CINXE.COM

dg-category in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> dg-category in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> dg-category </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/6422/#Item_16" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="homological_algebra">Homological algebra</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/homological+algebra">homological algebra</a></strong></p> <p>(also <a class="existingWikiWord" href="/nlab/show/nonabelian+homological+algebra">nonabelian homological algebra</a>)</p> <p><em><a class="existingWikiWord" href="/schreiber/show/Introduction+to+Homological+Algebra">Introduction</a></em></p> <p><strong>Context</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/additive+and+abelian+categories">additive and abelian categories</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Ab-enriched+category">Ab-enriched category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pre-additive+category">pre-additive category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/additive+category">additive category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pre-abelian+category">pre-abelian category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+category">abelian category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+category">Grothendieck category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+sheaves">abelian sheaves</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/semi-abelian+category">semi-abelian category</a></p> </li> </ul> <p><strong>Basic definitions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/kernel">kernel</a>, <a class="existingWikiWord" href="/nlab/show/cokernel">cokernel</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/complex">complex</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential">differential</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homology">homology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/category+of+chain+complexes">category of chain complexes</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/chain+complex">chain complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/chain+map">chain map</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/chain+homotopy">chain homotopy</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/chain+homology+and+cohomology">chain homology and cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/quasi-isomorphism">quasi-isomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homological+resolution">homological resolution</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cochain+on+a+simplicial+set">simplicial homology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+homology">generalized homology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/exact+sequence">exact sequence</a>,</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/short+exact+sequence">short exact sequence</a>, <a class="existingWikiWord" href="/nlab/show/long+exact+sequence">long exact sequence</a>, <a class="existingWikiWord" href="/nlab/show/split+exact+sequence">split exact sequence</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/injective+object">injective object</a>, <a class="existingWikiWord" href="/nlab/show/projective+object">projective object</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/injective+resolution">injective resolution</a>, <a class="existingWikiWord" href="/nlab/show/projective+resolution">projective resolution</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/flat+resolution">flat resolution</a></p> </li> </ul> </li> </ul> <p><strong>Stable homotopy theory notions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+category">derived category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/triangulated+category">triangulated category</a>, <a class="existingWikiWord" href="/nlab/show/enhanced+triangulated+category">enhanced triangulated category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category">stable (∞,1)-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+model+category">stable model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pretriangulated+dg-category">pretriangulated dg-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E-category">A-∞-category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+of+chain+complexes">(∞,1)-category of chain complexes</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+functor">derived functor</a>, <a class="existingWikiWord" href="/nlab/show/derived+functor+in+homological+algebra">derived functor in homological algebra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Tor">Tor</a>, <a class="existingWikiWord" href="/nlab/show/Ext">Ext</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+limit">homotopy limit</a>, <a class="existingWikiWord" href="/nlab/show/homotopy+colimit">homotopy colimit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/lim%5E1+and+Milnor+sequences">lim^1 and Milnor sequences</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fr-code">fr-code</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">abelian sheaf cohomology</a></p> </li> </ul> <p><strong>Constructions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/double+complex">double complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Koszul-Tate+resolution">Koszul-Tate resolution</a>, <a class="existingWikiWord" href="/nlab/show/BRST-BV+complex">BRST-BV complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spectral+sequence">spectral sequence</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/spectral+sequence+of+a+filtered+complex">spectral sequence of a filtered complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spectral+sequence+of+a+double+complex">spectral sequence of a double complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+spectral+sequence">Grothendieck spectral sequence</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Leray+spectral+sequence">Leray spectral sequence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Serre+spectral+sequence">Serre spectral sequence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hochschild-Serre+spectral+sequence">Hochschild-Serre spectral sequence</a></p> </li> </ul> </li> </ul> </li> </ul> <p><strong>Lemmas</strong></p> <p><a class="existingWikiWord" href="/nlab/show/diagram+chasing">diagram chasing</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/3x3+lemma">3x3 lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/four+lemma">four lemma</a>, <a class="existingWikiWord" href="/nlab/show/five+lemma">five lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/snake+lemma">snake lemma</a>, <a class="existingWikiWord" href="/nlab/show/connecting+homomorphism">connecting homomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/horseshoe+lemma">horseshoe lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Baer%27s+criterion">Baer's criterion</a></p> </li> </ul> <p><a class="existingWikiWord" href="/nlab/show/Schanuel%27s+lemma">Schanuel's lemma</a></p> <p><strong>Homology theories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/singular+homology">singular homology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cyclic+homology">cyclic homology</a></p> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Dold-Kan+correspondence">Dold-Kan correspondence</a> / <a class="existingWikiWord" href="/nlab/show/monoidal+Dold-Kan+correspondence">monoidal</a>, <a class="existingWikiWord" href="/nlab/show/operadic+Dold-Kan+correspondence">operadic</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Moore+complex">Moore complex</a>, <a class="existingWikiWord" href="/nlab/show/Alexander-Whitney+map">Alexander-Whitney map</a>, <a class="existingWikiWord" href="/nlab/show/Eilenberg-Zilber+map">Eilenberg-Zilber map</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Eilenberg-Zilber+theorem">Eilenberg-Zilber theorem</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/cochain+on+a+simplicial+set">cochain on a simplicial set</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+coefficient+theorem">universal coefficient theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K%C3%BCnneth+theorem">Künneth theorem</a></p> </li> </ul> </div></div> <h4 id="enriched_category_theory">Enriched category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/enriched+category+theory">enriched category theory</a></strong></p> <h2 id="background">Background</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a>, <a class="existingWikiWord" href="/nlab/show/closed+monoidal+category">closed monoidal category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cosmos">cosmos</a>, <a class="existingWikiWord" href="/nlab/show/multicategory">multicategory</a>, <a class="existingWikiWord" href="/nlab/show/bicategory">bicategory</a>, <a class="existingWikiWord" href="/nlab/show/double+category">double category</a>, <a class="existingWikiWord" href="/nlab/show/virtual+double+category">virtual double category</a></p> </li> </ul> <h2 id="basic_concepts">Basic concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+category">enriched category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+functor">enriched functor</a>, <a class="existingWikiWord" href="/nlab/show/profunctor">profunctor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+natural+transformation">enriched natural transformation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+adjoint+functor">enriched adjoint functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+product+category">enriched product category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+functor+category">enriched functor category</a></p> </li> </ul> <h2 id="universal_constructions">Universal constructions</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/weighted+limit">weighted limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/end">end</a>, <a class="existingWikiWord" href="/nlab/show/coend">coend</a></p> </li> </ul> <h2 id="extra_stuff_structure_property">Extra stuff, structure, property</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/copowering">copowering</a> (<a class="existingWikiWord" href="/nlab/show/tensoring">tensoring</a>)</p> <p><a class="existingWikiWord" href="/nlab/show/powering">powering</a> (<a class="existingWikiWord" href="/nlab/show/cotensoring">cotensoring</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+enriched+category">monoidal enriched category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cartesian+closed+enriched+category">cartesian closed enriched category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+cartesian+closed+enriched+category">locally cartesian closed enriched category</a></p> </li> </ul> </li> </ul> <h3 id="homotopical_enrichment">Homotopical enrichment</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+homotopical+category">enriched homotopical category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+model+category">enriched model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+homotopical+presheaves">model structure on homotopical presheaves</a></p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#the_infinity1category_of_dgcategories'>The (infinity,1)-category of dg-categories</a></li> <li><a href='#relation_to_stable_categories'>Relation to stable <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-categories</a></li> </ul> <li><a href='#aspects_of_dgcategories'>Aspects of dg-categories</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> <ul> <li><a href='#overviews'>Overviews</a></li> <li><a href='#homotopy_theory_of_dgcategories'>Homotopy theory of dg-categories</a></li> <li><a href='#derived_noncommutative_geometry'>Derived noncommutative geometry</a></li> <li><a href='#other_aspects'>Other aspects</a></li> </ul> </ul> </div> <h2 id="idea">Idea</h2> <p><em>Differential graded categories</em> or <em>dg-categories</em> are linear analogues of <a class="existingWikiWord" href="/nlab/show/spectral+categories">spectral categories</a>. In other words they are <a class="existingWikiWord" href="/nlab/show/linear+%28infinity%2C1%29-category">linear</a> <a class="existingWikiWord" href="/nlab/show/stable+%28infinity%2C1%29-categories">stable (infinity,1)-categories</a>. It is common and useful to view them as <a class="existingWikiWord" href="/nlab/show/enhanced+triangulated+categories">enhanced triangulated categories</a>.</p> <h2 id="definition">Definition</h2> <p>A <em>dg-category</em> over a <a class="existingWikiWord" href="/nlab/show/commutative+ring">commutative ring</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/%28infinity%2C1%29-category">(infinity,1)-category</a> <a class="existingWikiWord" href="/nlab/show/enriched+%28infinity%2C1%29-category">enriched</a> in the <a class="existingWikiWord" href="/nlab/show/%28infinity%2C1%29-category+of+chain+complexes">(infinity,1)-category of chain complexes</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/modules">modules</a>. Equivalently, it is an ordinary category <a class="existingWikiWord" href="/nlab/show/enriched+category">strictly enriched</a> in <a class="existingWikiWord" href="/nlab/show/chain+complexes">chain complexes</a> (see <a href="#Haugseng13">Haugseng 13</a>).</p> <p>Hence a dg-category is a category with <a class="existingWikiWord" href="/nlab/show/mapping+complexes">mapping complexes</a> of morphisms between any two objects. By taking the <a class="existingWikiWord" href="/nlab/show/homologies">homologies</a> of these <a class="existingWikiWord" href="/nlab/show/chain+complexes">chain complexes</a> in degree zero, one gets an ordinary category, called the <a class="existingWikiWord" href="/nlab/show/homotopy+category+of+a+dg-category">homotopy category of a dg-category</a>. Notice that a dg-category with a single object is the same thing as a <a class="existingWikiWord" href="/nlab/show/dg-algebra">dg-algebra</a>.</p> <h2 id="properties">Properties</h2> <h3 id="the_infinity1category_of_dgcategories">The (infinity,1)-category of dg-categories</h3> <p>The <a class="existingWikiWord" href="/nlab/show/Dwyer-Kan+model+structure+on+dg-categories">Dwyer-Kan model structure on dg-categories</a> presents the <a class="existingWikiWord" href="/nlab/show/%28infinity%2C1%29-category+of+dg-categories">(infinity,1)-category of dg-categories</a>.</p> <h3 id="relation_to_stable_categories">Relation to stable <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>∞</mn></mrow><annotation encoding="application/x-tex">\infty</annotation></semantics></math>-categories</h3> <p>By the <a class="existingWikiWord" href="/nlab/show/stable+Dold-Kan+correspondence">stable Dold-Kan correspondence</a>, the <a class="existingWikiWord" href="/nlab/show/%28infinity%2C1%29-category">(infinity,1)-category</a> of dg-categories is equivalent to the <a class="existingWikiWord" href="/nlab/show/%28infinity%2C1%29-category">(infinity,1)-category</a> of <a class="existingWikiWord" href="/nlab/show/%28infinity%2C1%29-categories">(infinity,1)-categories</a> <a class="existingWikiWord" href="/nlab/show/enriched+%28infinity%2C1%29-category">enriched</a> in the <a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+%28infinity%2C1%29-category">symmetric monoidal (infinity,1)-category</a> of <a class="existingWikiWord" href="/nlab/show/module+spectra">modules</a> over the <a class="existingWikiWord" href="/nlab/show/Eilenberg-Mac+Lane+spectrum">Eilenberg-Mac Lane spectrum</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>H</mi><mi>k</mi></mrow><annotation encoding="application/x-tex">H k</annotation></semantics></math>. The latter is equivalent, at least morally, to the <a class="existingWikiWord" href="/nlab/show/%28infinity%2C1%29-category">(infinity,1)-category</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/linear+%28infinity%2C1%29-category">linear</a> <a class="existingWikiWord" href="/nlab/show/stable+%28infinity%2C1%29-categories">stable (infinity,1)-categories</a>.</p> <p>More precisely, it is shown in <a href="#Cohn13">Cohn 13</a> that the <a class="existingWikiWord" href="/nlab/show/Morita+model+structure+on+dg-categories">Morita model structure on dg-categories</a> presents the <a class="existingWikiWord" href="/nlab/show/%28infinity%2C1%29-category">(infinity,1)-category</a> of <a class="existingWikiWord" href="/nlab/show/idempotent+complete+%28infinity%2C1%29-category">idempotent complete</a> <a class="existingWikiWord" href="/nlab/show/linear+%28infinity%2C1%29-category">linear</a> <a class="existingWikiWord" href="/nlab/show/stable+%28infinity%2C1%29-categories">stable (infinity,1)-categories</a>.</p> <h2 id="aspects_of_dgcategories">Aspects of dg-categories</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/homotopy+category+of+a+dg-category">homotopy category of a dg-category</a>.</li> <li><a class="existingWikiWord" href="/nlab/show/equivalence+of+dg-categories">equivalence of dg-categories</a></li> <li><a class="existingWikiWord" href="/nlab/show/dg-modules">dg-modules</a>, <a class="existingWikiWord" href="/nlab/show/perfect+dg-modules">perfect dg-modules</a></li> <li><a class="existingWikiWord" href="/nlab/show/derived+dg-category">derived dg-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/dg-Yoneda+embedding">dg-Yoneda embedding</a></li> <li><a class="existingWikiWord" href="/nlab/show/pretriangulated+dg-category">pretriangulated dg-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/dg-localization">dg-localization</a>, <span class="newWikiWord">dg-quotient<a href="/nlab/new/dg-quotient">?</a></span></li> <li><a class="existingWikiWord" href="/nlab/show/dg-nerve">dg-nerve</a></li> <li><a class="existingWikiWord" href="/nlab/show/Waldhausen+K-theory+of+a+dg-category">Waldhausen K-theory of a dg-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/semi-topological+K-theory+of+a+dg-category">semi-topological K-theory of a dg-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/derived+moduli+stack+of+objects+in+a+dg-category">derived moduli stack of objects in a dg-category</a></li> </ul> <h2 id="related_concepts">Related concepts</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/enhanced+triangulated+category">enhanced triangulated category</a></li> <li><a class="existingWikiWord" href="/nlab/show/A-infinity+category">A-infinity category</a></li> <li><a class="existingWikiWord" href="/nlab/show/spectral+category">spectral category</a></li> <li><a class="existingWikiWord" href="/nlab/show/stable+%28infinity%2C1%29-category">stable (infinity,1)-category</a></li> </ul> <h2 id="references">References</h2> <p>Historically, dg-categories were introduced in</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/G.+M.+Kelly">G. M. Kelly</a>, <em>Chain maps inducing zero homology maps</em>, Proc. Cambridge Philos. Soc. <strong>61</strong> (1965), 847–854, doi:<a href="https://doi.org/10.1017/S0305004100039207">10.1017/S0305004100039207</a></li> </ul> <p>whilst their modern development can be traced to</p> <ul> <li><span class="newWikiWord">A. I. Bondal<a href="/nlab/new/A.+I.+Bondal">?</a></span>, <a class="existingWikiWord" href="/nlab/show/Mikhail+Kapranov">Mikhail Kapranov</a>, <em>Enhanced triangulated categories</em>, Матем. Сборник, Том 181 (1990), No.5, 669–683 (Russian); transl. in USSR Math. USSR Sbornik, vol. 70 (1991), No. 1, pp. 93–107, (MR91g:18010) (<a class="existingWikiWord" href="/nlab/files/bondalKaprEnhTRiangCat.pdf" title="Bondal-Kapranov Enhanced triangulated categories pdf">Bondal-Kapranov Enhanced triangulated categories pdf</a>)</li> </ul> <p>A bicategory refinement</p> <ul> <li>Yuki Imamura. <em>A formal categorical approach to the homotopy theory of dg categories</em> (2024). (<a href="https://arxiv.org/abs/2405.07873">arXiv:2405.07873</a>).</li> </ul> <h3 id="overviews">Overviews</h3> <p>For concise reviews of the theory, see section 1 of</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/A.+Beilinson">A. Beilinson</a>, <a class="existingWikiWord" href="/nlab/show/V.+Vologodsky">V. Vologodsky</a>, <em>DG guide to Voevodsky’s motives</em>.</li> </ul> <p>as well as the introduction and appendices to</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/V.+Drinfeld">V. Drinfeld</a>, <em>DG quotients of DG categories</em>, <a href="http://www.math.harvard.edu/~gaitsgde/grad_2009/DGquotients.pdf">pdf</a>.</li> </ul> <p>For longer surveys, see</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Bernhard+Keller">Bernhard Keller</a>, <em>On differential graded categories</em>, International Congress of Mathematicians. <strong>II</strong> (2006) 151-190, Eur. Math. Soc., Zürich &lbrack;<a href="http://arxiv.org/abs/math/0601185">arXiv:math/0601185</a>&rbrack;</li> </ul> <p>and</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Bertrand+To%C3%ABn">Bertrand Toën</a>, <em>Lectures on dg-categories</em> (<a href="https://perso.math.univ-toulouse.fr/btoen/files/2012/04/swisk.pdf">pdf</a>).</li> </ul> <h3 id="homotopy_theory_of_dgcategories">Homotopy theory of dg-categories</h3> <p>The <a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a> of <a class="existingWikiWord" href="/nlab/show/dg-categories">dg-categories</a> is studied in</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Gon%C3%A7alo+Tabuada">Gonçalo Tabuada</a>, <em>Théorie homotopique des DG-caté́gories</em>, Thesis, Paris, 2007, <a href="https://arxiv.org/pdf/0710.4303.pdf">pdf</a>.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gon%C3%A7alo+Tabuada">Gonçalo Tabuada</a>, <em>Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories</em>, C. R. Math. Acad. Sci. Paris 340 (2005), no. 1, 15–19.</p> </li> </ul> <p>The equivalence with the <a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a> of <a class="existingWikiWord" href="/nlab/show/stable+%28infinity%2C1%29-categories">stable (infinity,1)-categories</a> is discussed in</p> <ul> <li id="Cohn13"><a class="existingWikiWord" href="/nlab/show/Lee+Cohn">Lee Cohn</a>, <em>Differential Graded Categories are k-linear Stable Infinity Categories</em> (<a href="http://arxiv.org/abs/1308.2587">arXiv:1308.2587</a>)</li> </ul> <p>(Note that the proof works over any ring, even though it is stated there for <a class="existingWikiWord" href="/nlab/show/characteristic+zero">characteristic zero</a>.)</p> <p>In the following it is shown that the <a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a> of <a class="existingWikiWord" href="/nlab/show/%28infinity%2C1%29-categories">(infinity,1)-categories</a> enriched in the <a class="existingWikiWord" href="/nlab/show/%28infinity%2C1%29-category">(infinity,1)-category</a> of <a class="existingWikiWord" href="/nlab/show/chain+complexes">chain complexes</a> is equivalent to the <a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a> of ordinary categories strictly enriched in <a class="existingWikiWord" href="/nlab/show/chain+complexes">chain complexes</a>.</p> <ul> <li id="Haugseng13"><a class="existingWikiWord" href="/nlab/show/Rune+Haugseng">Rune Haugseng</a>, <em>Rectification of enriched infinity-categories</em>, <a href="http://arxiv.org/abs/1312.3881v2">arXiv:1312.3881</a>.</li> </ul> <h3 id="derived_noncommutative_geometry">Derived noncommutative geometry</h3> <p>The following references discuss the use of dg-categories in <a class="existingWikiWord" href="/nlab/show/derived+noncommutative+algebraic+geometry">derived noncommutative algebraic geometry</a> and <a class="existingWikiWord" href="/nlab/show/noncommutative+motives">noncommutative motives</a>.</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Gon%C3%A7alo+Tabuada">Gonçalo Tabuada</a>, <em>Invariants additifs de DG-catégories</em>, Int. Math. Res. Not. 2005, no. 53, 3309–3339; Addendum in Int. Math. Res. Not. 2006, Art. ID 75853, 3 pp. ; Erratum in Int. Math. Res. Not. IMRN 2007, no. 24, Art. ID rnm149, 17 pp.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Marco+Robalo">Marco Robalo</a>, <em>Théorie homotopique motivique des espaces noncommutatifs</em>, <a href="http://webusers.imj-prg.fr/~marco.robalo/these.pdf">pdf</a>.</p> </li> <li> <p>S. Mahanta, <em>Noncommutative geometry in the framework of differential graded categories</em>, (<a href="http://arxiv.org/abs/0805.1628">arXiv:0805.1628</a>)</p> </li> <li> <p>D. Orlov, <em>Smooth and proper noncommutative schemes and gluing of DG categories</em>, Adv. Math. 302 (2014) <a href="https://dx.doi.org/10.1016/j.aim.2016.07.014">doi</a></p> </li> </ul> <h3 id="other_aspects">Other aspects</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Bernhard+Keller">Bernhard Keller</a>, <em>Deriving DG categories</em>, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63–102 (<a href="http://www.numdam.org/item?id=ASENS_1994_4_27_1_63_0">numdam</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Dmitry+Tamarkin">Dmitry Tamarkin</a>, <em>What do dg-categories form?</em>,</p> <p>Compos. Math. 143 (2007), no. 5, 1335–1358.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Michael+Batanin">M. Batanin</a>, <em>What do dg-categories form</em> (after Tamarkin), talks at Paris 7 and Australian category seminar (<a href="http://www.maths.usyd.edu.au/u/AusCat/abstracts/060726mb.html">abstract</a>), <a href="http://arxiv.org/abs/math.CT/0606553">math.CT/0606553</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Oren+Ben-Bassat">Oren Ben-Bassat</a>, <a class="existingWikiWord" href="/nlab/show/Jonathan+Block">Jonathan Block</a>, <em>Cohesive DG categories I: Milnor descent</em>, <a href="http://arxiv.org/abs/1201.6118">arxiv/1201.6118</a></p> </li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on May 14, 2024 at 11:34:38. See the <a href="/nlab/history/dg-category" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/dg-category" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/6422/#Item_16">Discuss</a><span class="backintime"><a href="/nlab/revision/dg-category/47" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/dg-category" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/dg-category" accesskey="S" class="navlink" id="history" rel="nofollow">History (47 revisions)</a> <a href="/nlab/show/dg-category/cite" style="color: black">Cite</a> <a href="/nlab/print/dg-category" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/dg-category" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10