CINXE.COM
Search results for: energy demand
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: energy demand</title> <meta name="description" content="Search results for: energy demand"> <meta name="keywords" content="energy demand"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="energy demand" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="energy demand"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10792</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: energy demand</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10792</span> Energy Policy and Interactions with Politics and Economics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Beril%20Tugrul">A. Beril Tugrul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Demand on production and thereby the global need of energy is growing continuously. Each country has different trends on energy demand and supply according to their geopolitical and geographical locations, underground reserves, weather conditions and level of industrialization. Conventional energy resources such as oil, gas and coal –in other words fossil resources- remain dominant on primary energy supply in spite of causing of environmental problems. Energy supply and demand securities are essential within the energy importing and exporting countries. This concept affected all sectors, but especially impressed on political aspects of the countries and also global economic views. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20policy" title="energy policy">energy policy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20economics" title=" energy economics"> energy economics</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20strategy" title=" energy strategy"> energy strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20trends" title=" global trends"> global trends</a>, <a href="https://publications.waset.org/abstracts/search?q=petro-dollar%20recycling" title=" petro-dollar recycling"> petro-dollar recycling</a> </p> <a href="https://publications.waset.org/abstracts/15596/energy-policy-and-interactions-with-politics-and-economics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10791</span> Energy Planning Analysis of an Agritourism Complex Based on Energy Demand Simulation: A Case Study of Wuxi Yangshan Agritourism Complex</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Zhu">Li Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Binghua%20Wang"> Binghua Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Sun"> Yong Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> China is experiencing the rural development process, with the agritourism complex becoming one of the significant modes. Therefore, it is imperative to understand the energy performance of agritourism complex. This study focuses on a typical case of the agritourism complex and simulates the energy consumption performance on condition of the regular energy system. It was found that HVAC took 90% of the whole energy demand range. In order to optimize the energy supply structure, the hierarchical analysis was carried out on the level of architecture with three main factors such as construction situation, building types and energy demand types. Finally, the energy planning suggestion of the agritourism complex was put forward and the relevant results were obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agritourism%20complex" title="agritourism complex">agritourism complex</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20planning" title=" energy planning"> energy planning</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20demand%20simulation" title=" energy demand simulation"> energy demand simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20structure%20model" title=" hierarchical structure model"> hierarchical structure model</a> </p> <a href="https://publications.waset.org/abstracts/103773/energy-planning-analysis-of-an-agritourism-complex-based-on-energy-demand-simulation-a-case-study-of-wuxi-yangshan-agritourism-complex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10790</span> Meeting India's Energy Demand: U.S.-India Energy Cooperation under Trump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merieleen%20Engtipi">Merieleen Engtipi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India's total share of global population is nearly 18%; however, its per capita energy consumption is only one-third of global average. The demand and supply of electricity are uneven in the country; around 240 million of the population have no access to electricity. However, with India's trajectory for modernisation and economic growth, the demand for energy is only expected to increase. India is at a crossroad, on the one hand facing the increasing demand for energy and on the other hand meeting the Paris climate policy commitments, and further the struggle to provide efficient energy. This paper analyses the policies to meet India’s need for energy, as the per capita energy consumption is likely to be double in 6-7 years period. Simultaneously, India's Paris commitment requires curbing of carbon emission from fossil fuels. There is an increasing need for renewables to be cheaply and efficiently available in the market and for clean technology to extract fossil fuels to meet climate policy goals. Fossil fuels are the most significant generator of energy in India; with the Paris agreement, the demand for clean energy technology is increasing. Finally, the U.S. decided to withdraw from the Paris Agreement; however, the two countries plan to continue engaging bilaterally on energy issues. The U.S. energy cooperation under Trump administration is significantly vital for greater energy security, transfer of technology and efficiency in energy supply and demand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20demand" title="energy demand">energy demand</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20cooperation" title=" energy cooperation"> energy cooperation</a>, <a href="https://publications.waset.org/abstracts/search?q=fossil%20fuels" title=" fossil fuels"> fossil fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20transfer" title=" technology transfer"> technology transfer</a> </p> <a href="https://publications.waset.org/abstracts/93325/meeting-indias-energy-demand-us-india-energy-cooperation-under-trump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10789</span> Evaluating the Nexus between Energy Demand and Economic Growth Using the VECM Approach: Case Study of Nigeria, China, and the United States</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rita%20U.%20Onolemhemhen">Rita U. Onolemhemhen</a>, <a href="https://publications.waset.org/abstracts/search?q=Saheed%20L.%20Bello"> Saheed L. Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=Akin%20P.%20Iwayemi"> Akin P. Iwayemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effectiveness of energy demand policy depends on identifying the key drivers of energy demand both in the short-run and the long-run. This paper examines the influence of regional differences on the link between energy demand and other explanatory variables for Nigeria, China and USA using the Vector Error Correction Model (VECM) approach. This study employed annual time series data on energy consumption (ED), real gross domestic product (GDP) per capita (RGDP), real energy prices (P) and urbanization (N) for a thirty-six-year sample period. The utilized time-series data are sourced from World Bank’s World Development Indicators (WDI, 2016) and US Energy Information Administration (EIA). Results from the study, shows that all the independent variables (income, urbanization, and price) substantially affect the long-run energy consumption in Nigeria, USA and China, whereas, income has no significant effect on short-run energy demand in USA and Nigeria. In addition, the long-run effect of urbanization is relatively stronger in China. Urbanization is a key factor in energy demand, it therefore recommended that more attention should be given to the development of rural communities to reduce the inflow of migrants into urban communities which causes the increase in energy demand and energy excesses should be penalized while energy management should be incentivized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic%20growth" title="economic growth">economic growth</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20demand" title=" energy demand"> energy demand</a>, <a href="https://publications.waset.org/abstracts/search?q=income" title=" income"> income</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20GDP" title=" real GDP"> real GDP</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a>, <a href="https://publications.waset.org/abstracts/search?q=VECM" title=" VECM"> VECM</a> </p> <a href="https://publications.waset.org/abstracts/73602/evaluating-the-nexus-between-energy-demand-and-economic-growth-using-the-vecm-approach-case-study-of-nigeria-china-and-the-united-states" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10788</span> Energy Analysis of Seasonal Air Conditioning Demand of All Income Classes Using Bottom up Model in Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Arif">Saba Arif</a>, <a href="https://publications.waset.org/abstracts/search?q=Anam%20Nadeem"> Anam Nadeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Roman%20Kalvin"> Roman Kalvin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanzeel%20Rashid"> Tanzeel Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Burhan%20Ali"> Burhan Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Juntakan%20Taweekun"> Juntakan Taweekun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the energy crisis is taking serious attention. Globally, industries and building are major share takers of energy. 72% of total global energy is consumed by residential houses, markets, and commercial building. Additionally, in appliances air conditioners are major consumer of electricity; about 60% energy is used for cooling purpose in houses due to HVAC units. Energy demand will aid in determining what changes will be needed whether it is the estimation of the required energy for households or instituting conservation measures. Bottom-up model is one of the most famous methods for forecasting. In current research bottom-up model of air conditioners' energy consumption in all income classes in comparison with seasonal variation and hourly consumption is calculated. By comparison of energy consumption of all income classes by usage of air conditioners, total consumption of actual demand and current availability can be seen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning" title="air conditioning">air conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=bottom%20up%20model" title=" bottom up model"> bottom up model</a>, <a href="https://publications.waset.org/abstracts/search?q=income%20classes" title=" income classes"> income classes</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20demand" title=" energy demand"> energy demand</a> </p> <a href="https://publications.waset.org/abstracts/83887/energy-analysis-of-seasonal-air-conditioning-demand-of-all-income-classes-using-bottom-up-model-in-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10787</span> An Integration of Genetic Algorithm and Particle Swarm Optimization to Forecast Transport Energy Demand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20R.%20Badurally%20Adam">N. R. Badurally Adam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Monebhurrun"> S. R. Monebhurrun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Dauhoo"> M. Z. Dauhoo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khoodaruth"> A. Khoodaruth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transport energy demand is vital for the economic growth of any country. Globalisation and better standard of living plays an important role in transport energy demand. Recently, transport energy demand in Mauritius has increased significantly, thus leading to an abuse of natural resources and thereby contributing to global warming. Forecasting the transport energy demand is therefore important for controlling and managing the demand. In this paper, we develop a model to predict the transport energy demand. The model developed is based on a system of five stochastic differential equations (SDEs) consisting of five endogenous variables: fuel price, population, gross domestic product (GDP), number of vehicles and transport energy demand and three exogenous parameters: crude birth rate, crude death rate and labour force. An interval of seven years is used to avoid any falsification of result since Mauritius is a developing country. Data available for Mauritius from year 2003 up to 2009 are used to obtain the values of design variables by applying genetic algorithm. The model is verified and validated for 2010 to 2012 by substituting the values of coefficients obtained by GA in the model and using particle swarm optimisation (PSO) to predict the values of the exogenous parameters. This model will help to control the transport energy demand in Mauritius which will in turn foster Mauritius towards a pollution-free country and decrease our dependence on fossil fuels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20differential%20equations" title=" stochastic differential equations"> stochastic differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20energy%20demand" title="transport energy demand">transport energy demand</a> </p> <a href="https://publications.waset.org/abstracts/41078/an-integration-of-genetic-algorithm-and-particle-swarm-optimization-to-forecast-transport-energy-demand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10786</span> Illuminating the Policies Affecting Energy Security in Malaysia’s Electricity Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Ali%20Bekhet">Hussain Ali Bekhet</a>, <a href="https://publications.waset.org/abstracts/search?q=Endang%20Jati%20Mat%20Sahid"> Endang Jati Mat Sahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the past few decades, the Malaysian economy has expanded at an impressive pace, whilst, the Malaysian population has registered a relatively high growth rate. These factors had driven the growth of final energy demand. The ballooning energy demand coupled with the country’s limited indigenous energy resources have resulted in an increased of the country’s net import. Therefore, acknowledging the precarious position of the country’s energy self-sufficiency, this study has identified three main concerns regarding energy security, namely; over-dependence on fossil fuel, increasing energy import dependency, and increasing energy consumption per capita. This paper discusses the recent energy demand and supply trends, highlights the policies that are affecting energy security in Malaysia and suggests strategic options towards achieving energy security. The paper suggested that diversifying energy sources, reducing carbon content of energy, efficient utilization of energy and facilitating low-carbon industries could further enhance the effectiveness of the measures as the introduction of policies and initiatives will be more holistic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electricity" title="electricity">electricity</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20policy" title=" energy policy"> energy policy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20security" title=" energy security"> energy security</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/46632/illuminating-the-policies-affecting-energy-security-in-malaysias-electricity-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10785</span> The Rebound Effect of Energy Efficiency in Residential Energy Demand: Case of Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Aldubyan">Mohammad Aldubyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Fateh%20Belaid"> Fateh Belaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Anwar%20Gasim"> Anwar Gasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims at linking to link residential energy efficiency to the rebound effect concept, a well-known behavioral phenomenon in which service consumption increases when consumers notice a reduction in monetary spending on energy due to improvements in energy efficiency. It provides insights on into how and why the rebound effect happens when energy efficiency improves and whether this phenomenon is positive or negative. It also shows one technique to estimate the rebound effect on the national residential level. The paper starts with a bird’s eye view of the rebound effect and then dives in in-depth into measuring the rebound effect and evaluating its impact. Finally, the paper estimates the rebound effect in the Saudi residential sector through by linking pre-estimated price elasticities of demand to the Saudi residential building stock. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=rebound%20effect" title=" rebound effect"> rebound effect</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20electricity%20demand" title=" residential electricity demand"> residential electricity demand</a> </p> <a href="https://publications.waset.org/abstracts/158063/the-rebound-effect-of-energy-efficiency-in-residential-energy-demand-case-of-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10784</span> Hybrid Wavelet-Adaptive Neuro-Fuzzy Inference System Model for a Greenhouse Energy Demand Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azzedine%20Hamza">Azzedine Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=Chouaib%20Chakour"> Chouaib Chakour</a>, <a href="https://publications.waset.org/abstracts/search?q=Messaoud%20Ramdani"> Messaoud Ramdani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy demand prediction plays a crucial role in achieving next-generation power systems for agricultural greenhouses. As a result, high prediction quality is required for efficient smart grid management and therefore low-cost energy consumption. The aim of this paper is to investigate the effectiveness of a hybrid data-driven model in day-ahead energy demand prediction. The proposed model consists of Discrete Wavelet Transform (DWT), and Adaptive Neuro-Fuzzy Inference System (ANFIS). The DWT is employed to decompose the original signal in a set of subseries and then an ANFIS is used to generate the forecast for each subseries. The proposed hybrid method (DWT-ANFIS) was evaluated using a greenhouse energy demand data for a week and compared with ANFIS. The performances of the different models were evaluated by comparing the corresponding values of Mean Absolute Percentage Error (MAPE). It was demonstrated that discret wavelet transform can improve agricultural greenhouse energy demand modeling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wavelet%20transform" title="wavelet transform">wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=ANFIS" title=" ANFIS"> ANFIS</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption%20prediction" title=" energy consumption prediction"> energy consumption prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse" title=" greenhouse"> greenhouse</a> </p> <a href="https://publications.waset.org/abstracts/163632/hybrid-wavelet-adaptive-neuro-fuzzy-inference-system-model-for-a-greenhouse-energy-demand-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10783</span> Urban Energy Demand Modelling: Spatial Analysis Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hung-Chu%20Chen">Hung-Chu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Qi"> Han Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bauke%20de%20Vries"> Bauke de Vries</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy consumption in the urban environment has attracted numerous researches in recent decades. However, it is comparatively rare to find literary works which investigated 3D spatial analysis of urban energy demand modelling. In order to analyze the spatial correlation between urban morphology and energy demand comprehensively, this paper investigates their relation by using the spatial regression tool. In addition, the spatial regression tool which is applied in this paper is ordinary least squares regression (OLS) and geographically weighted regression (GWR) model. Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), and building volume are explainers of urban morphology, which act as independent variables of Energy-land use (E-L) model. NDBI and NDVI are used as the index to describe five types of land use: urban area (U), open space (O), artificial green area (G), natural green area (V), and water body (W). Accordingly, annual electricity, gas demand and energy demand are dependent variables of the E-L model. Based on the analytical result of E-L model relation, it revealed that energy demand and urban morphology are closely connected and the possible causes and practical use are discussed. Besides, the spatial analysis methods of OLS and GWR are compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20demand%20model" title="energy demand model">energy demand model</a>, <a href="https://publications.waset.org/abstracts/search?q=geographically%20weighted%20regression" title=" geographically weighted regression"> geographically weighted regression</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20difference%20built-up%20index" title=" normalized difference built-up index"> normalized difference built-up index</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20difference%20vegetation%20index" title=" normalized difference vegetation index"> normalized difference vegetation index</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20statistics" title=" spatial statistics"> spatial statistics</a> </p> <a href="https://publications.waset.org/abstracts/101697/urban-energy-demand-modelling-spatial-analysis-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10782</span> Application of PV/Wind-Based Green Energy to Power Cellular Base Station</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francis%20Okodede">Francis Okodede</a>, <a href="https://publications.waset.org/abstracts/search?q=Edafe%20Lucky%20Okotie"> Edafe Lucky Okotie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional energy sources based on oil, coal, and natural gas has posed a trait to environment and to human health. Green energy stands as an alternative because it has proved to be eco-friendly. The prospective of renewable energy sources are quite vast as they can, in principle, meet many times the world’s energy demand. Renewable energy sources, such as wind and solar, can provide sustainable energy services based on the use of routinely available indigenous resources. New renewable energy sources (solar energy, wind energy, and modern bio-energy) are currently contributing immensely to global energy demand. A number of studies have shown the potential and contribution of renewable energy to global energy supplies, indicating that in the second half of the 21st century, it is going to be a major source and driver in the telecommunication sector. Green energy contribution might reach as much as 50 percent of global energy demands if the right policies are in place. This work suggests viable non-conventional means of energy supply to power a cellular base station. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20station" title="base station">base station</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20energy" title=" green energy"> green energy</a>, <a href="https://publications.waset.org/abstracts/search?q=rotor%20efficiency" title=" rotor efficiency"> rotor efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title=" wind energy"> wind energy</a> </p> <a href="https://publications.waset.org/abstracts/165681/application-of-pvwind-based-green-energy-to-power-cellular-base-station" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10781</span> Energy Intensity of a Historical Downtown: Estimating the Energy Demand of a Budapest District</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikt%C3%B3ria%20Sug%C3%A1r">Viktória Sugár</a>, <a href="https://publications.waset.org/abstracts/search?q=Attila%20Talamon"> Attila Talamon</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A1s%20Horkai"> András Horkai</a>, <a href="https://publications.waset.org/abstracts/search?q=Michihiro%20Kita"> Michihiro Kita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dense urban fabric of the 7<sup>th</sup> district of Budapest -known as the former Jewish Quarter-, contains mainly historical style, multi-story tenement houses with courtyards. The high population density and the unsatisfactory energetic state of the buildings result high energy consumption. As a preliminary survey of a complex rehabilitation plan, the authors aim to determine the energy demand of the area. The energy demand was calculated by analyzing the structure and the energy consumption of each building by using Geographic Information System (GIS) methods. The carbon dioxide emission was also calculated, to assess the potential of reducing the present state value by complex structural and energetic rehabilitation. As a main focus of the survey, an energy intensity map has been created about the area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82" title="CO₂">CO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20intensity%20map" title=" energy intensity map"> energy intensity map</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system%20%28GIS%29" title=" geographic information system (GIS)"> geographic information system (GIS)</a>, <a href="https://publications.waset.org/abstracts/search?q=Hungary" title=" Hungary"> Hungary</a>, <a href="https://publications.waset.org/abstracts/search?q=Jewish%20quarter" title=" Jewish quarter"> Jewish quarter</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a> </p> <a href="https://publications.waset.org/abstracts/63316/energy-intensity-of-a-historical-downtown-estimating-the-energy-demand-of-a-budapest-district" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10780</span> Probabilistic Model for Evaluating Seismic Soil Liquefaction Based on Energy Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Rostami">Hamid Rostami</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Fallah%20Yeznabad"> Ali Fallah Yeznabad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20H.%20Baziar"> Mohammad H. Baziar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The energy-based method for evaluating seismic soil liquefaction has two main sections. First is the demand energy, which is dissipated energy of earthquake at a site, and second is the capacity energy as a representation of soil resistance against liquefaction hazard. In this study, using a statistical analysis of recorded data by 14 down-hole array sites in California, an empirical equation was developed to estimate the demand energy at sites. Because determination of capacity energy at a site needs to calculate several site calibration factors, which are obtained by experimental tests, in this study the standard penetration test (SPT) N-value was assumed as an alternative to the capacity energy at a site. Based on this assumption, the empirical equation was employed to calculate the demand energy for 193 liquefied and no-liquefied sites and then these amounts were plotted versus the corresponding SPT numbers for all sites. Subsequently, a discrimination analysis was employed to determine the equations of several boundary curves for various liquefaction likelihoods. Finally, a comparison was made between the probabilistic model and the commonly used stress method. As a conclusion, the results clearly showed that energy-based method can be more reliable than conventional stress-based method in evaluation of liquefaction occurrence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20demand" title="energy demand">energy demand</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20analysis" title=" probabilistic analysis"> probabilistic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SPT%20number" title=" SPT number"> SPT number</a> </p> <a href="https://publications.waset.org/abstracts/37164/probabilistic-model-for-evaluating-seismic-soil-liquefaction-based-on-energy-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10779</span> Demand Response from Residential Air Conditioning Load Using a Programmable Communication Thermostat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saurabh%20Chanana">Saurabh Chanana</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Arora"> Monika Arora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Demand response is getting increased attention these days due to the increase in electricity demand and introduction of renewable resources in the existing power grid. Traditionally demand response programs involve large industrial consumers but with technological advancement, demand response is being implemented for small residential and commercial consumers also. In this paper, demand response program aims to reduce the peak demand as well as overall energy consumption of the residential customers. Air conditioners are the major reason of peak load in residential sector in summer, so a dynamic model of air conditioning load with thermostat action has been considered for applying demand response programs. A programmable communicating thermostat (PCT) is a device that uses real time pricing (RTP) signals to control the thermostat setting. A new model incorporating PCT in air conditioning load has been proposed in this paper. Results show that introduction of PCT in air conditioner is useful in reducing the electricity payments of customers as well as reducing the peak demand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demand%20response" title="demand response">demand response</a>, <a href="https://publications.waset.org/abstracts/search?q=home%20energy%20management" title=" home energy management"> home energy management</a>, <a href="https://publications.waset.org/abstracts/search?q=programmable%20communicating%20thermostat" title=" programmable communicating thermostat"> programmable communicating thermostat</a>, <a href="https://publications.waset.org/abstracts/search?q=thermostatically%20controlled%20appliances" title=" thermostatically controlled appliances"> thermostatically controlled appliances</a> </p> <a href="https://publications.waset.org/abstracts/1662/demand-response-from-residential-air-conditioning-load-using-a-programmable-communication-thermostat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">607</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10778</span> Renewable Energy and Energy Security in Malaysia: A Quantitative Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Endang%20Jati%20Mat%20Sahid">Endang Jati Mat Sahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Ali%20Bekhet"> Hussain Ali Bekhet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Robust economic growth, increasing population, and personal consumption are the main drivers for the rapid increase of energy demand in Malaysia. Increasing demand has compounded the issue of national energy security due to over-dependence on fossil fuel, depleting indigenous domestic conventional energy resources which in turns has increased the country’s energy import dependence. In order to improve its energy security, Malaysia has seriously embarked on a renewable energy journey. Many initiatives on renewable energy have been introduced in the past decade. These strategies have resulted in the exploding growth of renewable energy deployment in Malaysia. Therefore, this study investigated the impact of renewable energy deployment on energy security. Secondary data was used to calculate the energy security indicators. The study also compared the results of applying different energy security indicators namely availability, applicability, affordability and acceptability dimension of energy resources. The evaluation shows that Malaysia will experience slight improvement in availability and acceptability dimension of energy security. This study suggests that energy security level could be further enhanced by efficient utilization of energy, reducing carbon content of energy and facilitating low-carbon industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20policy" title="energy policy">energy policy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20security" title=" energy security"> energy security</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/99585/renewable-energy-and-energy-security-in-malaysia-a-quantitative-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10777</span> Woodfuels as Alternative Source of Energy in Rural and Urban Areas in the Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20T.%20Aggangan">R. T. Aggangan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Woodfuels continue to be a major component of the energy supply mix of the Philippines due to increasing demand for energy that are not adequately met by decreasing supply and increasing prices of fuel oil such as liquefied petroleum gas (LPG) and kerosene. The Development Academy of the Philippines projects the demand of woodfuels in 2016 as 28.3 million metric tons in the household sector and about 105.4 million metric tons combined supply potentials of both forest and non-forest lands. However, the Revised Master Plan for Forestry Development projects a demand of about 50 million cu meters of fuelwood in 2016 but the capability to supply from local sources is only about 28 million cu meters indicating a 44 % deficiency. Household demand constitutes 82% while industries demand is 18%. Domestic household demand for energy is for cooking needs while the industrial demand is for steam power generation, curing barns of tobacco: brick, ceramics and pot making; bakery; lime production; and small scale food processing. Factors that favour increased use of wood-based energy include the relatively low prices (increasing oil-based fuel prices), availability of efficient wood-based energy utilization technology, increasing supply, and increasing population that cannot afford conventional fuels. Moreover, innovations in combustion technology and cogeneration of heat and power from biomass for modern applications favour biomass energy development. This paper recommends policies and strategic directions for the development of the woodfuel industry with the twin goals of sustainably supplying the energy requirements of households and industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20energy%20development" title="biomass energy development">biomass energy development</a>, <a href="https://publications.waset.org/abstracts/search?q=fuelwood" title=" fuelwood"> fuelwood</a>, <a href="https://publications.waset.org/abstracts/search?q=households%20and%20industry" title=" households and industry"> households and industry</a>, <a href="https://publications.waset.org/abstracts/search?q=innovations%20in%20combustion%20technology" title=" innovations in combustion technology"> innovations in combustion technology</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20and%20demand" title=" supply and demand"> supply and demand</a> </p> <a href="https://publications.waset.org/abstracts/44310/woodfuels-as-alternative-source-of-energy-in-rural-and-urban-areas-in-the-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10776</span> Designing Ecologically and Economically Optimal Electric Vehicle Charging Stations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ghiassi-Farrokhfal">Y. Ghiassi-Farrokhfal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The number of electric vehicles (EVs) is increasing worldwide. Replacing gas fueled cars with EVs reduces carbon emission. However, the extensive energy consumption of EVs stresses the energy systems, requiring non-green sources of energy (such as gas turbines) to compensate for the new energy demand caused by EVs in the energy systems. To make EVs even a greener solution for the future energy systems, new EV charging stations are equipped with solar PV panels and batteries. This will help serve the energy demand of EVs through the green energy of solar panels. To ensure energy availability, solar panels are combined with batteries. The energy surplus at any point is stored in batteries and is used when there is not enough solar energy to serve the demand. While EV charging stations equipped with solar panels and batteries are green and ecologically optimal, they might not be financially viable solutions, due to battery prices. To make the system viable, we should size the battery economically and operate the system optimally. This is, in general, a challenging problem because of the stochastic nature of the EV arrivals at the charging station, the available solar energy, and the battery operating system. In this work, we provide a mathematical model for this problem and we compute the return on investment (ROI) of such a system, which is designed to be ecologically and financially optimal. We also quantify the minimum required investment in terms of battery and solar panels along with the operating strategy to ensure that a charging station has enough energy to serve its EV demand at any time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20storage" title=" battery storage"> battery storage</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=charging%20stations" title=" charging stations"> charging stations</a> </p> <a href="https://publications.waset.org/abstracts/70149/designing-ecologically-and-economically-optimal-electric-vehicle-charging-stations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10775</span> Oil Demand Forecasting in China: A Structural Time Series Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tehreem%20Fatima">Tehreem Fatima</a>, <a href="https://publications.waset.org/abstracts/search?q=Enjun%20Xia"> Enjun Xia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research investigates the relationship between total oil consumption and transport oil consumption, GDP, oil price, and oil reserve in order to forecast future oil demand in China. Annual time series data is used over the period of 1980 to 2015, and for this purpose, an oil demand function is estimated by applying structural time series model (STSM). The technique also uncovers the Underline energy demand trend (UEDT) for China oil demand and GDP, oil reserve, oil price and UEDT are considering important drivers of China oil demand. The long-run elasticity of total oil consumption with respect to GDP and price are (0.5, -0.04) respectively while GDP, oil reserve, and price remain (0.17; 0.23; -0.05) respectively. Moreover, the Estimated results of long-run elasticity of transport oil consumption with respect to GDP and price are (0.5, -0.00) respectively long-run estimates remain (0.28; 37.76;-37.8) for GDP, oil reserve, and price respectively. For both model estimated underline energy demand trend (UEDT) remains nonlinear and stochastic and with an increasing trend of (UEDT) and based on estimated equations, it is predicted that China total oil demand somewhere will be 9.9 thousand barrel per day by 2025 as compare to 9.4 thousand barrel per day in 2015, while transport oil demand predicting value is 9.0 thousand barrel per day by 2020 as compare to 8.8 thousand barrel per day in 2015. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=china" title="china">china</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20time%20series%20model%20%28STSM%29" title=" structural time series model (STSM)"> structural time series model (STSM)</a>, <a href="https://publications.waset.org/abstracts/search?q=underline%20energy%20demand%20trend%20%28UEDT%29" title=" underline energy demand trend (UEDT)"> underline energy demand trend (UEDT)</a> </p> <a href="https://publications.waset.org/abstracts/71417/oil-demand-forecasting-in-china-a-structural-time-series-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10774</span> Optimization of Energy Consumption with Various Design Parameters on Office Buildings in Chinese Severe Cold Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuang%20Guo">Yuang Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dewancker%20Bart"> Dewancker Bart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primary energy consumption of buildings throughout China was approximately 814 million tons of coal equivalents in 2014, which accounts for 19.12% of China's total primary energy consumption. Also, the energy consumption of public buildings takes a bigger share than urban residential buildings and rural residential buildings among the total energy consumption. To improve the level of energy demand, various design parameters were chosen. Meanwhile, a series of simulations by Energy Plus (EP-Launch) is performed using a base case model established in Open Studio. Through the results, 16%-23% of total energy demand reductions can be found in the severe cold zone of China, and it can also provide a reference for the architectural design of other similar climate zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title="energy consumption">energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20parameters" title=" design parameters"> design parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20thermal%20comfort" title=" indoor thermal comfort"> indoor thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20study" title=" simulation study"> simulation study</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20cold%20climate%20zone" title=" severe cold climate zone"> severe cold climate zone</a> </p> <a href="https://publications.waset.org/abstracts/115217/optimization-of-energy-consumption-with-various-design-parameters-on-office-buildings-in-chinese-severe-cold-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10773</span> Analyzing Electricity Demand Multipliers in the Malaysian Economy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Ali%20Bekhet">Hussain Ali Bekhet</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuan%20Ab%20Rashid%20Bin%20Tuan%20Abdullah"> Tuan Ab Rashid Bin Tuan Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahira%20Yasmin"> Tahira Yasmin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is very important for electric utility to determine dominant sectors which have more impacts on electricity consumption in national economy system. The aim of this paper is to examine the electricity demand multipliers in Malaysia for (2005-2014) period. Malaysian Input-output tables, 2005 and 2010 are used. Besides, a new concept, electricity demand multiplier (EDM), is presented to identify key sectors imposing great impacts on electricity demand quantitatively. In order to testify the effectiveness of the Malaysian energy policies, it notes that there is fluctuation of the ranking sectors between 2005 and 2010. This could be reflected that there is efficiency with pace of development in Malaysia. This can be good indication for decision makers for designing future energy policies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=input-output%20model" title="input-output model">input-output model</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20multipliers" title=" demand multipliers"> demand multipliers</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity" title=" electricity"> electricity</a>, <a href="https://publications.waset.org/abstracts/search?q=key%20sectors" title=" key sectors"> key sectors</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/30016/analyzing-electricity-demand-multipliers-in-the-malaysian-economy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10772</span> Dynamic Control Theory: A Behavioral Modeling Approach to Demand Forecasting amongst Office Workers Engaged in a Competition on Energy Shifting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akaash%20Tawade">Akaash Tawade</a>, <a href="https://publications.waset.org/abstracts/search?q=Manan%20Khattar"> Manan Khattar</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucas%20Spangher"> Lucas Spangher</a>, <a href="https://publications.waset.org/abstracts/search?q=Costas%20J.%20Spanos"> Costas J. Spanos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many grids are increasing the share of renewable energy in their generation mix, which is causing the energy generation to become less controllable. Buildings, which consume nearly 33% of all energy, are a key target for demand response: i.e., mechanisms for demand to meet supply. Understanding the behavior of office workers is a start towards developing demand response for one sector of building technology. The literature notes that dynamic computational modeling can be predictive of individual action, especially given that occupant behavior is traditionally abstracted from demand forecasting. Recent work founded on Social Cognitive Theory (SCT) has provided a promising conceptual basis for modeling behavior, personal states, and environment using control theoretic principles. Here, an adapted linear dynamical system of latent states and exogenous inputs is proposed to simulate energy demand amongst office workers engaged in a social energy shifting game. The energy shifting competition is implemented in an office in Singapore that is connected to a minigrid of buildings with a consistent 'price signal.' This signal is translated into a 'points signal' by a reinforcement learning (RL) algorithm to influence participant energy use. The dynamic model functions at the intersection of the points signals, baseline energy consumption trends, and SCT behavioral inputs to simulate future outcomes. This study endeavors to analyze how the dynamic model trains an RL agent and, subsequently, the degree of accuracy to which load deferability can be simulated. The results offer a generalizable behavioral model for energy competitions that provides the framework for further research on transfer learning for RL, and more broadly— transactive control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20demand%20forecasting" title="energy demand forecasting">energy demand forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20cognitive%20behavioral%20modeling" title=" social cognitive behavioral modeling"> social cognitive behavioral modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20game" title=" social game"> social game</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20learning" title=" transfer learning"> transfer learning</a> </p> <a href="https://publications.waset.org/abstracts/126076/dynamic-control-theory-a-behavioral-modeling-approach-to-demand-forecasting-amongst-office-workers-engaged-in-a-competition-on-energy-shifting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10771</span> Hybrid Renewable Energy System Development Towards Autonomous Operation: The Deployment Potential in Greece</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afroditi%20Zamanidou">Afroditi Zamanidou</a>, <a href="https://publications.waset.org/abstracts/search?q=Dionysios%20Giannakopoulos"> Dionysios Giannakopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Manolitsis"> Konstantinos Manolitsis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A notable amount of electrical energy demand in many countries worldwide is used to cover public energy demand for road, square and other public spaces’ lighting. Renewable energy can contribute in a significant way to the electrical energy demand coverage for public lighting. This paper focuses on the sizing and design of a hybrid energy system (HES) exploiting the solar-wind energy potential to meet the electrical energy needs of lighting roads, squares and other public spaces. Moreover, the proposed HES provides coverage of the electrical energy demand for a Wi-Fi hotspot and a charging hotspot for the end-users. Alongside the sizing of the energy production system of the proposed HES, in order to ensure a reliable supply without interruptions, a storage system is added and sized. Multiple scenarios of energy consumption are assumed and applied in order to optimize the sizing of the energy production system and the energy storage system. A database with meteorological prediction data for 51 areas in Greece is developed in order to assess the possible deployment of the proposed HES. Since there are detailed meteorological prediction data for all 51 areas under investigation, the use of these data is evaluated, comparing them to real meteorological data. The meteorological prediction data are exploited to form three hourly production profiles for each area for every month of the year; minimum, average and maximum energy production. The energy production profiles are combined with the energy consumption scenarios and the sizing results of the energy production system and the energy storage system are extracted and presented for every area. Finally, the economic performance of the proposed HES in terms of Levelized cost of energy is estimated by calculating and assessing construction, operation and maintenance costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20production%20system%20sizing" title="energy production system sizing">energy production system sizing</a>, <a href="https://publications.waset.org/abstracts/search?q=Greece%E2%80%99s%20deployment%20potential" title=" Greece’s deployment potential"> Greece’s deployment potential</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20prediction%20data" title=" meteorological prediction data"> meteorological prediction data</a>, <a href="https://publications.waset.org/abstracts/search?q=wind-solar%20hybrid%20energy%20system" title=" wind-solar hybrid energy system"> wind-solar hybrid energy system</a>, <a href="https://publications.waset.org/abstracts/search?q=levelized%20cost%20of%20energy" title=" levelized cost of energy"> levelized cost of energy</a> </p> <a href="https://publications.waset.org/abstracts/143514/hybrid-renewable-energy-system-development-towards-autonomous-operation-the-deployment-potential-in-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10770</span> Evaluation of Energy Supply and Demand Side Management for Residential Buildings in Ekiti State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluwatosin%20Samuel%20Adeoye">Oluwatosin Samuel Adeoye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ekiti State is an agrarian state located in south western part of Nigeria. The injected power to the Ado-Ekiti and the entire state are 25MW and 37.6 MW respectively. The estimated power demand for Ado Ekiti and Ekiti state were 29.01MW and 224.116MW respectively. The distributed power to the consumers is characterized with shortcomings which include: in-adequate supply, poor voltage regulation, improper usage, illiteracy and wastage. The power generation in Nigeria is presently 1680.60MW which does not match the estimated power demand of 15,000MW with a population of over 170 million citizens. This paper evaluates the energy utilization in Ado Ekiti metropolis, the wastage and its economic implication as well as effective means of its management. The use of direct interviews, administration of questionnaires, measurements of current and voltage with clamp multimeter, and simple mathematical approach were used for the purpose of evaluation. Recommendations were made with the view of reducing energy waste from mean value of 10.84% to 2% in order to reduce the cost implication such that the huge financial waste can be injected to other parts of the economy as well as the management of energy in Ekiti state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consumers" title="consumers">consumers</a>, <a href="https://publications.waset.org/abstracts/search?q=demand" title=" demand"> demand</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20supply" title=" power supply"> power supply</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a> </p> <a href="https://publications.waset.org/abstracts/57498/evaluation-of-energy-supply-and-demand-side-management-for-residential-buildings-in-ekiti-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10769</span> A Method for Harvesting Atmospheric Lightning-Energy and Utilization of Extra Generated Power of Nuclear Power Plants during the Low Energy Demand Periods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akbar%20Rahmani%20Nejad">Akbar Rahmani Nejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Pejman%20Rahmani%20Nejad"> Pejman Rahmani Nejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Rahmani%20Nejad"> Ahmad Rahmani Nejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> we proposed the arresting of atmospheric lightning and passing the electrical current of lightning-bolts through underground water tanks to produce Hydrogen and restoring Hydrogen in reservoirs to be used later as clean and sustainable energy. It is proposed to implement this method for storage of extra electrical power (instead of lightning energy) during low energy demand periods to produce hydrogen as a clean energy source to store in big reservoirs and later generate electricity by burning the stored hydrogen at an appropriate time. This method prevents the complicated process of changing the output power of nuclear power plants. It is possible to pass an electric current through sodium chloride solution to produce chlorine and sodium or human waste to produce Methane, etc. however atmospheric lightning is an accidental phenomenon, but using this free energy just by connecting the output of lightning arresters to the output of power plant during low energy demand period which there is no significant change in the design of power plant or have no cost, can be considered completely an economical design <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20gas" title="hydrogen gas">hydrogen gas</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20energy" title=" lightning energy"> lightning energy</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20plant" title=" power plant"> power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=resistive%20element" title=" resistive element "> resistive element </a> </p> <a href="https://publications.waset.org/abstracts/129213/a-method-for-harvesting-atmospheric-lightning-energy-and-utilization-of-extra-generated-power-of-nuclear-power-plants-during-the-low-energy-demand-periods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10768</span> A New Smart Plug for Home Energy Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20E.%20Kiral">G. E. Kiral</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Elma"> O. Elma</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Ince"> A. T. Ince</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Vural"> B. Vural</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20S.%20Selamogullari"> U. S. Selamogullari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Uzunoglu"> M. Uzunoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy is an indispensable resource to meet the needs of people. Depending on the needs of people, the correct and efficient use of electrical energy has became important nowadays. Besides the need for the electrical energy is also increasing with the rapidly developing technology and continuously changing living standards. Due to the depletion of energy sources and increased demand for electricity, efficient energy use is an important research topic. Recently, ideas like smart cities, smart buildings and smart homes have been widely used under smart grid concept. With smart grid infrastructure, it will be possible to monitor electrical demand of a residential customer and control each electricity generation center for more efficient energy flow. The smallest component of the smart grid can be considered as smart homes. Better utilization of the electrical grid can be achieved through the communication of the smart home with both other customers in the grid and appliances in the house itself since generation can effectively be scheduled by having more precise demand data. Smart Plugs are used for the communication with the household appliances in the house. Smart Plug is an intermediate control element, which can be mounted on the existing outlet, and thus can be used to monitor the energy consumption of the plugged device and also can provide on/off control energy remotely. This study proposes a Smart Plug for energy monitoring and energy management. Proposed design is composed of five subsystems: micro controller embedded system with communication system, metering circuitry, power supply and switching circuitry. The developed smart plug offers efficient use of electrical energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=home%20energy%20management" title=" home energy management"> home energy management</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20home" title=" smart home"> smart home</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20plug" title=" smart plug"> smart plug</a> </p> <a href="https://publications.waset.org/abstracts/29829/a-new-smart-plug-for-home-energy-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">727</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10767</span> Unravelling Domestic Electricity Demand by Domestic Renewable Energy Supply: A Case Study in Yogyakarta and Central Java, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diyono%20Harun">Diyono Harun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indonesia aims to reduce carbon emissions from energy generation by reaching 23% and 31% of the national energy supply from renewable energy sources (RES) in 2025 and 2030. The potential for RES in Indonesia is enormous, but not all province has the same potential for RES. Yogyakarta, one of the most travel-destinated provinces in Indonesia, has less potential than its neighbour, Central Java. Consequently, Yogyakarta must meet its electricity demand by importing electricity from Central Java if this province only wants to use electricity from RES. Thus, achieving the objective is balancing the electricity supply between an importer (Yogyakarta) and an exporter province (Central Java). This research aims to explore the RES potential and the current capacity of RES for electricity generation in both provinces. The results show that the present capacity of RES meets the annual domestic electricity demand in both provinces only with an extension of the RES potential. The renewable energy mixes in this research also can lower CO2 emissions compared to gas-fired power plants. This research eventually provides insights into exploring and using the domestic RES potentials between two areas with different RES capacities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20mix" title="energy mix">energy mix</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20sources" title=" renewable energy sources"> renewable energy sources</a>, <a href="https://publications.waset.org/abstracts/search?q=domestic%20electricity" title=" domestic electricity"> domestic electricity</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20generation" title=" electricity generation"> electricity generation</a> </p> <a href="https://publications.waset.org/abstracts/162934/unravelling-domestic-electricity-demand-by-domestic-renewable-energy-supply-a-case-study-in-yogyakarta-and-central-java-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10766</span> Cross-Sectoral Energy Demand Prediction for Germany with a 100% Renewable Energy Production in 2050</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Hashemifarzad">Ali Hashemifarzad</a>, <a href="https://publications.waset.org/abstracts/search?q=Jens%20Zum%20Hingst"> Jens Zum Hingst</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The structure of the world’s energy systems has changed significantly over the past years. One of the most important challenges in the 21st century in Germany (and also worldwide) is the energy transition. This transition aims to comply with the recent international climate agreements from the United Nations Climate Change Conference (COP21) to ensure sustainable energy supply with minimal use of fossil fuels. Germany aims for complete decarbonization of the energy sector by 2050 according to the federal climate protection plan. One of the stipulations of the Renewable Energy Sources Act 2017 for the expansion of energy production from renewable sources in Germany is that they cover at least 80% of the electricity requirement in 2050; The Gross end energy consumption is targeted for at least 60%. This means that by 2050, the energy supply system would have to be almost completely converted to renewable energy. An essential basis for the development of such a sustainable energy supply from 100% renewable energies is to predict the energy requirement by 2050. This study presents two scenarios for the final energy demand in Germany in 2050. In the first scenario, the targets for energy efficiency increase and demand reduction are set very ambitiously. To build a comparison basis, the second scenario provides results with less ambitious assumptions. For this purpose, first, the relevant framework conditions (following CUTEC 2016) were examined, such as the predicted population development and economic growth, which were in the past a significant driver for the increase in energy demand. Also, the potential for energy demand reduction and efficiency increase (on the demand side) was investigated. In particular, current and future technological developments in energy consumption sectors and possible options for energy substitution (namely the electrification rate in the transport sector and the building renovation rate) were included. Here, in addition to the traditional electricity sector, the areas of heat, and fuel-based consumptions in different sectors such as households, commercial, industrial and transport are taken into account, supporting the idea that for a 100% supply from renewable energies, the areas currently based on (fossil) fuels must be almost completely be electricity-based by 2050. The results show that in the very ambitious scenario a final energy demand of 1,362 TWh/a is required, which is composed of 818 TWh/a electricity, 229 TWh/a ambient heat for electric heat pumps and approx. 315 TWh/a non-electric energy (raw materials for non-electrifiable processes). In the less ambitious scenario, in which the targets are not fully achieved by 2050, the final energy demand will need a higher electricity part of almost 1,138 TWh/a (from the total: 1,682 TWh/a). It has also been estimated that 50% of the electricity revenue must be saved to compensate for fluctuations in the daily and annual flows. Due to conversion and storage losses (about 50%), this would mean that the electricity requirement for the very ambitious scenario would increase to 1,227 TWh / a. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20demand" title="energy demand">energy demand</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transition" title=" energy transition"> energy transition</a>, <a href="https://publications.waset.org/abstracts/search?q=German%20Energiewende" title=" German Energiewende"> German Energiewende</a>, <a href="https://publications.waset.org/abstracts/search?q=100%25%20renewable%20energy%20production" title=" 100% renewable energy production "> 100% renewable energy production </a> </p> <a href="https://publications.waset.org/abstracts/106575/cross-sectoral-energy-demand-prediction-for-germany-with-a-100-renewable-energy-production-in-2050" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10765</span> Modeling and Analysis of Solar Assisted Adsorption Cooling System Using TRNSYS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Wajahat">M. Wajahat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shoaib"> M. Shoaib</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Waheed"> A. Waheed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a result of increase in world energy demand as well as the demand for heating, refrigeration and air conditioning, energy engineers are now more inclined towards the renewable energy especially solar based thermal driven refrigeration and air conditioning systems. This research is emphasized on solar assisted adsorption refrigeration system to provide comfort conditions for a building in Islamabad. The adsorption chiller can be driven by low grade heat at low temperature range (50 -80 °C) which is lower than that required for generator in absorption refrigeration system which may be furnished with the help of common flat plate solar collectors (FPC). The aim is to offset the total energy required for building’s heating and cooling demand by using FPC’s thus reducing dependency on primary energy source hence saving energy. TRNSYS is a dynamic modeling and simulation tool which can be utilized to simulate the working of a complete solar based adsorption chiller to meet the desired cooling and heating demand during summer and winter seasons, respectively. Modeling and detailed parametric analysis of the whole system is to be carried out to determine the optimal system configuration keeping in view various design constraints. Main focus of the study is on solar thermal loop of the adsorption chiller to reduce the contribution from the auxiliary devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flat%20plate%20collector" title="flat plate collector">flat plate collector</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20assisted%20adsorption%20chiller" title=" solar assisted adsorption chiller"> solar assisted adsorption chiller</a>, <a href="https://publications.waset.org/abstracts/search?q=TRNSYS" title=" TRNSYS "> TRNSYS </a> </p> <a href="https://publications.waset.org/abstracts/29515/modeling-and-analysis-of-solar-assisted-adsorption-cooling-system-using-trnsys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">653</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10764</span> Quantifying the UK’s Future Thermal Electricity Generation Water Use: Regional Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Murrant">Daniel Murrant</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Quinn"> Andrew Quinn</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Chapman"> Lee Chapman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A growing population has led to increasing global water and energy demand. This demand, combined with the effects of climate change and an increasing need to maintain and protect the natural environment, represents a potentially severe threat to many national infrastructure systems. This has resulted in a considerable quantity of published material on the interdependencies that exist between the supply of water and the thermal generation of electricity, often known as the water-energy nexus. Focusing specifically on the UK, there is a growing concern that the future availability of water may at times constrain thermal electricity generation, and therefore hinder the UK in meeting its increasing demand for a secure, and affordable supply of low carbon electricity. To provide further information on the threat the water-energy nexus may pose to the UK’s energy system, this paper models the regional water demand of UK thermal electricity generation in 2030 and 2050. It uses the strategically important Energy Systems Modelling Environment model developed by the Energy Technologies Institute. Unlike previous research, this paper was able to use abstraction and consumption factors specific to UK power stations. It finds that by 2050 the South East, Yorkshire and Humber, the West Midlands and North West regions are those with the greatest freshwater demand and therefore most likely to suffer from a lack of resource. However, it finds that by 2050 it is the East, South West and East Midlands regions with the greatest total water (fresh, estuarine and seawater) demand and the most likely to be constrained by environmental standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20station%20cooling" title=" power station cooling"> power station cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=UK%20water-energy%20nexus" title=" UK water-energy nexus"> UK water-energy nexus</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20abstraction" title=" water abstraction"> water abstraction</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources" title=" water resources"> water resources</a> </p> <a href="https://publications.waset.org/abstracts/38686/quantifying-the-uks-future-thermal-electricity-generation-water-use-regional-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10763</span> Perspective and Challenge of Tidal Power in Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Alamgir%20Hossain">Md. Alamgir Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Zakir%20Hossain"> Md. Zakir Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Atiqur%20Rahman"> Md. Atiqur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tidal power can play a vital role in integrating as new source of renewable energy to the off-grid power connection in isolated areas, namely Sandwip, in Bangladesh. It can reduce the present energy crisis and improve the social, environmental and economic perspective of Bangladesh. Tidal energy is becoming popular around the world due to its own facilities. The development of any country largely depends on energy sector improvement. Lack of energy sector is because of hampering progress of any country development, and the energy sector will be stable by only depend on sustainable energy sources. Renewable energy having environmental friendly is the only sustainable solution of secure energy system. Bangladesh has a huge potential of tidal power at different locations, but effective measures on this issue have not been considered sincerely. This paper summarizes the current energy scenario, and Bangladesh can produce power approximately 53.19 MW across the country to reduce the growing energy demand utilizing tidal energy as well as it is shown that Sandwip is highly potential place to produce tidal power, which is estimated approximately 16.49 MW by investing only US $10.37 million. Besides this, cost management for tidal power plant has been also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20energy" title="sustainable energy">sustainable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=tidal%20power" title=" tidal power"> tidal power</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20analysis" title=" cost analysis"> cost analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20demand" title=" power demand"> power demand</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20crisis" title=" gas crisis "> gas crisis </a> </p> <a href="https://publications.waset.org/abstracts/13732/perspective-and-challenge-of-tidal-power-in-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20demand&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20demand&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20demand&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20demand&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20demand&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20demand&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20demand&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20demand&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20demand&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20demand&page=359">359</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20demand&page=360">360</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=energy%20demand&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>