CINXE.COM

Search results for: tractors

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: tractors</title> <meta name="description" content="Search results for: tractors"> <meta name="keywords" content="tractors"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="tractors" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="tractors"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: tractors</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Mechanical Soil: Effects of the Passage of Tractors on Agricultural Land</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anis%20Eloud">Anis Eloud</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Salah%20Nahla"> Ben Salah Nahla</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Chehaibi"> Sayed Chehaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to improve and develop the Tunisian agriculture, the government has encouraged the introduction of modern technologies and has also promoted the adoption of innovative practices cultures. Indeed, the extensive use of mechanization can increase crop productivity but its inadequate application also has a negative impact on the ground caused by the phenomenon of compaction. Which will cause the loss of soil fertility and increased production costs. This problem is accentuated with increase the stress on contact wheel / ground. For this reason, the objective of this study is to simulate the footprint of the ground contact / tire two types of tractor after their passage. The method of this work is based on a simulation including passages from two different tractors on soil with similar characteristics. Simulation parameters were based on the choice of two tractors masses of 6500 kg and 4400 kg of soil and sandy loam in nature. The analysis was performed using specific software. The main results showed that the heaviest tractor caused a constraint wheel / rear floor exceeding 100 kPa. For cons, the second tractor has caused stress wheel / rear floor of 50 kPa. The comparison of the two results showed that 6500 kg tractor made a serious and excessive compaction which generated a negative impact on soil quality and crop yields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compaction" title="compaction">compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20to%20penetration" title=" resistance to penetration"> resistance to penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20yields" title=" crop yields"> crop yields</a> </p> <a href="https://publications.waset.org/abstracts/19210/mechanical-soil-effects-of-the-passage-of-tractors-on-agricultural-land" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Analysis of the Effects of Vibrations on Tractor Drivers by Measurements With Wearable Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gubiani%20Rino">Gubiani Rino</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicola%20Zucchiatti"> Nicola Zucchiatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Da%20Broi%20Ugo"> Da Broi Ugo</a>, <a href="https://publications.waset.org/abstracts/search?q=Bietresato%20Marco"> Bietresato Marco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of vibrations in agriculture is very important due to the different types of machinery used for the different types of soil in which work is carried out. One of the most commonly used machines is the tractor, where the phenomenon has been studied for a long time by measuring the whole body and placing the sensor on the seat. However, this measurement system does not take into account the characteristics of the drivers, such as their body index (BMI), their gender (male, female) or the muscle fatigue they are subjected to, which is highly dependent on their age for example. The aim of the research was therefore to place sensors not only on the seat but along the spinal column to check the transmission of vibration on drivers with different BMI on different tractors and at different travel speeds and of different genders. The test was also done using wearable sensors such as a dynamometer applied to the muscles, the data of which was correlated with the vibrations produced by the tractor. Initial data show that even on new tractors with pneumatic seats, the vibrations attenuate little and are still correlated with the roughness of the track travelled and the forward speed. Another important piece of data are the root-mean square values referred to 8 hours (A(8)x,y,z) and the maximum transient vibration values (MTVVx,y,z) and, the latter, the MTVVz values were problematic (limiting factor in most cases) and always aggravated by the speed. The MTVVx values can be lowered by having a tyre-pressure adjustment system, able to properly adjust the tire pressure according to the specific situation (ground, speed) in which a tractor is operating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue" title="fatigue">fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20vibration%20on%20health" title=" effect vibration on health"> effect vibration on health</a>, <a href="https://publications.waset.org/abstracts/search?q=tractor%20driver%20vibrations" title=" tractor driver vibrations"> tractor driver vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20skeleton%20disorders" title=" muscle skeleton disorders"> muscle skeleton disorders</a> </p> <a href="https://publications.waset.org/abstracts/174066/analysis-of-the-effects-of-vibrations-on-tractor-drivers-by-measurements-with-wearable-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Numerical and Simulation Analysis of Composite Friction Materials Using Single Plate Clutch Pad in Agricultural Tractors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravindra%20Raju">Ravindra Raju</a>, <a href="https://publications.waset.org/abstracts/search?q=Vidhu%20Kampurath"> Vidhu Kampurath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For smooth transition of the power from the engine to the transmission system, a clutch is used. In agricultural tractors, friction clutches are widely used in power transmission applications. To transmit the maximum torque in friction clutches, selection of materials is one of the important tasks. The present used material for friction disc is Asbestos, Ceramic etc. In this study, analysis is performed using composites materials. The composite materials are considered due to their high strength to weight ratio. Composite materials like kevlar49, kevlar 29U were used in the study. The paper presents a systematic approach to optimize the structural and thermal characteristics of the clutch friction pad. A single plate clutch is modeled using Creo 2.0 software and analyzed using ANSYS. Thermal analysis considers the reduction of heat generated between the friction surfaces and reducing the temperature rise during the steady state period. Structural analysis is done to minimize the stresses developed as a result of the loading contact between friction surfaces. Also, modal analysis is done to optimize the natural frequency of the friction plate to avoid being in resonance with the engine frequency range. The analysis carried out on ANSYS workbench to get the foremost appropriate friction material for clutch. From the analyzed results stress, strain / total deformation values and natural frequency of the materials were compared for all the composite materials and the best one was taken out. For the study purpose, specifications of the clutch are obtained from the MF1035 (47KW) Tractor model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=clutch" title=" clutch"> clutch</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title=" composite materials"> composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=creo" title=" creo"> creo</a> </p> <a href="https://publications.waset.org/abstracts/54606/numerical-and-simulation-analysis-of-composite-friction-materials-using-single-plate-clutch-pad-in-agricultural-tractors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> The Dressing Field Method of Gauge Symmetries Reduction: Presentation and Examples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeremy%20Attard">Jeremy Attard</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordan%20Fran%C3%A7ois"> Jordan François</a>, <a href="https://publications.waset.org/abstracts/search?q=Serge%20Lazzarini"> Serge Lazzarini</a>, <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Masson"> Thierry Masson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gauge theories are the natural background for describing geometrically fundamental interactions using principal and associated fiber bundles as dynamical entities. The central notion of these theories is their local gauge symmetry implemented by the local action of a Lie group H. There exist several methods used to reduce the symmetry of a gauge theory, like gauge fixing, bundle reduction theorem or spontaneous symmetry breaking mechanism (SSBM). This paper is a presentation of another method of gauge symmetry reduction, distinct from those three. Given a symmetry group H acting on a fiber bundle and its naturally associated fields (Ehresmann (or Cartan) connection, curvature, matter fields, etc.) there sometimes exists a way to erase (in whole or in part) the H-action by just reconfiguring these fields, i.e. by making a mere change of field variables in order to get new (‘composite‘) fields on which H (in whole or in part) does not act anymore. Two examples: the re-interpretation of the BEHGHK (Higgs) mechanism, on the one hand, and the top-down construction of Tractor and Penrose's Twistor spaces and connections in the framework of conformal Cartan geometry, one the other, will be discussed. They have, of course, nothing to do with each other but the dressing field method can be applied on both to get a new insight. In the first example, it turns out, indeed, that generation of masses in the Standard Model can be separated from the symmetry breaking, the latter being a mere change of field variables, i.e. a dressing. This offers an interpretation in opposition with the one usually found in textbooks. In the second case, the dressing field method applied to the conformal Cartan geometry offer a way of understanding the deep geometric nature of the so-called Tractors and Twistors. The dressing field method, distinct from a gauge transformation (even if it can have apparently the same form), is a systematic way of finding and erasing artificial symmetries of a theory, by a mere change of field variables which redistributes the degrees of freedom of the theories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BEHGHK%20%28Higgs%29%20mechanism" title="BEHGHK (Higgs) mechanism">BEHGHK (Higgs) mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=conformal%20gravity" title=" conformal gravity"> conformal gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=gauge%20theory" title=" gauge theory"> gauge theory</a>, <a href="https://publications.waset.org/abstracts/search?q=spontaneous%20symmetry%20breaking" title=" spontaneous symmetry breaking"> spontaneous symmetry breaking</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetry%20reduction" title=" symmetry reduction"> symmetry reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=twistors%20and%20tractors" title=" twistors and tractors"> twistors and tractors</a> </p> <a href="https://publications.waset.org/abstracts/74557/the-dressing-field-method-of-gauge-symmetries-reduction-presentation-and-examples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Agricultural Mechanization for Transformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lawrence%20Gumbe">Lawrence Gumbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kenya Vision 2030 is the country's programme for transformation covering the period 2008 to 2030. Its objective is to help transform Kenya into a newly industrializing, middle-income, exceeding US$10000, country providing a high quality of life to all its citizens by 2030, in a clean and secure environment. Increased agricultural and production and productivity is crucial for the realization of Vision 2030. Mechanization of agriculture in order to achieve greater yields is the only way to achieve these objectives. There are contending groups and views on the strategy for agricultural mechanization. The first group are those who oppose the widespread adoption of advanced technologies (mostly internal combustion engines and tractors) in agricultural mechanization as entirely inappropriate in most situations in developing countries. This group argues that mechanically powered -agricultural mechanization often leads to displacement of labour and hence increased unemployment, and this results in a host of other socio-economic problems, amongst them, rural-urban migration, inequitable distribution of wealth and in many cases an increase in absolute poverty, balance of payments due to the need to import machinery, fuel and sometimes technical assistance to manage them. The second group comprises of those who view the use of the improved hand tools and animal powered technology as transitional step between the most rudimentary step in technological development (characterized by entire reliance on human muscle power) and the advanced technologies (characterized 'by reliance on tractors and other machinery). The third group comprises those who regard these intermediate technologies (ie. improved hand tools and draught animal technology in agriculture) as a ‘delaying’ tactic and they advocate the use of mechanical technologies as-the most appropriate. This group argues that alternatives to the mechanical technologies do not just exist as a practical matter, or, if they are available, they are inefficient and they cannot be compared to the mechanical technologies in terms of economics and productivity. The fourth group advocates a compromise between groups two and third above. This group views the improved hand tools and draught animal technology as more of an 18th century technology and the modem tractor and combine harvester as too advanced for developing countries. This group has been busy designing an ‘intermediate’, ‘appropriate’, ‘mini’, ‘micro’ tractor for use by farmers in developing countries. This paper analyses and concludes on the different agricultural mechanization strategies available to Kenya and other third world countries <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanazation" title=" mechanazation"> mechanazation</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation" title=" transformation"> transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=industrialization" title=" industrialization"> industrialization</a> </p> <a href="https://publications.waset.org/abstracts/29077/agricultural-mechanization-for-transformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Assessment of Exhaust Emissions and Fuel Consumption from Means of Transport in Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jerzy%20Merkisz">Jerzy Merkisz</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Lijewski"> Piotr Lijewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Fuc"> Pawel Fuc</a>, <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Siedlecki"> Maciej Siedlecki</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Ziolkowski"> Andrzej Ziolkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylwester%20Weymann"> Sylwester Weymann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper discusses the problem of load transport using farm tractors and road tractor units. This type of carriage of goods is often done with farm vehicles. The tests were performed with the PEMS equipment (Portable Emission Measurement System) under actual traffic conditions. The vehicles carried a load of 20000 kg. This research method is one of the most desired because it provides reliable information on the actual vehicle emissions and fuel consumption (carbon balance method). For the tests, a route was selected that simulated a trip from a small town to a food-processing facility located in a city. The analysis of the obtained results gave a clear answer as to what vehicles need to be used for the carriage of this type of cargo in terms of exhaust emissions and fuel consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emission" title="emission">emission</a>, <a href="https://publications.waset.org/abstracts/search?q=transport" title=" transport"> transport</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20consumption" title=" fuel consumption"> fuel consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=PEMS" title=" PEMS"> PEMS</a> </p> <a href="https://publications.waset.org/abstracts/30883/assessment-of-exhaust-emissions-and-fuel-consumption-from-means-of-transport-in-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Multipurpose Agricultural Robot Platform: Conceptual Design of Control System Software for Autonomous Driving and Agricultural Operations Using Programmable Logic Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Abhishesh">P. Abhishesh</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Ryuh"> B. S. Ryuh</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20S.%20Oh"> Y. S. Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Moon"> H. J. Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Akanksha"> R. Akanksha </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses about the conceptual design and development of the control system software using Programmable logic controller (PLC) for autonomous driving and agricultural operations of Multipurpose Agricultural Robot Platform (MARP). Based on given initial conditions by field analysis and desired agricultural operations, the structural design development of MARP is done using modelling and analysis tool. PLC, being robust and easy to use, has been used to design the autonomous control system of robot platform for desired parameters. The robot is capable of performing autonomous driving and three automatic agricultural operations, viz. hilling, mulching, and sowing of seeds in the respective order. The input received from various sensors on the field is later transmitted to the controller via ZigBee network to make the changes in the control program to get desired field output. The research is conducted to provide assistance to farmers by reducing labor hours for agricultural activities by implementing automation. This study will provide an alternative to the existing systems with machineries attached behind tractors and rigorous manual operations on agricultural field at effective cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20operations" title="agricultural operations">agricultural operations</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20driving" title=" autonomous driving"> autonomous driving</a>, <a href="https://publications.waset.org/abstracts/search?q=MARP" title=" MARP"> MARP</a>, <a href="https://publications.waset.org/abstracts/search?q=PLC" title=" PLC"> PLC</a> </p> <a href="https://publications.waset.org/abstracts/64269/multipurpose-agricultural-robot-platform-conceptual-design-of-control-system-software-for-autonomous-driving-and-agricultural-operations-using-programmable-logic-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Modern Agriculture and Industrialization Nexus in the Nigerian Context</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ese%20Urhie">Ese Urhie</a>, <a href="https://publications.waset.org/abstracts/search?q=Olabisi%20Popoola"> Olabisi Popoola</a>, <a href="https://publications.waset.org/abstracts/search?q=Obindah%20Gershon"> Obindah Gershon</a>, <a href="https://publications.waset.org/abstracts/search?q=Olabanji%20Ewetan"> Olabanji Ewetan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern agriculture involves the use of improved tools and equipment (instead of crude and ineffective tools) like tractors, hand operated planters, hand operated fertilizer drills and combined harvesters - which increase agricultural productivity. Farmers in Nigeria still have huge potentials to enhance their productivity. The study argues that the increase in agricultural output due to increased productivity, orchestrated by modern agriculture will promote forward linkages and opportunities in the processing sub-sector; both the manufacturing of machines and the processing of raw materials. Depending on existing incentives, foreign investment could be attracted to augment local investment in the sector. The availability of raw materials in large quantity – which prices are competitive – will attract investment in other industries. In addition, potentials for backward linkages will also be created. In a nutshell, adopting the unbalanced growth theory in favour of the agricultural sector could engender industrialization in a country with untapped potentials. The paper highlights the numerous potentials of modern agriculture that are yet to be tapped in Nigeria and also provides a theoretical analysis of how the realization of such potentials could promote industrialization in the country. The study adopts the Lewis’ theory of structural–change model and Hirschman’s theory of unbalanced growth in the design of the analytical framework. The framework will be useful in empirical studies that will guide policy formulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modern%20agriculture" title="modern agriculture">modern agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=industrialization" title=" industrialization"> industrialization</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20change%20model" title=" structural change model"> structural change model</a>, <a href="https://publications.waset.org/abstracts/search?q=unbalanced%20growth" title=" unbalanced growth"> unbalanced growth</a> </p> <a href="https://publications.waset.org/abstracts/74840/modern-agriculture-and-industrialization-nexus-in-the-nigerian-context" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Role of Agriculture Equipment toward Food Security: Case Study of Agriculture Equipment Assistance during President Joko Widodo Era in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raihan%20Zahirah%20Mauludy%20Ridwan">Raihan Zahirah Mauludy Ridwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Frisca%20Devi%20Choirina"> Frisca Devi Choirina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indonesia is an agrarian country endowed by fertile soil, supportive weather, and natural resources which can support agricultural activities. There are commodities which produced by local farmers. Even though Indonesia had commodities, it still imports stocks of staple food. To reduce the dependency on imported staple food, President Joko Widodo wants to generate more locally-produced staple food by giving 69.000 tractors, free seeds, and fertilizers to the local farmers. In Indonesia, the problem revolves around the amount of food production especially rice derived from farmers who cannot afford technologies which can support the agricultural activities. Moreover, they cannot afford seeds and fertilizers which can make the production of commodities more effective and have high quality. Therefore, the paper would like to answer how agriculture equipment assistance during President Joko Widodo era can give significant impact towards food security. The purpose of this paper is to explore the role of agriculture equipment assistance and its impact towards Indonesia’s food security. This paper uses Boserup and Ruthenberg theory of agricultural intensification to link agriculture equipment and intensification of production which in the end will have impact towards food security through case study method. The paper affirms that the role of agricultural equipment assistance toward food security in Indonesia is significant toward Indonesia’s food production and security. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20equipment" title="agricultural equipment">agricultural equipment</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20intensification" title=" agricultural intensification"> agricultural intensification</a>, <a href="https://publications.waset.org/abstracts/search?q=Boserup" title=" Boserup"> Boserup</a>, <a href="https://publications.waset.org/abstracts/search?q=Indonesia" title=" Indonesia"> Indonesia</a>, <a href="https://publications.waset.org/abstracts/search?q=Joko%20Widodo" title=" Joko Widodo"> Joko Widodo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruthenberg" title=" Ruthenberg"> Ruthenberg</a> </p> <a href="https://publications.waset.org/abstracts/93213/role-of-agriculture-equipment-toward-food-security-case-study-of-agriculture-equipment-assistance-during-president-joko-widodo-era-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Failure of Agriculture Soil following the Passage of Tractors </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anis%20Eloud">Anis Eloud</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Chehaibi"> Sayed Chehaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compaction of agricultural soils as a result of the passage of heavy machinery on the fields is a problem that affects many agronomists and farmers since it results in a loss of yield of most crops. To remedy this, and raise the overall future of the food security challenge, we must study and understand the process of soil degradation. The present review is devoted to understanding the effect of repeated passages on agricultural land. The experiments were performed on a plot of the area of the ESIER, characterized by a clay texture in order to quantify the soil compaction caused by the wheels of the tractor during repeated passages on agricultural land. The test tractor CASE type puissance 110 hp and 5470 kg total mass of 3500 kg including the two rear axles and 1970 kg on the front axle. The state of soil compaction has been characterized by measuring its resistance to penetration by means of a penetrometer and direct manual reading, the density and permeability of the soil. Soil moisture was taken jointly. The measurements are made in the initial state before passing the tractor and after each pass varies from 1 to 7 on the track wheel inflated to 1.5 bar for the rear wheel and broke water to the level of valve and 4 bar for the front wheels. The passages are spaced to the average of one week. The results show that the passage of wheels on a farm tilled soil leads to compaction and the latter increases with the number of passages, especially for the upper 15 cm depth horizons. The first passage is characterized by the greatest effect. However, the effect of other passages do not follow a definite law for the complex behavior of granular media and the history of labor and the constraints it suffers from its formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheel%20traffic" title="wheel traffic">wheel traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=tractor" title=" tractor"> tractor</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20compaction" title=" soil compaction"> soil compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel" title=" wheel"> wheel</a> </p> <a href="https://publications.waset.org/abstracts/19836/failure-of-agriculture-soil-following-the-passage-of-tractors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Contribution of Different Farming Systems to Soil and Ecological Health in Trans Nzoia County, Kenya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janeth%20Chepkemoi">Janeth Chepkemoi</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Onwonga"> Richard Onwonga</a>, <a href="https://publications.waset.org/abstracts/search?q=Noel%20Templer"> Noel Templer</a>, <a href="https://publications.waset.org/abstracts/search?q=Elkana%20Kipkoech"> Elkana Kipkoech</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Gitau"> Angela Gitau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional agriculture is one of the leading causes of land degradation, threatening the sustainability of food production. Organic farming promotes practices that have the potential of feeding the world while also promoting ecological health. A study was therefore carried out with the aim of conceptualizing how such farming systems are contributing to ecological health in Trans Nzoia County. 71 farmers were interviewed and data was collected on parameters such as land preparation, agroforestry, soil fertility management, soil and water conservation, and pests and diseases. A soil sample was also collected from each farm for laboratory analysis. Data collected were analyzed using Microsoft Excel and SPSS version 21. Results showed that 66% of the respondents practiced organic farming whereas 34% practiced conventional farming. Intercropping and crop rotations were the most common cropping systems and the most preferred land preparation tools among both organic and conventional farmers were tractors and hand hoes. Organic farms fared better in agroforestry, organic soil amendments, land and water conservation, and soil chemical properties. Pests and disease, however, affected organic farms more than conventional. The average nitrogen (%), K (Cmol/ kg and P (ppm) of organic soils were 0.26, 0.7 and 26.18 respectively, conventional soils were 0.21, 0.66 and 22.85. Soil organic carbon content of organic farms averaged a higher percentage of 2.07% as compared to 1.91 for the conventional. In conclusion, most farmers in Trans Nzoia County had transitioned into ecologically friendly farming practices that improved the quality and health of the soil and therefore promoted its sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20farming" title="organic farming">organic farming</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20farming" title=" conventional farming"> conventional farming</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20health" title=" ecological health"> ecological health</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20health" title=" soil health"> soil health</a> </p> <a href="https://publications.waset.org/abstracts/152003/contribution-of-different-farming-systems-to-soil-and-ecological-health-in-trans-nzoia-county-kenya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Low Sulfur Diesel-Like Fuel From Quick Remediation Process of Waste Oil Sludge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isam%20A.%20H.%20Al%20Zubaidy">Isam A. H. Al Zubaidy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A quick process may be needed to get the benefit the big generated quantity of waste oil sludge (WOS). The process includes the mixing process of WOS with commercial diesel fuel. Different ratios of WOS to diesel fuel were prepared ranging 1:1 to 20:1 by mass. The mixture was continuously mixing for 10 minutes using bench type overhead stirrer and followed by filtration process to separate the soil waste from filtrate oil product. The quantity and the physical properties of the oil filtrate were measured. It was found that the addition of up to 15% WOS to diesel fuel was accepted without dramatic changes to the properties of diesel fuel. The amount of waste oil sludge was decreased by about 60% by mass. This means that about 60 % of the mass of sludge was recovered as light fuel oil. The physical properties of the resulting fuel from 10% sludge mixing ratio showed that the specific gravity, ash content, carbon residue, asphaltene content, viscosity, diesel index, cetane number, and calorific value were affected slightly. The color was changed to light black color. The sulfur content was increased also. This requires other processes to reduce the sulfur content of the resulting light fuel. A new desulfurization process was achieved using adsorption techniques with activated biomaterial to reduce the sulfur content to acceptable limits. Adsorption process by ZnCl₂ activated date palm kernel powder was effective for improvement of the physical properties of diesel like fuel. The final sulfur content was increased to 0.185 wt%. This diesel like fuel can be used in all tractors, buses, tracks inside and outside the refineries. The solid remaining seems to be smooth and can be mixed with asphalt mixture for asphalting the roads or can be used with other materials as an asphalt coating material for constructed buildings. Through this process, valuable fuel has been recovered, and the amount of waste material had decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20sludge" title="oil sludge">oil sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel%20fuel" title=" diesel fuel"> diesel fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=blending%20process" title=" blending process"> blending process</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration%20process" title=" filtration process"> filtration process</a> </p> <a href="https://publications.waset.org/abstracts/151766/low-sulfur-diesel-like-fuel-from-quick-remediation-process-of-waste-oil-sludge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Whole Body Vibration and Low Back Disorder among Saskatchewan Farmers: A Prospective Cohort Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Kwaku%20Essien">Samuel Kwaku Essien</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Trask"> Catherine Trask</a>, <a href="https://publications.waset.org/abstracts/search?q=Niels%20Koehncke"> Niels Koehncke</a>, <a href="https://publications.waset.org/abstracts/search?q=Brenna%20Bath"> Brenna Bath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Low back disorder (LBD) is the most common musculoskeletal problem among farmers, with higher prevalence than other occupations. Operators of tractors and other farm machinery such as combines or all-terrain vehicles (ATV) can have considerable cumulative exposure to whole body vibration (WBV). Although there appears to be an association between LBD and WBV, lack of prospective studies makes the relationship between LBD and WBV unclear. Purpose: This study investigates the association between WBV and LBD among Saskatchewan farmers using a prospective cohort study Methods: The Saskatchewan Farm Injury Cohort Study Phase I (2007) and II (2013) data were used. Baseline data were collected via postal questionnaire on accumulated yearly tractor, combine, and ATV use as well as several covariates to support a biopsychosocial model of LBD. Follow-up data on musculoskeletal symptoms were collected for the 6-year with sample size of 1149. Questions on ‘low back trouble’ (ache, pain, discomfort) experienced in the last 12 months answered by farmer participants as ‘yes’ or ‘no’. A GEE-modified Poisson approach was performed using SPSS 22 and SAS 9.4. Results: Twelve-month Prevalence of LBD was 59.8%. In multivariate analysis of the 6-year follow-up, LBD was associated with ATV operation and tractor operation, with a dose-response relationship for annual accumulated tractor operation. Although combine operation ≥ 61 hrs/year was related to LBD in bivariate analysis, this difference did not persist after adjustment for confounder. Age was found to be a confounder in relationship between WBV and LBD and no interactions were found. Conclusion: Longer annual tractor operation and older age are important predictors of LBD symptoms in farmers. Future research involving direct measurement can help identify appropriate prevention strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20back%20disorder" title=" low back disorder"> low back disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20back%20pain" title=" low back pain"> low back pain</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20health" title=" occupational health"> occupational health</a> </p> <a href="https://publications.waset.org/abstracts/39488/whole-body-vibration-and-low-back-disorder-among-saskatchewan-farmers-a-prospective-cohort-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> A Method Development for Improving the Efficiency of Solid Waste Collection System Using Network Analyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhvanidevi%20N.%20Jadeja">Dhvanidevi N. Jadeja</a>, <a href="https://publications.waset.org/abstracts/search?q=Daya%20S.%20Kaul"> Daya S. Kaul</a>, <a href="https://publications.waset.org/abstracts/search?q=Anurag%20A.%20Kandya"> Anurag A. Kandya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Municipal Solid Waste (MSW) collection in a city is performed in less effective manner which results in the poor management of the environment and natural resources. Municipal corporation does not possess efficient waste management and recycling programs because of the complex task involving many factors. Solid waste collection system depends upon various factors such as manpower, number and size of vehicles, transfer station size, dustbin size and weight, on-road traffic, and many others. These factors affect the collection cost, energy and overall municipal tax for the city. Generally, different types of waste are scattered throughout the city in a heterogeneous way that poses changes for efficient collection of solid waste. Efficient waste collection and transportation strategy must be effectively undertaken which will include optimization of routes, volume of waste, and manpower. Being these optimized, the overall cost can be reduced as the fuel and energy requirements would be less and also the municipal waste taxes levied will be less. To carry out the optimization study of collection system various data needs to be collected from the Ahmedabad municipal corporation such as amount of waste generated per day, number of workers, collection schedule, road maps, number of transfer station, location of transfer station, number of equipment (tractors, machineries), number of zones, route of collection etc. The ArcGis Network Analyst is introduced for the best routing identification applied in municipal waste collection. The simulation consists of scenarios of visiting loading spots in the municipality of Ahmedabad, considering dynamic factors like network traffic changes, closed roads due to natural or technical causes. Different routes were selected in a particular area of Ahmedabad city, and present routes were optimized to reduce the length of the routes, by using ArcGis Network Analyst. The result indicates up to 35% length minimization in the routes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collection%20routes" title="collection routes">collection routes</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste" title=" municipal solid waste"> municipal solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/93159/a-method-development-for-improving-the-efficiency-of-solid-waste-collection-system-using-network-analyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Designing, Manufacturing and Testing a Portable Tractor Unit Biocoal Harvester Combine of Agriculture and Animal Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Moharrek">Ali Moharrek</a>, <a href="https://publications.waset.org/abstracts/search?q=Hosein%20Mobli"> Hosein Mobli</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Jafari"> Ali Jafari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Tabataee%20Far"> Ahmad Tabataee Far</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomass is a material generally produced by plants living on soil or water and their derivatives. The remains of agricultural and forest products contain biomass which is changeable into fuel. Besides, you can obtain biogas and ethanol from the charcoal produced from biomass through specific actions. this technology was designed for as a useful Native Fuel and Technology in Energy disasters Management Due to the sudden interruption of the flow of heat energy One of the problems confronted by mankind in the future is the limitations of fossil energy which necessitates production of new energies such as biomass. In order to produce biomass from the remains of the plants, different methods shall be applied considering factors like cost of production, production technology, area of requirement, speed of work easy utilization, ect. In this article we are focusing on designing a biomass briquetting portable machine. The speed of installation of the machine on a tractor is estimated as 80 MF 258. Screw press is used in designing this machine. The needed power for running this machine which is estimated as 17.4 kW is provided by the power axis of tractor. The pressing speed of the machine is considered to be 375 RPM Finally the physical and mechanical properties of the product were compared with utilized material which resulted in appropriate outcomes. This machine is designed for Gathering Raw materials of the ground by Head Section. During delivering the raw materials to Briquetting section, they Crushed, Milled & Pre Heated in Transmission section. This machine is a Combine Portable Tractor unit machine and can use all type of Agriculture, Forest & Livestock Animals Resides as Raw material to make Bio fuel. The Briquetting Section was manufactured and it successfully made bio fuel of Sawdust. Also this machine made a biofuel with Ethanol of sugarcane Wastes. This Machine is using P.T.O power source for Briquetting and Hydraulic Power Source for Pre Processing of Row Materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=briquette" title=" briquette"> briquette</a>, <a href="https://publications.waset.org/abstracts/search?q=screw%20press" title=" screw press"> screw press</a>, <a href="https://publications.waset.org/abstracts/search?q=sawdust" title=" sawdust"> sawdust</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20wastes" title=" animal wastes"> animal wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=portable" title=" portable"> portable</a>, <a href="https://publications.waset.org/abstracts/search?q=tractors" title=" tractors"> tractors</a> </p> <a href="https://publications.waset.org/abstracts/27096/designing-manufacturing-and-testing-a-portable-tractor-unit-biocoal-harvester-combine-of-agriculture-and-animal-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Novel Animal Drawn Wheel-Axle Mechanism Actuated Knapsack Boom Sprayer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20O.%20Abdulmalik">Ibrahim O. Abdulmalik</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20C.%20Amonye"> Michael C. Amonye</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Makoyo"> Mahdi Makoyo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manual knapsack sprayer is the most popular means of farm spraying in Nigeria. It has its limitations. Apart from the human fatigue, which leads to unsteady walking steps, their field capacities are small. They barely cover about 0.2hectare per hour. Their small swath implies that a sizeable farm would take several days to cover. Weather changes are erratic and often it is desired to spray a large farm within hours or few days for even effect, uniformity and to avoid adverse weather interference. It is also often required that a large farm be covered within a short period to avoid re-emergence of weeds before crop emergence. Deployment of many knapsack operators to large farms has not been successful. Human error in taking equally spaced swaths usually result in over dosage of overlaps and in unapplied areas due to error at edges overlaps. Large farm spraying require boom equipment with larger swath. Reduced error in swath overlaps and spraying within the shortest possible time are then assured. Tractor boom sprayers would readily overcome these problems and achieve greater coverage, but they are not available in the country. Tractor hire for cultivation is very costly with the attendant lack of spare parts and specialized technicians for maintenance wherefore farmers find it difficult to engage tractors for cultivation and would avoid considering the employment of a tractor boom sprayer. Animal traction in farming is predominant in Nigeria, especially in the Northern part of the country. Development of boom sprayers drawn by work animals surely implies the maximization of animal utilization in farming. The Hydraulic Equipment Development Institute, Kano, in keeping to its mandate of targeted R&D in hydraulic and pneumatic systems, has developed an Animal Drawn Knapsack Boom Sprayer with four nozzles using the axle mechanism of a two wheeled cart to actuate the piston pump of two knapsack sprayers in line with appropriate technology demand of the country. It is hoped that the introduction of this novel contrivance shall enhance crop protection practice and lead to greater crop and food production in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boom" title="boom">boom</a>, <a href="https://publications.waset.org/abstracts/search?q=knapsack" title=" knapsack"> knapsack</a>, <a href="https://publications.waset.org/abstracts/search?q=farm" title=" farm"> farm</a>, <a href="https://publications.waset.org/abstracts/search?q=sprayer" title=" sprayer"> sprayer</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel%20axle" title=" wheel axle "> wheel axle </a> </p> <a href="https://publications.waset.org/abstracts/27405/novel-animal-drawn-wheel-axle-mechanism-actuated-knapsack-boom-sprayer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Spatial Pattern of Farm Mechanization: A Micro Level Study of Western Trans-Ghaghara Plain, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zafar%20Tabrez">Zafar Tabrez</a>, <a href="https://publications.waset.org/abstracts/search?q=Nizamuddin%20Khan"> Nizamuddin Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture in India in the pre-green revolution period was mostly controlled by terrain, climate and edaphic factors. But after the introduction of innovative factors and technological inputs, green revolution occurred and agricultural scene witnessed great change. In the development of India’s agriculture, speedy, and extensive introduction of technological change is one of the crucial factors. The technological change consists of adoption of farming techniques such as use of fertilisers, pesticides and fungicides, improved variety of seeds, modern agricultural implements, improved irrigation facilities, contour bunding for the conservation of moisture and soil, which are developed through research and calculated to bring about diversification and increase of production and greater economic return to the farmers. The green revolution in India took place during late 60s, equipped with technological inputs like high yielding varieties seeds, assured irrigation as well as modern machines and implements. Initially the revolution started in Punjab, Haryana and western Uttar Pradesh. With the efforts of government, agricultural planners, as well as policy makers, the modern technocratic agricultural development scheme was also implemented and introduced in backward and marginal regions of the country later on. Agriculture sector occupies the centre stage of India’s social security and overall economic welfare. The country has attained self-sufficiency in food grain production and also has sufficient buffer stock. Our first Prime Minister, Jawaharlal Nehru said ‘everything else can wait but not agriculture’. There is still a continuous change in the technological inputs and cropping patterns. Keeping these points in view, author attempts to investigate extensively the mechanization of agriculture and the change by selecting western Trans-Ghaghara plain as a case study and block a unit of the study. It includes the districts of Gonda, Balrampur, Bahraich and Shravasti which incorporate 44 blocks. It is based on secondary sources of data by blocks for the year 1997 and 2007. It may be observed that there is a wide range of variations and the change in farm mechanization, i.e., agricultural machineries such as ploughs, wooden and iron, advanced harrow and cultivator, advanced thrasher machine, sprayers, advanced sowing instrument, and tractors etc. It may be further noted that due to continuous decline in size of land holdings and outflux of people for the same nature of works or to be employed in non-agricultural sectors, the magnitude and direction of agricultural systems are affected in the study area which is one of the marginalized regions of Uttar Pradesh, India. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=technological%20inputs" title=" technological inputs"> technological inputs</a>, <a href="https://publications.waset.org/abstracts/search?q=farm%20mechanization" title=" farm mechanization"> farm mechanization</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20production" title=" food production"> food production</a>, <a href="https://publications.waset.org/abstracts/search?q=cropping%20pattern" title=" cropping pattern"> cropping pattern</a> </p> <a href="https://publications.waset.org/abstracts/15290/spatial-pattern-of-farm-mechanization-a-micro-level-study-of-western-trans-ghaghara-plain-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Assessing the Socio-Economic Problems and Environmental Implications of Green Revolution In Uttar Pradesh, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naima%20Umar">Naima Umar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mid-1960’s has been landmark in the history of Indian agriculture. It was in 1966-67 when a New Agricultural Strategy was put into practice to tide over chronic shortages of food grains in the country. This strategy adopted was the use High-Yielding Varieties (HYV) of seeds (wheat and rice), which was popularly known as the Green Revolution. This phase of agricultural development has saved us from hunger and starvation and made the peasants more confident than ever before, but it has also created a number of socio-economic and environmental implications such as the reduction in area under forest, salinization, waterlogging, soil erosion, lowering of underground water table, soil, water and air pollution, decline in soil fertility, silting of rivers and emergence of several diseases and health hazards. The state of Uttar Pradesh in the north is bounded by the country of Nepal, the states of Uttrakhand on the northwest, Haryana on the west, Rajasthan on the southwest, Madhya Pradesh on the south and southwest, and Bihar on the east. It is situated between 23052´N and 31028´N latitudes and 7703´ and 84039´E longitudes. It is the fifth largest state of the country in terms of area, and first in terms of population. Forming the part of Ganga plain the state is crossed by a number of rivers which originate from the snowy peaks of Himalayas. The fertile plain of the Ganga has led to a high concentration of population with high density and the dominance of agriculture as an economic activity. Present paper highlights the negative impact of new agricultural technology on health of the people and environment and will attempt to find out factors which are responsible for these implications. Karl Pearson’s Correlation coefficient technique has been applied by selecting 1 dependent variable (i.e. Productivity Index) and some independent variables which may impact crop productivity in the districts of the state. These variables have categorized as: X1 (Cropping Intensity), X2 (Net irrigated area), X3 (Canal Irrigated area), X4 (Tube-well Irrigated area), X5 (Irrigated area by other sources), X6 (Consumption of chemical fertilizers (NPK) Kg. /ha.), X7 (Number of wooden plough), X8 (Number of iron plough), X9 (Number of harrows and cultivators), X10 (Number of thresher machines), X11(Number of sprayers), X12 (Number of sowing instruments), X13 (Number of tractors) and X14 (Consumption of insecticides and pesticides (in Kg. /000 ha.). The entire data during 2001-2005 and 2006- 2010 have been taken and 5 years average value is taken into consideration, based on secondary sources obtained from various government, organizations, master plan report, economic abstracts, district census handbooks and village and town directories etc,. put on a standard computer programmed SPSS and the results obtained have been properly tabulated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20technology" title="agricultural technology">agricultural technology</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20implications" title=" environmental implications"> environmental implications</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20hazards" title=" health hazards"> health hazards</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-economic%20problems" title=" socio-economic problems"> socio-economic problems</a> </p> <a href="https://publications.waset.org/abstracts/67270/assessing-the-socio-economic-problems-and-environmental-implications-of-green-revolution-in-uttar-pradesh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Introducing Global Navigation Satellite System Capabilities into IoT Field-Sensing Infrastructures for Advanced Precision Agriculture Services </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Savvas%20Rogotis">Savvas Rogotis</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolaos%20Kalatzis"> Nikolaos Kalatzis</a>, <a href="https://publications.waset.org/abstracts/search?q=Stergios%20Dimou-Sakellariou"> Stergios Dimou-Sakellariou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolaos%20Marianos"> Nikolaos Marianos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As precision holds the key for the introduction of distinct benefits in agriculture (e.g., energy savings, reduced labor costs, optimal application of inputs, improved products, and yields), it steadily becomes evident that new initiatives should focus on rendering Precision Agriculture (PA) more accessible to the average farmer. PA leverages on technologies such as the Internet of Things (IoT), earth observation, robotics and positioning systems (e.g., the Global Navigation Satellite System – GNSS - as well as individual positioning systems like GPS, Glonass, Galileo) that allow: from simple data georeferencing to optimal navigation of agricultural machinery to even more complex tasks like Variable Rate Applications. An identified customer pain point is that, from one hand, typical triangulation-based positioning systems are not accurate enough (with errors up to several meters), while on the other hand, high precision positioning systems reaching centimeter-level accuracy, are very costly (up to thousands of euros). Within this paper, a Ground-Based Augmentation System (GBAS) is introduced, that can be adapted to any existing IoT field-sensing station infrastructure. The latter should cover a minimum set of requirements, and in particular, each station should operate as a fixed, obstruction-free towards the sky, energy supplying unit. Station augmentation will allow them to function in pairs with GNSS rovers following the differential GNSS base-rover paradigm. This constitutes a key innovation element for the proposed solution that encompasses differential GNSS capabilities into an IoT field-sensing infrastructure. Integrating this kind of information supports the provision of several additional PA beneficial services such as spatial mapping, route planning, and automatic field navigation of unmanned vehicles (UVs). Right at the heart of the designed system, there is a high-end GNSS toolkit with base-rover variants and Real-Time Kinematic (RTK) capabilities. The GNSS toolkit had to tackle all availability, performance, interfacing, and energy-related challenges that are faced for a real-time, low-power, and reliable in the field operation. Specifically, in terms of performance, preliminary findings exhibit a high rover positioning precision that can even reach less than 10-centimeters. As this precision is propagated to the full dataset collection, it enables tractors, UVs, Android-powered devices, and measuring units to deal with challenging real-world scenarios. The system is validated with the help of Gaiatrons, a mature network of agro-climatic telemetry stations with presence all over Greece and beyond ( > 60.000ha of agricultural land covered) that constitutes part of “gaiasense” (www.gaiasense.gr) smart farming (SF) solution. Gaiatrons constantly monitor atmospheric and soil parameters, thus, providing exact fit to operational requirements asked from modern SF infrastructures. Gaiatrons are ultra-low-cost, compact, and energy-autonomous stations with a modular design that enables the integration of advanced GNSS base station capabilities on top of them. A set of demanding pilot demonstrations has been initiated in Stimagka, Greece, an area with a diverse geomorphological landscape where grape cultivation is particularly popular. Pilot demonstrations are in the course of validating the preliminary system findings in its intended environment, tackle all technical challenges, and effectively highlight the added-value offered by the system in action. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GNSS" title="GNSS">GNSS</a>, <a href="https://publications.waset.org/abstracts/search?q=GBAS" title=" GBAS"> GBAS</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title=" precision agriculture"> precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=RTK" title=" RTK"> RTK</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20farming" title=" smart farming"> smart farming</a> </p> <a href="https://publications.waset.org/abstracts/113775/introducing-global-navigation-satellite-system-capabilities-into-iot-field-sensing-infrastructures-for-advanced-precision-agriculture-services" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10