sup>1</sup>)<sub>n+9</sub> </td> </tr> <tr> <td> <a href="A011845">A011845</a> </td><td> <STRONG>CHK<sub>9</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032168">A032168</a> </td><td> <STRONG>CHK<sub>10</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032169">A032169</a> </td><td> <STRONG>CHK<sub>11</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A000108">A000108</a> </td><td> (<STRONG>CHK<sub>n+1</sub></STRONG> all<sup>1</sup>)<sub>2n+1</sub> </td> </tr> <tr> <td> <a href="A022553">A022553</a> </td><td> (<STRONG>CHK<sub>n+1</sub></STRONG> all<sup>1</sup>)<sub>2n+2</sub> </td> </tr> <tr> <td> <a href="A022553">A022553</a> </td><td> (<STRONG>CHK</STRONG> <a href="A000108">A000108</a> )<sub>n-1</sub> </td> </tr> <tr> <td> <a href="A032170">A032170</a> </td><td> <STRONG>CHK</STRONG> iden </td> </tr> <tr> <td> <a href="A032170">A032170</a> </td><td> <STRONG>CHK</STRONG> twoone + s<sup>1</sup> </td> </tr> <tr> <td> <a href="A032171">A032171</a> </td><td> Left(1;1)<STRONG>CHK</STRONG> </td> </tr> <tr> <td> <a href="A032172">A032172</a> </td><td> Left(1;2)<STRONG>CHK</STRONG> </td> </tr> <tr> <td> <a href="A032173">A032173</a> </td><td> Left(2;1,1)<STRONG>CHK</STRONG> </td> </tr> <tr> <td> <a href="A032174">A032174</a> </td><td> M2(2)<STRONG>CHK</STRONG> </td> </tr> <tr> <td> <a href="A032175">A032175</a> </td><td> <STRONG>CHK</STRONG> <a href="A004111">A004111</a> </td> </tr> <tr> <td> <a href="A032176">A032176</a> </td><td> <STRONG>WEIGH</STRONG> <a href="A032175">A032175</a> </td> </tr> <tr> <td> <a href="A032177">A032177</a> </td><td> <a href="A032176">A032176</a> - <a href="A004111">A004111</a> </td> </tr> <tr> <td> <a href="A032178">A032178</a> </td><td> <STRONG>WEIGH</STRONG> <a href="A032177">A032177</a> </td> </tr> </TABLE> <p> <STRONG>CIJ sequences</STRONG> <TABLE> <tr> <td> <a href="A000142">A000142</a> </td><td> (<STRONG>CIJ</STRONG> s<sup>1</sup>)<sub>n+1</sub> </td> </tr> <tr> <td> <a href="A000165">A000165</a> </td><td> (<STRONG>CIJ</STRONG> s<sup>2</sup>)<sub>n+1</sub> × 2 </td> </tr> <tr> <td> <a href="A032179">A032179</a> </td><td> <STRONG>CIJ</STRONG> s<sup>3</sup> </td> </tr> <tr> <td> <a href="A000629">A000629</a> </td><td> <STRONG>CIJ</STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A000225">A000225</a> </td><td> (<STRONG>CIJ<sub>2</sub></STRONG> all<sup>1</sup>)<sub>n+1</sub> </td> </tr> <tr> <td> <a href="A028243">A028243</a> </td><td> <STRONG>CIJ<sub>3</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A028244">A028244</a> </td><td> <STRONG>CIJ<sub>4</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A028245">A028245</a> </td><td> <STRONG>CIJ<sub>5</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032180">A032180</a> </td><td> <STRONG>CIJ<sub>6</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A003704">A003704</a> </td><td> (-1)<sup>n+1</sup> × (<STRONG>CIJ</STRONG> codd) </td> </tr> <tr> <td> <a href="A032181">A032181</a> </td><td> <STRONG>CIJ</STRONG> noone </td> </tr> <tr> <td> <a href="A027882">A027882</a> </td><td> <STRONG>CIJ</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032182">A032182</a> </td><td> <STRONG>CIJ</STRONG> twoone </td> </tr> <tr> <td> <a href="A032183">A032183</a> </td><td> <STRONG>CIJ</STRONG> all<sup>3</sup> </td> </tr> <tr> <td> <a href="A009444">A009444</a> </td><td> (-1)<sup>n+1</sup> × (<STRONG>CIJ</STRONG> iden) </td> </tr> <tr> <td> <a href="A032184">A032184</a> </td><td> <STRONG>CIJ</STRONG> odd </td> </tr> <tr> <td> <a href="A029768">A029768</a> </td><td> Left(1;1)<STRONG>CIJ</STRONG> </td> </tr> <tr> <td> <a href="A032185">A032185</a> </td><td> Left(1;2)<STRONG>CIJ</STRONG> </td> </tr> <tr> <td> <a href="A032186">A032186</a> </td><td> Left(2;1,1)<STRONG>CIJ</STRONG> </td> </tr> <tr> <td> <a href="A032187">A032187</a> </td><td> Left(3;1,1,1)<STRONG>CIJ</STRONG> </td> </tr> <tr> <td> <a href="A032188">A032188</a> </td><td> M2(1)<STRONG>CIJ</STRONG> </td> </tr> </TABLE> <p> <STRONG>CIK sequences</STRONG> <TABLE> <tr> <td> <a href="A000031">A000031</a> </td><td> <STRONG>CIK</STRONG> s<sup>2</sup> </td> </tr> <tr> <td> <a href="A000031">A000031</a> </td><td> (<STRONG>CIK</STRONG> all<sup>1</sup>) + all<sup>1</sup> </td> </tr> <tr> <td> <a href="A008965">A008965</a> </td><td> <STRONG>CIK</STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A008965">A008965</a> </td><td> (<STRONG>CIK</STRONG> s<sup>2</sup>) - all<sup>1</sup> </td> </tr> <tr> <td> <a href="A001867">A001867</a> </td><td> <STRONG>CIK</STRONG> s<sup>3</sup> </td> </tr> <tr> <td> <a href="A001867">A001867</a> </td><td> (<STRONG>CIK</STRONG> all<sup>2</sup>) + all<sup>1</sup> </td> </tr> <tr> <td> <a href="A001868">A001868</a> </td><td> <STRONG>CIK</STRONG> s<sup>4</sup> </td> </tr> <tr> <td> <a href="A001868">A001868</a> </td><td> (<STRONG>CIK</STRONG> all<sup>3</sup>) + all<sup>1</sup> </td> </tr> <tr> <td> <a href="A001869">A001869</a> </td><td> <STRONG>CIK</STRONG> s<sup>5</sup> </td> </tr> <tr> <td> <a href="A001869">A001869</a> </td><td> (<STRONG>CIK</STRONG> all<sup>4</sup>) + all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032189">A032189</a> </td><td> <STRONG>CIK</STRONG> codd </td> </tr> <tr> <td> <a href="A032190">A032190</a> </td><td> <STRONG>CIK</STRONG> noone </td> </tr> <tr> <td> <a href="A000358">A000358</a> </td><td> (<STRONG>CIK</STRONG> noone) + all<sup>1</sup> </td> </tr> <tr> <td> <a href="A007997">A007997</a> </td><td> (<STRONG>CIK<sub>3</sub></STRONG> all<sup>1</sup>)<sub>n+3</sub> </td> </tr> <tr> <td> <a href="A008610">A008610</a> </td><td> (<STRONG>CIK<sub>4</sub></STRONG> all<sup>1</sup>)<sub>n+4</sub> </td> </tr> <tr> <td> <a href="A008646">A008646</a> </td><td> (<STRONG>CIK<sub>5</sub></STRONG> all<sup>1</sup>)<sub>n+5</sub> </td> </tr> <tr> <td> <a href="A032191">A032191</a> </td><td> <STRONG>CIK<sub>6</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032192">A032192</a> </td><td> <STRONG>CIK<sub>7</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032193">A032193</a> </td><td> <STRONG>CIK<sub>8</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032194">A032194</a> </td><td> <STRONG>CIK<sub>9</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032195">A032195</a> </td><td> <STRONG>CIK<sub>10</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032196">A032196</a> </td><td> <STRONG>CIK<sub>11</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032197">A032197</a> </td><td> <STRONG>CIK<sub>12</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A000108">A000108</a> </td><td> (<STRONG>CHK<sub>n+1</sub></STRONG> all<sup>1</sup>)<sub>2n+1</sub> </td> </tr> <tr> <td> <a href="A003239">A003239</a> </td><td> (<STRONG>CIK<sub>n-1</sub></STRONG> all<sup>1</sup>)<sub>2n-2</sub> </td> </tr> <tr> <td> <a href="A003239">A003239</a> </td><td> (<STRONG>CIK</STRONG> <a href="A000108">A000108</a> <sub>n-1</sub>)<sub>n-1</sub> </td> </tr> <tr> <td> <a href="A005594">A005594</a> </td><td> <STRONG>CIK</STRONG> twoone </td> </tr> <tr> <td> <a href="A032198">A032198</a> </td><td> <STRONG>CIK</STRONG> iden </td> </tr> <tr> <td> <a href="A032199">A032199</a> </td><td> <STRONG>CIK</STRONG> odd </td> </tr> <tr> <td> <a href="A032200">A032200</a> </td><td> Left(1;1)<STRONG>CIK</STRONG> </td> </tr> <tr> <td> <a href="A032201">A032201</a> </td><td> Left(1;2)<STRONG>CIK</STRONG> </td> </tr> <tr> <td> <a href="A032202">A032202</a> </td><td> Left(2;1,1)<STRONG>CIK</STRONG> </td> </tr> <tr> <td> <a href="A032203">A032203</a> </td><td> M2(1)<STRONG>CIK</STRONG> </td> </tr> <tr> <td> <a href="A032204">A032204</a> </td><td> M2(2)<STRONG>CIK</STRONG> </td> </tr> <tr> <td> <a href="A002861">A002861</a> </td><td> <STRONG>CIK</STRONG> <a href="A000081">A000081</a> </td> </tr> <tr> <td> <a href="A027852">A027852</a> </td><td> <STRONG>CIK<sub>2</sub></STRONG> <a href="A000081">A000081</a> </td> </tr> <tr> <td> <a href="A029852">A029852</a> </td><td> <STRONG>CIK<sub>3</sub></STRONG> <a href="A000081">A000081</a> </td> </tr> <tr> <td> <a href="A029853">A029853</a> </td><td> <STRONG>CIK<sub>4</sub></STRONG> <a href="A000081">A000081</a> </td> </tr> <tr> <td> <a href="A029868">A029868</a> </td><td> <STRONG>CIK<sub>5</sub></STRONG> <a href="A000081">A000081</a> </td> </tr> <tr> <td> <a href="A029869">A029869</a> </td><td> <STRONG>CIK<sub>6</sub></STRONG> <a href="A000081">A000081</a> </td> </tr> <tr> <td> <a href="A029870">A029870</a> </td><td> <STRONG>CIK<sub>7</sub></STRONG> <a href="A000081">A000081</a> </td> </tr> <tr> <td> <a href="A029871">A029871</a> </td><td> <STRONG>CIK<sub>8</sub></STRONG> <a href="A000081">A000081</a> </td> </tr> <tr> <td> <a href="A032205">A032205</a> </td><td> <STRONG>CIK<sub>9</sub></STRONG> <a href="A000081">A000081</a> </td> </tr> <tr> <td> <a href="A032206">A032206</a> </td><td> <STRONG>CIK<sub>10</sub></STRONG> <a href="A000081">A000081</a> </td> </tr> <tr> <td> <a href="A032207">A032207</a> </td><td> <STRONG>CIK<sub>11</sub></STRONG> <a href="A000081">A000081</a> </td> </tr> <tr> <td> <a href="A032208">A032208</a> </td><td> <STRONG>CIK<sub>12</sub></STRONG> <a href="A000081">A000081</a> </td> </tr> </TABLE> <p> <STRONG>DFJ sequences</STRONG> <TABLE> <tr> <td> <a href="A032209">A032209</a> </td><td> <STRONG>DFJ</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032210">A032210</a> </td><td> <STRONG>DFJ</STRONG> twoone </td> </tr> <tr> <td> <a href="A032211">A032211</a> </td><td> <STRONG>DFJ</STRONG> iden </td> </tr> <tr> <td> <a href="A032212">A032212</a> </td><td> <STRONG>DFJ</STRONG> odd </td> </tr> <tr> <td> <a href="A032213">A032213</a> </td><td> Left(1;1)<STRONG>DFJ</STRONG> </td> </tr> </TABLE> <p> <STRONG>DFK sequences</STRONG> <TABLE> <tr> <td> <a href="A032214">A032214</a> </td><td> <STRONG>DFK</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032215">A032215</a> </td><td> <STRONG>DFK</STRONG> twoone </td> </tr> <tr> <td> <a href="A032216">A032216</a> </td><td> <STRONG>DFK</STRONG> iden </td> </tr> <tr> <td> <a href="A032217">A032217</a> </td><td> <STRONG>DFK</STRONG> odd </td> </tr> <tr> <td> <a href="A032218">A032218</a> </td><td> Left(1;1)<STRONG>DFK</STRONG> </td> </tr> </TABLE> <p> <STRONG>DGJ sequences</STRONG> <TABLE> <tr> <td> <a href="A032219">A032219</a> </td><td> <STRONG>DGJ</STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032220">A032220</a> </td><td> <STRONG>DGJ</STRONG> codd </td> </tr> <tr> <td> <a href="A032221">A032221</a> </td><td> <STRONG>DGJ</STRONG> noone </td> </tr> <tr> <td> <a href="A032222">A032222</a> </td><td> <STRONG>DGJ</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032223">A032223</a> </td><td> <STRONG>DGJ</STRONG> twoone </td> </tr> <tr> <td> <a href="A032224">A032224</a> </td><td> <STRONG>DGJ</STRONG> iden </td> </tr> <tr> <td> <a href="A032225">A032225</a> </td><td> <STRONG>DGJ</STRONG> odd </td> </tr> <tr> <td> <a href="A032226">A032226</a> </td><td> Left(1;1)<STRONG>DGJ</STRONG> </td> </tr> <tr> <td> <a href="A032227">A032227</a> </td><td> M2(2)<STRONG>DGJ</STRONG> </td> </tr> </TABLE> <p> <STRONG>DGK sequences</STRONG> <TABLE> <tr> <td> <a href="A032228">A032228</a> </td><td> <STRONG>DGK</STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032229">A032229</a> </td><td> <STRONG>DGK</STRONG> codd </td> </tr> <tr> <td> <a href="A032230">A032230</a> </td><td> <STRONG>DGK</STRONG> noone </td> </tr> <tr> <td> <a href="A032231">A032231</a> </td><td> <STRONG>DGK</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032232">A032232</a> </td><td> <STRONG>DGK</STRONG> twoone </td> </tr> <tr> <td> <a href="A032233">A032233</a> </td><td> <STRONG>DGK</STRONG> iden </td> </tr> <tr> <td> <a href="A032234">A032234</a> </td><td> <STRONG>DGK</STRONG> odd </td> </tr> <tr> <td> <a href="A032235">A032235</a> </td><td> Left(1;1)<STRONG>DGK</STRONG> </td> </tr> <tr> <td> <a href="A032236">A032236</a> </td><td> Left(1;2)<STRONG>DGK</STRONG> </td> </tr> <tr> <td> <a href="A032237">A032237</a> </td><td> Left(2;1,1)<STRONG>DGK</STRONG> </td> </tr> <tr> <td> <a href="A032238">A032238</a> </td><td> M2(2)<STRONG>DGK</STRONG> </td> </tr> </TABLE> <p> <STRONG>DHJ sequences</STRONG> <TABLE> <tr> <td> <a href="A032337">A032337</a> </td><td> <STRONG>DHJ</STRONG> s<sup>2</sup> </td> </tr> <tr> <td> <a href="A032338">A032338</a> </td><td> <STRONG>DHJ</STRONG> s<sup>3</sup> </td> </tr> <tr> <td> <a href="A032339">A032339</a> </td><td> <STRONG>DHJ</STRONG> s<sup>4</sup> </td> </tr> <tr> <td> <a href="A032340">A032340</a> </td><td> <STRONG>DHJ</STRONG> s<sup>5</sup> </td> </tr> </TABLE> <p> <STRONG>DHK sequences</STRONG> <TABLE> <tr> <td> <a href="A032239">A032239</a> </td><td> <STRONG>DHK</STRONG> s<sup>2</sup> </td> </tr> <tr> <td> <a href="A032240">A032240</a> </td><td> <STRONG>DHK</STRONG> s<sup>3</sup> </td> </tr> <tr> <td> <a href="A032241">A032241</a> </td><td> <STRONG>DHK</STRONG> s<sup>4</sup> </td> </tr> <tr> <td> <a href="A032242">A032242</a> </td><td> <STRONG>DHK</STRONG> s<sup>5</sup> </td> </tr> <tr> <td> <a href="A032243">A032243</a> </td><td> <STRONG>DHK</STRONG> codd </td> </tr> <tr> <td> <a href="A032244">A032244</a> </td><td> <STRONG>DHK</STRONG> noone </td> </tr> <tr> <td> <a href="A032245">A032245</a> </td><td> <STRONG>DHK</STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A001399">A001399</a> </td><td> (<STRONG>DHK<sub>3</sub></STRONG> all<sup>1</sup>)<sub>n+6</sub> </td> </tr> <tr> <td> <a href="A018845">A018845</a> </td><td> (<STRONG>DHK<sub>3</sub></STRONG> all<sup>1</sup>)<sub>n+6</sub> </td> </tr> <tr> <td> <a href="A026809">A026809</a> </td><td> (<STRONG>DHK<sub>3</sub></STRONG> all<sup>1</sup>)<sub>n+3</sub> </td> </tr> <tr> <td> <a href="A008804">A008804</a> </td><td> (<STRONG>DHK<sub>4</sub></STRONG> all<sup>1</sup>)<sub>n+7</sub> </td> </tr> <tr> <td> <a href="A032246">A032246</a> </td><td> <STRONG>DHK<sub>5</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032247">A032247</a> </td><td> <STRONG>DHK<sub>6</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032248">A032248</a> </td><td> <STRONG>DHK<sub>7</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032249">A032249</a> </td><td> <STRONG>DHK<sub>8</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032250">A032250</a> </td><td> (<STRONG>DHK<sub>n</sub></STRONG> all<sup>1</sup>)<sub>2n</sub> </td> </tr> <tr> <td> <a href="A032251">A032251</a> </td><td> <STRONG>DHK</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032252">A032252</a> </td><td> <STRONG>DHK</STRONG> twoone </td> </tr> <tr> <td> <a href="A032253">A032253</a> </td><td> <STRONG>DHK</STRONG> all<sup>3</sup> </td> </tr> <tr> <td> <a href="A032254">A032254</a> </td><td> <STRONG>DHK</STRONG> iden </td> </tr> <tr> <td> <a href="A032255">A032255</a> </td><td> <STRONG>DHK</STRONG> odd </td> </tr> <tr> <td> <a href="A032256">A032256</a> </td><td> Left(1;1)<STRONG>DHK</STRONG> </td> </tr> <tr> <td> <a href="A032257">A032257</a> </td><td> Left(1;2)<STRONG>DHK</STRONG> </td> </tr> <tr> <td> <a href="A032258">A032258</a> </td><td> Left(2;1,1)<STRONG>DHK</STRONG> </td> </tr> <tr> <td> <a href="A032259">A032259</a> </td><td> M2(2)<STRONG>DHK</STRONG> </td> </tr> <tr> <td> <a href="A032260">A032260</a> </td><td> (<STRONG>DHK<sub>n</sub></STRONG> all<sup>1</sup>)<sub>2n-1</sub> </td> </tr> </TABLE> <p> <STRONG>DIJ sequences</STRONG> <TABLE> <tr> <td> <a href="A001710">A001710</a> </td><td> (<STRONG>DIJ</STRONG> s<sup>1</sup>)<sub>n+1</sub> </td> </tr> <tr> <td> <a href="A000165">A000165</a> </td><td> (<STRONG>DIJ</STRONG> s<sup>2</sup>)<sub>n+1</sub> - s<sup>2</sup> </td> </tr> <tr> <td> <a href="A032261">A032261</a> </td><td> <STRONG>DIJ</STRONG> s<sup>3</sup> </td> </tr> <tr> <td> <a href="A032262">A032262</a> </td><td> <STRONG>DIJ</STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A000225">A000225</a> </td><td> (<STRONG>DIJ<sub>2</sub></STRONG> all<sup>1</sup>)<sub>n+1</sub> </td> </tr> <tr> <td> <a href="A000392">A000392</a> </td><td> <STRONG>DIJ<sub>3</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032263">A032263</a> </td><td> <STRONG>DIJ<sub>4</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032264">A032264</a> </td><td> <STRONG>DIJ</STRONG> codd </td> </tr> <tr> <td> <a href="A032265">A032265</a> </td><td> <STRONG>DIJ</STRONG> noone </td> </tr> <tr> <td> <a href="A032266">A032266</a> </td><td> <STRONG>DIJ</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032267">A032267</a> </td><td> <STRONG>DIJ</STRONG> twoone </td> </tr> <tr> <td> <a href="A032268">A032268</a> </td><td> <STRONG>DIJ</STRONG> all<sup>3</sup> </td> </tr> <tr> <td> <a href="A032269">A032269</a> </td><td> <STRONG>DIJ</STRONG> iden </td> </tr> <tr> <td> <a href="A032270">A032270</a> </td><td> <STRONG>DIJ</STRONG> odd </td> </tr> <tr> <td> <a href="A032271">A032271</a> </td><td> Left(1;1)<STRONG>DIJ</STRONG> </td> </tr> <tr> <td> <a href="A032272">A032272</a> </td><td> Left(1;2)<STRONG>DIJ</STRONG> </td> </tr> <tr> <td> <a href="A032273">A032273</a> </td><td> Left(2;1,1)<STRONG>DIJ</STRONG> </td> </tr> <tr> <td> <a href="A032274">A032274</a> </td><td> M2(1)<STRONG>DIJ</STRONG> </td> </tr> </TABLE> <p> <STRONG>DIK sequences</STRONG> <TABLE> <tr> <td> <a href="A000029">A000029</a> </td><td> <STRONG>DIK</STRONG> s<sup>2</sup> </td> </tr> <tr> <td> <a href="A000029">A000029</a> </td><td> (<STRONG>DIK</STRONG> all<sup>1</sup>) + all<sup>1</sup> </td> </tr> <tr> <td> <a href="A027671">A027671</a> </td><td> <STRONG>DIK</STRONG> s<sup>3</sup> </td> </tr> <tr> <td> <a href="A032275">A032275</a> </td><td> <STRONG>DIK</STRONG> s<sup>4</sup> </td> </tr> <tr> <td> <a href="A032276">A032276</a> </td><td> <STRONG>DIK</STRONG> s<sup>5</sup> </td> </tr> <tr> <td> <a href="A032277">A032277</a> </td><td> <STRONG>DIK</STRONG> codd </td> </tr> <tr> <td> <a href="A032278">A032278</a> </td><td> <STRONG>DIK</STRONG> noone </td> </tr> <tr> <td> <a href="A001399">A001399</a> </td><td> (<STRONG>DIK<sub>3</sub></STRONG> all<sup>1</sup>)<sub>n+3</sub> </td> </tr> <tr> <td> <a href="A018845">A018845</a> </td><td> (<STRONG>DIK<sub>3</sub></STRONG> all<sup>1</sup>)<sub>n+3</sub> </td> </tr> <tr> <td> <a href="A026809">A026809</a> </td><td> <STRONG>DIK<sub>3</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A005232">A005232</a> </td><td> <STRONG>DIK<sub>4</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032279">A032279</a> </td><td> <STRONG>DIK<sub>5</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A005513">A005513</a> </td><td> <STRONG>DIK<sub>6</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032280">A032280</a> </td><td> <STRONG>DIK<sub>7</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A005514">A005514</a> </td><td> <STRONG>DIK<sub>8</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032281">A032281</a> </td><td> <STRONG>DIK<sub>9</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A005515">A005515</a> </td><td> <STRONG>DIK<sub>10</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032282">A032282</a> </td><td> <STRONG>DIK<sub>11</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A005516">A005516</a> </td><td> <STRONG>DIK<sub>12</sub></STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A005648">A005648</a> </td><td> (<STRONG>DIK<sub>n</sub></STRONG> all<sup>1</sup>)<sub>2n</sub> </td> </tr> <tr> <td> <a href="A007123">A007123</a> </td><td> (<STRONG>DIK<sub>n</sub></STRONG> all<sup>1</sup>)<sub>2n-1</sub> </td> </tr> <tr> <td> <a href="A032283">A032283</a> </td><td> <STRONG>DIK</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032284">A032284</a> </td><td> <STRONG>DIK</STRONG> all<sup>3</sup> </td> </tr> <tr> <td> <a href="A032285">A032285</a> </td><td> <STRONG>DIK</STRONG> all<sup>4</sup> </td> </tr> <tr> <td> <a href="A032286">A032286</a> </td><td> <STRONG>DIK</STRONG> all<sup>5</sup> </td> </tr> <tr> <td> <a href="A005595">A005595</a> </td><td> <STRONG>DIK</STRONG> twoone </td> </tr> <tr> <td> <a href="A032287">A032287</a> </td><td> <STRONG>DIK</STRONG> iden </td> </tr> <tr> <td> <a href="A032288">A032288</a> </td><td> <STRONG>DIK</STRONG> odd </td> </tr> <tr> <td> <a href="A032289">A032289</a> </td><td> Left(1;1)<STRONG>DIK</STRONG> </td> </tr> <tr> <td> <a href="A032290">A032290</a> </td><td> Left(1;2)<STRONG>DIK</STRONG> </td> </tr> <tr> <td> <a href="A032291">A032291</a> </td><td> Left(2;1,1)<STRONG>DIK</STRONG> </td> </tr> <tr> <td> <a href="A032292">A032292</a> </td><td> M2(1)<STRONG>DIK</STRONG> </td> </tr> <tr> <td> <a href="A032293">A032293</a> </td><td> M2(2)<STRONG>DIK</STRONG> </td> </tr> <tr> <td> <a href="A001371">A001371</a> </td><td> <STRONG>MÖBIUS</STRONG> <a href="A000029">A000029</a> </td> </tr> <tr> <td> <a href="A032294">A032294</a> </td><td> <STRONG>MÖBIUS</STRONG> <a href="A027671">A027671</a> </td> </tr> <tr> <td> <a href="A032295">A032295</a> </td><td> <STRONG>MÖBIUS</STRONG> <a href="A032275">A032275</a> </td> </tr> <tr> <td> <a href="A032296">A032296</a> </td><td> <STRONG>MÖBIUS</STRONG> <a href="A032276">A032276</a> </td> </tr> </TABLE> <p> <STRONG>EFJ sequences</STRONG> <TABLE> <tr> <td> <a href="A032297">A032297</a> </td><td> <STRONG>EFJ</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032298">A032298</a> </td><td> <STRONG>EFJ</STRONG> twoone </td> </tr> <tr> <td> <a href="A032299">A032299</a> </td><td> <STRONG>EFJ</STRONG> iden </td> </tr> <tr> <td> <a href="A032300">A032300</a> </td><td> <STRONG>EFJ</STRONG> odd </td> </tr> <tr> <td> <a href="A032301">A032301</a> </td><td> Left(1;1)<STRONG>EFJ</STRONG> </td> </tr> </TABLE> <p> <STRONG>EFK sequences</STRONG> <TABLE> <tr> <td> <a href="A032302">A032302</a> </td><td> <STRONG>EFK</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032303">A032303</a> </td><td> <STRONG>EFK</STRONG> twoone </td> </tr> <tr> <td> <a href="A022629">A022629</a> </td><td> <STRONG>EFK</STRONG> iden </td> </tr> <tr> <td> <a href="A032304">A032304</a> </td><td> <STRONG>EFK</STRONG> odd </td> </tr> <tr> <td> <a href="A032305">A032305</a> </td><td> Left(1;1)<STRONG>EFK</STRONG> </td> </tr> <tr> <td> <a href="A032306">A032306</a> </td><td> Left(1;2)<STRONG>EFK</STRONG> </td> </tr> <tr> <td> <a href="A032307">A032307</a> </td><td> Left(2;1,1)<STRONG>EFK</STRONG> </td> </tr> <tr> <td> <a href="A032308">A032308</a> </td><td> <STRONG>EFK</STRONG> all<sup>3</sup> </td> </tr> <tr> <td> <a href="A032309">A032309</a> </td><td> <STRONG>EFK</STRONG> even </td> </tr> </TABLE> <p> <STRONG>EGJ sequences</STRONG> <TABLE> <tr> <td> <a href="A007837">A007837</a> </td><td> <STRONG>EGJ</STRONG> all<sup>1</sup> </td> </tr> <tr> <td> <a href="A032310">A032310</a> </td><td> <STRONG>EGJ</STRONG> codd </td> </tr> <tr> <td> <a href="A032311">A032311</a> </td><td> <STRONG>EGJ</STRONG> noone </td> </tr> <tr> <td> <a href="A032312">A032312</a> </td><td> <STRONG>EGJ</STRONG> all<sup>2</sup> </td> </tr> <tr> <td> <a href="A032313">A032313</a> </td><td> <STRONG>EGJ</STRONG> twone </td> </tr> <tr> <td> <a href="A032314">A032314</a> </td><td> <STRONG>EGJ</STRONG> all<sup>3</sup> </td> </tr> <tr> <td> <a href="A032315">A032315</a> </td><td> <STRONG>EGJ</STRONG> iden </td> </tr> <tr> <td> <a href="A032316">A032316</a> </td><td> <STRONG>EGJ</STRONG> odd </td> </tr> <tr> <td> <a href="A032317">A032317</a> </td><td> Left(1;1)<STRONG>EGJ</STRONG> </td> </tr> <tr> <td> <a href="A032318">A032318</a> </td><td> Left(1;2)<STRONG>EGJ</STRONG> </td> </tr> <tr> <td> <a href="A032319">A032319</a> </td><td> Left(2;1,1)<STRONG>EGJ</STRONG> </td> </tr> <tr> <td> <a href="A032320">A032320</a> </td><td> M2(2)<STRONG>EGJ</STRONG> </td> </tr> </TABLE> <p> </div></div> <p> <div class=footerpad></div> <div class=footer> <center> <div class=bottom> <div class=linksbar> <a href="/">Lookup</a> <a href="/wiki/Welcome"><font color="red">Welcome</font></a> <a href="/wiki/Main_Page"><font color="red">Wiki</font></a> <a href="/wiki/Special:RequestAccount">Register</a> <a href="/play.html">Music</a> <a href="/plot2.html">Plot 2</a> <a href="/demo1.html">Demos</a> <a href="/wiki/Index_to_OEIS">Index</a> <a href="/webcam">WebCam</a> <a href="/Submit.html">Contribute</a> <a href="/eishelp2.html">Format</a> <a href="/wiki/Style_Sheet">Style Sheet</a> <a href="/transforms.html">Transforms</a> <a href="/ol.html">Superseeker</a> <a href="/recent">Recents</a> </div> <div class=linksbar> <a href="/community.html">The OEIS Community</a> </div> <div class=linksbar> Maintained by <a href="http://oeisf.org">The OEIS Foundation Inc.</a> </div> <div class=dbinfo>Last modified November 24 19:22 EST 2024. Contains 378083 sequences.</div> <div class=legal> <a href="/wiki/Legal_Documents">License Agreements, Terms of Use, Privacy Policy</a> </div> </div> </center> </div> </body> </html>