CINXE.COM

Just a moment...

<!DOCTYPE html><html lang="en-US"><head><title>Just a moment...</title><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta http-equiv="X-UA-Compatible" content="IE=Edge"><meta name="robots" content="noindex,nofollow"><meta name="viewport" content="width=device-width,initial-scale=1"><style>*{box-sizing:border-box;margin:0;padding:0}html{line-height:1.15;-webkit-text-size-adjust:100%;color:#313131;font-family:system-ui,-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Helvetica Neue,Arial,Noto Sans,sans-serif,Apple Color Emoji,Segoe UI Emoji,Segoe UI Symbol,Noto Color Emoji}body{display:flex;flex-direction:column;height:100vh;min-height:100vh}.main-content{margin:8rem auto;max-width:60rem;padding-left:1.5rem}@media (width <= 720px){.main-content{margin-top:4rem}}.h2{font-size:1.5rem;font-weight:500;line-height:2.25rem}@media (width <= 720px){.h2{font-size:1.25rem;line-height:1.5rem}}#challenge-error-text{background-image:url();background-repeat:no-repeat;background-size:contain;padding-left:34px}@media (prefers-color-scheme:dark){body{background-color:#222;color:#d9d9d9}}</style><meta http-equiv="refresh" content="120"></head><body class="no-js"><div class="main-wrapper" role="main"><div class="main-content"><noscript><div class="h2"><span id="challenge-error-text">Enable JavaScript and cookies to continue</span></div></noscript></div></div><script>(function(){window._cf_chl_opt={cvId: '3',cZone: "publications.waset.org",cType: 'non-interactive',cRay: '9133bcb53be34490',cH: 'DWXnCz4brW_Ps4CA8NQGbxVwDIsfeUyfvs6aqZSc3NM-1739773914-1.2.1.1-nT7fXg41ntmBGbI7YeLR00xN8z59ydgOQ_BSERnN47eLfXd7f9YePqP7bGS8FbGn',cUPMDTk: "\/abstracts\/search?q=linear%20fractional%20transformation&__cf_chl_tk=E48Fi0ocUR01Lr4Ht4P.so8AO1xuD89JHT4Vf87Qv8E-1739773914-1.0.1.1-yXOhlqC.OKvHEW0OSRbPs3QmycsQ7leyW9xMuaLieok",cFPWv: 'b',cITimeS: '1739773914',cTTimeMs: '1000',cMTimeMs: '120000',cTplC: 0,cTplV: 5,cTplB: 'cf',cK: "",fa: "\/abstracts\/search?q=linear%20fractional%20transformation&__cf_chl_f_tk=E48Fi0ocUR01Lr4Ht4P.so8AO1xuD89JHT4Vf87Qv8E-1739773914-1.0.1.1-yXOhlqC.OKvHEW0OSRbPs3QmycsQ7leyW9xMuaLieok",md: "tIy19DvwsVPFada9rFA56hF8zIqQHJre83nNboOJTDY-1739773914-1.2.1.1-bpVpVCF80NeviQrQJp9sE4TwP9j.ip1NYNebiw2dleVatf.IscoDPjPiB88MBQ_zrTtZdLGcV81o7HprqVbEXSuBgwdKn7cEYxb20zzf7vOlKjqsHp.goylsJLGebTz0qYxNeUAQZgkqIv6IZXb_3aQ_XdB618A66Eh4tk7DuHeLjY5ns3adTdZLHxYg2uiQ_NoRWxoZFn9x_XkxhQNNj2XKtfdDIufYZ7z9N92z3PTNeXI6O6mMAbx68pT2wavzDF6fGIfgCvg3etB5ClcsK_sBJO7eXllu1Qc0by1NTkgPWrbPPdFfrNu827PN6zcZnmgJZfiDl5f2vdySXFLX.CNwER2Wbh4wlDnwXPjiIx9ObJReRa099oswOMB1ESCyQDDg89fMRiBXOPqYqLbSPByJRl94Wd8FZCrsmzPXkr.zWrYGTjQd8CEhZYyr3No.qw_nXPcxk1f7SGOCLBSNoRMhGc2FTPEjsNyY0M2O9rFMGynarP9aJtgEkp_0K.Zy4Gvifo_cHGy3LD.6O8izyHvjDz4nvF9F9xfgG0PEb.vah0Jk5rU7sZF3FgaF4.xinWp.YJfCIfokl7uzdeHwCcd1FUgct89F2Dn7F.hRqjUciKXs8Wo6y4pKeYwYVANF02jtlVnwPZ3IVeNODLReOz8rTbeWq3YqRJK0VBA19KyIET5V5Q6025i.eUrZk.DjZ6XqLyb.e8xZQ81yqJWaMBGU6tixFjRIo_64EUBMyPnYe6ECFF6Kx6q6npUk1cux_Sl9oG4rQsZNz1i6oIUVu4ymnthgNGuVZZjH1MsVrkJh3xpIaCB6yOcgqvaD5TgbdL1pCtRY6oVVhCFtpUspRkhZ0f6JcbJrO._ZeS4yoA8JRol_g_7N4GEudN7v2ulqBlo24kju_IlKn6PmInH6LL6vqdT5IUMIJEQlzsFpNYC2Df3USbVJ5v8YFiTnqCfI218ByHRE6XRha85Tlh0U0oeihES0ek5heZSjqpSOGfftPABwac3VfHeu1COgtCVC8mLkX388T5T7_sbhD_DwKfxql6xsioWlS1X3CKqTRre7andGeh5LQZg_DWDHLtDiO9l_iLQlwlofSOr_gQqLcgpUrc_GFRh7h36PtFm4eWypjUVX6hM2UifoT7zzRIeS1kNmdVIFezXRWCpX3XNipP1BFtYjPLr8LeQU13jLsqf0DRFmWn5GRUVV2yPYG0ZLMcb0PwtRLQNdrdeHtKQQpA.ZB651LvQ3SK8lpZdvgYmE7Fwl_d5F8awIt_F70NBKhzFMVX2ZtUY7tUu7XpIeIQCXLb4TNemm_xNG_h8shqLK370IL19cDrlSCEmU1r4DMftjWR82WuUh.pE8HPwGyR8iC.w6pg35rp4OZz5Ux3Ve7Z.ZDX.Cl.MLk7beFvvZSkS3bQAsdpkS8CpcAkyRM31r4xg.dvQXUoGhPiScfjM2HJpPNYx2WNUqM5Hzhz8NlSgugqfc.1NJgvwcPPTlYdEjxDomLtwhKxgegU1S0FA_5DQY7MoDYObdhN9z6WFP5bgsZk2LSkqjXqc5ogu6RW8aygVnNM5AtvVv8GV0tbJofpa0unzK0tzILXTQ9QBN98w1mk09stqfLI1BJ93guQczxFEsAX56bNCDpCcJzBXgDc5GxrLllIg8u8BHqKq.FxG_ySWtS17oYwQoXghsXOyc.UWhsmUIKejMqksCh5stfxd4L2K8Z0UyV8RBnf8Cjom4eST2LCIqts0GFK5R1NhNTpnAfQaq.AqsxJBRjae1rsBUIbs7chuI6GWSGPBnTpZaeITDqHRFMrdqLX9lx8oApcVaJmaWlPed5hZjAtaRVS6qI4FG63zrBUpo.ZAMnRR_66O0Il1P6HcJnYYs6ZplGhPXdjjnO.PMSvbMshOha9nf2JuGjT2SrbCF5ZiNNX2dzVxCd8Hi6h9sddk5Mldr9LjnCO15r_azZkBLZdlQ.8o3DSANaFE_v7jnjiAL9AWB2uHWpnArkRBE8hirAA",mdrd: "XKX8VJXysrTTS3smG70p8gD_irByKzFlf4swCisaITI-1739773914-1.2.1.1-B_qwMXpCKsIGfvq5jApewd_zj6jFv6s_SuxABdI2.HFCtwJ_J68GG63qgXdzsmSVvnRsscQ5NZgyJRwNybrwa.l9vK5ppUd1kFnnozIvxlomofUAqrjXkfHQn4yvz0T53VUpFfeaF1bcPQ5YNMjMcUVmy0xG3IXXhp6VkFiYrMh65.Uu.WyMoCqu8XKaUXdCbF3Uvypc5gxHJLAo1Dc7zSFfZ45hZlYPoW7tt5PdRuquCUAD08cFTijKSyNervz0C5dQansrH3gHii7ECa1LB6hahz24Km7q623hF8VHoGQbBpz8J3.M7OTC927Y6lZK7TnmWsVB_d9bSfXg5_QCqRMHxDr5raJxJxmUMYXE4KF9DPKW3fYMSPintBvtWvDbhfcLDGrY_ag63FpEC9zr5O9DY4eJxifOwG1aoTXTX.H72K7aKPPrOB_jxflmuoIxLQCCr1GQIb75zfznJ_zFWo3eGbvT8iJnRfwP7CSr89bSi3ulpA8W5IAM4jgunNcfFthn8DGsI9wrOLZEIZK7rHUhHndrY7g.LsXNrUJKmxZ5megvVL1AQPcl.FscQOi6NZm5Vp_1MIkJwPWD1X85j1vqHcDRzSh8WmV8QfaFtSvxlnCHcvVagzzEpx4qepDJbzimjTtZ1u8bXhjMd3KkYOhH9DTBP3pkwt721a.0R.UAi3exUvKE9diDcVit1M912BmdnRTzsZp8h9F4etndSnGJ9B0rm0Zo1rMHnPP29A0xB.tD8LIqDHdMAiquy0jwXfT4Zs81O3rMwh25ws3tmUm4oHfuntpjW9weYy5Swbrfcs3CQxW.d61Kjlyz11qIv7oHkSEbKW9HHUSC0vySCAevncrsPsvF27hR7Avx_lkKg7devX0Wk1M4WikUNfOkDiGIzvyvisQMURSlnOSHrUVL3aRcgtrBImTC_irT5lZo6AuzqJgiCp9xtuzmcocgGV3ikNrM7hHbiIkzVflLHy8XQPwGmKHCgPQ2L7UIJ8TpHb3Yv.1xn8JdViIgzdeYw9u8A2jvach7Tv5O5kJfkHXEHPAy_8Y.lCGWEYTnAsD3Lv4rMnpnVLLB93yNZL1XwRGzBvDsrbyTx04YxlGRaSKsrS5R0j_PlC3GgFTc6mFWIyNvwXJazciU5FegB.3yHVfN.2yUbYyyutzSWiw.1dxFQfX5sbaLSmgEG7wqxFKjJ1M.BxH3.GI6x9XLCzPOA0KHV7r6uGToGEKJcU2SI3qsFTqnemi1eWbREqYcRO3oXav9a8nd1gJVVikUiFcCgpLUHaWIb8Qc17Th3efSH9KKeLSqVil3AE5XxfNyN6ceCdxOVji9g7y9sI64w725FvKPi3j.rvoP25FSB2idoJDgCXbAhX1jbWifpvwBGUxMBp.aSuwacp.sNdZKupop0jo_imw2OfyGFolXUIgIgO.W9D2Fk3NcOjHEOr1o8ckd0RCOcU4DP_x5Dy82cnvo1jXsSSsUbVwpekCVcSVA26oW2TlsLde3rmGcaVrx1h5O3hGAjsqye_XI26qKJVUJOSd5wz6FSRYGitRwGfvEFQ6MuJkcGhptFR5d26z7Et5A3YkMDU1z1FtHDwb9eeL7Vp0lfnA_0CNCfQpBoZgvWV9MmjbJolYR2x.i0Xo8irrcN2CTcMl18LtEh8tUx50C_BWfl9RFo95TBt63dAH7NPJSVRYttlF3iJnDMItF1hRqjgXrXam2UIQ_NDI7E0IQKpZK.0jHLd2xk5kivVSUELtjXbLhgNtIRJvvwTGM0b2817NnSqjaO8zahiH.n6FIw6t7M.yr33b_RGZArHGzbGqWGb8KCEAaZMiZHEi6WkZJ3xCOTYQ7hevyX8RxJWjNRgJskT5hG1t6wTnRi8XjttkvbIbju05sQOjt.NvT897ZVMdbRVHhGgsZrl4Ml4gsAWnz8grwv__V2o6ZZgz9JK30mAPAhpYX7RSprBuF7lMSu6ug68sh7VrM1Rk7EHcY"};var cpo = document.createElement('script');cpo.src = '/cdn-cgi/challenge-platform/h/b/orchestrate/chl_page/v1?ray=9133bcb53be34490';window._cf_chl_opt.cOgUHash = location.hash === '' && location.href.indexOf('#') !== -1 ? '#' : location.hash;window._cf_chl_opt.cOgUQuery = location.search === '' && location.href.slice(0, location.href.length - window._cf_chl_opt.cOgUHash.length).indexOf('?') !== -1 ? '?' : location.search;if (window.history && window.history.replaceState) {var ogU = location.pathname + window._cf_chl_opt.cOgUQuery + window._cf_chl_opt.cOgUHash;history.replaceState(null, null, "\/abstracts\/search?q=linear%20fractional%20transformation&__cf_chl_rt_tk=E48Fi0ocUR01Lr4Ht4P.so8AO1xuD89JHT4Vf87Qv8E-1739773914-1.0.1.1-yXOhlqC.OKvHEW0OSRbPs3QmycsQ7leyW9xMuaLieok" + window._cf_chl_opt.cOgUHash);cpo.onload = function() {history.replaceState(null, null, ogU);}}document.getElementsByTagName('head')[0].appendChild(cpo);}());</script></body></html>