CINXE.COM

Search results for: mitigation measures

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: mitigation measures</title> <meta name="description" content="Search results for: mitigation measures"> <meta name="keywords" content="mitigation measures"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="mitigation measures" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="mitigation measures"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4274</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: mitigation measures</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4274</span> Human-Elephant Conflict and Mitigation Measures in Buffer Zone of Bardia National Park, Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabin%20Paudel">Rabin Paudel</a>, <a href="https://publications.waset.org/abstracts/search?q=Dambar%20Bahadur%20Mahato"> Dambar Bahadur Mahato</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabin%20Poudel"> Prabin Poudel</a>, <a href="https://publications.waset.org/abstracts/search?q=Bijaya%20Neupane"> Bijaya Neupane</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakar%20Jha"> Sakar Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding Human-Elephant Conflict (HEC) is very important in countries like Nepal, where solutions to escalating conflicts are urgently required. However, most of the HEC mitigation measures implemented so far have been done on an ad hoc basis without the detailed understanding of nature and extent of the damage. This study aims to assess the current scenario of HEC in regards to crop and property damages by Wild Asian Elephant and people’s perception towards existing mitigating measures and elephant conservation in Buffer zone area of Bardia National Park. The methods used were a questionnaire survey (N= 178), key-informant interview (N= 18) and focal group discussions (N= 6). Descriptive statistics were used to determine the nature and extent of damage and to understand people’s perception towards HEC, its mitigation measures and elephant conservation. Chi-square test was applied to determine the significance of crop and property damages with respect to distance from the park boundary. Out of all types of damage, crop damage was found to be the highest (51%), followed by house damage (31%) and damage to stored grains (18%) with winter being the season with the greatest elephant damage. Among 178 respondents, the majority of them (82%) were positive towards elephant conservation despite the increment in HEC incidents as perceived by 88% of total respondents. Among the mitigation measures present, the most applied was electric fence (91%) followed by barbed wire fence (5%), reinforced concrete cement wall (3%) and gabion wall (1%). Most effective mitigation measures were reinforced concrete cement wall and gabion wall. To combat increasing crop damage, the insurance policy should be initiated. The efficiency of the mitigation measures should be timely monitored, and corrective measures should be applied as per the need. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop%20and%20property%20damage" title="crop and property damage">crop and property damage</a>, <a href="https://publications.waset.org/abstracts/search?q=elephant%20conflict" title=" elephant conflict"> elephant conflict</a>, <a href="https://publications.waset.org/abstracts/search?q=Asiatic%20wild%20elephant" title=" Asiatic wild elephant"> Asiatic wild elephant</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation%20measures" title=" mitigation measures"> mitigation measures</a> </p> <a href="https://publications.waset.org/abstracts/111975/human-elephant-conflict-and-mitigation-measures-in-buffer-zone-of-bardia-national-park-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4273</span> Development of Pre-Mitigation Measures and Its Impact on Life-Cycle Cost of Facilities: Indian Scenario</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahima%20Shrivastava">Mahima Shrivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumya%20Kar"> Soumya Kar</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Swetha%20Malika"> B. Swetha Malika</a>, <a href="https://publications.waset.org/abstracts/search?q=Lalu%20Saheb"> Lalu Saheb</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Muthu%20Kumar"> M. Muthu Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20V.%20Ponambala%20Moorthi"> P. V. Ponambala Moorthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural hazards and manmade destruction causes both economic and societal losses. Generalized pre-mitigation strategies introduced and adopted for prevention of disaster all over the world are capable of augmenting the resiliency and optimizing the life-cycle cost of facilities. In countries like India where varied topographical feature exists requires location specific mitigation measures and strategies to be followed for better enhancement by event-driven and code-driven approaches. Present state of vindication measures followed and adopted, lags dominance in accomplishing the required development. In addition, serious concern and debate over climate change plays a vital role in enhancing the need and requirement for the development of time bound adaptive mitigation measures. For the development of long-term sustainable policies incorporation of future climatic variation is inevitable. This will further assist in assessing the impact brought about by the climate change on life-cycle cost of facilities. This paper develops more definite region specific and time bound pre-mitigation measures, by reviewing the present state of mitigation measures in India and all over the world for improving life-cycle cost of facilities. For the development of region specific adoptive measures, Indian regions were divided based on multiple-calamity prone regions and geo-referencing tools were used to incorporate the effect of climate changes on life-cycle cost assessment. This study puts forward significant effort in establishing sustainable policies and helps decision makers in planning for pre-mitigation measures for different regions. It will further contribute towards evaluating the life cycle cost of facilities by adopting the developed measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=geo-referencing%20tools" title=" geo-referencing tools"> geo-referencing tools</a>, <a href="https://publications.waset.org/abstracts/search?q=life-cycle%20cost" title=" life-cycle cost"> life-cycle cost</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple-calamity%20prone%20regions" title=" multiple-calamity prone regions"> multiple-calamity prone regions</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-mitigation%20strategies" title=" pre-mitigation strategies"> pre-mitigation strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20policies" title=" sustainable policies"> sustainable policies</a> </p> <a href="https://publications.waset.org/abstracts/43031/development-of-pre-mitigation-measures-and-its-impact-on-life-cycle-cost-of-facilities-indian-scenario" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4272</span> Applications of Out-of-Sequence Thrust Movement for Earthquake Mitigation: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study presents an overview of the many uses and approaches for estimating out-of-sequence thrust movement in earthquake mitigation. The study investigates how knowing and forecasting thrust movement during seismic occurrences might assist to effective earthquake mitigation measures. The review begins by discussing out-of-sequence thrust movement and its importance in earthquake mitigation strategies. It explores how typical techniques of estimating thrust movement may not capture the full complexity of seismic occurrences and emphasizes the benefits of include out-of-sequence data in the analysis. A thorough review of existing research and studies on out-of-sequence thrust movement estimates for earthquake mitigation. The study demonstrates how to estimate out-of-sequence thrust movement using multiple data sources such as GPS measurements, satellite imagery, and seismic recordings. The study also examines the use of out-of-sequence thrust movement estimates in earthquake mitigation measures. It investigates how precise calculation of thrust movement may help improve structural design, analyse infrastructure risk, and develop early warning systems. The potential advantages of using out-of-sequence data in these applications to improve the efficiency of earthquake mitigation techniques. The difficulties and limits of estimating out-of-sequence thrust movement for earthquake mitigation. It addresses data quality difficulties, modelling uncertainties, and computational complications. To address these obstacles and increase the accuracy and reliability of out-of-sequence thrust movement estimates, the authors recommend topics for additional study and improvement. The study is a helpful resource for seismic monitoring and earthquake risk assessment researchers, engineers, and policymakers, supporting innovations in earthquake mitigation measures based on a better knowledge of thrust movement dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20mitigation" title="earthquake mitigation">earthquake mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-sequence%20thrust" title=" out-of-sequence thrust"> out-of-sequence thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20imagery" title=" satellite imagery"> satellite imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20recordings" title=" seismic recordings"> seismic recordings</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS%20measurements" title=" GPS measurements"> GPS measurements</a> </p> <a href="https://publications.waset.org/abstracts/168985/applications-of-out-of-sequence-thrust-movement-for-earthquake-mitigation-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4271</span> Optimal Mitigation of Slopes by Probabilistic Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20De-Le%C3%B3n-Escobedo">D. De-León-Escobedo</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20J.%20Delgado-Hern%C3%A1ndez"> D. J. Delgado-Hernández</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P%C3%A9rez"> S. Pérez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A probabilistic formulation to assess the slopes safety under the hazard of strong storms is presented and illustrated through a slope in Mexico. The formulation is based on the classical safety factor (SF) used in practice to appraise the slope stability, but it is introduced the treatment of uncertainties, and the slope failure probability is calculated as the probability that SF&lt;1. As the main hazard is the rainfall on the area, statistics of rainfall intensity and duration are considered and modeled with an exponential distribution. The expected life-cycle cost is assessed by considering a monetary value on the slope failure consequences. Alternative mitigation measures are simulated, and the formulation is used to get the measures driving to the optimal one (minimum life-cycle costs). For the example, the optimal mitigation measure is the reduction on the slope inclination angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expected%20life-cycle%20cost" title="expected life-cycle cost">expected life-cycle cost</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20probability" title=" failure probability"> failure probability</a>, <a href="https://publications.waset.org/abstracts/search?q=slopes%20failure" title=" slopes failure"> slopes failure</a>, <a href="https://publications.waset.org/abstracts/search?q=storms" title=" storms"> storms</a> </p> <a href="https://publications.waset.org/abstracts/89653/optimal-mitigation-of-slopes-by-probabilistic-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4270</span> Measures for Earthquake Risk Reduction in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farah%20Lazzali">Farah Lazzali</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamina%20Ait%20Meziane"> Yamina Ait Meziane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent earthquakes in Algeria have demonstrated the need for seismic risk reduction. In fact, the latest major earthquake that affected the Algiers-Boumerdes region in 2003 caused excessive levels of loss of life and property. Economic, social and environmental damage were also experienced. During the three days following the event, a relatively weak coordination of public authority was noted. Many localities did not receive any relief due to lack of information from concerned authorities and delay in connecting damaged roads. Following this event, Algerian government and civil society has recognized the urgent need for an appropriate and immediate seismic risk mitigation strategy. This paper describes procedures for emergency response following past earthquakes in Algeria and provides a brief review of risk mitigation activities since 1980. The paper also aims to provide measures to reduce earthquake risk through general strategy and practical implementation of the mitigation actions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard" title=" hazard"> hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=prevention" title=" prevention"> prevention</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy" title=" strategy"> strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20reduction" title=" risk reduction"> risk reduction</a> </p> <a href="https://publications.waset.org/abstracts/29675/measures-for-earthquake-risk-reduction-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4269</span> Planning Strategies for Urban Flood Mitigation through Different Case Studies of Best Practices across the World</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bismina%20Akbar">Bismina Akbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Smitha%20M.%20V."> Smitha M. V.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flooding is a global phenomenon that causes widespread devastation, economic damage, and loss of human lives. In the past twenty years, the number of reported flood events has increased significantly. Millions of people around the globe are at risk of flooding from coastal, dam breaks, groundwater, and urban surface water and wastewater sources. Climate change is one of the important causes for them since it affects, directly and indirectly, the river network. Although the contribution of climate change is undeniable, human contributions are there to increase the frequency of floods. There are different types of floods, such as Flash floods, Coastal floods, Urban floods, River (or fluvial) floods, and Ponding (or pluvial flooding). This study focuses on formulating mitigation strategies for urban flood risk reduction through analysis of different best practice case studies, including China, Japan, Indonesia, and Brazil. The mitigation measures suggest that apart from the structural and non-structural measures, environmental considerations like blue-green solutions are beneficial for flood risk reduction. And also, Risk-Informed Master plans are essential nowadays to take risk-based decision processes that enable more sustainability and resilience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hazard" title="hazard">hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation" title=" mitigation"> mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20reduction" title=" risk reduction"> risk reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20flood" title=" urban flood"> urban flood</a> </p> <a href="https://publications.waset.org/abstracts/150322/planning-strategies-for-urban-flood-mitigation-through-different-case-studies-of-best-practices-across-the-world" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4268</span> Integrated Modeling Approach for Energy Planning and Climate Change Mitigation Assessment in the State of Florida</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Thakkar">K. Thakkar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Ghenai"> C. Ghenai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An integrated modeling approach was used in this study to (1) track energy consumption, production, and resource extraction, (2) track greenhouse gases emissions and (3) analyze emissions for local and regional air pollutions. The model was used in this study for short and long term energy and GHG emissions reduction analysis for the state of Florida. The integrated modeling methodology will help to evaluate the alternative energy scenarios and examine emissions-reduction strategies. The mitigation scenarios have been designed to describe the future energy strategies. They consist of various demand and supply side scenarios. One of the GHG mitigation scenarios is crafted by taking into account the available renewable resources potential for power generation in the state of Florida to compare and analyze the GHG reduction measure against ‘Business As Usual’ and ‘Florida State Policy’ scenario. Two more ‘integrated’ scenarios, (‘Electrification’ and ‘Efficiency and Lifestyle’) are crafted through combination of various mitigation scenarios to assess the cumulative impact of the reduction measures such as technological changes and energy efficiency and conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20planning" title="energy planning">energy planning</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20mitigation%20assessment" title=" climate change mitigation assessment"> climate change mitigation assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20modeling%20approach" title=" integrated modeling approach"> integrated modeling approach</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20alternatives" title=" energy alternatives"> energy alternatives</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20GHG%20emission%20reductions" title=" and GHG emission reductions"> and GHG emission reductions</a> </p> <a href="https://publications.waset.org/abstracts/36455/integrated-modeling-approach-for-energy-planning-and-climate-change-mitigation-assessment-in-the-state-of-florida" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4267</span> Technical and Economic Evaluation of Harmonic Mitigation from Offshore Wind Power Plants by Transmission Owners</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Prajapati">A. Prajapati</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20L.%20Koo"> K. L. Koo</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ghassemi"> F. Ghassemi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mulimakwenda"> M. Mulimakwenda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the UK, as the volume of non-linear loads connected to transmission grid continues to rise steeply, the harmonic distortion levels on transmission network are becoming a serious concern for the network owners and system operators. This paper outlines the findings of the study conducted to verify the proposal that the harmonic mitigation could be optimized and can be managed economically and effectively at the transmission network level by the Transmission Owner (TO) instead of the individual polluter connected to the grid. Harmonic mitigation studies were conducted on selected regions of the transmission network in England for recently connected offshore wind power plants to strategize and optimize selected harmonic filter options. The results – filter volume and capacity – were then compared against the mitigation measures adopted by the individual connections. Estimation ratios were developed based on the actual installed and optimal proposed filters. These estimation ratios were then used to derive harmonic filter requirements for future contracted connections. The study has concluded that a saving of 37% in the filter volume/capacity could be achieved if the TO is to centrally manage the harmonic mitigation instead of individual polluter installing their own mitigation solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C-type%20filter" title="C-type filter">C-type filter</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonics" title=" harmonics"> harmonics</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20wind%20farms" title=" offshore wind farms"> offshore wind farms</a>, <a href="https://publications.waset.org/abstracts/search?q=interconnectors" title=" interconnectors"> interconnectors</a>, <a href="https://publications.waset.org/abstracts/search?q=HVDC" title=" HVDC"> HVDC</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20owner" title=" transmission owner"> transmission owner</a> </p> <a href="https://publications.waset.org/abstracts/98379/technical-and-economic-evaluation-of-harmonic-mitigation-from-offshore-wind-power-plants-by-transmission-owners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4266</span> Flood Hazard and Risk Mapping to Assess Ice-Jam Flood Mitigation Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karl-Erich%20Lindenschmidt">Karl-Erich Lindenschmidt</a>, <a href="https://publications.waset.org/abstracts/search?q=Apurba%20Das"> Apurba Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Joel%20Trudell"> Joel Trudell</a>, <a href="https://publications.waset.org/abstracts/search?q=Keanne%20Russell"> Keanne Russell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this presentation, we explore options for mitigating ice-jam flooding along the Athabasca River in western Canada. Not only flood hazard, expressed in this case as the probability of flood depths and extents being exceeded, but also flood risk, in which annual expected damages are calculated. Flood risk is calculated, which allows a cost-benefit analysis to be made so that decisions on the best mitigation options are not based solely on flood hazard but also on the costs related to flood damages and the benefits of mitigation. The river ice model is used to simulate extreme ice-jam flood events with which scenarios are run to determine flood exposure and damages in flood-prone areas along the river. We will concentrate on three mitigation options – the placement of a dike, artificial breakage of the ice cover along the river, the installation of an ice-control structure, and the construction of a reservoir. However, any mitigation option is not totally failsafe. For example, dikes can still be overtopped and breached, and ice jams may still occur in areas of the river where ice covers have been artificially broken up. Hence, for all options, it is recommended that zoning of building developments away from greater flood hazard areas be upheld. Flood mitigation can have a negative effect of giving inhabitants a false sense of security that flooding may not happen again, leading to zoning policies being relaxed. (Text adapted from Lindenschmidt [2022] "Ice Destabilization Study - Phase 2", submitted to the Regional Municipality of Wood Buffalo, Alberta, Canada) <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ice%20jam" title="ice jam">ice jam</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20hazard" title=" flood hazard"> flood hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20risk%20river%20ice%20modelling" title=" flood risk river ice modelling"> flood risk river ice modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20risk" title=" flood risk"> flood risk</a> </p> <a href="https://publications.waset.org/abstracts/147292/flood-hazard-and-risk-mapping-to-assess-ice-jam-flood-mitigation-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4265</span> Study on Mitigation Measures of Gumti Hydro Power Plant Using Analytic Hierarchy Process and Concordance Analysis Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Majumdar">K. Majumdar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Datta"> S. Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electricity is recognized as fundamental to industrialization and improving the quality of life of the people. Harnessing the immense untapped hydropower potential in Tripura region opens avenues for growth and provides an opportunity to improve the well-being of the people of the region, while making substantial contribution to the national economy. Gumti hydro power plant generates power to mitigate the crisis of power in Tripura, India. The first unit of hydro power plant (5 MW) was commissioned in June 1976 & another two units of 5 MW was commissioned simultaneously. But out of 15 MW capacity at present only 8-9 MW power is produced from Gumti hydro power plant during rainy season. But during lean season the production reduces to 0.5 MW due to shortage of water. Now, it is essential to implement some mitigation measures so that the further atrocities can be prevented and originality will be possible to restore. The decision making ability of the Analytic Hierarchy Process (AHP) and Concordance Analysis Techniques (CAT) are utilized to identify the better decision or solution to the present problem. Some related attributes are identified by the method of surveying within the experts and the available reports and literatures. Similar criteria are removed and ultimately seven relevant ones are identified. All the attributes are compared with each other and rated accordingly to their importance over the other with the help of Pair wise Comparison Matrix. In the present investigation different mitigation measures are identified and compared to find the best suitable alternative which can solve the present uncertainties involving the existence of the Gumti Hydro Power Plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concordance%20analysis%20techniques" title="concordance analysis techniques">concordance analysis techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=analytic%20hierarchy%20process" title=" analytic hierarchy process"> analytic hierarchy process</a>, <a href="https://publications.waset.org/abstracts/search?q=hydro%20power" title=" hydro power"> hydro power</a> </p> <a href="https://publications.waset.org/abstracts/10997/study-on-mitigation-measures-of-gumti-hydro-power-plant-using-analytic-hierarchy-process-and-concordance-analysis-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4264</span> Climate Change: A Critical Analysis on the Relationship between Science and Policy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paraskevi%20Liosatou">Paraskevi Liosatou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change is considered to be of global concern being amplified by the fact that by its nature, cannot be spatially limited. This fact makes necessary the intergovernmental decision-making procedures. In the intergovernmental level, the institutions such as the United Nations Framework Convention on Climate Change and the Intergovernmental Panel on Climate Change develop efforts, methods, and practices in order to plan and suggest climate mitigation and adaptation measures. These measures are based on specific scientific findings and methods making clear the strong connection between science and policy. In particular, these scientific recommendations offer a series of practices, methods, and choices mitigating the problem by aiming at the indirect mitigation of the causes and the factors amplifying climate change. Moreover, modern production and economic context do not take into consideration the social, political, environmental and spatial dimensions of the problem. This work studies the decision-making process working in international and European level. In this context, this work considers the policy tools that have been implemented by various intergovernmental organizations. The methodology followed is based mainly on the critical study of standards and process concerning the connections and cooperation between science and policy as well as considering the skeptic debates developed. The finding of this work focuses on the links between science and policy developed by the institutional and scientific mechanisms concerning climate change mitigation. It also analyses the dimensions and the factors of the science-policy framework; in this way, it points out the causes that maintain skepticism in current scientific circles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20mitigation" title=" climate change mitigation"> climate change mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20skepticism" title=" climate change skepticism"> climate change skepticism</a>, <a href="https://publications.waset.org/abstracts/search?q=IPCC" title=" IPCC"> IPCC</a>, <a href="https://publications.waset.org/abstracts/search?q=skepticism" title=" skepticism"> skepticism</a> </p> <a href="https://publications.waset.org/abstracts/91176/climate-change-a-critical-analysis-on-the-relationship-between-science-and-policy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4263</span> Cloudburst-Triggered Natural Hazards in Uttarakhand Himalaya: Mechanism, Prevention, and Mitigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishwambhar%20Prasad%20Sati">Vishwambhar Prasad Sati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article examines cloudburst-triggered natural hazards mainly flashfloods and landslides in the Uttarakhand Himalaya. It further describes mechanism and implications of natural hazards and illustrates the preventive and mitigation measures. We conducted this study through collection of archival data, case study of cloudburst hit areas, and rapid field visit of the affected regions. In the second week of August 2017, about 50 people died and huge losses to property were noticed due to cloudburst-triggered flashfloods. Our study shows that although cloudburst triggered hazards in the Uttarakhand Himalaya are natural phenomena and unavoidable yet, disasters can be minimized if preventive measures are taken up appropriately. We suggested that construction of human settlements, institutions and infrastructural facilities along the seasonal streams and the perennial rivers should be avoided to prevent disasters. Further, large-scale tree plantation on the degraded land will reduce the magnitude of hazards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloudburst" title="cloudburst">cloudburst</a>, <a href="https://publications.waset.org/abstracts/search?q=flash%20floods" title=" flash floods"> flash floods</a>, <a href="https://publications.waset.org/abstracts/search?q=landslides" title=" landslides"> landslides</a>, <a href="https://publications.waset.org/abstracts/search?q=fragile%20landscape" title=" fragile landscape"> fragile landscape</a> </p> <a href="https://publications.waset.org/abstracts/79629/cloudburst-triggered-natural-hazards-in-uttarakhand-himalaya-mechanism-prevention-and-mitigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4262</span> Mitigation Measures for the Acid Mine Drainage Emanating from the Sabie Goldfield: Case Study of the Nestor Mine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rudzani%20Lusunzi">Rudzani Lusunzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Frans%20Waanders"> Frans Waanders</a>, <a href="https://publications.waset.org/abstracts/search?q=Elvis%20Fosso-Kankeu"> Elvis Fosso-Kankeu</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Khashane%20Netshitungulwana"> Robert Khashane Netshitungulwana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Sabie Goldfield has a history of gold mining dating back more than a century. Acid mine drainage (AMD) from the Nestor mine tailings storage facility (MTSF) poses a serious threat to the nearby ecosystem, specifically the Sabie River system. This study aims at developing mitigation measures for the AMD emanating from the Nestor MTSF using materials from the Glynns Lydenburg MTSF. The Nestor MTSF (NM) and the Glynns Lydenburg MTSF (GM) each provided about 20 kg of bulk composite samples. Using samples from the Nestor MTSF and the Glynns Lydenburg MTSF, two mixtures were created. MIX-A is a mixture that contains 25% weight percent (GM) and 75% weight percent (NM). MIX-B is the name given to the second mixture, which contains 50% AN and 50% AG. The same static test, i.e., acid–base accounting (ABA), net acid generation (NAG), and acid buffering characteristics curve (ABCC) was used to estimate the acid-generating probabilities of samples NM and GM for MIX-A and MIX-B. Furthermore, the mineralogy of the Nestor MTSF samples consists of the primary acid-producing mineral pyrite as well as the secondary minerals ferricopiapite and jarosite, which are common in acidic conditions. The Glynns Lydenburg MTSF samples, on the other hand, contain primary acid-neutralizing minerals calcite and dolomite. Based on the assessment conducted, materials from the Glynns Lydenburg are capable of neutralizing AMD from Nestor MTSF. Therefore, the alkaline tailings materials from the Glynns Lydenburg MTSF can be used to rehabilitate the acidic Nestor MTSF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nestor%20Mine" title="Nestor Mine">Nestor Mine</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20mine%20drainage" title=" acid mine drainage"> acid mine drainage</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation" title=" mitigation"> mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabie%20River%20system" title=" Sabie River system"> Sabie River system</a> </p> <a href="https://publications.waset.org/abstracts/165950/mitigation-measures-for-the-acid-mine-drainage-emanating-from-the-sabie-goldfield-case-study-of-the-nestor-mine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4261</span> Effects of Viscoelastic and Viscous Links on Seismic Pounding Mitigation in Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Mirzagoltabar%20Roshan">Ali Reza Mirzagoltabar Roshan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ahmadi%20Taleshian"> H. Ahmadi Taleshian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Eliasi"> A. Eliasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the effects of viscous and viscoelastic dampers as an efficient technique for seismic pounding mitigation. To aim that, 15 steel frame models with different numbers of stories and bays and also with different types of ductility were analyzed under 10 different earthquake records for assigned values of link damping and stiffness and the most suitable values of damper parameters (damping and stiffness) are presented. Moreover, it is demonstrated that viscous dampers can perform as efficiently as viscoelastic alternative with a more economical aspect for pounding mitigation purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adjacent%20buildings" title="adjacent buildings">adjacent buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20distance" title=" separation distance"> separation distance</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20pounding%20mitigation" title=" seismic pounding mitigation"> seismic pounding mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20link" title=" viscoelastic link"> viscoelastic link</a> </p> <a href="https://publications.waset.org/abstracts/68289/effects-of-viscoelastic-and-viscous-links-on-seismic-pounding-mitigation-in-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4260</span> Earthquake Risk Assessment Using Out-of-Sequence Thrust Movement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquakes are natural disasters that pose a significant risk to human life and infrastructure. Effective earthquake mitigation measures require a thorough understanding of the dynamics of seismic occurrences, including thrust movement. Traditionally, estimating thrust movement has relied on typical techniques that may not capture the full complexity of these events. Therefore, investigating alternative approaches, such as incorporating out-of-sequence thrust movement data, could enhance earthquake mitigation strategies. This review aims to provide an overview of the applications of out-of-sequence thrust movement in earthquake mitigation. By examining existing research and studies, the objective is to understand how precise estimation of thrust movement can contribute to improving structural design, analyzing infrastructure risk, and developing early warning systems. The study demonstrates how to estimate out-of-sequence thrust movement using multiple data sources, including GPS measurements, satellite imagery, and seismic recordings. By analyzing and synthesizing these diverse datasets, researchers can gain a more comprehensive understanding of thrust movement dynamics during seismic occurrences. The review identifies potential advantages of incorporating out-of-sequence data in earthquake mitigation techniques. These include improving the efficiency of structural design, enhancing infrastructure risk analysis, and developing more accurate early warning systems. By considering out-of-sequence thrust movement estimates, researchers and policymakers can make informed decisions to mitigate the impact of earthquakes. This study contributes to the field of seismic monitoring and earthquake risk assessment by highlighting the benefits of incorporating out-of-sequence thrust movement data. By broadening the scope of analysis beyond traditional techniques, researchers can enhance their knowledge of earthquake dynamics and improve the effectiveness of mitigation measures. The study collects data from various sources, including GPS measurements, satellite imagery, and seismic recordings. These datasets are then analyzed using appropriate statistical and computational techniques to estimate out-of-sequence thrust movement. The review integrates findings from multiple studies to provide a comprehensive assessment of the topic. The study concludes that incorporating out-of-sequence thrust movement data can significantly enhance earthquake mitigation measures. By utilizing diverse data sources, researchers and policymakers can gain a more comprehensive understanding of seismic dynamics and make informed decisions. However, challenges exist, such as data quality difficulties, modelling uncertainties, and computational complications. To address these obstacles and improve the accuracy of estimates, further research and advancements in methodology are recommended. Overall, this review serves as a valuable resource for researchers, engineers, and policymakers involved in earthquake mitigation, as it encourages the development of innovative strategies based on a better understanding of thrust movement dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-sequence%20thrust" title=" out-of-sequence thrust"> out-of-sequence thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster" title=" disaster"> disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20life" title=" human life"> human life</a> </p> <a href="https://publications.waset.org/abstracts/169037/earthquake-risk-assessment-using-out-of-sequence-thrust-movement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4259</span> The Learning Loops in the Public Realm Project in South Verona: Air Quality and Noise Pollution Participatory Data Collection towards Co-Design, Planning and Construction of Mitigation Measures in Urban Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Massimiliano%20Condotta">Massimiliano Condotta</a>, <a href="https://publications.waset.org/abstracts/search?q=Giovanni%20Borga"> Giovanni Borga</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiara%20Scanagatta"> Chiara Scanagatta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban systems are places where the various actors involved interact and enter in conflict, in particular with reference to topics such as traffic congestion and security. But topics of discussion, and often clash because of their strong complexity, are air and noise pollution. For air pollution, the complexity stems from the fact that atmospheric pollution is due to many factors, but above all, the observation and measurement of the amount of pollution of a transparent, mobile and ethereal element like air is very difficult. Often the perceived condition of the inhabitants does not coincide with the real conditions, because it is conditioned - sometimes in positive ways other in negative ways - from many other factors such as the presence, or absence, of natural elements such as trees or rivers. These problems are seen with noise pollution as well, which is also less considered as an issue even if it’s problematic just as much as air quality. Starting from these opposite positions, it is difficult to identify and implement valid, and at the same time shared, mitigation solutions for the problem of urban pollution (air and noise pollution). The LOOPER (Learning Loops in the Public Realm) project –described in this paper – wants to build and test a methodology and a platform for participatory co-design, planning, and construction process inside a learning loop process. Novelties in this approach are various; the most relevant are three. The first is that citizens participation starts since from the research of problems and air quality analysis through a participatory data collection, and that continues in all process steps (design and construction). The second is that the methodology is characterized by a learning loop process. It means that after the first cycle of (1) problems identification, (2) planning and definition of design solution and (3) construction and implementation of mitigation measures, the effectiveness of implemented solutions is measured and verified through a new participatory data collection campaign. In this way, it is possible to understand if the policies and design solution had a positive impact on the territory. As a result of the learning process produced by the first loop, it will be possible to improve the design of the mitigation measures and start the second loop with new and more effective measures. The third relevant aspect is that the citizens' participation is carried out via Urban Living Labs that involve all stakeholder of the city (citizens, public administrators, associations of all urban stakeholders,…) and that the Urban Living Labs last for all the cycling of the design, planning and construction process. The paper will describe in detail the LOOPER methodology and the technical solution adopted for the participatory data collection and design and construction phases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20quality" title="air quality">air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=co-design" title=" co-design"> co-design</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20loops" title=" learning loops"> learning loops</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20pollution" title=" noise pollution"> noise pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20living%20labs" title=" urban living labs"> urban living labs</a> </p> <a href="https://publications.waset.org/abstracts/82988/the-learning-loops-in-the-public-realm-project-in-south-verona-air-quality-and-noise-pollution-participatory-data-collection-towards-co-design-planning-and-construction-of-mitigation-measures-in-urban-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4258</span> Android-Based Edugame Application for Earthquakes Disaster Mitigation Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Endina%20P.%20Purwandari">Endina P. Purwandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yolanda%20Hervianti"> Yolanda Hervianti</a>, <a href="https://publications.waset.org/abstracts/search?q=Feri%20Noperman"> Feri Noperman</a>, <a href="https://publications.waset.org/abstracts/search?q=Endang%20W.%20Winarni"> Endang W. Winarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The earthquakes disaster is an event that can threaten at any moment and cause damage and loss of life. Game earthquake disaster mitigation is a useful educational game to enhance children insight, knowledge, and understanding in the response to the impact of the earthquake. This study aims to build an educational games application on the Android platform as a learning media for earthquake mitigation education and to determine the effect of the application toward children understanding of the earthquake disaster mitigation. The methods were research and development. The development was to develop edugame application for earthquakes mitigation education. The research involved elementary students as a research sample to test the developed application. The research results were valid android-based edugame application, and its the effect of application toward children understanding. The application contains an earthquake simulation video, an earthquake mitigation video, and a game consisting three stages, namely before the earthquake, when the earthquake occur, and after the earthquake. The results of the feasibility test application showed that this application was included in the category of 'Excellent' which the average percentage of the operation of applications by 76%, view application by 67% and contents of application by 74%. The test results of students' responses were 80% that showed that a positive their responses toward the application. The student understanding test results show that the average score of children understanding pretest was 71,33, and post-test was 97,00. T-test result showed that t value by 8,02 more than table t by 2,001. This indicated that the earthquakes disaster mitigation edugame application based on Android platform affects the children understanding about disaster earthquake mitigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=android" title="android">android</a>, <a href="https://publications.waset.org/abstracts/search?q=edugame" title=" edugame"> edugame</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation" title=" mitigation"> mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquakes" title=" earthquakes"> earthquakes</a> </p> <a href="https://publications.waset.org/abstracts/72800/android-based-edugame-application-for-earthquakes-disaster-mitigation-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4257</span> Analysis of Delays during Initial Phase of Construction Projects and Mitigation Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunaitan%20Al%20Mutairi">Sunaitan Al Mutairi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A perfect start is a key factor for project completion on time. The study examined the effects of delayed mobilization of resources during the initial phases of the project. This paper mainly highlights the identification and categorization of all delays during the initial construction phase and their root cause analysis with corrective/control measures for the Kuwait Oil Company oil and gas projects. A relatively good percentage of the delays identified during the project execution (Contract award to end of defects liability period) attributed to mobilization/preliminary activity delays. Data analysis demonstrated significant increase in average project delay during the last five years compared to the previous period. Contractors had delays/issues during the initial phase, which resulted in slippages and progressively increased, resulting in time and cost overrun. Delays/issues not mitigated on time during the initial phase had very high impact on project completion. Data analysis of the delays for the past five years was carried out using trend chart, scatter plot, process map, box plot, relative importance index and Pareto chart. Construction of any project inside the Gathering Centers involves complex management skills related to work force, materials, plant, machineries, new technologies etc. Delay affects completion of projects and compromises quality, schedule and budget of project deliverables. Works executed as per plan during the initial phase and start-up duration of the project construction activities resulted in minor slippages/delays in project completion. In addition, there was a good working environment between client and contractor resulting in better project execution and management. Mainly, the contractor was on the front foot in the execution of projects, which had minimum/no delays during the initial and construction period. Hence, having a perfect start during the initial construction phase shall have a positive influence on the project success. Our research paper studies each type of delay with some real example supported by statistic results and suggests mitigation measures. Detailed analysis carried out with all stakeholders based on impact and occurrence of delays to have a practical and effective outcome to mitigate the delays. The key to improvement is to have proper control measures and periodic evaluation/audit to ensure implementation of the mitigation measures. The focus of this research is to reduce the delays encountered during the initial construction phase of the project life cycle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20activities%20delays" title="construction activities delays">construction activities delays</a>, <a href="https://publications.waset.org/abstracts/search?q=delay%20analysis%20for%20construction%20projects" title=" delay analysis for construction projects"> delay analysis for construction projects</a>, <a href="https://publications.waset.org/abstracts/search?q=mobilization%20delays" title=" mobilization delays"> mobilization delays</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20%26%20gas%20projects%20delays" title=" oil &amp; gas projects delays"> oil &amp; gas projects delays</a> </p> <a href="https://publications.waset.org/abstracts/62363/analysis-of-delays-during-initial-phase-of-construction-projects-and-mitigation-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4256</span> Understanding the Impact of Out-of-Sequence Thrust Dynamics on Earthquake Mitigation: Implications for Hazard Assessment and Disaster Planning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquakes pose significant risks to human life and infrastructure, highlighting the importance of effective earthquake mitigation strategies. Traditional earthquake modelling and mitigation efforts have largely focused on the primary fault segments and their slip behaviour. However, earthquakes can exhibit complex rupture dynamics, including out-of-sequence thrust (OOST) events, which occur on secondary or subsidiary faults. This abstract examines the impact of OOST dynamics on earthquake mitigation strategies and their implications for hazard assessment and disaster planning. OOST events challenge conventional seismic hazard assessments by introducing additional fault segments and potential rupture scenarios that were previously unrecognized or underestimated. Consequently, these events may increase the overall seismic hazard in affected regions. The study reviews recent case studies and research findings that illustrate the occurrence and characteristics of OOST events. It explores the factors contributing to OOST dynamics, such as stress interactions between fault segments, fault geometry, and mechanical properties of fault materials. Moreover, it investigates the potential triggers and precursory signals associated with OOST events to enhance early warning systems and emergency response preparedness. The abstract also highlights the significance of incorporating OOST dynamics into seismic hazard assessment methodologies. It discusses the challenges associated with accurately modelling OOST events, including the need for improved understanding of fault interactions, stress transfer mechanisms, and rupture propagation patterns. Additionally, the abstract explores the potential for advanced geophysical techniques, such as high-resolution imaging and seismic monitoring networks, to detect and characterize OOST events. Furthermore, the abstract emphasizes the practical implications of OOST dynamics for earthquake mitigation strategies and urban planning. It addresses the need for revising building codes, land-use regulations, and infrastructure designs to account for the increased seismic hazard associated with OOST events. It also underscores the importance of public awareness campaigns to educate communities about the potential risks and safety measures specific to OOST-induced earthquakes. This sheds light on the impact of out-of-sequence thrust dynamics in earthquake mitigation. By recognizing and understanding OOST events, researchers, engineers, and policymakers can improve hazard assessment methodologies, enhance early warning systems, and implement effective mitigation measures. By integrating knowledge of OOST dynamics into urban planning and infrastructure development, societies can strive for greater resilience in the face of earthquakes, ultimately minimizing the potential for loss of life and infrastructure damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20mitigation" title="earthquake mitigation">earthquake mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-sequence%20thrust" title=" out-of-sequence thrust"> out-of-sequence thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20imagery" title=" satellite imagery"> satellite imagery</a> </p> <a href="https://publications.waset.org/abstracts/169831/understanding-the-impact-of-out-of-sequence-thrust-dynamics-on-earthquake-mitigation-implications-for-hazard-assessment-and-disaster-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4255</span> Operational Measures for Greenhouse Gas Reduction from Ships</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gorana%20Jelic%20Mrcelic">Gorana Jelic Mrcelic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to reduce greenhouse gas emissions from ships, technical and operational measures can be used. Operational measures are easier and cheaper compared to technical measures, so are well recommended. One of the most cost-effective operational measure is fuel consumption. Fuel consumption can be reduced by various options but it sometimes needs investments in new equipment, new procedures and crew education. In order to implement operational measures in everyday procedures and routines on board, good understanding of the mechanisms by which these measures work is essential for the seamen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20shipping" title="green shipping">green shipping</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20emission%20reduction" title=" gas emission reduction"> gas emission reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20measures" title=" operational measures"> operational measures</a>, <a href="https://publications.waset.org/abstracts/search?q=seamen" title=" seamen"> seamen</a> </p> <a href="https://publications.waset.org/abstracts/20223/operational-measures-for-greenhouse-gas-reduction-from-ships" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4254</span> From Conflicts to Synergies between Mitigation and Adaptation Strategies to Climate Change: The Case of Lisbon Downtown 2010-2030</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuno%20M.%20Pereira">Nuno M. Pereira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last thirty years, European cities have been addressing global climate change and its local impacts by implementing mitigation and adaptation strategies. Lisbon Downtown is no exception with 10 plans under implementation since 2010 with completion scheduled for 2030 valued 1 billion euros of public investment. However, the gap between mitigation and adaptation strategies is not yet sufficiently studied alongside with its nuances- vulnerability and risk mitigation, resilience and adaptation. In Lisbon Downtown, these plans are being implemented separately, therefore compromising the effectiveness of public investment. The research reviewed the common ground of mitigation and adaptation strategies of the theoretical framework and analyzed the current urban development actions in Lisbon Downtown in order to identify potential conflicts and synergies. The empirical fieldwork supported by a sounding board of experts has been developed during two years and the results suggest that the largest public investment in Lisbon on flooding mitigation will conflict with the new Cruise ship terminal and old Downton building stock, therefore increasing risk and vulnerability factors. The study concludes that the Lisbon Downtown blue infrastructure plan should be redesigned in some areas in a trans- disciplinary and holistic approach and that the current theoretical framework on climate change should focus more on mitigation and adaptation synergies articulating the gray, blue and green infrastructures, combining old knowledge tested by resilient communities and new knowledge emerging from the digital era. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptation" title="adaptation">adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=conflict" title=" conflict"> conflict</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisbon%20Downtown" title=" Lisbon Downtown"> Lisbon Downtown</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation" title=" mitigation"> mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=synergy" title=" synergy"> synergy</a> </p> <a href="https://publications.waset.org/abstracts/85316/from-conflicts-to-synergies-between-mitigation-and-adaptation-strategies-to-climate-change-the-case-of-lisbon-downtown-2010-2030" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4253</span> Factors Affecting Implementation of Construction Health and Safety Regulations, Their Effects and Mitigation Measures in Building Construction Project Sites of Hawassa City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tadewos%20Awugchew%20Wudineh">Tadewos Awugchew Wudineh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Health and safety issues have always been a major problem and concern in the building construction industry. The health and safety regulations are stated to eliminate the potential hazards and to reduce the consequential risks. However, the importance of the regulations seems to be overlooked in building construction sites of Hawassa City. Accordingly, many companies don’t follow the regulations as construction workers are more likely to be injured and killed by construction accident than any other type of employment. This paper aimed to identify factors that affect the implementation of construction health and safety regulations, their effects and mitigation measures in building construction project sites of Hawassa City. To reach this objective, a review of literature as well as the Ethiopian construction health and safety regulations have been undertaken. Mainly a five-point Likert scale questionnaire was distributed, and statistical analysis was used to summarize, interpret the data, and to find the significances of the responses. In addition, interviews were carried out. Accordingly, the findings indicate that the top factors which affect the implementation of CHS regulations are, availability and development of a clear health and safety policy, health and safety inspections by top management, conducting health and safety training and orientation, provision of healthy and safe working environment and employment of trained safety officers. The study revealed that implementation or non-implementation of CHS regulations have effects on the worker’s productivity, job satisfaction, rate of accidents, and cost greatly. Thus, the suggestion to minimize the impact on worker’s job performance are, developing of a clear health and safety policy, management commitment towards implementation of health and safety regulations, health and safety education and training and conducting regular health and safety inspections. It was concluded from the study that good implementation of health and safety regulations are the results from administrative and management commitment which calls for more attention to be paid to improve the implementation of CHS regulations in building construction sites of Hawassa City. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20health%20and%20safety%20regulations" title="construction health and safety regulations">construction health and safety regulations</a>, <a href="https://publications.waset.org/abstracts/search?q=effects" title=" effects"> effects</a>, <a href="https://publications.waset.org/abstracts/search?q=factors" title=" factors"> factors</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation" title=" mitigation"> mitigation</a> </p> <a href="https://publications.waset.org/abstracts/111621/factors-affecting-implementation-of-construction-health-and-safety-regulations-their-effects-and-mitigation-measures-in-building-construction-project-sites-of-hawassa-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4252</span> Chairussyuhur Arman, Totti Tjiptosumirat, Muhammad Gunawan, Mastur, Joko Priyono, Baiq Tri Ratna Erawati</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20M.%20Giannakou">Maria M. Giannakou</a>, <a href="https://publications.waset.org/abstracts/search?q=Athanasios%20K.%20Ziliaskopoulos"> Athanasios K. Ziliaskopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transmission pipelines carrying natural gas are often routed through populated cities, industrial and environmentally sensitive areas. While the need for these networks is unquestionable, there are serious concerns about the risk these lifeline networks pose to the people, to their habitat and to the critical infrastructures, especially in view of natural disasters such as earthquakes. This work presents an Integrated Pipeline Risk Management methodology (IPRM) for assessing the hazard associated with a natural gas pipeline failure due to natural or manmade disasters. IPRM aims to optimize the allocation of the available resources to countermeasures in order to minimize the impacts of pipeline failure to humans, the environment, the infrastructure and the economic activity. A proposed knapsack mathematical programming formulation is introduced that optimally selects the proper mitigation policies based on the estimated cost – benefit ratios. The proposed model is demonstrated with a small numerical example. The vulnerability analysis of these pipelines and the quantification of consequences from such failures can be useful for natural gas industries on deciding which mitigation measures to implement on the existing pipeline networks with the minimum cost in an acceptable level of hazard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost%20benefit%20analysis" title="cost benefit analysis">cost benefit analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=knapsack%20problem" title=" knapsack problem"> knapsack problem</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas%20distribution%20network" title=" natural gas distribution network"> natural gas distribution network</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20mitigation" title=" risk mitigation"> risk mitigation</a> </p> <a href="https://publications.waset.org/abstracts/37784/chairussyuhur-arman-totti-tjiptosumirat-muhammad-gunawan-mastur-joko-priyono-baiq-tri-ratna-erawati" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4251</span> Development of Closed System for Bacterial CO2 Mitigation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somesh%20Misha">Somesh Misha</a>, <a href="https://publications.waset.org/abstracts/search?q=Smita%20Raghuvanshi"> Smita Raghuvanshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Gupta"> Suresh Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing concentration of green house gases (GHG's), such as CO2 is of major concern and start showing its impact nowadays. The recent studies are focused on developing the continuous system using photoautotrophs for CO2 mitigation and simultaneous production of primary and secondary metabolites as a value addition. The advent of carbon concentrating mechanism had blurred the distinction between autotrophs and heterotrophs and now the paradigm has shifted towards the carbon capture and utilization (CCU) rather than carbon capture and sequestration (CCS). In the present work, a bioreactor was developed utilizing the chemolithotrophic bacterial species using CO2 mitigation and simultaneous value addition. The kinetic modeling was done and the biokinetic parameters are obtained for developing the bioreactor. The bioreactor was developed and studied for its operation and performance in terms of volumetric loading rate, mass loading rate, elimination capacity and removal efficiency. The characterization of effluent from the bioreactor was carried out for the products obtained using the analyzing techniques such as FTIR, GC-MS, and NMR. The developed bioreactor promised an economic, efficient and effective solution for CO2 mitigation and simultaneous value addition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20mitigation" title="CO2 mitigation">CO2 mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-reactor" title=" bio-reactor"> bio-reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=chemolithotrophic%20bacterial%20species" title=" chemolithotrophic bacterial species"> chemolithotrophic bacterial species</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR" title=" NMR"> NMR</a> </p> <a href="https://publications.waset.org/abstracts/18941/development-of-closed-system-for-bacterial-co2-mitigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4250</span> Empirical Exploration of Correlations between Software Design Measures: A Replication Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jehad%20Al%20Dallal">Jehad Al Dallal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software engineers apply different measures to quantify the quality of software design. These measures consider artifacts developed at low or high level software design phases. The results are used to point to design weaknesses and to indicate design points that have to be restructured. Understanding the relationship among the quality measures and among the design quality aspects considered by these measures is important to interpreting the impact of a measure for a quality aspect on other potentially related aspects. In addition, exploring the relationship between quality measures helps to explain the impact of different quality measures on external quality aspects, such as reliability and maintainability. In this paper, we report a replication study that empirically explores the correlation between six well known and commonly applied design quality measures. These measures consider several quality aspects, including complexity, cohesion, coupling, and inheritance. The results indicate that inheritance measures are weakly correlated to other measures, whereas complexity, coupling, and cohesion measures are mostly strongly correlated. &nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quality%20attribute" title="quality attribute">quality attribute</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20measure" title=" quality measure"> quality measure</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20design%20quality" title=" software design quality"> software design quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Spearman%20correlation" title=" Spearman correlation"> Spearman correlation</a> </p> <a href="https://publications.waset.org/abstracts/77694/empirical-exploration-of-correlations-between-software-design-measures-a-replication-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4249</span> Effect of Fluidized Granular Activated Carbon for the Mitigation of Membrane Fouling in Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jingwei%20Wang">Jingwei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20G.%20Fane"> Anthony G. Fane</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Wei%20Chew"> Jia Wei Chew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of fluidized Granular Activated Carbon (GAC) as a means of mitigation membrane fouling in membrane bioreactors (MBRs) has received much attention in recent years, especially in anaerobic fluidized bed membrane bioreactors (AFMBRs). It has been affirmed that the unsteady-state tangential shear conferred by GAC fluidization on membrane surface suppressed the extent of membrane fouling with energy consumption much lower than that of bubbling (i.e., air sparging). In a previous work, the hydrodynamics of the fluidized GAC particles were correlated with membrane fouling mitigation effectiveness. Results verified that the momentum transfer from particle to membrane held a key in fouling mitigation. The goal of the current work is to understand the effect of fluidized GAC on membrane critical flux. Membrane critical flux values were measured by a vertical Direct Observation Through the Membrane (DOTM) setup. The polystyrene particles (known as latex particles) with the particle size of 5 µm were used as model foulant thus to give the number of the foulant on the membrane surface. Our results shed light on the positive effect of fluidized GAC enhancing the critical membrane flux by an order-of-magnitude as compared to that of liquid shear alone. Membrane fouling mitigation was benefitted by the increasing of power input. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20fouling%20mitigation" title="membrane fouling mitigation">membrane fouling mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-solid%20fluidization" title=" liquid-solid fluidization"> liquid-solid fluidization</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20flux" title=" critical flux"> critical flux</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20input" title=" energy input"> energy input</a> </p> <a href="https://publications.waset.org/abstracts/75555/effect-of-fluidized-granular-activated-carbon-for-the-mitigation-of-membrane-fouling-in-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4248</span> Educating Farmers and Fishermen in Rural Areas in Nigeria on Climate Change Mitigation and Adaptation for Global Sustainability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Anabaraonye">Benjamin Anabaraonye</a>, <a href="https://publications.waset.org/abstracts/search?q=Okafor%20Joachim%20Chukwuma"> Okafor Joachim Chukwuma</a>, <a href="https://publications.waset.org/abstracts/search?q=Olamire%20James"> Olamire James</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impacts of climate change are greatly felt on Nigeria’s agricultural sector which in turn affects the economy of the nation. There is an urgent need to educate farmers and fishermen in rural areas in Nigeria on climate change adaptation and mitigation for sustainable development. Through our literature and participant observation, it has been discovered that many farmers and fishermen in rural areas in Nigeria have little or no knowledge about climate change adaptation and mitigation. This paper seeks to draw the attention of policy makers in government, private sectors, non-governmental organizations and interested individuals to the need to seek for innovative ways of educating farmers and fishermen in rural areas about climate change adaptation and mitigation for global sustainability. This study also explores the effective methods of bridging the communication gaps through efficient information dissemination, intensive awareness outreach, use of climate change poems and blogs, innovative loan scheme to farmers and fishermen, etc. to help ensure that farmers and fishermen in rural areas in Nigeria are adequately educated about climate change adaptation and mitigation for global sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=farmers" title=" farmers"> farmers</a>, <a href="https://publications.waset.org/abstracts/search?q=fishermen" title=" fishermen"> fishermen</a> </p> <a href="https://publications.waset.org/abstracts/87653/educating-farmers-and-fishermen-in-rural-areas-in-nigeria-on-climate-change-mitigation-and-adaptation-for-global-sustainability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4247</span> An Appraisal of Mitigation and Adaptation Measures under Paris Agreement 2015: Developing Nations&#039; Pie</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olubisi%20Friday%20Oluduro">Olubisi Friday Oluduro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Paris Agreement 2015, the result of negotiations under the United Nations Framework Convention on Climate Change (UNFCCC), after Kyoto Protocol expiration, sets a long-term goal of limiting the increase in the global average temperature to well below 2 degrees Celsius above pre-industrial levels, and of pursuing efforts to limiting this temperature increase to 1.5 degrees Celsius. An advancement on the erstwhile Kyoto Protocol which sets commitments to only a limited number of Parties to reduce their greenhouse gas (GHGs) emissions, it includes the goal to increase the ability to adapt to the adverse impacts of climate change and to make finance flows consistent with a pathway towards low GHGs emissions. For it achieve these goals, the Agreement requires all Parties to undertake efforts towards reaching global peaking of GHG emissions as soon as possible and towards achieving a balance between anthropogenic emissions by sources and removals by sinks in the second half of the twenty-first century. In addition to climate change mitigation, the Agreement aims at enhancing adaptive capacity, strengthening resilience and reducing the vulnerability to climate change in different parts of the world. It acknowledges the importance of addressing loss and damage associated with the adverse of climate change. The Agreement also contains comprehensive provisions on support to be provided to developing countries, which includes finance, technology transfer and capacity building. To ensure that such supports and actions are transparent, the Agreement contains a number reporting provisions, requiring parties to choose the efforts and measures that mostly suit them (Nationally Determined Contributions), providing for a mechanism of assessing progress and increasing global ambition over time by a regular global stocktake. Despite the somewhat global look of the Agreement, it has been fraught with manifold limitations threatening its very existential capability to produce any meaningful result. Considering these obvious limitations some of which were the very cause of the failure of its predecessor—the Kyoto Protocol—such as the non-participation of the United States, non-payment of funds into the various coffers for appropriate strategic purposes, among others. These have left the developing countries largely threatened eve the more, being more vulnerable than the developed countries, which are really responsible for the climate change scourge. The paper seeks to examine the mitigation and adaptation measures under the Paris Agreement 2015, appraise the present situation since the Agreement was concluded and ascertain whether the developing countries have been better or worse off since the Agreement was concluded, and examine why and how, while projecting a way forward in the present circumstance. It would conclude with recommendations towards ameliorating the situation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mitigation" title="mitigation">mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptation" title=" adaptation"> adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Paris%20agreement%202015" title=" Paris agreement 2015"> Paris agreement 2015</a>, <a href="https://publications.waset.org/abstracts/search?q=framework" title=" framework"> framework</a> </p> <a href="https://publications.waset.org/abstracts/127995/an-appraisal-of-mitigation-and-adaptation-measures-under-paris-agreement-2015-developing-nations-pie" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4246</span> Investigation of Failures in Wadi-Crossing Pipe Culverts, Sennar State, Sudan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdi%20M.%20E.%20Zumrawi">Magdi M. E. Zumrawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crossing culverts are essential element of rural roads. The paper aims to investigate failures of recently constructed wadi-crossing pipe culverts in Sennar state and provide necessary remedial measures. The investigation is conducted to provide an extensive diagnosis study in order to find out the main structural and hydrological weaknesses of the culverts. Literature of steel pipe culverts related to construction practices and common types of culvert failures and their appropriate mitigation measures were reviewed. A detailed field survey was conducted to detect failures and defects appeared on the existing culverts. The results revealed that seepage of water through the embankment and foundation of the culverts leads to excessive erosion and scouring causing sever failures and damages. The design mistakes and poor construction were detected as the main causes of culverts failures. For sustainability of the culverts, various remedial measures are recommended to be considered in urgent rehabilitation of the existing crossings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=culvert" title="culvert">culvert</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/56720/investigation-of-failures-in-wadi-crossing-pipe-culverts-sennar-state-sudan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4245</span> Modeling of Dam Break Flood Wave Propagation Using HEC-RAS 2D and GIS: A Case Study of Taksebt Dam in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelghani%20Leghouchi">Abdelghani Leghouchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to predict the consequences associated with the propagation of the flood wave that may occur after the failure of the Taksebt dam and suggest an efficient emergency action plan (EAP) for mitigation purposes. To achieve the objectives of this study, the hydrodynamic model HEC-RAS 2D was used for the flood routing of the dam break wave, which gave an estimate of the hydraulic characteristics downstream the Taksebt dam. Geospatial analysis of the simulation results conducted in a Geographic information system (GIS) environment showed that many residential areas are considered to be in danger in case of the Taksebt dam break event. Based on the obtained results, an emergency actions plan was suggested to moderate the causalities in the downstream area at risk. Overall, the present study showed that the integration of 2D hydraulic modeling and GIS provides great capabilities in providing realistic view of the dam break wave propagation that enhances assessing the associated risks and proposing appropriate mitigation measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=taksebt%20dam" title="taksebt dam">taksebt dam</a>, <a href="https://publications.waset.org/abstracts/search?q=dam%20break" title=" dam break"> dam break</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20propagation%20time" title=" wave propagation time"> wave propagation time</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-RAS%202D" title=" HEC-RAS 2D"> HEC-RAS 2D</a> </p> <a href="https://publications.waset.org/abstracts/157966/modeling-of-dam-break-flood-wave-propagation-using-hec-ras-2d-and-gis-a-case-study-of-taksebt-dam-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mitigation%20measures&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mitigation%20measures&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mitigation%20measures&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mitigation%20measures&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mitigation%20measures&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mitigation%20measures&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mitigation%20measures&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mitigation%20measures&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mitigation%20measures&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mitigation%20measures&amp;page=142">142</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mitigation%20measures&amp;page=143">143</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mitigation%20measures&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10