CINXE.COM

{"title":"Enzyme Involvement in the Biosynthesis of Selenium Nanoparticles by Geobacillus wiegelii Strain GWE1 Isolated from a Drying Oven","authors":"Daniela N. Correa-Llant\u00e9n, Sebasti\u00e1n A. Mu\u00f1oz-Ibacache, Mathilde Maire, Jenny M. Blamey","volume":90,"journal":"International Journal of Bioengineering and Life Sciences","pagesStart":637,"pagesEnd":642,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/9999976","abstract":"<p>The biosynthesis of nanoparticles by microorganisms,<br \/>\r\non the contrary to chemical synthesis, is an environmentally-friendly<br \/>\r\nprocess which has low energy requirements. In this investigation, we<br \/>\r\nused the microorganism Geobacillus wiegelii, strain GWE1, an<br \/>\r\naerobic thermophile belonging to genus Geobacillus, isolated from a<br \/>\r\ndrying oven. This microorganism has the ability to reduce selenite<br \/>\r\nevidenced by the change of color from colorless to red in the culture.<br \/>\r\nElemental analysis and composition of the particles were verified<br \/>\r\nusing transmission electron microscopy and energy-dispersive X-ray<br \/>\r\nanalysis. The nanoparticles have a defined spherical shape and a<br \/>\r\nselenium elemental state. Previous experiments showed that the<br \/>\r\npresence of the whole microorganism for the reduction of selenite<br \/>\r\nwas not necessary. The results strongly suggested that an intracellular<br \/>\r\nNADPH\/NADH-dependent reductase mediates selenium<br \/>\r\nnanoparticles synthesis under aerobic conditions. The enzyme was<br \/>\r\npurified and identified by mass spectroscopy MALDI-TOF TOF<br \/>\r\ntechnique. The enzyme is a 1-pyrroline-5-carboxylate dehydrogenase.<br \/>\r\nHistograms of nanoparticles sizes were obtained. Size distribution<br \/>\r\nranged from 40-160 nm, where 70% of nanoparticles have less than<br \/>\r\n100 nm in size. Spectroscopic analysis showed that the nanoparticles<br \/>\r\nare composed of elemental selenium. To analyse the effect of pH in<br \/>\r\nsize and morphology of nanoparticles, the synthesis of them was<br \/>\r\ncarried out at different pHs (4.0, 5.0, 6.0, 7.0, 8.0). For<br \/>\r\nthermostability studies samples were incubated at different<br \/>\r\ntemperatures (60, 80 and 100 &ordm;C) for 1 h and 3 h. The size of all<br \/>\r\nnanoparticles was less than 100 nm at pH 4.0; over 50% of<br \/>\r\nnanoparticles have less than 100 nm at pH 5.0; at pH 6.0 and 8.0 over<br \/>\r\n90% of nanoparticles have less than 100 nm in size. At neutral pH<br \/>\r\n(7.0) nanoparticles reach a size around 120 nm and only 20% of them<br \/>\r\nwere less than 100 nm. When looking at temperature effect,<br \/>\r\nnanoparticles did not show a significant difference in size when they<br \/>\r\nwere incubated between 0 and 3 h at 60 &ordm;C. Meanwhile at 80 &deg;C the<br \/>\r\nnanoparticles suspension lost its homogeneity. A change in size was<br \/>\r\nobserved from 0 h of incubation at 80&ordm;C, observing a size range<br \/>\r\nbetween 40-160 nm, with 20% of them over 100 nm. Meanwhile<br \/>\r\nafter 3 h of incubation at size range changed to 60-180 nm with 50%<br \/>\r\nof them over 100 nm. At 100 &deg;C the nanoparticles aggregate forming<br \/>\r\nnanorod structures. In conclusion, these results indicate that is<br \/>\r\npossible to modulate size and shape of biologically synthesized<br \/>\r\nnanoparticles by modulating pH and temperature.<\/p>\r\n","references":"[1] C. Ip, \u201cSelenium and ER stress response: Implication and exploitation\r\nfor cancer therapy\u201d. Proceedings of the International Conference on\r\nSelenium in Biology and Medicine, July 2006, pp. 25-30, University\r\nWisconsin, Madison, pp: 63-63.\r\n[2] X. Gao, J. Zhang, L. Zhang, \u201cHollow sphere selenium nanoparticles.\r\nTheir in vitro anti-hydroxyl radical effect\u201d. Adv. Mater, vol. 14, no. 4,\r\npp. 290- 293, Feb. 2002.\r\n[3] H. Wang, J. Zhang, H. Yu, \u201cElemental selenium at nano size possesses\r\nlower toxicity without compromising the fundamental effect on\r\nselenoenzymes: comparison with selenomethionine in mice\u201d, Free\r\nRadic. Biol. Med., vol. 42, no. 10, pp. 1524-1533, May 2007.\r\n[4] D. Peng, J. Zhang, Q. Liu, E. Taylor, \u201cSize effect of elemental selenium\r\nnanoparticles (Nano-Se) at supranutritional levels on selenium\r\naccumulation and glutathione S-transferase activity\u201d, J. Inorg. Biochem.,\r\nvol. 101, no. 10, pp. 1457-1463, Oct. 2007.\r\n[5] R. Oremland, M. Herbel, J. Blum, S. Langley, T. Beveridge, P. Jayan,\r\nT. Sutto, A. Ellis, S. Curran, \u201cStructural and spectral features of\r\nselenium nanospheres produced by Se-respiring bacteria\u201d, Appl.\r\nEnviron. Microbiol., vol., 70, no. 1, pp. 52-60, Jan. 2004.\r\n[6] P. Tejo, N. Sharma, R. Prakash, K. Raina, J. Fellowes, C. Pearce, J.\r\nLloyd, R. Pattrick, \u201cAerobic microbial manufacture of nanoscale\r\nselenium: exploiting nature\u2019s bio-nanomineralization potential\u201d,\r\nBiotechnol. Lett., vol. 31, no. 12, pp. 1857-1862, Aug. 2009.\r\n[7] V. Yadav, N. Sharma, R. Prakash, K. Raina, L. Bharadwaj, P. Tejo,\r\n\u201cGeneration of Selenium containing Nano-structures by soil bacterium,\r\nPseudomonas aeruginosa\u201d, Biotechnol., vol. 7, no. 2, pp. 299-304,\r\n2008.\r\n[8] A. Abdelouas, W. Gong, W. Lutze, J. Shelnutt, R. Franco, I. Moura,\r\n\u201cUsing cytochrome c3 to make selenium nanowires\u201d Chem. Mater., vol.\r\n12, no. 6, pp. 1510-1512, May 2000.\r\n[9] Y. Gorby, T. Beveridge, R. Blakemore, \u201cCharacterization of the\r\nbacterial magnetosome membrane\u201d. J. Bacteriol., vol. 170, no. 2, pp.\r\n834-841, Feb. 1988.\r\n[10] W. Leinfelder, K. Forchhammer, F. Zinoni, G. Sawers, M. Mandrand-\r\nBerthelot, A. B\u00f6ck, \u201cEscherichia coli genes whose products are\r\ninvolved in selenium metabolism\u201d. J. Bacteriol., vol. 170, no. 2, pp.\r\n540-546, Feb. 1988.\r\n[11] M. Tanaka, Y. Okamura, A. Arakaki, T. Tanaka, H. Takeyama, T.\r\nMatsunaga, \u201cOrigin of magnetosome membrane: proteomic analysis of\r\nmagnetosome membrane and comparison with cytoplasmic\r\nmembrane\u201d, Proteomics, vol. 6, no. 19, pp. 5234-5247, Oct. 2006.\r\n[12] A. Arakaki, J. Webb, T. Matsunaga, \u201cA novel protein tightly bound to\r\nbacterial magnetic particles in magnetospirillum magneticum strain\r\nAMB-1\u201d J. Biol. Chem. Vol. 278, no. 10, pp. 8745-8750, Mar. 2003.\r\n[13] G. Kaur, M. Iqbal, M. Bakshi, \u201cBiomineralization of fine selenium\r\ncrystalline rods and amorphous spheres\u201d. J. Phys. Chem. C vol.\r\n113, no. 31, pp. 13670-13676, July 2009.\r\n[14] J. Dobias, E. Suvorova, R. Bernier-Latmani, \u201cRole of proteins in\r\ncontrolling selenium nanoparticle size\u201d, Nanotechnology, vol. 22, no.\r\n19, pp. 1-9, May 2011.\r\n[15] S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, N. Gu, \u201cBiosynthesis of\r\ngold nanoparticles using the bacteria Rhodopseudomonas\r\ncapsulata\u201d. Mater Lett., vol. 61, no. 18, pp. 3984-3987, July 2007.\r\n[16] D. Correa-Llant\u00e9n, J. Larra\u00edn-Linton, P. Mu\u00f1oz, M. Castro., F.\r\nBoehmwald, J. Blamey, \u201cCharacterization of the thermophilic bacterium\r\nGeobacillus sp. Strain GWE1 isolated from a sterilization oven\u201d, Korean\r\nJ. Microbiol. Biotechnol., vol. 41, no. 3, pp. 278-283, Sept. 2013.\r\n[17] M. Amen\u00e1bar, J. Blamey, \u201cPurification and characterization of a\r\nthermostable glutamate dehydrogenase from a thermophilic bacterium\r\nisolated from a sterilization drying oven\u201d, B.M.B. Rep., vol., 45, no. 2,\r\npp. 91-95, Feb. 2012.\r\n[18] P. Fesharaki, P. Nazari, M. Shakibaie, S. Rezaie, M. Banoee, M.\r\nAbdollahi, A. Shahverdi, \u201cBiosynthesis of selenium nanoparticles\r\nusing KlebsielIa pneumoniae and their recovery by a simple\r\nsterilization process\u201d, Braz. J. Microbiol., vol. 41, no. 2, pp. 461\u2013466,\r\nJune 2010.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 90, 2014"}