CINXE.COM

對稱矩陣 - 维基百科,自由的百科全书

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="zh" dir="ltr"> <head> <meta charset="UTF-8"> <title>對稱矩陣 - 维基百科,自由的百科全书</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )zhwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"zh", "wgMonthNames":["","1月","2月","3月","4月","5月","6月","7月","8月","9月","10月","11月","12月"],"wgRequestId":"725d7956-5612-4b1d-b760-0263c169cee2","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"對稱矩陣","wgTitle":"對稱矩陣","wgCurRevisionId":72448036,"wgRevisionId":72448036,"wgArticleId":218109,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["含有英語的條目","自2019年7月有未列明来源语句的条目","矩陣"],"wgPageViewLanguage":"zh","wgPageContentLanguage":"zh","wgPageContentModel":"wikitext","wgRelevantPageName":"對稱矩陣","wgRelevantArticleId":218109,"wgUserVariant":"zh","wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags": 0,"wgVisualEditor":{"pageLanguageCode":"zh","pageLanguageDir":"ltr","pageVariantFallbacks":["zh-hans","zh-hant","zh-cn","zh-tw","zh-hk","zh-sg","zh-mo","zh-my"]},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":6000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q339011","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.large-font":"ready","ext.globalCssJs.user.styles":"ready","site.styles" :"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.edit0","ext.gadget.WikiMiniAtlas","ext.gadget.UnihanTooltips","ext.gadget.Difflink","ext.gadget.pseudonamespace-UI","ext.gadget.SpecialWikitext","ext.gadget.switcher","ext.gadget.VariantAlly","ext.gadget.AdvancedSiteNotices","ext.gadget.hideConversionTab","ext.gadget.internalLinkHelper-altcolor","ext.gadget.noteTA","ext.gadget.NavFrame","ext.gadget.collapsibleTables", "ext.gadget.scrollUpButton","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=zh&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=zh&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=zh&amp;modules=ext.gadget.large-font&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=zh&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="對稱矩陣 - 维基百科,自由的百科全书"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//zh.m.wikipedia.org/wiki/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3"> <link rel="alternate" type="application/x-wiki" title="编辑本页" href="/w/index.php?title=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (zh)"> <link rel="EditURI" type="application/rsd+xml" href="//zh.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://zh.wikipedia.org/wiki/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3"> <link rel="alternate" hreflang="zh" href="https://zh.wikipedia.org/wiki/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3"> <link rel="alternate" hreflang="zh-Hans" href="https://zh.wikipedia.org/zh-hans/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3"> <link rel="alternate" hreflang="zh-Hans-CN" href="https://zh.wikipedia.org/zh-cn/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3"> <link rel="alternate" hreflang="zh-Hans-MY" href="https://zh.wikipedia.org/zh-my/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3"> <link rel="alternate" hreflang="zh-Hans-SG" href="https://zh.wikipedia.org/zh-sg/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3"> <link rel="alternate" hreflang="zh-Hant" href="https://zh.wikipedia.org/zh-hant/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3"> <link rel="alternate" hreflang="zh-Hant-HK" href="https://zh.wikipedia.org/zh-hk/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3"> <link rel="alternate" hreflang="zh-Hant-MO" href="https://zh.wikipedia.org/zh-mo/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3"> <link rel="alternate" hreflang="zh-Hant-TW" href="https://zh.wikipedia.org/zh-tw/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3"> <link rel="alternate" hreflang="x-default" href="https://zh.wikipedia.org/wiki/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.zh"> <link rel="alternate" type="application/atom+xml" title="Wikipedia的Atom feed" href="/w/index.php?title=Special:%E6%9C%80%E8%BF%91%E6%9B%B4%E6%94%B9&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-對稱矩陣 rootpage-對稱矩陣 skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">跳转到内容</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="站点"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="主菜单" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">主菜单</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">主菜单</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">隐藏</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> 导航 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:%E9%A6%96%E9%A1%B5" title="访问首页[z]" accesskey="z"><span>首页</span></a></li><li id="n-indexpage" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%88%86%E7%B1%BB%E7%B4%A2%E5%BC%95" title="以分类索引搜寻中文维基百科"><span>分类索引</span></a></li><li id="n-Featured_content" class="mw-list-item"><a href="/wiki/Portal:%E7%89%B9%E8%89%B2%E5%85%A7%E5%AE%B9" title="查看中文维基百科的特色内容"><span>特色内容</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:%E6%96%B0%E8%81%9E%E5%8B%95%E6%85%8B" title="提供当前新闻事件的背景资料"><span>新闻动态</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:%E6%9C%80%E8%BF%91%E6%9B%B4%E6%94%B9" title="列出维基百科中的最近修改[r]" accesskey="r"><span>最近更改</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:%E9%9A%8F%E6%9C%BA%E9%A1%B5%E9%9D%A2" title="随机载入一个页面[x]" accesskey="x"><span>随机条目</span></a></li> </ul> </div> </div> <div id="p-help" class="vector-menu mw-portlet mw-portlet-help" > <div class="vector-menu-heading"> 帮助 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:%E7%9B%AE%E5%BD%95" title="寻求帮助"><span>帮助</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:%E7%A4%BE%E7%BE%A4%E9%A6%96%E9%A1%B5" title="关于本计划、你可以做什么、应该如何做"><span>维基社群</span></a></li><li id="n-policy" class="mw-list-item"><a href="/wiki/Wikipedia:%E6%96%B9%E9%87%9D%E8%88%87%E6%8C%87%E5%BC%95" title="查看维基百科的方针和指引"><span>方针与指引</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedia:%E4%BA%92%E5%8A%A9%E5%AE%A2%E6%A0%88" title="参与维基百科社群的讨论"><span>互助客栈</span></a></li><li id="n-Information_desk" class="mw-list-item"><a href="/wiki/Wikipedia:%E7%9F%A5%E8%AF%86%E9%97%AE%E7%AD%94" title="解答任何与维基百科无关的问题的地方"><span>知识问答</span></a></li><li id="n-conversion" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%AD%97%E8%AF%8D%E8%BD%AC%E6%8D%A2" title="提出字词转换请求"><span>字词转换</span></a></li><li id="n-IRC" class="mw-list-item"><a href="/wiki/Wikipedia:IRC%E8%81%8A%E5%A4%A9%E9%A2%91%E9%81%93"><span>IRC即时聊天</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedia:%E8%81%94%E7%BB%9C%E6%88%91%E4%BB%AC" title="如何联络维基百科"><span>联络我们</span></a></li><li id="n-about" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%85%B3%E4%BA%8E" title="查看维基百科的简介"><span>关于维基百科</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikipedia:%E9%A6%96%E9%A1%B5" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="维基百科" src="/static/images/mobile/copyright/wikipedia-wordmark-zh.svg" style="width: 6.5625em; height: 1.375em;"> <img class="mw-logo-tagline" alt="自由的百科全书" src="/static/images/mobile/copyright/wikipedia-tagline-zh.svg" width="103" height="14" style="width: 6.4375em; height: 0.875em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:%E6%90%9C%E7%B4%A2" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="搜索维基百科[f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>搜索</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="搜索维基百科" aria-label="搜索维基百科" autocapitalize="sentences" title="搜索维基百科[f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:搜索"> </div> <button class="cdx-button cdx-search-input__end-button">搜索</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="个人工具"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="外观"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="更改页面字体大小、宽度和颜色的外观" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="外观" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">外观</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=spontaneous&amp;uselang=zh-hans" class=""><span>资助维基百科</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:%E5%88%9B%E5%BB%BA%E8%B4%A6%E6%88%B7&amp;returnto=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" title="我们推荐您创建账号并登录,但这不是强制性的" class=""><span>创建账号</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:%E7%94%A8%E6%88%B7%E7%99%BB%E5%BD%95&amp;returnto=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" title="建议你登录,尽管并非必须。[o]" accesskey="o" class=""><span>登录</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="更多选项" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="个人工具" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">个人工具</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="用户菜单" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=spontaneous&amp;uselang=zh-hans"><span>资助维基百科</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:%E5%88%9B%E5%BB%BA%E8%B4%A6%E6%88%B7&amp;returnto=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" title="我们推荐您创建账号并登录,但这不是强制性的"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>创建账号</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:%E7%94%A8%E6%88%B7%E7%99%BB%E5%BD%95&amp;returnto=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" title="建议你登录,尽管并非必须。[o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>登录</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> 未登录编辑者的页面 <a href="/wiki/Help:%E6%96%B0%E6%89%8B%E5%85%A5%E9%97%A8" aria-label="了解有关编辑的更多信息"><span>了解详情</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:%E6%88%91%E7%9A%84%E8%B4%A1%E7%8C%AE" title="来自此IP地址的编辑列表[y]" accesskey="y"><span>贡献</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:%E6%88%91%E7%9A%84%E8%AE%A8%E8%AE%BA%E9%A1%B5" title="对于来自此IP地址编辑的讨论[n]" accesskey="n"><span>讨论</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="站点"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="目录" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">目录</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">隐藏</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">序言</div> </a> </li> <li id="toc-例子" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#例子"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>例子</span> </div> </a> <ul id="toc-例子-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-性质" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#性质"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>性质</span> </div> </a> <ul id="toc-性质-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-分解" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#分解"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>分解</span> </div> </a> <ul id="toc-分解-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-實對稱矩陣" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#實對稱矩陣"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>實對稱矩陣</span> </div> </a> <ul id="toc-實對稱矩陣-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-黑塞矩阵" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#黑塞矩阵"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>黑塞矩阵</span> </div> </a> <ul id="toc-黑塞矩阵-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-可对称化矩阵" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#可对称化矩阵"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>可对称化矩阵</span> </div> </a> <ul id="toc-可对称化矩阵-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-与不等式的关系" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#与不等式的关系"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>与不等式的关系</span> </div> </a> <ul id="toc-与不等式的关系-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-参见" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#参见"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>参见</span> </div> </a> <ul id="toc-参见-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-参考文献" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#参考文献"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>参考文献</span> </div> </a> <ul id="toc-参考文献-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="目录" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="开关目录" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">开关目录</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">對稱矩陣</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="前往另一种语言写成的文章。40种语言可用" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-40" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">40种语言</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B5%D9%81%D9%88%D9%81%D8%A9_%D9%85%D8%AA%D9%85%D8%A7%D8%AB%D9%84%D8%A9" title="مصفوفة متماثلة – 阿拉伯语" lang="ar" hreflang="ar" data-title="مصفوفة متماثلة" data-language-autonym="العربية" data-language-local-name="阿拉伯语" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A1%D1%96%D0%BC%D0%B5%D1%82%D1%80%D1%8B%D1%87%D0%BD%D0%B0%D1%8F_%D0%BC%D0%B0%D1%82%D1%80%D1%8B%D1%86%D0%B0" title="Сіметрычная матрыца – 白俄罗斯语" lang="be" hreflang="be" data-title="Сіметрычная матрыца" data-language-autonym="Беларуская" data-language-local-name="白俄罗斯语" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%BD%D0%B0_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0" title="Симетрична матрица – 保加利亚语" lang="bg" hreflang="bg" data-title="Симетрична матрица" data-language-autonym="Български" data-language-local-name="保加利亚语" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Matriu_sim%C3%A8trica" title="Matriu simètrica – 加泰罗尼亚语" lang="ca" hreflang="ca" data-title="Matriu simètrica" data-language-autonym="Català" data-language-local-name="加泰罗尼亚语" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Symetrick%C3%A1_matice" title="Symetrická matice – 捷克语" lang="cs" hreflang="cs" data-title="Symetrická matice" data-language-autonym="Čeština" data-language-local-name="捷克语" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BC%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%BB%D0%BB%C4%95_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0" title="Симметриллĕ матрица – 楚瓦什语" lang="cv" hreflang="cv" data-title="Симметриллĕ матрица" data-language-autonym="Чӑвашла" data-language-local-name="楚瓦什语" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Symmetrisk_matrix" title="Symmetrisk matrix – 丹麦语" lang="da" hreflang="da" data-title="Symmetrisk matrix" data-language-autonym="Dansk" data-language-local-name="丹麦语" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Symmetrische_Matrix" title="Symmetrische Matrix – 德语" lang="de" hreflang="de" data-title="Symmetrische Matrix" data-language-autonym="Deutsch" data-language-local-name="德语" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A3%CF%85%CE%BC%CE%BC%CE%B5%CF%84%CF%81%CE%B9%CE%BA%CF%8C%CF%82_%CF%80%CE%AF%CE%BD%CE%B1%CE%BA%CE%B1%CF%82" title="Συμμετρικός πίνακας – 希腊语" lang="el" hreflang="el" data-title="Συμμετρικός πίνακας" data-language-autonym="Ελληνικά" data-language-local-name="希腊语" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Symmetric_matrix" title="Symmetric matrix – 英语" lang="en" hreflang="en" data-title="Symmetric matrix" data-language-autonym="English" data-language-local-name="英语" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Simetria_matrico" title="Simetria matrico – 世界语" lang="eo" hreflang="eo" data-title="Simetria matrico" data-language-autonym="Esperanto" data-language-local-name="世界语" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Matriz_sim%C3%A9trica" title="Matriz simétrica – 西班牙语" lang="es" hreflang="es" data-title="Matriz simétrica" data-language-autonym="Español" data-language-local-name="西班牙语" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/S%C3%BCmmeetriline_maatriks" title="Sümmeetriline maatriks – 爱沙尼亚语" lang="et" hreflang="et" data-title="Sümmeetriline maatriks" data-language-autonym="Eesti" data-language-local-name="爱沙尼亚语" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Matrize_simetriko" title="Matrize simetriko – 巴斯克语" lang="eu" hreflang="eu" data-title="Matrize simetriko" data-language-autonym="Euskara" data-language-local-name="巴斯克语" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%A7%D8%AA%D8%B1%DB%8C%D8%B3_%D9%85%D8%AA%D9%82%D8%A7%D8%B1%D9%86" title="ماتریس متقارن – 波斯语" lang="fa" hreflang="fa" data-title="ماتریس متقارن" data-language-autonym="فارسی" data-language-local-name="波斯语" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Symmetrinen_matriisi" title="Symmetrinen matriisi – 芬兰语" lang="fi" hreflang="fi" data-title="Symmetrinen matriisi" data-language-autonym="Suomi" data-language-local-name="芬兰语" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Matrice_sym%C3%A9trique" title="Matrice symétrique – 法语" lang="fr" hreflang="fr" data-title="Matrice symétrique" data-language-autonym="Français" data-language-local-name="法语" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Matriz_sim%C3%A9trica" title="Matriz simétrica – 加利西亚语" lang="gl" hreflang="gl" data-title="Matriz simétrica" data-language-autonym="Galego" data-language-local-name="加利西亚语" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%98%D7%A8%D7%99%D7%A6%D7%94_%D7%A1%D7%99%D7%9E%D7%98%D7%A8%D7%99%D7%AA" title="מטריצה סימטרית – 希伯来语" lang="he" hreflang="he" data-title="מטריצה סימטרית" data-language-autonym="עברית" data-language-local-name="希伯来语" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Szimmetrikus_m%C3%A1trix" title="Szimmetrikus mátrix – 匈牙利语" lang="hu" hreflang="hu" data-title="Szimmetrikus mátrix" data-language-autonym="Magyar" data-language-local-name="匈牙利语" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Matrice_symmetric" title="Matrice symmetric – 国际语" lang="ia" hreflang="ia" data-title="Matrice symmetric" data-language-autonym="Interlingua" data-language-local-name="国际语" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Matriks_simetrik" title="Matriks simetrik – 印度尼西亚语" lang="id" hreflang="id" data-title="Matriks simetrik" data-language-autonym="Bahasa Indonesia" data-language-local-name="印度尼西亚语" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Matrice_simmetrica" title="Matrice simmetrica – 意大利语" lang="it" hreflang="it" data-title="Matrice simmetrica" data-language-autonym="Italiano" data-language-local-name="意大利语" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%AF%BE%E7%A7%B0%E8%A1%8C%E5%88%97" title="対称行列 – 日语" lang="ja" hreflang="ja" data-title="対称行列" data-language-autonym="日本語" data-language-local-name="日语" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%8C%80%EC%B9%AD%ED%96%89%EB%A0%AC" title="대칭행렬 – 韩语" lang="ko" hreflang="ko" data-title="대칭행렬" data-language-autonym="한국어" data-language-local-name="韩语" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Symmetrische_matrix" title="Symmetrische matrix – 荷兰语" lang="nl" hreflang="nl" data-title="Symmetrische matrix" data-language-autonym="Nederlands" data-language-local-name="荷兰语" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Symmetrisk_matrise" title="Symmetrisk matrise – 挪威尼诺斯克语" lang="nn" hreflang="nn" data-title="Symmetrisk matrise" data-language-autonym="Norsk nynorsk" data-language-local-name="挪威尼诺斯克语" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Symmetrisk_matrise" title="Symmetrisk matrise – 书面挪威语" lang="nb" hreflang="nb" data-title="Symmetrisk matrise" data-language-autonym="Norsk bokmål" data-language-local-name="书面挪威语" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Macierz_symetryczna" title="Macierz symetryczna – 波兰语" lang="pl" hreflang="pl" data-title="Macierz symetryczna" data-language-autonym="Polski" data-language-local-name="波兰语" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Matriz_sim%C3%A9trica" title="Matriz simétrica – 葡萄牙语" lang="pt" hreflang="pt" data-title="Matriz simétrica" data-language-autonym="Português" data-language-local-name="葡萄牙语" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Matrice_simetric%C4%83" title="Matrice simetrică – 罗马尼亚语" lang="ro" hreflang="ro" data-title="Matrice simetrică" data-language-autonym="Română" data-language-local-name="罗马尼亚语" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BC%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%BD%D0%B0%D1%8F_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0" title="Симметричная матрица – 俄语" lang="ru" hreflang="ru" data-title="Симметричная матрица" data-language-autonym="Русский" data-language-local-name="俄语" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Simetri%C4%8Dna_matrika" title="Simetrična matrika – 斯洛文尼亚语" lang="sl" hreflang="sl" data-title="Simetrična matrika" data-language-autonym="Slovenščina" data-language-local-name="斯洛文尼亚语" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Symmetrisk_matris" title="Symmetrisk matris – 瑞典语" lang="sv" hreflang="sv" data-title="Symmetrisk matris" data-language-autonym="Svenska" data-language-local-name="瑞典语" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AE%AE%E0%AE%9A%E0%AF%8D%E0%AE%9A%E0%AF%80%E0%AE%B0%E0%AF%8D_%E0%AE%85%E0%AE%A3%E0%AE%BF" title="சமச்சீர் அணி – 泰米尔语" lang="ta" hreflang="ta" data-title="சமச்சீர் அணி" data-language-autonym="தமிழ்" data-language-local-name="泰米尔语" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B9%80%E0%B8%A1%E0%B8%97%E0%B8%A3%E0%B8%B4%E0%B8%81%E0%B8%8B%E0%B9%8C%E0%B8%AA%E0%B8%A1%E0%B8%A1%E0%B8%B2%E0%B8%95%E0%B8%A3" title="เมทริกซ์สมมาตร – 泰语" lang="th" hreflang="th" data-title="เมทริกซ์สมมาตร" data-language-autonym="ไทย" data-language-local-name="泰语" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Simetrik_matris" title="Simetrik matris – 土耳其语" lang="tr" hreflang="tr" data-title="Simetrik matris" data-language-autonym="Türkçe" data-language-local-name="土耳其语" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%BD%D0%B0_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D1%8F" title="Симетрична матриця – 乌克兰语" lang="uk" hreflang="uk" data-title="Симетрична матриця" data-language-autonym="Українська" data-language-local-name="乌克兰语" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%D8%AA%D9%86%D8%A7%D8%B8%D8%B1_%D9%85%DB%8C%D9%B9%D8%B1%DA%A9%D8%B3" title="متناظر میٹرکس – 乌尔都语" lang="ur" hreflang="ur" data-title="متناظر میٹرکس" data-language-autonym="اردو" data-language-local-name="乌尔都语" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ma_tr%E1%BA%ADn_%C4%91%E1%BB%91i_x%E1%BB%A9ng" title="Ma trận đối xứng – 越南语" lang="vi" hreflang="vi" data-title="Ma trận đối xứng" data-language-autonym="Tiếng Việt" data-language-local-name="越南语" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q339011#sitelinks-wikipedia" title="编辑跨语言链接" class="wbc-editpage">编辑链接</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="命名空间"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" title="浏览条目正文[c]" accesskey="c"><span>条目</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" rel="discussion" title="关于此页面的讨论[t]" accesskey="t"><span>讨论</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown " > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="更改语言变体" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">不转换</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-varlang-0" class="selected ca-variants-zh mw-list-item"><a href="/zh/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" lang="zh" hreflang="zh"><span>不转换</span></a></li><li id="ca-varlang-1" class="ca-variants-zh-Hans mw-list-item"><a href="/zh-hans/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" lang="zh-Hans" hreflang="zh-Hans"><span>简体</span></a></li><li id="ca-varlang-2" class="ca-variants-zh-Hant mw-list-item"><a href="/zh-hant/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" lang="zh-Hant" hreflang="zh-Hant"><span>繁體</span></a></li><li id="ca-varlang-3" class="ca-variants-zh-Hans-CN mw-list-item"><a href="/zh-cn/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" lang="zh-Hans-CN" hreflang="zh-Hans-CN"><span>大陆简体</span></a></li><li id="ca-varlang-4" class="ca-variants-zh-Hant-HK mw-list-item"><a href="/zh-hk/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" lang="zh-Hant-HK" hreflang="zh-Hant-HK"><span>香港繁體</span></a></li><li id="ca-varlang-5" class="ca-variants-zh-Hant-MO mw-list-item"><a href="/zh-mo/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" lang="zh-Hant-MO" hreflang="zh-Hant-MO"><span>澳門繁體</span></a></li><li id="ca-varlang-6" class="ca-variants-zh-Hans-MY mw-list-item"><a href="/zh-my/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" lang="zh-Hans-MY" hreflang="zh-Hans-MY"><span>大马简体</span></a></li><li id="ca-varlang-7" class="ca-variants-zh-Hans-SG mw-list-item"><a href="/zh-sg/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" lang="zh-Hans-SG" hreflang="zh-Hans-SG"><span>新加坡简体</span></a></li><li id="ca-varlang-8" class="ca-variants-zh-Hant-TW mw-list-item"><a href="/zh-tw/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" lang="zh-Hant-TW" hreflang="zh-Hant-TW"><span>臺灣正體</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="查看"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3"><span>阅读</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3&amp;action=edit" title="编辑该页面[e]" accesskey="e"><span>编辑</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3&amp;action=history" title="本页面的早前版本。[h]" accesskey="h"><span>查看历史</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="页面工具"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="工具" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">工具</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">工具</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">隐藏</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="更多选项" > <div class="vector-menu-heading"> 操作 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3"><span>阅读</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3&amp;action=edit" title="编辑该页面[e]" accesskey="e"><span>编辑</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3&amp;action=history"><span>查看历史</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> 常规 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:%E9%93%BE%E5%85%A5%E9%A1%B5%E9%9D%A2/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" title="列出所有与本页相链的页面[j]" accesskey="j"><span>链入页面</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:%E9%93%BE%E5%87%BA%E6%9B%B4%E6%94%B9/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" rel="nofollow" title="页面链出所有页面的更改[k]" accesskey="k"><span>相关更改</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Project:%E4%B8%8A%E4%BC%A0" title="上传图像或多媒体文件[u]" accesskey="u"><span>上传文件</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:%E7%89%B9%E6%AE%8A%E9%A1%B5%E9%9D%A2" title="全部特殊页面的列表[q]" accesskey="q"><span>特殊页面</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3&amp;oldid=72448036" title="此页面该修订版本的固定链接"><span>固定链接</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3&amp;action=info" title="关于此页面的更多信息"><span>页面信息</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:%E5%BC%95%E7%94%A8%E6%AD%A4%E9%A1%B5%E9%9D%A2&amp;page=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3&amp;id=72448036&amp;wpFormIdentifier=titleform" title="有关如何引用此页面的信息"><span>引用此页</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:URL%E7%BC%A9%E7%9F%AD%E7%A8%8B%E5%BA%8F&amp;url=https%3A%2F%2Fzh.wikipedia.org%2Fwiki%2F%25E5%25B0%258D%25E7%25A8%25B1%25E7%259F%25A9%25E9%2599%25A3"><span>获取短链接</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fzh.wikipedia.org%2Fwiki%2F%25E5%25B0%258D%25E7%25A8%25B1%25E7%259F%25A9%25E9%2599%25A3"><span>下载二维码</span></a></li> </ul> </div> </div> <div id="p-electronpdfservice-sidebar-portlet-heading" class="vector-menu mw-portlet mw-portlet-electronpdfservice-sidebar-portlet-heading" > <div class="vector-menu-heading"> 打印/导出 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="electron-print_pdf" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3&amp;action=show-download-screen"><span>下载为PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="javascript:print();" rel="alternate" title="本页面的可打印版本[p]" accesskey="p"><span>打印页面</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> 在其他项目中 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q339011" title="链接到连接的数据仓库项目[g]" accesskey="g"><span>维基数据项目</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="页面工具"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="外观"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">外观</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">隐藏</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-noteTA-c90c9bbf" class="mw-indicator"><div class="mw-parser-output"><span class="skin-invert" typeof="mw:File"><span title="本页使用了标题或全文手工转换"><img alt="本页使用了标题或全文手工转换" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/35px-Zh_conversion_icon_m.svg.png" decoding="async" width="35" height="22" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/53px-Zh_conversion_icon_m.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/70px-Zh_conversion_icon_m.svg.png 2x" data-file-width="32" data-file-height="20" /></span></span></div></div> </div> <div id="siteSub" class="noprint">维基百科,自由的百科全书</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="zh" dir="ltr"><div id="noteTA-c90c9bbf" class="noteTA"><div class="noteTA-group"><div data-noteta-group-source="module" data-noteta-group="Math"></div></div></div> <table class="infobox noprint" style="width:210px; float: right; clear: right; text-align:center; margin-top:1em;"> <tbody><tr> <th style="font-size:90%; background:#DCF0FF"><a href="/wiki/%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0" title="线性代数">线性代数</a> </th></tr> <tr> <td><div style="padding-top: 7px; padding-bottom: 4px;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ={\begin{bmatrix}1&amp;2\\3&amp;4\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> <mtd> <mn>4</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ={\begin{bmatrix}1&amp;2\\3&amp;4\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a31efc33ac33577d719a3ccd162a9bf21e4847ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:12.972ex; height:6.176ex;" alt="{\displaystyle \mathbf {A} ={\begin{bmatrix}1&amp;2\\3&amp;4\end{bmatrix}}}"></span></div> </td></tr> <tr style="font-size: 90%; line-height: 150%;"> <td><span class="nowrap"><a href="/wiki/%E5%90%91%E9%87%8F" title="向量">向量</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%90%91%E9%87%8F%E7%A9%BA%E9%97%B4" title="向量空间">向量空间</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%9F%BA_(%E7%B7%9A%E6%80%A7%E4%BB%A3%E6%95%B8)" title="基 (線性代數)">基底</a> <span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E8%A1%8C%E5%88%97%E5%BC%8F" title="行列式">行列式</a> <span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E7%9F%A9%E9%98%B5" title="矩阵">矩阵</a></span> </td></tr> <tr> <td> <table class="collapsible collapsed" width="100%"> <tbody><tr> <th style="text-align: left; background: #DCF0FF; font-size: 90%;">向量 </th></tr> <tr style="font-size: 90%; line-height: 150%;"> <td><span class="nowrap"><a href="/wiki/%E6%A0%87%E9%87%8F_(%E6%95%B0%E5%AD%A6)" title="标量 (数学)">标量</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%90%91%E9%87%8F" title="向量">向量</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%90%91%E9%87%8F%E7%A9%BA%E9%97%B4" title="向量空间">向量空间</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%82%B9%E7%A7%AF" title="点积">向量投影</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%A4%96%E7%A7%AF" class="mw-disambig" title="外积">外积</a>(<a href="/wiki/%E5%8F%89%E7%A7%AF" title="叉积">向量积</a> ·</span> <span class="nowrap"><a href="/wiki/%E4%B8%83%E7%BB%B4%E5%8F%89%E7%A7%AF" title="七维叉积">七维向量积</a>) ·</span> <span class="nowrap"><a href="/wiki/%E5%86%85%E7%A7%AF%E7%A9%BA%E9%97%B4" title="内积空间">内积</a>(<a href="/wiki/%E7%82%B9%E7%A7%AF" title="点积">数量积</a>) ·</span> <span class="nowrap"><a href="/wiki/%E4%BA%8C%E9%87%8D%E5%90%91%E9%87%8F" title="二重向量">二重向量</a></span> </td></tr></tbody></table> <table class="collapsible collapsed" width="100%"> <tbody><tr> <th style="text-align: left; background: #DCF0FF; font-size: 90%;">矩阵与行列式 </th></tr> <tr style="font-size: 90%; line-height: 150%;"> <td><span class="nowrap"><a href="/wiki/%E7%9F%A9%E9%98%B5" title="矩阵">矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E8%A1%8C%E5%88%97%E5%BC%8F" title="行列式">行列式</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%BA%BF%E6%80%A7%E6%96%B9%E7%A8%8B%E7%BB%84" title="线性方程组">线性方程组</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%A7%A9_(%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0)" title="秩 (线性代数)">秩</a> ·</span> <span class="nowrap"><a href="/wiki/%E9%9B%B6%E7%A9%BA%E9%97%B4" title="零空间">核</a> ·</span> <span class="nowrap"><a href="/wiki/%E8%B7%A1" title="跡">跡</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%96%AE%E4%BD%8D%E7%9F%A9%E9%99%A3" title="單位矩陣">單位矩陣</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%88%9D%E7%AD%89%E7%9F%A9%E9%98%B5" title="初等矩阵">初等矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%96%B9%E5%9D%97%E7%9F%A9%E9%98%B5" title="方块矩阵">方块矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%88%86%E5%A1%8A%E7%9F%A9%E9%99%A3" title="分塊矩陣">分块矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E4%B8%89%E8%A7%92%E7%9F%A9%E9%98%B5" title="三角矩阵">三角矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E9%9D%9E%E5%A5%87%E5%BC%82%E6%96%B9%E9%98%B5" title="非奇异方阵">非奇异方阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E8%BD%AC%E7%BD%AE%E7%9F%A9%E9%98%B5" title="转置矩阵">转置矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E9%80%86%E7%9F%A9%E9%98%B5" title="逆矩阵">逆矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%B0%8D%E8%A7%92%E7%9F%A9%E9%99%A3" title="對角矩陣">对角矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%8F%AF%E5%AF%B9%E8%A7%92%E5%8C%96%E7%9F%A9%E9%98%B5" title="可对角化矩阵">可对角化矩阵</a> ·</span> <span class="nowrap"><a class="mw-selflink selflink">对称矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%8F%8D%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" title="反對稱矩陣">反對稱矩陣</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%AD%A3%E4%BA%A4%E7%9F%A9%E9%98%B5" title="正交矩阵">正交矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E9%85%89%E7%9F%A9%E9%98%B5" title="酉矩阵">幺正矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%9F%83%E5%B0%94%E7%B1%B3%E7%89%B9%E7%9F%A9%E9%98%B5" title="埃尔米特矩阵">埃尔米特矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%96%9C%E5%9F%83%E5%B0%94%E7%B1%B3%E7%89%B9%E7%9F%A9%E9%98%B5" title="斜埃尔米特矩阵">反埃尔米特矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%AD%A3%E8%A7%84%E7%9F%A9%E9%98%B5" title="正规矩阵">正规矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E4%BC%B4%E9%9A%8F%E7%9F%A9%E9%98%B5" title="伴随矩阵">伴随矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E9%A4%98%E5%9B%A0%E5%AD%90%E7%9F%A9%E9%99%A3" title="餘因子矩陣">余因子矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%85%B1%E8%BD%AD%E8%BD%AC%E7%BD%AE" title="共轭转置">共轭转置</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%AD%A3%E5%AE%9A%E7%9F%A9%E9%98%B5" title="正定矩阵">正定矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%B9%82%E9%9B%B6%E7%9F%A9%E9%98%B5" title="幂零矩阵">幂零矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%9F%A9%E9%98%B5%E5%88%86%E8%A7%A3" title="矩阵分解">矩阵分解</a> (<a href="/wiki/LU%E5%88%86%E8%A7%A3" title="LU分解">LU分解</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%A5%87%E5%BC%82%E5%80%BC%E5%88%86%E8%A7%A3" title="奇异值分解">奇异值分解</a> ·</span> <span class="nowrap"><a href="/wiki/QR%E5%88%86%E8%A7%A3" title="QR分解">QR分解</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%9E%81%E5%88%86%E8%A7%A3" title="极分解">极分解</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%89%B9%E5%BE%81%E5%88%86%E8%A7%A3" title="特征分解">特征分解</a>) ·</span> <span class="nowrap"><a href="/wiki/%E5%AD%90%E5%BC%8F%E5%92%8C%E4%BD%99%E5%AD%90%E5%BC%8F" title="子式和余子式">子式和余子式</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%8B%89%E6%99%AE%E6%8B%89%E6%96%AF%E5%B1%95%E5%BC%80" title="拉普拉斯展开">拉普拉斯展開</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%85%8B%E7%BD%97%E5%86%85%E5%85%8B%E7%A7%AF" title="克罗内克积">克罗内克积</a></span> </td></tr></tbody></table> <table class="collapsible collapsed" width="100%"> <tbody><tr> <th style="text-align: left; background: #DCF0FF; font-size: 90%;">线性空间与线性变换 </th></tr> <tr style="font-size: 90%; line-height: 150%;"> <td><span class="nowrap"><a href="/wiki/%E5%90%91%E9%87%8F%E7%A9%BA%E9%97%B4" title="向量空间">线性空间</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%BA%BF%E6%80%A7%E6%98%A0%E5%B0%84" title="线性映射">线性变换</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%BA%BF%E6%80%A7%E5%AD%90%E7%A9%BA%E9%97%B4" title="线性子空间">线性子空间</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%BA%BF%E6%80%A7%E7%94%9F%E6%88%90%E7%A9%BA%E9%97%B4" title="线性生成空间">线性生成空间</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%9F%BA_(%E7%B7%9A%E6%80%A7%E4%BB%A3%E6%95%B8)" title="基 (線性代數)">基</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%BA%BF%E6%80%A7%E6%98%A0%E5%B0%84" title="线性映射">线性映射</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%8A%95%E5%BD%B1" class="mw-disambig" title="投影">线性投影</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%B7%9A%E6%80%A7%E7%84%A1%E9%97%9C" title="線性無關">線性無關</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%BA%BF%E6%80%A7%E7%BB%84%E5%90%88" title="线性组合">线性组合</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%BA%BF%E6%80%A7%E6%B3%9B%E5%87%BD" class="mw-redirect" title="线性泛函">线性泛函</a> ·</span> <span class="nowrap"><a href="/wiki/%E8%A1%8C%E7%A9%BA%E9%97%B4%E4%B8%8E%E5%88%97%E7%A9%BA%E9%97%B4" title="行空间与列空间">行空间与列空间</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%AF%B9%E5%81%B6%E7%A9%BA%E9%97%B4" title="对偶空间">对偶空间</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%AD%A3%E4%BA%A4" title="正交">正交</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%89%B9%E5%BE%81%E5%80%BC%E5%92%8C%E7%89%B9%E5%BE%81%E5%90%91%E9%87%8F" title="特征值和特征向量">特征向量</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%9C%80%E5%B0%8F%E4%BA%8C%E4%B9%98%E6%B3%95" title="最小二乘法">最小二乘法</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%A0%BC%E6%8B%89%E5%A7%86-%E6%96%BD%E5%AF%86%E7%89%B9%E6%AD%A3%E4%BA%A4%E5%8C%96" title="格拉姆-施密特正交化">格拉姆-施密特正交化</a></span> </td></tr></tbody></table> </td></tr> <tr style="text-align: center; font-size: 90%;"> <td><style data-mw-deduplicate="TemplateStyles:r84265675">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:" :"}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist-pipe dd::after,.mw-parser-output .hlist-pipe li::after{content:" | ";font-weight:normal}.mw-parser-output .hlist-hyphen dd::after,.mw-parser-output .hlist-hyphen li::after{content:" - ";font-weight:normal}.mw-parser-output .hlist-comma dd::after,.mw-parser-output .hlist-comma li::after{content:"、";font-weight:normal}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:"("counter(listitem)"\a0 "}.mw-parser-output ul.cslist,.mw-parser-output ul.sslist{margin:0;padding:0;display:inline-block;list-style:none}.mw-parser-output .cslist li,.mw-parser-output .sslist li{margin:0;display:inline-block}.mw-parser-output .cslist li::after{content:","}.mw-parser-output .sslist li::after{content:";"}.mw-parser-output .cslist li:last-child::after,.mw-parser-output .sslist li:last-child::after{content:none}</style><style data-mw-deduplicate="TemplateStyles:r84244141">.mw-parser-output .navbar{display:inline;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:110%;margin:0 8em}.mw-parser-output .navbar-ct-mini{font-size:110%;margin:0 5em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0" title="Template:线性代数"><abbr title="查看该模板">查</abbr></a></li><li class="nv-talk"><a href="/w/index.php?title=Template_talk:%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0&amp;action=edit&amp;redlink=1" class="new" title="Template talk:线性代数(页面不存在)"><abbr title="讨论该模板">论</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:%E7%BC%96%E8%BE%91%E9%A1%B5%E9%9D%A2/Template:%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0" title="Special:编辑页面/Template:线性代数"><abbr title="编辑该模板">编</abbr></a></li></ul></div> </td></tr></tbody></table> <p>在<a href="/wiki/%E7%B7%9A%E6%80%A7%E4%BB%A3%E6%95%B8" class="mw-redirect" title="線性代數">線性代數</a>中,<b>對稱矩陣</b>(英語:<span lang="en">symmetric matrix</span>)指<a href="/wiki/%E8%BD%89%E7%BD%AE%E7%9F%A9%E9%99%A3" class="mw-redirect" title="轉置矩陣">轉置矩陣</a>和自身相等<a href="/wiki/%E6%96%B9%E5%BD%A2%E7%9F%A9%E9%99%A3" class="mw-redirect" title="方形矩陣">方形矩陣</a>。 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=A^{\textrm {T}}\ \!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>T</mtext> </mrow> </mrow> </msup> <mtext>&#xA0;</mtext> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=A^{\textrm {T}}\ \!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b1b0639778d31e3eee2c8582f8fa33a4bf320fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.197ex; height:2.676ex;" alt="{\displaystyle A=A^{\textrm {T}}\ \!}"></span></dd></dl> <p>對稱矩陣中的右上至左下方向元素以<a href="/wiki/%E4%B8%BB%E5%B0%8D%E8%A7%92%E7%B7%9A" title="主對角線">主對角線</a>(左上至右下)為軸進行對稱。若將其寫作<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=(a_{ij})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=(a_{ij})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/296ad42d9541f8285979ce822ccb661da56111ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.358ex; height:3.009ex;" alt="{\displaystyle A=(a_{ij})}"></span>,則对所有的<i>i</i>和<i>j</i>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{ij}=a_{ji}\ \!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mtext>&#xA0;</mtext> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{ij}=a_{ji}\ \!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/345ee164a8ed5ddbfaf43a3dabb821bcbed54324" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.706ex; height:2.343ex;" alt="{\displaystyle a_{ij}=a_{ji}\ \!}"></span></dd></dl> <p>下列是3×3的對稱矩陣: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}1&amp;2&amp;3\\2&amp;4&amp;-5\\3&amp;-5&amp;6\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>4</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> </mtd> <mtd> <mn>6</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}1&amp;2&amp;3\\2&amp;4&amp;-5\\3&amp;-5&amp;6\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e60305cc200c2ca3432be53fc0c983f8914d2c59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:15.601ex; height:9.176ex;" alt="{\displaystyle {\begin{bmatrix}1&amp;2&amp;3\\2&amp;4&amp;-5\\3&amp;-5&amp;6\end{bmatrix}}}"></span></dd></dl> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="例子"><span id=".E4.BE.8B.E5.AD.90"></span>例子</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3&amp;action=edit&amp;section=1" title="编辑章节:例子"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}a&amp;b&amp;c\\b&amp;d&amp;e\\c&amp;e&amp;f\end{bmatrix}},{\begin{bmatrix}1&amp;5\\5&amp;7\end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mi>b</mi> </mtd> <mtd> <mi>c</mi> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> </mtd> <mtd> <mi>d</mi> </mtd> <mtd> <mi>e</mi> </mtd> </mtr> <mtr> <mtd> <mi>c</mi> </mtd> <mtd> <mi>e</mi> </mtd> <mtd> <mi>f</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>5</mn> </mtd> <mtd> <mn>7</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}a&amp;b&amp;c\\b&amp;d&amp;e\\c&amp;e&amp;f\end{bmatrix}},{\begin{bmatrix}1&amp;5\\5&amp;7\end{bmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7e804b73a13abb407f7c829c9138d4aebc68e13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:21.756ex; height:9.509ex;" alt="{\displaystyle {\begin{bmatrix}a&amp;b&amp;c\\b&amp;d&amp;e\\c&amp;e&amp;f\end{bmatrix}},{\begin{bmatrix}1&amp;5\\5&amp;7\end{bmatrix}},}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}1&amp;3&amp;0\\3&amp;1&amp;6\\0&amp;6&amp;1\end{bmatrix}},{\begin{bmatrix}a&amp;b\\b&amp;c\end{bmatrix}},{\begin{bmatrix}2\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>6</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> </mtd> <mtd> <mi>c</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}1&amp;3&amp;0\\3&amp;1&amp;6\\0&amp;6&amp;1\end{bmatrix}},{\begin{bmatrix}a&amp;b\\b&amp;c\end{bmatrix}},{\begin{bmatrix}2\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee668c9520a381736a116bcffc60e84e8aba5b16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:25.026ex; height:9.176ex;" alt="{\displaystyle {\begin{bmatrix}1&amp;3&amp;0\\3&amp;1&amp;6\\0&amp;6&amp;1\end{bmatrix}},{\begin{bmatrix}a&amp;b\\b&amp;c\end{bmatrix}},{\begin{bmatrix}2\end{bmatrix}}}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="性质"><span id=".E6.80.A7.E8.B4.A8"></span>性质</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3&amp;action=edit&amp;section=2" title="编辑章节:性质"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>對於任何方形矩陣<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X+X^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>+</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X+X^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/608d01396919787afc8c0f2188e61d910bb1dda8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.207ex; height:2.843ex;" alt="{\displaystyle X+X^{T}}"></span>是對稱矩陣。</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>為<a href="/wiki/%E6%96%B9%E5%BD%A2%E7%9F%A9%E9%99%A3" class="mw-redirect" title="方形矩陣">方形矩陣</a>是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>為對稱矩陣的必要條件,即對稱矩陣行數必等於列數。</li> <li><a href="/wiki/%E5%B0%8D%E8%A7%92%E7%9F%A9%E9%99%A3" title="對角矩陣">對角矩陣</a>都是對稱矩陣。</li> <li><a href="/wiki/%E8%8B%A5%E4%B8%94%E5%94%AF%E8%8B%A5" class="mw-redirect" title="若且唯若">若且唯若</a>兩者的<a href="/wiki/%E4%B9%98%E6%B3%95" title="乘法">乘法</a>可<a href="/wiki/%E4%BA%A4%E6%8F%9B%E5%BE%8B" title="交換律">交換</a>(即<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AB=BA}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mo>=</mo> <mi>B</mi> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AB=BA}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/992c8ea49fdd26b491180036c5a4d879fec77442" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.113ex; height:2.176ex;" alt="{\displaystyle AB=BA}"></span>)時,兩個對稱矩陣的積(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AB}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AB}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b04153f9681e5b06066357774475c04aaef3a8bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.507ex; height:2.176ex;" alt="{\displaystyle AB}"></span>)是對稱矩陣。<style data-mw-deduplicate="TemplateStyles:r83946278">.mw-parser-output .template-facttext{background-color:var(--background-color-neutral,#eaecf0);color:inherit;margin:-.3em 0;padding:.3em 0}</style><mark class="template-facttext" title="需要提供文献来源">兩個實對稱矩陣乘法可交換<a href="/wiki/%E8%8B%A5%E4%B8%94%E5%94%AF%E8%8B%A5" class="mw-redirect" title="若且唯若">若且唯若</a>兩者的<a href="/wiki/%E7%89%B9%E5%BE%81%E7%A9%BA%E9%97%B4" class="mw-redirect" title="特征空间">特徵空間</a>相同。</mark><sup class="noprint Template-Fact"><a href="/wiki/Wikipedia:%E5%88%97%E6%98%8E%E6%9D%A5%E6%BA%90" title="Wikipedia:列明来源"><span style="white-space: nowrap;" title="来源请求开始于2019年7月19日。">&#91;來源請求&#93;</span></a></sup></li> <li>任何方形矩陣<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>,如果它的元素屬於一個<a href="/wiki/%E7%89%B9%E5%BE%B5_(%E4%BB%A3%E6%95%B8)" class="mw-redirect" title="特徵 (代數)">特徵</a>不為2的域(例如<a href="/wiki/%E5%AF%A6%E6%95%B8" class="mw-redirect" title="實數">實數</a>),可以用剛好一種方法寫成一個對稱矩陣和一個<a href="/wiki/%E6%96%9C%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" class="mw-redirect" title="斜對稱矩陣">斜對稱矩陣</a>之和:</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X={\frac {1}{2}}(X+X^{T})+{\frac {1}{2}}(X-X^{T})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo>+</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X={\frac {1}{2}}(X+X^{T})+{\frac {1}{2}}(X-X^{T})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff4ac7044b6f6dbaec5f8ef3d74ec4d553972c78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:31.948ex; height:5.176ex;" alt="{\displaystyle X={\frac {1}{2}}(X+X^{T})+{\frac {1}{2}}(X-X^{T})}"></span></dd></dl></dd></dl> <ul><li>每個實方形矩陣都可寫作兩個實對稱矩陣的積,每個複方形矩陣都可寫作兩個複對稱矩陣的積。</li> <li>若對稱矩陣<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>的每個元素均為實數,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>是<a href="/wiki/%E5%AE%9E%E5%AF%B9%E7%A7%B0%E7%9F%A9%E9%98%B5" class="mw-redirect" title="实对称矩阵">實對稱矩陣</a>。</li> <li>一個矩陣同時為對稱矩陣及斜對稱矩陣若且唯若所有元素都是零。</li> <li>如果X是對稱矩陣,那麼 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AXA^{\textrm {T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>X</mi> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>T</mtext> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AXA^{\textrm {T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8dba3887e4fb855a7779e452dcfa3548bce46be2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.885ex; height:2.676ex;" alt="{\displaystyle AXA^{\textrm {T}}}"></span> 也是對稱矩陣.</li></ul> <div class="mw-heading mw-heading2"><h2 id="分解"><span id=".E5.88.86.E8.A7.A3"></span>分解</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3&amp;action=edit&amp;section=3" title="编辑章节:分解"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>利用<a href="/wiki/%E8%8B%A5%E5%B0%94%E5%BD%93%E6%A0%87%E5%87%86%E5%BD%A2" class="mw-redirect" title="若尔当标准形">若尔当标准形</a>,我们可以证明每一个实方阵都可以写成两个实对称矩阵的乘积,而每一个复方阵都可以写成两个复对称矩阵的乘积。<sup id="cite_ref-Bosch1986_1-0" class="reference"><a href="#cite_note-Bosch1986-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>每一个实<a href="/wiki/%E9%9D%9E%E5%A5%87%E5%BC%82%E7%9F%A9%E9%98%B5" class="mw-redirect" title="非奇异矩阵">非奇异矩阵</a>都可以唯一分解成一个<a href="/wiki/%E6%AD%A3%E4%BA%A4%E7%9F%A9%E9%98%B5" title="正交矩阵">正交矩阵</a>和一个对称<a href="/wiki/%E6%AD%A3%E5%AE%9A%E7%9F%A9%E9%98%B5" title="正定矩阵">正定矩阵</a>的乘积,这称为<a href="/wiki/%E6%9E%81%E5%88%86%E8%A7%A3" title="极分解">极分解</a>。奇异矩阵也可以分解,但不是唯一的。 </p><p><a href="/wiki/Cholesky%E5%88%86%E8%A7%A3" class="mw-redirect" title="Cholesky分解">Cholesky分解</a>说明每一个实正定对称矩阵都是一个上三角矩阵和它的转置的乘积。 </p> <div class="mw-heading mw-heading2"><h2 id="實對稱矩陣"><span id=".E5.AF.A6.E5.B0.8D.E7.A8.B1.E7.9F.A9.E9.99.A3"></span>實對稱矩陣</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3&amp;action=edit&amp;section=4" title="编辑章节:實對稱矩陣"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><b>实對稱矩陣</b>是一個元素都为<a href="/wiki/%E5%AE%9E%E6%95%B0" title="实数">实数</a>的对称矩陣,用&lt;,&gt;表示<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2ebce0f18894435d56a8fe182e22f135aa8ed07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.982ex; height:2.343ex;" alt="{\displaystyle R^{n}}"></span>上的<a href="/wiki/%E5%85%A7%E7%A9%8D" class="mw-redirect mw-disambig" title="內積">內積</a>。<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span>的實矩陣<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>是對稱的,<a href="/wiki/%E8%8B%A5%E4%B8%94%E5%94%AF%E8%8B%A5" class="mw-redirect" title="若且唯若">若且唯若</a>對於所有<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y\in \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y\in \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/968ade084462d5ec7193a762f77904c61ab42822" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.256ex; height:2.676ex;" alt="{\displaystyle x,y\in \mathbb {R} ^{n}}"></span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle Ax,y\rangle =\langle x,Ay\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>A</mi> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>A</mi> <mi>y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle Ax,y\rangle =\langle x,Ay\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b148dd9277ab2b18762deba9d034b58832bb025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.241ex; height:2.843ex;" alt="{\displaystyle \langle Ax,y\rangle =\langle x,Ay\rangle }"></span>。</dd></dl> <p>实對稱矩陣有以下的性质: </p> <ul><li>实对称矩阵A的不同<a href="/wiki/%E7%89%B9%E5%BE%81%E5%80%BC" class="mw-redirect" title="特征值">特征值</a>所对应的<a href="/wiki/%E7%89%B9%E5%BE%81%E5%90%91%E9%87%8F" class="mw-redirect" title="特征向量">特征向量</a>是<a href="/wiki/%E6%AD%A3%E4%BA%A4" title="正交">正交</a>的。</li> <li>实对称矩阵A的特征值都是实数,特征向量都是实向量。</li> <li>n阶实对称矩阵A必可<a href="/wiki/%E5%AF%B9%E8%A7%92%E5%8C%96" class="mw-redirect" title="对角化">对角化</a>。</li> <li>可用<a href="/wiki/%E6%AD%A3%E4%BA%A4%E7%9F%A9%E9%98%B5" title="正交矩阵">正交矩阵</a>对角化。</li> <li>K重特征值必有K个线性无关的特征向量,或者说必有<a href="/wiki/%E7%A7%A9" class="mw-disambig" title="秩">秩</a>r(λE-A)=n-k。</li></ul> <div class="mw-heading mw-heading2"><h2 id="黑塞矩阵"><span id=".E9.BB.91.E5.A1.9E.E7.9F.A9.E9.98.B5"></span>黑塞矩阵</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3&amp;action=edit&amp;section=5" title="编辑章节:黑塞矩阵"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r84833064">.mw-parser-output .hatnote{font-size:small}.mw-parser-output div.hatnote{padding-left:2em;margin-bottom:0.8em;margin-top:0.8em}.mw-parser-output .hatnote-notice-img::after{content:"\202f \202f \202f \202f "}.mw-parser-output .hatnote-notice-img-small::after{content:"\202f \202f "}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}body.skin-minerva .mw-parser-output .hatnote-notice-img,body.skin-minerva .mw-parser-output .hatnote-notice-img-small{display:none}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">主条目:<a href="/wiki/Hessian%E7%9F%A9%E9%98%B5" class="mw-redirect" title="Hessian矩阵">Hessian矩阵</a></div> <p>实对称<i>n</i> × <i>n</i>矩阵出现在二阶连续可微的<i>n</i>元函数的<a href="/wiki/%E9%BB%91%E5%A1%9E%E7%9F%A9%E9%98%B5" class="mw-redirect" title="黑塞矩阵">黑塞矩阵</a>之中。 </p><p><b>R</b><sup><i>n</i></sup>上的每一个<a href="/wiki/%E4%BA%8C%E6%AC%A1%E5%9E%8B" title="二次型">二次型</a><i>q</i>都可以唯一写成<i>q</i>(<b>x</b>) = <b>x</b><sup>T</sup><i>A</i><b>x</b>的形式,其中<i>A</i>是对称的<i>n</i> × <i>n</i>矩阵。于是,根据<a href="/wiki/%E8%B0%B1%E5%AE%9A%E7%90%86" title="谱定理">谱定理</a>,可以说每一个二次型,不考虑<b>R</b><sup><i>n</i></sup>的正交基的选择,“看起来像”: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q(x_{1},\ldots ,x_{n})=\sum _{i=1}^{n}\lambda _{i}x_{i}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q(x_{1},\ldots ,x_{n})=\sum _{i=1}^{n}\lambda _{i}x_{i}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30b1ef164ce0cefe4fcb9c02e1ab66e916564956" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:24.369ex; height:6.843ex;" alt="{\displaystyle q(x_{1},\ldots ,x_{n})=\sum _{i=1}^{n}\lambda _{i}x_{i}^{2}}"></span></dd></dl> <p>其中λ<sub><i>i</i></sub>是实数。这大大简化了二次型的研究,以及水平集{<b>x</b>&#160;: <i>q</i>(<b>x</b>) = 1}的研究,它们是<a href="/wiki/%E5%9C%86%E9%94%A5%E6%9B%B2%E7%BA%BF" title="圆锥曲线">圆锥曲线</a>的推广。 </p><p>这是很重要的,部分是由于每一个光滑的多元函数的二阶表现,都由属于该函数的黑塞矩阵的二次型描述;这是<a href="/wiki/%E6%B3%B0%E5%8B%92%E5%AE%9A%E7%90%86" class="mw-redirect" title="泰勒定理">泰勒定理</a>的一个结果。 </p> <div class="mw-heading mw-heading2"><h2 id="可对称化矩阵"><span id=".E5.8F.AF.E5.AF.B9.E7.A7.B0.E5.8C.96.E7.9F.A9.E9.98.B5"></span>可对称化矩阵</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3&amp;action=edit&amp;section=6" title="编辑章节:可对称化矩阵"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>矩阵A称为<b>可对称化</b>的,如果存在一个可逆对角矩阵D和一个对称矩阵S,使得: </p> <dl><dd>A = DS.</dd></dl> <p>可对称化矩阵的转置也是可对称化的,因为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (DS)^{T}=SD=D^{-1}DSD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>D</mi> <mi>S</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo>=</mo> <mi>S</mi> <mi>D</mi> <mo>=</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>D</mi> <mi>S</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (DS)^{T}=SD=D^{-1}DSD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb7ab948d09566e7c8f2a4e01096a01625868651" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.847ex; height:3.176ex;" alt="{\displaystyle (DS)^{T}=SD=D^{-1}DSD}"></span>,而<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle DSD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mi>S</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle DSD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb1fcbf8536c0fd7f3aa3b49a13bc8c53c85f3ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.348ex; height:2.176ex;" alt="{\displaystyle DSD}"></span>是对称的。 </p><p><br /> 当且仅当<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=[a_{jk}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mo stretchy="false">[</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>k</mi> </mrow> </msub> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=[a_{jk}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9614eb9d204266404f005a4c30a9619935bdac86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.131ex; height:3.009ex;" alt="{\displaystyle A=[a_{jk}]}"></span>满足以下的条件时,矩阵可对称化: </p> <ol><li>如果<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{ij}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{ij}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a565e93211d1ad5c06a571ff8952ab3dfcff3638" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.968ex; height:2.843ex;" alt="{\displaystyle a_{ij}=0}"></span>,那么<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{ji}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{ji}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d059b9aad48129a1907d2354eeeaa865847952e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.968ex; height:2.843ex;" alt="{\displaystyle a_{ji}=0}"></span>;</li> <li>对于任何有限序列<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i_{1},i_{2},...,i_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i_{1},i_{2},...,i_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/719605ba8194f8211c3828d0a9192f68f7fa8c44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.808ex; height:2.509ex;" alt="{\displaystyle i_{1},i_{2},...,i_{k}}"></span>,都有<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{i_{1}i_{2}}a_{i_{2}i_{3}}...a_{i_{k}i_{1}}=a_{i_{2}i_{1}}a_{i_{3}i_{2}}...a_{i_{1}i_{k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> </msub> <mo>.</mo> <mo>.</mo> <mo>.</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> <mo>.</mo> <mo>.</mo> <mo>.</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{i_{1}i_{2}}a_{i_{2}i_{3}}...a_{i_{k}i_{1}}=a_{i_{2}i_{1}}a_{i_{3}i_{2}}...a_{i_{1}i_{k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7a9ba619cf571ffb05f5b6d68529109889b8324" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:34.918ex; height:2.343ex;" alt="{\displaystyle a_{i_{1}i_{2}}a_{i_{2}i_{3}}...a_{i_{k}i_{1}}=a_{i_{2}i_{1}}a_{i_{3}i_{2}}...a_{i_{1}i_{k}}}"></span>。</li></ol> <div class="mw-heading mw-heading2"><h2 id="与不等式的关系"><span id=".E4.B8.8E.E4.B8.8D.E7.AD.89.E5.BC.8F.E7.9A.84.E5.85.B3.E7.B3.BB"></span>与不等式的关系</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3&amp;action=edit&amp;section=7" title="编辑章节:与不等式的关系"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>对称阵 Z 分解为3行3列: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}Z_{11}&amp;Z_{12}&amp;Z_{13}\\Z_{12}^{T}&amp;Z_{22}&amp;Z_{23}\\Z_{13}^{T}&amp;Z_{23}^{T}&amp;Z_{33}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> </mtd> <mtd> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> </mtd> <mtd> <msubsup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> </mtd> <mtd> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}Z_{11}&amp;Z_{12}&amp;Z_{13}\\Z_{12}^{T}&amp;Z_{22}&amp;Z_{23}\\Z_{13}^{T}&amp;Z_{23}^{T}&amp;Z_{33}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7ae2226038a21acc6162198b254b3735101be4b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:18.888ex; height:9.843ex;" alt="{\displaystyle {\begin{bmatrix}Z_{11}&amp;Z_{12}&amp;Z_{13}\\Z_{12}^{T}&amp;Z_{22}&amp;Z_{23}\\Z_{13}^{T}&amp;Z_{23}^{T}&amp;Z_{33}\end{bmatrix}}}"></span></dd></dl> <p>当且仅当 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}Z_{11}&amp;Z_{12}\\Z_{12}^{T}&amp;Z_{22}\end{bmatrix}},{\begin{bmatrix}Z_{11}&amp;Z_{13}\\Z_{13}^{T}&amp;Z_{33}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> </mtd> <mtd> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> </mtd> <mtd> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}Z_{11}&amp;Z_{12}\\Z_{12}^{T}&amp;Z_{22}\end{bmatrix}},{\begin{bmatrix}Z_{11}&amp;Z_{13}\\Z_{13}^{T}&amp;Z_{33}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d1eb2123353c20b0f49414fc9a322695fbfe41a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:25.947ex; height:6.509ex;" alt="{\displaystyle {\begin{bmatrix}Z_{11}&amp;Z_{12}\\Z_{12}^{T}&amp;Z_{22}\end{bmatrix}},{\begin{bmatrix}Z_{11}&amp;Z_{13}\\Z_{13}^{T}&amp;Z_{33}\end{bmatrix}}}"></span></dd></dl> <p>时, 存在 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X=Z_{13}^{T}Z_{11}^{-1}Z_{12}-Z_{23}^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <msubsup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> <msubsup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X=Z_{13}^{T}Z_{11}^{-1}Z_{12}-Z_{23}^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eef4ce399ae6f3c3c6839dcea1d1559156094fe1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.351ex; height:3.343ex;" alt="{\displaystyle X=Z_{13}^{T}Z_{11}^{-1}Z_{12}-Z_{23}^{T}}"></span>, 使得 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}Z_{11}&amp;Z_{12}&amp;Z_{13}\\Z_{12}^{T}&amp;Z_{22}&amp;Z_{23}+X^{T}\\Z_{13}^{T}&amp;Z_{23}^{T}+X&amp;Z_{33}\end{bmatrix}}&lt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> </mtd> <mtd> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> <mo>+</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> </mtd> <mtd> <msubsup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> <mo>+</mo> <mi>X</mi> </mtd> <mtd> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>&lt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}Z_{11}&amp;Z_{12}&amp;Z_{13}\\Z_{12}^{T}&amp;Z_{22}&amp;Z_{23}+X^{T}\\Z_{13}^{T}&amp;Z_{23}^{T}+X&amp;Z_{33}\end{bmatrix}}&lt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e979e23a2900779994b4368d084b3274f4735ed4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:34.196ex; height:10.176ex;" alt="{\displaystyle {\begin{bmatrix}Z_{11}&amp;Z_{12}&amp;Z_{13}\\Z_{12}^{T}&amp;Z_{22}&amp;Z_{23}+X^{T}\\Z_{13}^{T}&amp;Z_{23}^{T}+X&amp;Z_{33}\end{bmatrix}}&lt;0}"></span></dd></dl> <p>成立。 </p> <div class="mw-heading mw-heading2"><h2 id="参见"><span id=".E5.8F.82.E8.A7.81"></span>参见</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3&amp;action=edit&amp;section=8" title="编辑章节:参见"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/%E5%8F%8D%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" title="反對稱矩陣">反对称阵</a></li> <li><a href="/wiki/%E5%BE%AA%E7%8E%AF%E7%9F%A9%E9%98%B5" title="循环矩阵">循环矩阵</a></li> <li><a href="/wiki/%E6%B1%89%E5%85%8B%E5%B0%94%E7%9F%A9%E9%98%B5" title="汉克尔矩阵">汉克尔矩阵</a></li> <li><a href="/w/index.php?title=%E7%89%B9%E6%99%AE%E5%88%A9%E8%8C%A8%E7%9F%A9%E9%98%B5&amp;action=edit&amp;redlink=1" class="new" title="特普利茨矩阵(页面不存在)">特普利茨矩阵</a></li> <li><a href="/w/index.php?title=%E4%B8%AD%E5%BF%83%E5%AF%B9%E7%A7%B0%E7%9F%A9%E9%98%B5&amp;action=edit&amp;redlink=1" class="new" title="中心对称矩阵(页面不存在)">中心对称矩阵</a></li> <li><a href="/wiki/%E5%B8%8C%E5%B0%94%E4%BC%AF%E7%89%B9%E7%9F%A9%E9%98%B5" title="希尔伯特矩阵">希尔伯特矩阵</a></li> <li><a href="/w/index.php?title=%E8%80%83%E5%85%8B%E6%96%AF%E7%89%B9%E7%9F%A9%E9%98%B5&amp;action=edit&amp;redlink=1" class="new" title="考克斯特矩阵(页面不存在)">考克斯特矩阵</a></li> <li><a href="/wiki/%E5%8D%8F%E6%96%B9%E5%B7%AE%E7%9F%A9%E9%98%B5" title="协方差矩阵">协方差矩阵</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="参考文献"><span id=".E5.8F.82.E8.80.83.E6.96.87.E7.8C.AE"></span>参考文献</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3&amp;action=edit&amp;section=9" title="编辑章节:参考文献"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="reflist" style="list-style-type: decimal;"> <ol class="references"> <li id="cite_note-Bosch1986-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bosch1986_1-0">^</a></b></span> <span class="reference-text"><cite class="citation journal">A. J. Bosch. The factorization of a square matrix into two symmetric matrices. American Mathematical Monthly. 1986, <b>93</b>: 462–464. <a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2323471"><span title="數位物件識別號">doi:10.2307/2323471</span></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3&amp;rft.atitle=The+factorization+of+a+square+matrix+into+two+symmetric+matrices&amp;rft.au=A.+J.+Bosch&amp;rft.date=1986&amp;rft.genre=article&amp;rft.jtitle=American+Mathematical+Monthly&amp;rft.pages=462-464&amp;rft.volume=93&amp;rft_id=info%3Adoi%2F10.2307%2F2323471&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> </ol></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐849f99967d‐dh6v2 Cached time: 20241124085430 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.432 seconds Real time usage: 0.585 seconds Preprocessor visited node count: 694/1000000 Post‐expand include size: 55948/2097152 bytes Template argument size: 4703/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 2/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 6774/5000000 bytes Lua time usage: 0.267/10.000 seconds Lua memory usage: 15664702/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 409.808 1 -total 36.15% 148.129 1 Template:Lang-en 22.52% 92.275 1 Template:线性代数 21.83% 89.456 1 Template:ScienceNavigation 19.35% 79.285 1 Template:NoteTA 15.14% 62.049 1 Template:Tnavbar 12.10% 49.604 1 Template:Reflist 11.14% 45.642 1 Template:Cite_journal 5.25% 21.511 1 Template:Main 2.20% 9.002 1 Template:Citation_needed --> <!-- Saved in parser cache with key zhwiki:pcache:idhash:218109-0!canonical!zh and timestamp 20241124085430 and revision id 72448036. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">检索自“<a dir="ltr" href="https://zh.wikipedia.org/w/index.php?title=對稱矩陣&amp;oldid=72448036">https://zh.wikipedia.org/w/index.php?title=對稱矩陣&amp;oldid=72448036</a>”</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Special:%E9%A1%B5%E9%9D%A2%E5%88%86%E7%B1%BB" title="Special:页面分类">分类</a>:​<ul><li><a href="/wiki/Category:%E7%9F%A9%E9%99%A3" title="Category:矩陣">矩陣</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">隐藏分类:​<ul><li><a href="/wiki/Category:%E5%90%AB%E6%9C%89%E8%8B%B1%E8%AA%9E%E7%9A%84%E6%A2%9D%E7%9B%AE" title="Category:含有英語的條目">含有英語的條目</a></li><li><a href="/wiki/Category:%E8%87%AA2019%E5%B9%B47%E6%9C%88%E6%9C%89%E6%9C%AA%E5%88%97%E6%98%8E%E6%9D%A5%E6%BA%90%E8%AF%AD%E5%8F%A5%E7%9A%84%E6%9D%A1%E7%9B%AE" title="Category:自2019年7月有未列明来源语句的条目">自2019年7月有未列明来源语句的条目</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> 本页面最后修订于2022年7月1日 (星期五) 03:06。</li> <li id="footer-info-copyright">本站的全部文字在<a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.zh">知识共享 署名-相同方式共享 4.0协议</a>之条款下提供,附加条款亦可能应用。(请参阅<a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">使用条款</a>)<br /> Wikipedia&#174;和维基百科标志是<a rel="nofollow" class="external text" href="https://wikimediafoundation.org/zh">维基媒体基金会</a>的注册商标;维基&#8482;是维基媒体基金会的商标。<br /> 维基媒体基金会是按美国国內稅收法501(c)(3)登记的<a class="external text" href="https://donate.wikimedia.org/wiki/Special:MyLanguage/Tax_deductibility">非营利慈善机构</a>。<br /></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">隐私政策</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:%E5%85%B3%E4%BA%8E">关于维基百科</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:%E5%85%8D%E8%B4%A3%E5%A3%B0%E6%98%8E">免责声明</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">行为准则</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">开发者</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/zh.wikipedia.org">统计</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie声明</a></li> <li id="footer-places-mobileview"><a href="//zh.m.wikipedia.org/w/index.php?title=%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">手机版视图</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f7b5ccf54-jldzc","wgBackendResponseTime":190,"wgPageParseReport":{"limitreport":{"cputime":"0.432","walltime":"0.585","ppvisitednodes":{"value":694,"limit":1000000},"postexpandincludesize":{"value":55948,"limit":2097152},"templateargumentsize":{"value":4703,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":6774,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 409.808 1 -total"," 36.15% 148.129 1 Template:Lang-en"," 22.52% 92.275 1 Template:线性代数"," 21.83% 89.456 1 Template:ScienceNavigation"," 19.35% 79.285 1 Template:NoteTA"," 15.14% 62.049 1 Template:Tnavbar"," 12.10% 49.604 1 Template:Reflist"," 11.14% 45.642 1 Template:Cite_journal"," 5.25% 21.511 1 Template:Main"," 2.20% 9.002 1 Template:Citation_needed"]},"scribunto":{"limitreport-timeusage":{"value":"0.267","limit":"10.000"},"limitreport-memusage":{"value":15664702,"limit":52428800}},"cachereport":{"origin":"mw-api-int.codfw.main-849f99967d-dh6v2","timestamp":"20241124085430","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\u5c0d\u7a31\u77e9\u9663","url":"https:\/\/zh.wikipedia.org\/wiki\/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3","sameAs":"http:\/\/www.wikidata.org\/entity\/Q339011","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q339011","author":{"@type":"Organization","name":"\u7ef4\u57fa\u5a92\u4f53\u9879\u76ee\u8d21\u732e\u8005"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-01-28T16:17:48Z","dateModified":"2022-07-01T03:06:16Z"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10