CINXE.COM
Search results for: Steady flow; Walter's B' Fluid;
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Steady flow; Walter's B' Fluid;</title> <meta name="description" content="Search results for: Steady flow; Walter's B' Fluid;"> <meta name="keywords" content="Steady flow; Walter's B' Fluid;"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Steady flow; Walter's B' Fluid;" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Steady flow; Walter's B' Fluid;"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2897</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Steady flow; Walter's B' Fluid;</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2897</span> Application of Homotopy Perturbation Method to Solve Steady Flow of Walter B Fluid A Vertical Channel In Porous Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.Memari">A.Memari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this article, a simulation method called the Homotopy Perturbation Method (HPM) is employed in the steady flow of a Walter's B' fluid in a vertical channel with porous wall. We employed Homotopy Perturbation Method to derive solution of a nonlinear form of equation obtained from exerting similarity transforming to the ordinary differential equation gained from continuity and momentum equations of this kind of flow. The results obtained from the Homotopy Perturbation Method are then compared with those from the Runge–Kutta method in order to verify the accuracy of the proposed method. The results show that the Homotopy Perturbation Method can achieve good results in predicting the solution of such problems. Ultimately we use this solution to obtain the other terms of velocities and physical discussion about it.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Steady%20flow%3B%20Walter%27s%20B%27%20Fluid%3B" title="Steady flow; Walter's B' Fluid;">Steady flow; Walter's B' Fluid;</a>, <a href="https://publications.waset.org/search?q=vertical%20channel%3Bporous%20media" title=" vertical channel;porous media"> vertical channel;porous media</a>, <a href="https://publications.waset.org/search?q=Homotopy%20Perturbation%20Method%20%28HPM%29" title=" Homotopy Perturbation Method (HPM)"> Homotopy Perturbation Method (HPM)</a>, <a href="https://publications.waset.org/search?q=Numerical%20Solution%20%28NS%29." title=" Numerical Solution (NS)."> Numerical Solution (NS).</a> </p> <a href="https://publications.waset.org/12533/application-of-homotopy-perturbation-method-to-solve-steady-flow-of-walter-b-fluid-a-vertical-channel-in-porous-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12533/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12533/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12533/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12533/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12533/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12533/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12533/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12533/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12533/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12533/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1979</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2896</span> Effects of Slip Condition and Peripheral Layer on Couple Stress Fluid Flow through a Channel with Mild Stenosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Gurju%20Awgichew">Gurju Awgichew</a>, <a href="https://publications.waset.org/search?q=G.%20Radhakrishnamacharya"> G. Radhakrishnamacharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Steady incompressible couple stress fluid flow through two dimensional symmetric channel with stenosis is investigated. The flow consisting of a core region to be a couple stress fluid and a peripheral layer of plasma (Newtonian fluid). Assuming the stenosis to be mild, the equations governing the flow of the proposed model are solved using the slip boundary condition and closed form expressions for the flow characteristics (the dimensionless resistance to flow and wall shear stress at the maximum height of stenosis) are derived. The effects of various parameters on these flow variables have been studied. It is observed that the resistance to flow as well as the wall shear stress increase with the height of stenosis, viscosity ratio and Darcy number. However, the trend is reversed as the slip and the couple stress parameter increase.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Stenosis" title="Stenosis">Stenosis</a>, <a href="https://publications.waset.org/search?q=Couple%20stress%20fluid" title=" Couple stress fluid"> Couple stress fluid</a>, <a href="https://publications.waset.org/search?q=Slip%20condition" title=" Slip condition"> Slip condition</a>, <a href="https://publications.waset.org/search?q=Peripheral%20layer." title=" Peripheral layer."> Peripheral layer.</a> </p> <a href="https://publications.waset.org/17133/effects-of-slip-condition-and-peripheral-layer-on-couple-stress-fluid-flow-through-a-channel-with-mild-stenosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/17133/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/17133/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/17133/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/17133/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/17133/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/17133/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/17133/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/17133/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/17133/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/17133/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/17133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2349</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2895</span> Exact Solutions of Steady Plane Flows of an Incompressible Fluid of Variable Viscosity Using (ξ, ψ)- Or (η, ψ)- Coordinates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rana%20Khalid%20Naeem">Rana Khalid Naeem</a>, <a href="https://publications.waset.org/search?q=Asif%20Mansoor"> Asif Mansoor</a>, <a href="https://publications.waset.org/search?q=Waseem%20Ahmed%20Khan"> Waseem Ahmed Khan</a>, <a href="https://publications.waset.org/search?q=Aurangzaib"> Aurangzaib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The exact solutions of the equations describing the steady plane motion of an incompressible fluid of variable viscosity for an arbitrary state equation are determined in the (ξ,ψ) − or (η,ψ )- coordinates where ψ(x,y) is the stream function, ξ and η are the parts of the analytic function, ϖ =ξ( x,y )+iη( x,y ). Most of the solutions involve arbitrary function/ functions indicating that the flow equations possess an infinite set of solutions. </p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Exact%20solutions" title="Exact solutions">Exact solutions</a>, <a href="https://publications.waset.org/search?q=Fluid%20of%20variable%20viscosity" title=" Fluid of variable viscosity"> Fluid of variable viscosity</a>, <a href="https://publications.waset.org/search?q=Navier-Stokes%20equations" title=" Navier-Stokes equations"> Navier-Stokes equations</a>, <a href="https://publications.waset.org/search?q=Steady%20plane%20flows" title=" Steady plane flows"> Steady plane flows</a> </p> <a href="https://publications.waset.org/1733/exact-solutions-of-steady-plane-flows-of-an-incompressible-fluid-of-variable-viscosity-using-ks-ps-or-i-ps-coordinates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1733/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1733/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1733/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1733/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1733/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1733/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1733/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1733/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1733/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1733/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3448</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2894</span> Numerical Comparison of Rushton Turbine and CD-6 Impeller in Non-Newtonian Fluid Stirred Tank</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Akhilesh%20Khapre">Akhilesh Khapre</a>, <a href="https://publications.waset.org/search?q=Basudeb%20Munshi"> Basudeb Munshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A computational fluid dynamics simulation is done for non-Newtonian fluid in a baffled stirred tank. The CMC solution is taken as non-Newtonian shear thinning fluid for simulation. The Reynolds Average Navier Stocks equation with steady state multi reference frame approach is used to simulate flow in the stirred tank. The turbulent flow field is modelled using realizable k-ε turbulence model. The simulated velocity profiles of Rushton turbine is validated with literature data. Then, the simulated flow field of CD-6 impeller is compared with the Rushton turbine. The flow field generated by CD-6 impeller is less in magnitude than the Rushton turbine. The impeller global parameter, power number and flow number, and entropy generation due to viscous dissipation rate is also reported.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computational%20fluid%20dynamics" title="Computational fluid dynamics">Computational fluid dynamics</a>, <a href="https://publications.waset.org/search?q=non-Newtonian" title=" non-Newtonian"> non-Newtonian</a>, <a href="https://publications.waset.org/search?q=Rushton%20turbine" title=" Rushton turbine"> Rushton turbine</a>, <a href="https://publications.waset.org/search?q=CD-6%20impeller" title=" CD-6 impeller"> CD-6 impeller</a>, <a href="https://publications.waset.org/search?q=power%20number" title=" power number"> power number</a>, <a href="https://publications.waset.org/search?q=flow%20number" title=" flow number"> flow number</a>, <a href="https://publications.waset.org/search?q=viscous%20dissipation%20rate." title=" viscous dissipation rate."> viscous dissipation rate.</a> </p> <a href="https://publications.waset.org/9999926/numerical-comparison-of-rushton-turbine-and-cd-6-impeller-in-non-newtonian-fluid-stirred-tank" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999926/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999926/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999926/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999926/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999926/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999926/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999926/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999926/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999926/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999926/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4148</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2893</span> Momentum and Heat Transfer in the Flow of a Viscoelastic Fluid Past a Porous Flat Plate Subject to Suction or Blowing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Motahar%20Reza">Motahar Reza</a>, <a href="https://publications.waset.org/search?q=Anadi%20Sankar%20Gupta"> Anadi Sankar Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>An analysis is made of the flow of an incompressible viscoelastic fluid (of small memory) over a porous plate subject to suction or blowing. It is found that velocity at a point increases with increase in the elasticity in the fluid. It is also shown that wall shear stress depends only on suction and is also independent of the material of fluids. No steady solution for velocity distribution exists when there is blowing at the plate. Temperature distribution in the boundary layer is determined and it is found that temperature at a point decreases with increase in the elasticity in the fluid.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Viscoelastic%20fluid" title="Viscoelastic fluid">Viscoelastic fluid</a>, <a href="https://publications.waset.org/search?q=Flow%20past%20a%20porous%20plate" title=" Flow past a porous plate"> Flow past a porous plate</a>, <a href="https://publications.waset.org/search?q=Heat%20transfer" title=" Heat transfer"> Heat transfer</a> </p> <a href="https://publications.waset.org/2802/momentum-and-heat-transfer-in-the-flow-of-a-viscoelastic-fluid-past-a-porous-flat-plate-subject-to-suction-or-blowing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2802/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2802/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2802/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2802/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2802/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2802/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2802/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2802/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2802/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2802/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1335</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2892</span> Unsteady Boundary Layer Flow over a Stretching Sheet in a Micropolar Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Roslinda%20Nazar">Roslinda Nazar</a>, <a href="https://publications.waset.org/search?q=Anuar%20Ishak"> Anuar Ishak</a>, <a href="https://publications.waset.org/search?q=Ioan%20Pop"> Ioan Pop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unsteady boundary layer flow of an incompressible micropolar fluid over a stretching sheet when the sheet is stretched in its own plane is studied in this paper. The stretching velocity is assumed to vary linearly with the distance along the sheet. Two equal and opposite forces are impulsively applied along the x-axis so that the sheet is stretched, keeping the origin fixed in a micropolar fluid. The transformed unsteady boundary layer equations are solved numerically using the Keller-box method for the whole transient from the initial state to final steady-state flow. Numerical results are obtained for the velocity and microrotation distributions as well as the skin friction coefficient for various values of the material parameter K. It is found that there is a smooth transition from the small-time solution to the large-time solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Boundary%20layer" title="Boundary layer">Boundary layer</a>, <a href="https://publications.waset.org/search?q=micropolar%20fluid" title=" micropolar fluid"> micropolar fluid</a>, <a href="https://publications.waset.org/search?q=stretching%20surface" title=" stretching surface"> stretching surface</a>, <a href="https://publications.waset.org/search?q=unsteady%20flow." title="unsteady flow.">unsteady flow.</a> </p> <a href="https://publications.waset.org/11388/unsteady-boundary-layer-flow-over-a-stretching-sheet-in-a-micropolar-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11388/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11388/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11388/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11388/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11388/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11388/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11388/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11388/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11388/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11388/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2360</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2891</span> Numerical Flow Simulation around HSP Propeller in Open Water and behind a Vessel Wake Using RANS CFD Code </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kadda%20Boumediene">Kadda Boumediene</a>, <a href="https://publications.waset.org/search?q=Mohamed%20Bouzit"> Mohamed Bouzit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The prediction of the flow around marine propellers and vessel hulls propeller interaction is one of the challenges of Computational fluid dynamics (CFD). The CFD has emerged as a potential tool in recent years and has promising applications. The objective of the current study is to predict the hydrodynamic performances of HSP marine propeller in open water and behind a vessel. The unsteady 3-D flow was modeled numerically along with respectively the K-ω standard and K-ω SST turbulence models for steady and unsteady cases. The hydrodynamic performances such us a torque and thrust coefficients and efficiency show good agreement with the experiment results.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Seiun%20Maru%20propeller" title="Seiun Maru propeller">Seiun Maru propeller</a>, <a href="https://publications.waset.org/search?q=steady" title=" steady"> steady</a>, <a href="https://publications.waset.org/search?q=unsteady" title=" unsteady"> unsteady</a>, <a href="https://publications.waset.org/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/search?q=HSP." title=" HSP."> HSP.</a> </p> <a href="https://publications.waset.org/10007751/numerical-flow-simulation-around-hsp-propeller-in-open-water-and-behind-a-vessel-wake-using-rans-cfd-code" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007751/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007751/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007751/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007751/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007751/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007751/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007751/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007751/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007751/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007751/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">840</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2890</span> Unsteady Poiseuille Flow of an Incompressible Elastico-Viscous Fluid in a Tube of Spherical Cross Section on a Porous Boundary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sanjay%20Baburao%20Kulkarni">Sanjay Baburao Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Exact solution of an unsteady flow of elastico-viscous fluid through a porous media in a tube of spherical cross section under the influence of constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of spherical cross section by taking into account of the porosity factor of the bounding surface is investigated. The problem is solved in twostages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a nondimensional porosity parameter (K) and elastico-viscosity parameter (β), which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter, porosity parameter of the bounding surface has significant effect on the velocity parameter.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Elastico-viscous%20fluid" title="Elastico-viscous fluid">Elastico-viscous fluid</a>, <a href="https://publications.waset.org/search?q=Porous%20media" title=" Porous media"> Porous media</a>, <a href="https://publications.waset.org/search?q=Second%20order%0D%0Afluids" title=" Second order fluids"> Second order fluids</a>, <a href="https://publications.waset.org/search?q=Spherical%20cross-section." title=" Spherical cross-section."> Spherical cross-section.</a> </p> <a href="https://publications.waset.org/10000541/unsteady-poiseuille-flow-of-an-incompressible-elastico-viscous-fluid-in-a-tube-of-spherical-cross-section-on-a-porous-boundary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000541/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000541/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000541/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000541/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000541/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000541/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000541/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000541/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000541/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000541/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2116</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2889</span> Unsteady Flow of an Incompressible Elastico-Viscous Fluid of Second order Type in Tube of Ellipsoidal Cross Section on a Porous Boundary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sanjay%20Baburao%20Kulkarni">Sanjay Baburao Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Exact solution of an unsteady flow of elastico-viscous fluid through a porous media in a tube of ellipsoidal cross section under the influence of constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of ellipsoidal cross section by taking into account of the porosity factor of the bounding surface is investigated. The problem is solved in twostages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a nondimensional porosity parameter (K) and elastico-viscosity parameter (β), which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter and the porosity parameter of the bounding surface has significant effect on the velocity parameter.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Elastico-viscous%20fluid" title="Elastico-viscous fluid">Elastico-viscous fluid</a>, <a href="https://publications.waset.org/search?q=Ellipsoidal%20cross-section" title=" Ellipsoidal cross-section"> Ellipsoidal cross-section</a>, <a href="https://publications.waset.org/search?q=Porous%20media" title=" Porous media"> Porous media</a>, <a href="https://publications.waset.org/search?q=Second%20order%20fluids." title=" Second order fluids."> Second order fluids.</a> </p> <a href="https://publications.waset.org/10000989/unsteady-flow-of-an-incompressible-elastico-viscous-fluid-of-second-order-type-in-tube-of-ellipsoidal-cross-section-on-a-porous-boundary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000989/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000989/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000989/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000989/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000989/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000989/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000989/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000989/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000989/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000989/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1693</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2888</span> Unsteady MHD Flow of an Incompressible Elastico-Viscous Fluid in a Tube of Spherical Cross Section on a Porous Boundary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sanjay%20Baburao%20Kulkarni">Sanjay Baburao Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Exact solution of an unsteady MHD flow of elasticoviscous fluid through a porous media in a tube of spherical cross section under the influence of magnetic field and constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of spherical cross section by taking into account of the porosity factor and magnetic parameter of the bounding surface is investigated. The problem is solved in two-stages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a non-dimensional porosity parameter (K), magnetic parameter (m) and elasticoviscosity parameter (β), which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter and magnetic parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter, porosity parameter and magnetic parameter of the bounding surface has significant effect on the velocity parameter.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Elastico-viscous%20fluid" title="Elastico-viscous fluid">Elastico-viscous fluid</a>, <a href="https://publications.waset.org/search?q=Porous%20media" title=" Porous media"> Porous media</a>, <a href="https://publications.waset.org/search?q=Second%20order%0D%0Afluids" title=" Second order fluids"> Second order fluids</a>, <a href="https://publications.waset.org/search?q=Spherical%20cross-section" title=" Spherical cross-section"> Spherical cross-section</a>, <a href="https://publications.waset.org/search?q=Magnetic%20parameter." title=" Magnetic parameter."> Magnetic parameter.</a> </p> <a href="https://publications.waset.org/10001228/unsteady-mhd-flow-of-an-incompressible-elastico-viscous-fluid-in-a-tube-of-spherical-cross-section-on-a-porous-boundary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001228/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001228/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001228/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001228/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001228/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001228/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001228/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001228/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001228/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001228/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1635</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2887</span> Heat Transfer, Fluid Flow, and Metallurgical Transformations in Arc Welding: Application to 16MND5 Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=F.%20Roger">F. Roger</a>, <a href="https://publications.waset.org/search?q=A.%20Traidia"> A. Traidia</a>, <a href="https://publications.waset.org/search?q=B.%20Reynier"> B. Reynier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Arc welding creates a weld pool to realize continuity between pieces of assembly. The thermal history of the weld is dependent on heat transfer and fluid flow in the weld pool. The metallurgical transformation during welding and cooling are modeled in the literature only at solid state neglecting the fluid flow. In the present paper we associate a heat transfer – fluid flow and metallurgical model for the 16MnD5 steel. The metallurgical transformation model is based on Leblond model for the diffusion kinetics and on the Koistinen-Marburger equation for Marteniste transformation. The predicted thermal history and metallurgical transformations are compared to a simulation without fluid phase. This comparison shows the great importance of the fluid flow modeling.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Arc%20welding" title="Arc welding">Arc welding</a>, <a href="https://publications.waset.org/search?q=Weld%20pool" title=" Weld pool"> Weld pool</a>, <a href="https://publications.waset.org/search?q=Fluid%20flow" title=" Fluid flow"> Fluid flow</a>, <a href="https://publications.waset.org/search?q=Metallurgical%20transformations." title=" Metallurgical transformations."> Metallurgical transformations.</a> </p> <a href="https://publications.waset.org/381/heat-transfer-fluid-flow-and-metallurgical-transformations-in-arc-welding-application-to-16mnd5-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/381/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/381/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/381/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/381/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/381/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/381/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/381/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/381/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/381/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/381/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1606</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2886</span> Natural Convection Boundary Layer Flow of a Viscoelastic Fluid on Solid Sphere with Newtonian Heating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.R.M.%20Kasim">A.R.M. Kasim</a>, <a href="https://publications.waset.org/search?q=N.F.%20Mohammad"> N.F. Mohammad</a>, <a href="https://publications.waset.org/search?q=Aurangzaib"> Aurangzaib</a>, <a href="https://publications.waset.org/search?q=S.%20Sharidan"> S. Sharidan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper considers the steady free convection boundary layer flow of a viscoelastic fluid on solid sphere with Newtonian heating. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. Thus, the augmentation an extra boundary condition is needed to perform the numerical computational. The governing boundary layer equations are first transformed into non-dimensional form by using special dimensionless group and then solved by using an implicit finite difference scheme. The results are displayed graphically to illustrate the influence of viscoelastic K and Prandtl Number Pr parameters on skin friction, heat transfer, velocity profiles and temperature profiles. Present results are compared with the published papers and are found to concur very well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=boundary%20layer%20flow" title="boundary layer flow">boundary layer flow</a>, <a href="https://publications.waset.org/search?q=Newtonian%20heating" title=" Newtonian heating"> Newtonian heating</a>, <a href="https://publications.waset.org/search?q=sphere" title=" sphere"> sphere</a>, <a href="https://publications.waset.org/search?q=viscoelastic%20fluid." title=" viscoelastic fluid."> viscoelastic fluid.</a> </p> <a href="https://publications.waset.org/728/natural-convection-boundary-layer-flow-of-a-viscoelastic-fluid-on-solid-sphere-with-newtonian-heating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/728/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/728/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/728/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/728/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/728/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/728/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/728/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/728/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/728/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/728/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2408</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2885</span> CFD Simulation of Non-Newtonian Fluid Flow in Arterial Stenoses with Surface Irregularities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20Manimaran">R. Manimaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CFD simulations are carried out in arterial stenoses with 48 % areal occlusion. Non-newtonian fluid model is selected for the blood flow as the same problem has been solved before with Newtonian fluid model. Studies on flow resistance with the presence of surface irregularities are carried out. Investigations are also performed on the pressure drop at various Reynolds numbers. The present study revealed that the pressure drop across a stenosed artery is practically unaffected by surface irregularities at low Reynolds numbers, while flow features are observed and discussed at higher Reynolds numbers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Blood%20flow" title="Blood flow">Blood flow</a>, <a href="https://publications.waset.org/search?q=Roughness" title=" Roughness"> Roughness</a>, <a href="https://publications.waset.org/search?q=Computational%20fluid%0Adynamics" title=" Computational fluid dynamics"> Computational fluid dynamics</a>, <a href="https://publications.waset.org/search?q=Bio%20fluid%20mechanics." title=" Bio fluid mechanics."> Bio fluid mechanics.</a> </p> <a href="https://publications.waset.org/4504/cfd-simulation-of-non-newtonian-fluid-flow-in-arterial-stenoses-with-surface-irregularities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4504/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4504/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4504/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4504/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4504/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4504/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4504/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4504/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4504/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4504/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4510</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2884</span> Unsteady Flow of an Incompressible Viscous Electrically Conducting Fluid in Tube of Elliptical Cross Section under the Influence of Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sanjay%20Baburao%20Kulkarni">Sanjay Baburao Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Exact solution of an unsteady flow of elastico-viscous electrically conducting fluid through a porous media in a tube of elliptical cross section under the influence of constant pressure gradient and magnetic field has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of elliptical cross section by taking into account of the transverse magnetic field and porosity factor of the bounding surface is investigated. The problem is solved in twostages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a nondimensional porosity parameter (K), magnetic parameter (m) and elastico-viscosity parameter (β), which depends on the Non- Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter and magnetic parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter, magnetic parameter and the porosity parameter of the bounding surface has significant effect on the velocity parameter.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Elastico-viscous%20fluid" title="Elastico-viscous fluid">Elastico-viscous fluid</a>, <a href="https://publications.waset.org/search?q=Elliptic%20cross-section" title=" Elliptic cross-section"> Elliptic cross-section</a>, <a href="https://publications.waset.org/search?q=Porous%20media" title=" Porous media"> Porous media</a>, <a href="https://publications.waset.org/search?q=Second%20order%20fluids." title=" Second order fluids."> Second order fluids.</a> </p> <a href="https://publications.waset.org/10000192/unsteady-flow-of-an-incompressible-viscous-electrically-conducting-fluid-in-tube-of-elliptical-cross-section-under-the-influence-of-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000192/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000192/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000192/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000192/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000192/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000192/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000192/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000192/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000192/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000192/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1932</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2883</span> On the Flow of a Third Grade Viscoelastic Fluid in an Orthogonal Rheometer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Carmen%20D.%20Pricin%C3%A2">Carmen D. Pricinâ</a>, <a href="https://publications.waset.org/search?q=E.%20Corina%20Cipu"> E. Corina Cipu</a>, <a href="https://publications.waset.org/search?q=Victor%20%C5%A2igoiu"> Victor Ţigoiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The flow of a third grade fluid in an orthogonal rheometer is studied. We employ the admissible velocity field proposed in [5]. We solve the problem and obtain the velocity field as well as the components for the Cauchy tensor. We compare the results with those from [9]. Some diagrams concerning the velocity and Cauchy stress components profiles are presented for different values of material constants and compared with the corresponding values for a linear viscous fluid.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Non%20newtonian%20fluid%20flow" title="Non newtonian fluid flow">Non newtonian fluid flow</a>, <a href="https://publications.waset.org/search?q=orthogonal%20rheometer" title=" orthogonal rheometer"> orthogonal rheometer</a>, <a href="https://publications.waset.org/search?q=third%20grade%20fluid." title=" third grade fluid."> third grade fluid.</a> </p> <a href="https://publications.waset.org/384/on-the-flow-of-a-third-grade-viscoelastic-fluid-in-an-orthogonal-rheometer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/384/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/384/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/384/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/384/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/384/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/384/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/384/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/384/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/384/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/384/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1468</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2882</span> Pulsating Flow of an Incompressible Couple Stress Fluid Between Permeable Beds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.%20K.%20V.%20Iyengar">T. K. V. Iyengar</a>, <a href="https://publications.waset.org/search?q=Punnamchandar%20Bitla"> Punnamchandar Bitla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The paper deals with the pulsating flow of an incompressible couple stress fluid between permeable beds. The couple stress fluid is injected into the channel from the lower permeable bed with a certain velocity and is sucked into the upper permeable bed with the same velocity. The flow between the permeable beds is assumed to be governed by couple stress fluid flow equations of V. K. Stokes and that in the permeable regions by Darcy-s law. The equations are solved analytically and the expressions for velocity and volume flux are obtained. The effects of the material parameters are studied numerically and the results are presented through graphs.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Pulsating%20flow" title="Pulsating flow">Pulsating flow</a>, <a href="https://publications.waset.org/search?q=couple%20stress%20fluid" title=" couple stress fluid"> couple stress fluid</a>, <a href="https://publications.waset.org/search?q=permeable%20beds" title=" permeable beds"> permeable beds</a>, <a href="https://publications.waset.org/search?q=mass%20flux" title=" mass flux"> mass flux</a>, <a href="https://publications.waset.org/search?q=shear%20stress." title=" shear stress."> shear stress.</a> </p> <a href="https://publications.waset.org/1887/pulsating-flow-of-an-incompressible-couple-stress-fluid-between-permeable-beds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1887/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1887/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1887/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1887/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1887/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1887/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1887/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1887/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1887/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1887/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2127</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2881</span> Numerical Investigation of Unsteady MHD Flow of Second Order Fluid in a Tube of Elliptical Cross-Section on the Porous Boundary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20B.%20Kulkarni">S. B. Kulkarni</a>, <a href="https://publications.waset.org/search?q=Hasim%20A.%20Chikte"> Hasim A. Chikte</a>, <a href="https://publications.waset.org/search?q=V.%20Murali%20Mohan"> V. Murali Mohan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exact solution of an unsteady MHD flow of elasticoviscous fluid through a porous media in a tube of elliptic cross section under the influence of magnetic field and constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of elliptical cross section by taking into account of the porosity factor and magnetic parameter of the bounding surface is investigated. The problem is solved in two-stages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a non-dimensional porosity parameter, magnetic parameter and elastico-viscosity parameter, which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter, magnetic parameter tends to zero, and porosity tends to infinity. The numerical results were simulated in MATLAB software to analyze the effect of Elastico-viscous parameter, porosity parameter, and magnetic parameter on velocity profile. Boundary conditions were satisfied. It is seen that the effect of elastico-viscosity parameter, porosity parameter and magnetic parameter of the bounding surface has significant effect on the velocity parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Elastico-viscous%20fluid" title="Elastico-viscous fluid">Elastico-viscous fluid</a>, <a href="https://publications.waset.org/search?q=Porous%20media" title=" Porous media"> Porous media</a>, <a href="https://publications.waset.org/search?q=Elliptic%20cross-section" title=" Elliptic cross-section"> Elliptic cross-section</a>, <a href="https://publications.waset.org/search?q=Magnetic%20parameter" title=" Magnetic parameter"> Magnetic parameter</a>, <a href="https://publications.waset.org/search?q=Numerical%20Simulation." title=" Numerical Simulation."> Numerical Simulation.</a> </p> <a href="https://publications.waset.org/10002783/numerical-investigation-of-unsteady-mhd-flow-of-second-order-fluid-in-a-tube-of-elliptical-cross-section-on-the-porous-boundary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002783/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002783/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002783/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002783/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002783/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002783/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002783/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002783/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002783/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002783/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1816</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2880</span> Study of Unsteady Behaviour of Dynamic Shock Systems in Supersonic Engine Intakes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Siddharth%20Ahuja">Siddharth Ahuja</a>, <a href="https://publications.waset.org/search?q=T.%20M.%20Muruganandam"> T. M. Muruganandam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>An analytical investigation is performed to study the unsteady response of a one-dimensional, non-linear dynamic shock system to external downstream pressure perturbations in a supersonic flow in a varying area duct. For a given pressure ratio across a wind tunnel, the normal shock's location can be computed as per one-dimensional steady gas dynamics. Similarly, for some other pressure ratio, the location of the normal shock will change accordingly, again computed using one-dimensional gas dynamics. This investigation focuses on the small-time interval between the first steady shock location and the new steady shock location (corresponding to different pressure ratios). In essence, this study aims to shed light on the motion of the shock from one steady location to another steady location. Further, this study aims to create the foundation of the Unsteady Gas Dynamics field enabling further insight in future research work. According to the new pressure ratio, a pressure pulse, generated at the exit of the tunnel which travels and perturbs the shock from its original position, setting it into motion. During such activity, other numerous physical phenomena also happen at the same time. However, three broad phenomena have been focused on, in this study - Traversal of a Wave, Fluid Element Interactions and Wave Interactions. The above mentioned three phenomena create, alter and kill numerous waves for different conditions. The waves which are created by the above-mentioned phenomena eventually interact with the shock and set it into motion. Numerous such interactions with the shock will slowly make it settle into its final position owing to the new pressure ratio across the duct, as estimated by one-dimensional gas dynamics. This analysis will be extremely helpful in the prediction of inlet 'unstart' of the flow in a supersonic engine intake and its prominence with the incoming flow Mach number, incoming flow pressure and the external perturbation pressure is also studied to help design more efficient supersonic intakes for engines like ramjets and scramjets.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Analytical%20investigation" title="Analytical investigation">Analytical investigation</a>, <a href="https://publications.waset.org/search?q=compression%20and%20expansion%20waves" title=" compression and expansion waves"> compression and expansion waves</a>, <a href="https://publications.waset.org/search?q=fluid%20element%20interactions" title=" fluid element interactions"> fluid element interactions</a>, <a href="https://publications.waset.org/search?q=shock%20trajectory" title=" shock trajectory"> shock trajectory</a>, <a href="https://publications.waset.org/search?q=supersonic%20flow" title=" supersonic flow"> supersonic flow</a>, <a href="https://publications.waset.org/search?q=unsteady%20gas%20dynamics" title=" unsteady gas dynamics"> unsteady gas dynamics</a>, <a href="https://publications.waset.org/search?q=varying%20area%20duct" title=" varying area duct"> varying area duct</a>, <a href="https://publications.waset.org/search?q=wave%20interactions." title=" wave interactions."> wave interactions.</a> </p> <a href="https://publications.waset.org/10007923/study-of-unsteady-behaviour-of-dynamic-shock-systems-in-supersonic-engine-intakes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007923/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007923/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007923/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007923/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007923/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007923/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007923/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007923/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007923/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007923/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">882</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2879</span> On the Free-Surface Generated by the Flow over an Obstacle in a Hydraulic Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Bouhadef">M. Bouhadef</a>, <a href="https://publications.waset.org/search?q=K.%20Bouzelha-Hammoum"> K. Bouzelha-Hammoum</a>, <a href="https://publications.waset.org/search?q=T.%20Guendouzen-Dabouz"> T. Guendouzen-Dabouz</a>, <a href="https://publications.waset.org/search?q=A.%20Younsi"> A. Younsi</a>, <a href="https://publications.waset.org/search?q=T.%20Zitoun"> T. Zitoun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The aim of this paper is to report the different experimental studies, conducted in the laboratory, dealing with the flow in the presence of an obstacle lying in a rectangular hydraulic channel. Both subcritical and supercritical regimes are considered. Generally, when considering the theoretical problem of the free-surface flow, in a fluid domain of finite depth, due to the presence of an obstacle, we suppose that the water is an inviscid fluid, which means that there is no sheared velocity profile, but constant upstream. In a hydraulic channel, it is impossible to satisfy this condition. Indeed, water is a viscous fluid and its velocity is null at the bottom. The two configurations are presented, i.e. a flow over an obstacle and a towed obstacle in a resting fluid.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Experiments" title="Experiments">Experiments</a>, <a href="https://publications.waset.org/search?q=free-surface%20flow" title=" free-surface flow"> free-surface flow</a>, <a href="https://publications.waset.org/search?q=hydraulic%20channel" title=" hydraulic channel"> hydraulic channel</a>, <a href="https://publications.waset.org/search?q=subcritical%20regime" title=" subcritical regime"> subcritical regime</a>, <a href="https://publications.waset.org/search?q=supercritical%20flow." title=" supercritical flow."> supercritical flow.</a> </p> <a href="https://publications.waset.org/10007750/on-the-free-surface-generated-by-the-flow-over-an-obstacle-in-a-hydraulic-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007750/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007750/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007750/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007750/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007750/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007750/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007750/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007750/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007750/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007750/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1024</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2878</span> Mathematical Modelling of Partially Filled Fluid Coupling Behaviour</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20M.%20Maqableh">A. M. Maqableh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modelling techniques for a fluid coupling taken from published literature have been extended to include the effects of the filling and emptying of the coupling with oil and the variation in losses when the coupling is partially full. In the model, the fluid flow inside the coupling is considered to have two principal velocity components; one circumferentially about the coupling axis (centrifugal head) and the other representing the secondary vortex within the coupling itself (vortex head). The calculation of liquid mass flow rate circulating between the two halves of the coupling is based on: the assumption of a linear velocity variation in the circulating vortex flow; the head differential in the fluid due to the speed difference between the two shafts; and the losses in the circulating vortex flow as a result of the impingement of the flow with the blades in the coupling and friction within the passages between the blades. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fluid%20Coupling" title="Fluid Coupling">Fluid Coupling</a>, <a href="https://publications.waset.org/search?q=Mathematical%20Modelling" title=" Mathematical Modelling"> Mathematical Modelling</a>, <a href="https://publications.waset.org/search?q=partially%0Afilled." title=" partially filled."> partially filled.</a> </p> <a href="https://publications.waset.org/655/mathematical-modelling-of-partially-filled-fluid-coupling-behaviour" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/655/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/655/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/655/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/655/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/655/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/655/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/655/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/655/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/655/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/655/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2095</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2877</span> Unsteadiness Effects on Variable Thrust Nozzle Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20M.%20Tahsini">A. M. Tahsini</a>, <a href="https://publications.waset.org/search?q=S.%20T.%20Mousavi"> S. T. Mousavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The purpose of this paper is to elucidate the flow unsteady behavior for moving plug in convergent-divergent variable thrust nozzle. Compressible axisymmetric Navier-Stokes equations are used to study this physical phenomenon. Different velocities are set for plug to investigate the effect of plug movement on flow unsteadiness. Variation of mass flow rate and thrust are compared under two conditions: First, the plug is placed at different positions and flow is simulated to reach the steady state (quasi steady simulation) and second, the plug is moved with assigned velocity and flow simulation is coupled with plug movement (unsteady simulation). If plug speed is high enough and its movement time scale is at the same order of the flow time scale, variation of the mass flow rate and thrust level versus plug position demonstrate a vital discrepancy under the quasi steady and unsteady conditions. This phenomenon should be considered especially from response time viewpoints in thrusters design. </p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nozzle" title="Nozzle">Nozzle</a>, <a href="https://publications.waset.org/search?q=Numerical%20study" title=" Numerical study"> Numerical study</a>, <a href="https://publications.waset.org/search?q=Unsteady" title=" Unsteady"> Unsteady</a>, <a href="https://publications.waset.org/search?q=Variable%20thrust." title=" Variable thrust. "> Variable thrust. </a> </p> <a href="https://publications.waset.org/9996609/unsteadiness-effects-on-variable-thrust-nozzle-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996609/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996609/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996609/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996609/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996609/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996609/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996609/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996609/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996609/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996609/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2250</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2876</span> Simulation of Ammonia-Water Two Phase Flow in Bubble Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jemai%20Rabeb">Jemai Rabeb</a>, <a href="https://publications.waset.org/search?q=Benhmidene%20Ali"> Benhmidene Ali</a>, <a href="https://publications.waset.org/search?q=Hidouri%20Khaoula"> Hidouri Khaoula</a>, <a href="https://publications.waset.org/search?q=Chaouachi%20Bechir"> Chaouachi Bechir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The diffusion-absorption refrigeration cycle consists of a generator bubble pump, an absorber, an evaporator and a condenser, and usually operates with ammonia/water/ hydrogen or helium as the working fluid. The aim of this paper is to study the stability problem a bubble pump. In fact instability can caused a reduction of bubble pump efficiency. To achieve this goal, we have simulated the behaviour of two-phase flow in a bubble pump by using a drift flow model. Equations of a drift flow model are formulated in the transitional regime, non-adiabatic condition and thermodynamic equilibrium between the liquid and vapour phases. Equations resolution allowed to define void fraction, and liquid and vapour velocities, as well as pressure and mixing enthalpy. Ammonia-water mixing is used as working fluid, where ammonia mass fraction in the inlet is 0.6. Present simulation is conducted out for a heating flux of 2 kW/m² to 5 kW/m² and bubble pump tube length of 1 m and 2.5 mm of inner diameter. Simulation results reveal oscillations of vapour and liquid velocities along time. Oscillations decrease with time and with heat flux. For sufficient time the steady state is established, it is characterised by constant liquid velocity and void fraction values. However, vapour velocity does not have the same behaviour, it increases for steady state too. On the other hand, pressure drop oscillations are studied.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bubble%20pump" title="Bubble pump">Bubble pump</a>, <a href="https://publications.waset.org/search?q=drift%20flow%20model" title=" drift flow model"> drift flow model</a>, <a href="https://publications.waset.org/search?q=instability" title=" instability"> instability</a>, <a href="https://publications.waset.org/search?q=simulation." title=" simulation. "> simulation. </a> </p> <a href="https://publications.waset.org/10007790/simulation-of-ammonia-water-two-phase-flow-in-bubble-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007790/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007790/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007790/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007790/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007790/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007790/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007790/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007790/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007790/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007790/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1088</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2875</span> Investigation of Different Control Stratgies for UPFC Decoupled Model and the Impact of Location on Control Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.A.%20Alqallaf">S.A. Alqallaf</a>, <a href="https://publications.waset.org/search?q=S.A.%20Al-Mawsawi"> S.A. Al-Mawsawi</a>, <a href="https://publications.waset.org/search?q=A.%20Haider"> A. Haider</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In order to evaluate the performance of a unified power flow controller (UPFC), mathematical models for steady state and dynamic analysis are to be developed. The steady state model is mainly concerned with the incorporation of the UPFC in load flow studies. Several load flow models for UPFC have been introduced in literature, and one of the most reliable models is the decoupled UPFC model. In spite of UPFC decoupled load flow model simplicity, it is more robust compared to other UPFC load flow models and it contains unique capabilities. Some shortcoming such as additional set of nonlinear equations are to be solved separately after the load flow solution is obtained. The aim of this study is to investigate the different control strategies that can be realized in the decoupled load flow model (individual control and combined control), and the impact of the location of the UPFC in the network on its control parameters.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=UPFC" title="UPFC">UPFC</a>, <a href="https://publications.waset.org/search?q=Decoupled%20model" title=" Decoupled model"> Decoupled model</a>, <a href="https://publications.waset.org/search?q=Load%20flow." title=" Load flow."> Load flow.</a> </p> <a href="https://publications.waset.org/9999478/investigation-of-different-control-stratgies-for-upfc-decoupled-model-and-the-impact-of-location-on-control-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999478/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999478/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999478/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999478/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999478/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999478/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999478/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999478/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999478/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999478/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2001</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2874</span> Empirical Heat Transfer Correlations of Finned-Tube Heat Exchangers in Pulsatile Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jason%20P.%20Michaud">Jason P. Michaud</a>, <a href="https://publications.waset.org/search?q=Connor%20P.%20Speer"> Connor P. Speer</a>, <a href="https://publications.waset.org/search?q=David%20A.%20Miller"> David A. Miller</a>, <a href="https://publications.waset.org/search?q=David%20S.%20Nobes"> David S. Nobes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>An experimental study on finned-tube radiators has been conducted. Three radiators found in desktop computers sized for 120 mm fans were tested in steady and pulsatile flows of ambient air over a Reynolds number range of 50 < Re < 900. Water at 60 °C was circulated through the radiators to maintain a constant fin temperature during the tests. For steady flow, it was found that the heat transfer rate increased linearly with the mass flow rate of air. The pulsatile flow experiments showed that frequency of pulsation had a negligible effect on the heat transfer rate for the range of frequencies tested (0.5 Hz – 2.5 Hz). For all three radiators, the heat transfer rate was decreased in the case of pulsatile flow. Linear heat transfer correlations for steady and pulsatile flow were calculated in terms of Reynolds number and Nusselt number.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Finned-tube%20heat%20exchangers" title="Finned-tube heat exchangers">Finned-tube heat exchangers</a>, <a href="https://publications.waset.org/search?q=radiators" title=" radiators"> radiators</a>, <a href="https://publications.waset.org/search?q=heat%20transfer%20correlations" title=" heat transfer correlations"> heat transfer correlations</a>, <a href="https://publications.waset.org/search?q=pulsatile%20flow" title=" pulsatile flow"> pulsatile flow</a>, <a href="https://publications.waset.org/search?q=computer%20radiators." title=" computer radiators."> computer radiators.</a> </p> <a href="https://publications.waset.org/10007470/empirical-heat-transfer-correlations-of-finned-tube-heat-exchangers-in-pulsatile-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007470/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007470/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007470/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007470/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007470/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007470/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007470/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007470/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007470/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007470/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1367</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2873</span> Measurement of Steady Streaming from an Oscillating Bubble Using Particle Image Velocimetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yongseok%20Kwon">Yongseok Kwon</a>, <a href="https://publications.waset.org/search?q=Woowon%20Jeong"> Woowon Jeong</a>, <a href="https://publications.waset.org/search?q=Eunjin%20Cho"> Eunjin Cho</a>, <a href="https://publications.waset.org/search?q=Sangkug%20Chung"> Sangkug Chung</a>, <a href="https://publications.waset.org/search?q=Kyehan%20Rhee"> Kyehan Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Steady streaming flow fields induced by a 500 mm bubble oscillating at 12 kHz were measured using microscopic particle image velocimetry (PIV). The accuracy of velocity measurement using a micro PIV system was checked by comparing the measured velocity fields with the theoretical velocity profiles in fully developed laminar flow. The steady streaming flow velocities were measured in the sagittal plane of the bubble attached on the wall. Measured velocity fields showed upward jet flow with two symmetric counter-rotating vortices, and the maximum streaming velocity was about 12 mm/s, which was within the velocity ranges measured by other researchers. The measured streamlines were compared with the analytical solution, and they also showed a reasonable agreement.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Oscillating%20bubble" title="Oscillating bubble">Oscillating bubble</a>, <a href="https://publications.waset.org/search?q=Particle-Image-Velocimetry%20microstreaming." title=" Particle-Image-Velocimetry microstreaming. "> Particle-Image-Velocimetry microstreaming. </a> </p> <a href="https://publications.waset.org/9996686/measurement-of-steady-streaming-from-an-oscillating-bubble-using-particle-image-velocimetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996686/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996686/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996686/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996686/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996686/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996686/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996686/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996686/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996686/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996686/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1818</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2872</span> Simulation of the Flow in a Packed-Bed with and without a Static Mixer by Using CFD Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Phavanee%20Narataruksa">Phavanee Narataruksa</a>, <a href="https://publications.waset.org/search?q=Karn%20Pana-Suppamassadu"> Karn Pana-Suppamassadu</a>, <a href="https://publications.waset.org/search?q=Sabaithip%20TungkamaniRungrote%20Kokoo"> Sabaithip TungkamaniRungrote Kokoo</a>, <a href="https://publications.waset.org/search?q=Prayut%20Jiamrittiwong"> Prayut Jiamrittiwong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The major focus of this work was to characterize hydrodynamics in a packed-bed with and without static mixer by using Computational Fluid Dynamic (CFD). The commercial software: COMSOL MULTIPHYSICSTM Version 3.3 was used to simulate flow fields of mixed-gas reactants i.e. CO and H2. The packed-bed was a single tube with the inside diameter of 0.8 cm and the length of 1.2 cm. The static mixer was inserted inside the tube. The number of twisting elements was 1 with 0.8 cm in diameter and 1.2 cm in length. The packed-bed with and without static mixer were both packed with approximately 700 spherical structures representing catalyst pellets. Incompressible Navier-Stokes equations were used to model the gas flow inside the beds at steady state condition, in which the inlet Reynolds Number (Re) was 2.31. The results revealed that, with the insertion of static mixer, the gas was forced to flow radially inward and outward between the central portion of the tube and the tube wall. This could help improving the overall performance of the packed-bed, which could be utilized for heterogeneous catalytic reaction such as reforming and Fischer- Tropsch reactions.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Packed%20Bed" title="Packed Bed">Packed Bed</a>, <a href="https://publications.waset.org/search?q=Static%20Mixer" title=" Static Mixer"> Static Mixer</a>, <a href="https://publications.waset.org/search?q=Computational%20Fluid%0D%0ADynamic%20%28CFD%29." title=" Computational Fluid Dynamic (CFD)."> Computational Fluid Dynamic (CFD).</a> </p> <a href="https://publications.waset.org/12245/simulation-of-the-flow-in-a-packed-bed-with-and-without-a-static-mixer-by-using-cfd-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12245/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12245/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12245/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12245/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12245/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12245/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12245/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12245/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12245/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12245/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2715</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2871</span> Hydrogen-Fueled Micro-Thermophotovoltaic Power Generator: Flame Regimes and Flame Stability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hosein%20Faramarzpour">Hosein Faramarzpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This work presents the optimum operational conditions for a hydrogen-based micro-scale power source, using a verified mathematical model including fluid dynamics and reaction kinetics. Thereafter, the stable operational flame regime is pursued as a key factor in optimizing the design of micro-combustors. The results show that with increasing velocities, four H2 flame regimes develop in the micro-combustor, namely: 1) periodic ignition-extinction regime, 2) steady symmetric regime, 3) pulsating asymmetric regime, and 4) steady asymmetric regime. The first regime that appears in 0.8 m/s inlet velocity is a periodic ignition-extinction regime which is characterized by counter flows and tulip-shape flames. For flow velocity above 0.2 m/s, the flame shifts downstream, and the combustion regime switches to a steady symmetric flame where temperature increases considerably due to the increased rate of incoming energy. Further elevation in flow velocity up to 1 m/s leads to the pulsating asymmetric flame formation, which is associated with pulses in various flame properties such as temperature and species concentration. Further elevation in flow velocity up to 1 m/s leads to the pulsating asymmetric flame formation, which is associated with pulses in various flame properties such as temperature and species concentration. Ultimately, when the inlet velocity reached 1.2 m/s, the last regime was observed, and a steady asymmetric regime appeared.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Thermophotovoltaic%20generator" title="Thermophotovoltaic generator">Thermophotovoltaic generator</a>, <a href="https://publications.waset.org/search?q=micro%20combustor" title=" micro combustor"> micro combustor</a>, <a href="https://publications.waset.org/search?q=micro%20power%20generator" title=" micro power generator"> micro power generator</a>, <a href="https://publications.waset.org/search?q=combustion%20regimes" title=" combustion regimes"> combustion regimes</a>, <a href="https://publications.waset.org/search?q=flame%20dynamic." title=" flame dynamic."> flame dynamic.</a> </p> <a href="https://publications.waset.org/10013558/hydrogen-fueled-micro-thermophotovoltaic-power-generator-flame-regimes-and-flame-stability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013558/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013558/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013558/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013558/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013558/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013558/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013558/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013558/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013558/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013558/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2870</span> A Two-Phase Flow Interface Tracking Algorithm Using a Fully Coupled Pressure-Based Finite Volume Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Shidvash%20Vakilipour">Shidvash Vakilipour</a>, <a href="https://publications.waset.org/search?q=Scott%20Ormiston"> Scott Ormiston</a>, <a href="https://publications.waset.org/search?q=Masoud%20Mohammadi"> Masoud Mohammadi</a>, <a href="https://publications.waset.org/search?q=Rouzbeh%20Riazi"> Rouzbeh Riazi</a>, <a href="https://publications.waset.org/search?q=Kimia%20Amiri"> Kimia Amiri</a>, <a href="https://publications.waset.org/search?q=Sahar%20Barati"> Sahar Barati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two-phase and multi-phase flows are common flow types in fluid mechanics engineering. Among the basic and applied problems of these flow types, two-phase parallel flow is the one that two immiscible fluids flow in the vicinity of each other. In this type of flow, fluid properties (e.g. density, viscosity, and temperature) are different at the two sides of the interface of the two fluids. The most challenging part of the numerical simulation of two-phase flow is to determine the location of interface accurately. In the present work, a coupled interface tracking algorithm is developed based on Arbitrary Lagrangian-Eulerian (ALE) approach using a cell-centered, pressure-based, coupled solver. To validate this algorithm, an analytical solution for fully developed two-phase flow in presence of gravity is derived, and then, the results of the numerical simulation of this flow are compared with analytical solution at various flow conditions. The results of the simulations show good accuracy of the algorithm despite using a nearly coarse and uniform grid. Temporal variations of interface profile toward the steady-state solution show that a greater difference between fluids properties (especially dynamic viscosity) will result in larger traveling waves. Gravity effect studies also show that favorable gravity will result in a reduction of heavier fluid thickness and adverse gravity leads to increasing it with respect to the zero gravity condition. However, the magnitude of variation in favorable gravity is much more than adverse gravity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Coupled%20solver" title="Coupled solver">Coupled solver</a>, <a href="https://publications.waset.org/search?q=gravitational%20force" title=" gravitational force"> gravitational force</a>, <a href="https://publications.waset.org/search?q=interface%20tracking" title=" interface tracking"> interface tracking</a>, <a href="https://publications.waset.org/search?q=Reynolds%20number%20to%20Froude%20number" title=" Reynolds number to Froude number"> Reynolds number to Froude number</a>, <a href="https://publications.waset.org/search?q=two-phase%20flow." title=" two-phase flow. "> two-phase flow. </a> </p> <a href="https://publications.waset.org/10007759/a-two-phase-flow-interface-tracking-algorithm-using-a-fully-coupled-pressure-based-finite-volume-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007759/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007759/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007759/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007759/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007759/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007759/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007759/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007759/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007759/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007759/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1013</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2869</span> Study of Temperature Distribution in Coolant Channel of Nuclear Power with Fuel Cylinder Element Using Fluent Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Elham%20Zamiri">Elham Zamiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, we have focused on numeral simulation of a fuel rod in order to examine distribution of heat temperature in components of fuel rod by Fluent software by providing steady state, single phase fluid flow, frequency heat flux in a fuel rod in nuclear reactor to numeral simulation. Results of examining different layers of a fuel rod consist of fuel layer, gap, pod, and fluid cooling flow, also examining thermal properties and fluids such as heat transition rate and pressure drop. The obtained results through analytical method and results of other sources have been compared and have appropriate correspondence. Results show that using heavy water as cooling fluid along with few layers of gas and pod have the ability of reducing the temperature from above 300 <sup>◦</sup>C to 70 <sup>◦</sup>C. This investigation is developable for any geometry and material used in the nuclear reactor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nuclear%20fuel%20fission" title="Nuclear fuel fission">Nuclear fuel fission</a>, <a href="https://publications.waset.org/search?q=numberal%20simulation" title=" numberal simulation"> numberal simulation</a>, <a href="https://publications.waset.org/search?q=fuel%20rod" title=" fuel rod"> fuel rod</a>, <a href="https://publications.waset.org/search?q=reactor" title=" reactor"> reactor</a>, <a href="https://publications.waset.org/search?q=fluent%20software." title=" fluent software."> fluent software.</a> </p> <a href="https://publications.waset.org/10010576/study-of-temperature-distribution-in-coolant-channel-of-nuclear-power-with-fuel-cylinder-element-using-fluent-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010576/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010576/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010576/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010576/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010576/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010576/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010576/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010576/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010576/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010576/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">714</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2868</span> Unsteady Laminar Boundary Layer Forced Flow in the Region of the Stagnation Point on a Stretching Flat Sheet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20T.%20Eswara">A. T. Eswara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper analyses the unsteady, two-dimensional stagnation point flow of an incompressible viscous fluid over a flat sheet when the flow is started impulsively from rest and at the same time, the sheet is suddenly stretched in its own plane with a velocity proportional to the distance from the stagnation point. The partial differential equations governing the laminar boundary layer forced convection flow are non-dimensionalised using semi-similar transformations and then solved numerically using an implicit finitedifference scheme known as the Keller-box method. Results pertaining to the flow and heat transfer characteristics are computed for all dimensionless time, uniformly valid in the whole spatial region without any numerical difficulties. Analytical solutions are also obtained for both small and large times, respectively representing the initial unsteady and final steady state flow and heat transfer. Numerical results indicate that the velocity ratio parameter is found to have a significant effect on skin friction and heat transfer rate at the surface. Furthermore, it is exposed that there is a smooth transition from the initial unsteady state flow (small time solution) to the final steady state (large time solution). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Forced%20flow" title="Forced flow">Forced flow</a>, <a href="https://publications.waset.org/search?q=Keller-box%20method" title=" Keller-box method"> Keller-box method</a>, <a href="https://publications.waset.org/search?q=Stagnation%20point" title=" Stagnation point"> Stagnation point</a>, <a href="https://publications.waset.org/search?q=Stretching%20flat%20sheet" title=" Stretching flat sheet"> Stretching flat sheet</a>, <a href="https://publications.waset.org/search?q=Unsteady%20laminar%20boundary%20layer" title=" Unsteady laminar boundary layer"> Unsteady laminar boundary layer</a>, <a href="https://publications.waset.org/search?q=Velocity%20ratio%20parameter." title=" Velocity ratio parameter."> Velocity ratio parameter.</a> </p> <a href="https://publications.waset.org/8319/unsteady-laminar-boundary-layer-forced-flow-in-the-region-of-the-stagnation-point-on-a-stretching-flat-sheet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8319/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8319/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8319/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8319/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8319/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8319/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8319/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8319/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8319/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8319/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1695</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Steady%20flow%3B%20Walter%27s%20B%27%20Fluid%3B&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Steady%20flow%3B%20Walter%27s%20B%27%20Fluid%3B&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Steady%20flow%3B%20Walter%27s%20B%27%20Fluid%3B&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Steady%20flow%3B%20Walter%27s%20B%27%20Fluid%3B&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Steady%20flow%3B%20Walter%27s%20B%27%20Fluid%3B&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Steady%20flow%3B%20Walter%27s%20B%27%20Fluid%3B&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Steady%20flow%3B%20Walter%27s%20B%27%20Fluid%3B&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Steady%20flow%3B%20Walter%27s%20B%27%20Fluid%3B&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Steady%20flow%3B%20Walter%27s%20B%27%20Fluid%3B&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Steady%20flow%3B%20Walter%27s%20B%27%20Fluid%3B&page=96">96</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Steady%20flow%3B%20Walter%27s%20B%27%20Fluid%3B&page=97">97</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Steady%20flow%3B%20Walter%27s%20B%27%20Fluid%3B&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>