CINXE.COM

Search results for: field conditions

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: field conditions</title> <meta name="description" content="Search results for: field conditions"> <meta name="keywords" content="field conditions"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="field conditions" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="field conditions"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 17002</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: field conditions</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17002</span> Human Intraocular Thermal Field in Action with Different Boundary Conditions Considering Aqueous Humor and Vitreous Humor Fluid Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dara%20Singh">Dara Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Keikhosrow%20Firouzbakhsh"> Keikhosrow Firouzbakhsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Taghi%20Ahmadian"> Mohammad Taghi Ahmadian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a validated 3D finite volume model of human eye is developed to study the fluid flow and heat transfer in the human eye at steady state conditions. For this purpose, discretized bio-heat transfer equation coupled with Boussinesq equation is analyzed with different anatomical, environmental, and physiological conditions. It is demonstrated that the fluid circulation is formed as a result of thermal gradients in various regions of eye. It is also shown that posterior region of the human eye is less affected by the ambient conditions compared to the anterior segment which is sensitive to the ambient conditions and also to the way the gravitational field is defined compared to the geometry of the eye making the circulations and the thermal field complicated in transient states. The effect of variation in material and boundary conditions guides us to the conclusion that thermal field of a healthy and non-healthy eye can be distinguished via computer simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-heat" title="bio-heat">bio-heat</a>, <a href="https://publications.waset.org/abstracts/search?q=boussinesq" title=" boussinesq"> boussinesq</a>, <a href="https://publications.waset.org/abstracts/search?q=conduction" title=" conduction"> conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=convection" title=" convection"> convection</a>, <a href="https://publications.waset.org/abstracts/search?q=eye" title=" eye"> eye</a> </p> <a href="https://publications.waset.org/abstracts/60991/human-intraocular-thermal-field-in-action-with-different-boundary-conditions-considering-aqueous-humor-and-vitreous-humor-fluid-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17001</span> Nonlinear Pollution Modelling for Polymeric Outdoor Insulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahisham%20Abd%20Rahman">Rahisham Abd Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a nonlinear pollution model has been proposed to compute electric field distribution over the polymeric insulator surface under wet contaminated conditions. A 2D axial-symmetric insulator geometry, energized with 11kV was developed and analysed using Finite Element Method (FEM). A field-dependent conductivity with simplified assumptions was established to characterize the electrical properties of the pollution layer. Comparative field studies showed that simulation of dynamic pollution model results in a more realistic field profile, offering better understanding on how the electric field behaves under wet polluted conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20distributions" title="electric field distributions">electric field distributions</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20layer" title=" pollution layer"> pollution layer</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20model" title=" dynamic model"> dynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20outdoor%20insulators" title=" polymeric outdoor insulators"> polymeric outdoor insulators</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method%20%28FEM%29" title=" finite element method (FEM)"> finite element method (FEM)</a> </p> <a href="https://publications.waset.org/abstracts/29392/nonlinear-pollution-modelling-for-polymeric-outdoor-insulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17000</span> Boundary Conditions for 2D Site Response Analysis in OpenSees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Eskandarighadi">M. Eskandarighadi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20R.%20McGann"> C. R. McGann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is observed from past experiences of earthquakes that local site conditions can significantly affect the strong ground motion characteristicssuch as frequency content, amplitude, and duration of seismic waves. The most common method for investigating site response is one-dimensional seismic site response analysis. The infinite horizontal length of the model and the homogeneous characteristic of the soil are crucial assumptions of this method. One boundary condition that can be used in the sides is tying the sides horizontally for vertical 1D wave propagation. However, 1D analysis cannot account for the 2D nature of wave propagation in the condition where the soil profile is not fully horizontal or has heterogeneity within layers. Therefore, 2D seismic site response analysis can be used to take all of these limitations into account for a better understanding of local site conditions. Different types of boundary conditions can be appliedin 2D site response models, such as tied boundary condition, massive columns, and free-field boundary condition. The tied boundary condition has been used in 1D analysis, which is useful for 1D wave propagation. Employing two massive columns at the sides is another approach for capturing the 2D nature of wave propagation. Free-field boundary condition can simulate the free-field motion that would exist far from the domain of interest. The goal for free-field boundary condition is to minimize the unwanted reflection from sides. This research focuses on the comparison between these methods with examples and discusses the details and limitations of each of these boundary conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20condition" title="boundary condition">boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=free-field" title=" free-field"> free-field</a>, <a href="https://publications.waset.org/abstracts/search?q=massive%20columns" title=" massive columns"> massive columns</a>, <a href="https://publications.waset.org/abstracts/search?q=opensees" title=" opensees"> opensees</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20response%20analysis" title=" site response analysis"> site response analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20propagation" title=" wave propagation"> wave propagation</a> </p> <a href="https://publications.waset.org/abstracts/158091/boundary-conditions-for-2d-site-response-analysis-in-opensees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16999</span> Classification of Cosmological Wormhole Solutions in the Framework of General Relativity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usamah%20Al-Ali">Usamah Al-Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We explore the effect of expanding space on the exoticity of the matter supporting a traversable Lorentzian wormhole of zero radial tide whose line element is given by ds2 = dt^2 − a^2(t)[ dr^2/(1 − kr2 −b(r)/r)+ r2dΩ^2 in the context of General Relativity. This task is achieved by deriving the Einstein field equations for anisotropic matter field corresponding to the considered cosmological wormhole metric and performing a classification of their solutions on the basis of a variable equations of state (EoS) of the form p = ω(r)ρ. Explicit forms of the shape function b(r) and the scale factor a(t) arising in the classification are utilized to construct the corresponding energy-momentum tensor where the energy conditions for each case is investigated. While the violation of energy conditions is inevitable in case of static wormholes, the classification we performed leads to interesting solutions in which this violation is either reduced or eliminated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=general%20relativity" title="general relativity">general relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=Einstein%20field%20equations" title=" Einstein field equations"> Einstein field equations</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20conditions" title=" energy conditions"> energy conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmological%20wormhole" title=" cosmological wormhole"> cosmological wormhole</a> </p> <a href="https://publications.waset.org/abstracts/150239/classification-of-cosmological-wormhole-solutions-in-the-framework-of-general-relativity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16998</span> Validation of Electrical Field Effect on Electrostatic Desalter Modeling with Experimental Laboratory Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Yazdanmehr">Fatemeh Yazdanmehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Iulian%20Nistor"> Iulian Nistor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The scope of the current study is the evaluation of the electric field effect on electrostatic desalting mathematical modeling with laboratory data. This research study was focused on developing a model for an existing operation desalting unit of one of the Iranian heavy oil field with a 75 MBPD production capacity. The high temperature of inlet oil to dehydration unit reduces the oil recovery, so the mathematical modeling of desalter operation parameters is very significant. The existing production unit operating data has been used for the accuracy of the mathematical desalting plant model. The inlet oil temperature to desalter was decreased from 110 to 80°C, and the desalted electrical field was increased from 0.75 to 2.5 Kv/cm. The model result shows that the desalter parameter changes meet the water-oil specification and also the oil production and consequently annual income is increased. In addition to that, changing desalter operation conditions reduces environmental footprint because of flare gas reduction. Following to specify the accuracy of selected electrostatic desalter electrical field, laboratory data has been used. Experimental data are used to ensure the effect of electrical field change on desalter. Therefore, the lab test is done on a crude oil sample. The results include the dehydration efficiency in the presence of a demulsifier and under electrical field (0.75 Kv) conditions at various temperatures. Comparing lab experimental and electrostatic desalter mathematical model results shows 1-3 percent acceptable error which confirms the validity of desalter specification and operation conditions changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desalter" title="desalter">desalter</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20field" title=" electrical field"> electrical field</a>, <a href="https://publications.waset.org/abstracts/search?q=demulsification" title=" demulsification"> demulsification</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=water-oil%20separation" title=" water-oil separation"> water-oil separation</a> </p> <a href="https://publications.waset.org/abstracts/152179/validation-of-electrical-field-effect-on-electrostatic-desalter-modeling-with-experimental-laboratory-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16997</span> Implementation of Free-Field Boundary Condition for 2D Site Response Analysis in OpenSees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Eskandarighadi">M. Eskandarighadi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20R.%20McGann"> C. R. McGann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is observed from past experiences of earthquakes that local site conditions can significantly affect the strong ground motion characteristics experience at the site. One-dimensional seismic site response analysis is the most common approach for investigating site response. This approach assumes that soil is homogeneous and infinitely extended in the horizontal direction. Therefore, tying side boundaries together is one way to model this behavior, as the wave passage is assumed to be only vertical. However, 1D analysis cannot capture the 2D nature of wave propagation, soil heterogeneity, and 2D soil profile with features such as inclined layer boundaries. In contrast, 2D seismic site response modeling can consider all of the mentioned factors to better understand local site effects on strong ground motions. 2D wave propagation and considering that the soil profile on the two sides of the model may not be identical clarifies the importance of a boundary condition on each side that can minimize the unwanted reflections from the edges of the model and input appropriate loading conditions. Ideally, the model size should be sufficiently large to minimize the wave reflection, however, due to computational limitations, increasing the model size is impractical in some cases. Another approach is to employ free-field boundary conditions that take into account the free-field motion that would exist far from the model domain and apply this to the sides of the model. This research focuses on implementing free-field boundary conditions in OpenSees for 2D site response analysisComparisons are made between 1D models and 2D models with various boundary conditions, and details and limitations of the developed free-field boundary modeling approach are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20condition" title="boundary condition">boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=free-field" title=" free-field"> free-field</a>, <a href="https://publications.waset.org/abstracts/search?q=opensees" title=" opensees"> opensees</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20response%20analysis" title=" site response analysis"> site response analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20propagation" title=" wave propagation"> wave propagation</a> </p> <a href="https://publications.waset.org/abstracts/158087/implementation-of-free-field-boundary-condition-for-2d-site-response-analysis-in-opensees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16996</span> Design of a Laboratory Test for InvestigatingPermanent Deformation of Asphalt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Ahmadinia">Esmaeil Ahmadinia</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20%20Bullen"> Frank Bullen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ron%20%20Ayers"> Ron Ayers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many concerns have been raised in recent years about the adequacy of existing creep test methods for evaluating rut-resistance of asphalt mixes. Many researchers believe the main reason for the creep tests being unable to duplicate field results is related to a lack of a realistic confinement for laboratory specimens. In-situ asphalt under axle loads is surrounded by a mass of asphalt, which provides stress-strain generated confinement. However, most existing creep tests are largely unconfined in their nature. It has been hypothesised that by providing a degree of confinement, representative of field conditions, in a creep test, it could be possible to establish a better correlation between the field and laboratory. In this study, a new methodology is explored where confinement for asphalt specimens is provided. The proposed methodology is founded on the current Australian test method, adapted to provide simulated field conditions through the provision of sample confinement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20mixture" title="asphalt mixture">asphalt mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=creep%20test" title=" creep test"> creep test</a>, <a href="https://publications.waset.org/abstracts/search?q=confinements" title=" confinements"> confinements</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20deformation" title=" permanent deformation"> permanent deformation</a> </p> <a href="https://publications.waset.org/abstracts/59793/design-of-a-laboratory-test-for-investigatingpermanent-deformation-of-asphalt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16995</span> The Role of Nozzle-Exit Conditions on the Flow Field of a Plane Jet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravinesh%20C.%20Deo">Ravinesh C. Deo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article reviews the role of nozzle-exit conditions on the flow field of a plane jet. The jet issuing from a sharp-edged orifice plate at a Reynolds number (Re=18000) with nozzle aspect ratio (AR=72) exhibits the greatest shear-layer instabilities, highest entrainment and jet-spreading rates compared to the radially contoured nozzle. The growth rate of the shear-layer is the highest for the orifice-jet although this property could be amplified for larger Re or AR. A local peak in turbulent energy is found at x=10h. The peak appears to be elevated for an orifice-jet with lower Re or AR. The far-field energy sustained by the orifice-jet exceeds the contoured case although a higher Re and AR may enhance this value. The spectra displays the largest eddies generated by the contoured nozzle. However, the frequency of coherent eddies is higher for the orifice-jet, with a larger magnitude achievable for lower Re and AR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plane%20jet" title="plane jet">plane jet</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle-exit%20conditions" title=" nozzle-exit conditions"> nozzle-exit conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle%20geometry" title=" nozzle geometry"> nozzle geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=aspect%20ratio" title=" aspect ratio"> aspect ratio</a> </p> <a href="https://publications.waset.org/abstracts/2294/the-role-of-nozzle-exit-conditions-on-the-flow-field-of-a-plane-jet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16994</span> A Numerical Simulation of Arterial Mass Transport in Presence of Magnetic Field-Links to Atherosclerosis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Aminfar">H. Aminfar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mohammadpourfard"> M. Mohammadpourfard</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Khajeh"> K. Khajeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper has focused on the most important parameters in the LSC uptake; inlet Re number and Sc number in the presence of non-uniform magnetic field. The magnetic field is arising from the thin wire with electric current placed vertically to the arterial blood vessel. According to the results of this study, applying magnetic field can be a treatment for atherosclerosis by reducing LSC along the vessel wall. Homogeneous porous layer as a arterial wall has been regarded. Blood flow has been considered laminar and incompressible containing Ferro fluid (blood and 4 % vol. Fe₃O₄) under steady state conditions. Numerical solution of governing equations was obtained by using the single-phase model and control volume technique for flow field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LDL%20surface%20concentration%20%28LSC%29" title="LDL surface concentration (LSC)">LDL surface concentration (LSC)</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20wall" title=" porous wall"> porous wall</a> </p> <a href="https://publications.waset.org/abstracts/38292/a-numerical-simulation-of-arterial-mass-transport-in-presence-of-magnetic-field-links-to-atherosclerosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16993</span> Estimating the Effect of Fluid in Pressing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Movaghar">A. Movaghar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Mahdavinejad"> R. A. Mahdavinejad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> To analyze the effect of various parameters of fluid on the material properties such as surface and depth defects and/or cracks, it is possible to determine the affection of pressure field on these specifications. Stress tensor analysis is also able to determine the points in which the probability of defection creation is more. Besides, from pressure field, it is possible to analyze the affection of various fluid specifications such as viscosity and density on defect created in the material. In this research, the concerned boundary conditions are analyzed first. Then the solution network and stencil used are mentioned. With the determination of relevant equation on the fluid flow between notch and matrix and their discretion according to the governed boundary conditions, these equations can be solved. Finally, with the variation creations on fluid parameters such as density and viscosity, the affection of these variations can be determined on pressure field. In this direction<strong>,</strong> the flowchart and solution algorithm with their results as vortex and current function contours for two conditions with most applications in pressing process are introduced and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressing" title="pressing">pressing</a>, <a href="https://publications.waset.org/abstracts/search?q=notch" title=" notch"> notch</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix" title=" matrix"> matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20function" title=" flow function"> flow function</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex"> vortex</a> </p> <a href="https://publications.waset.org/abstracts/39900/estimating-the-effect-of-fluid-in-pressing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16992</span> The Effect of Extremely Low Frequency Magnetic Field on Rats Brain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Abdalla">Omar Abdalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelfatah%20Ahmed"> Abdelfatah Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mustafa"> Ahmed Mustafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelazem%20Eldouma"> Abdelazem Eldouma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is evaluating the effect of extremely low frequency magnetic field on Waster rats brain. The number of rats used in this study were 25, which were divided into five groups, each group containing five rats as follows: Group 1: The control group which was not exposed to energized field; Group 2: Rats were exposed to a magnetic field with an intensity of 0.6 mT (2 hours/day); Group 3: Rats were exposed to a magnetic field of 1.2 mT (2 hours/day); Group4: Rats were exposed to a magnetic field of 1.8 mT (2 hours/day); Group 5: Rats were exposed to a magnetic field of 2.4 mT (2 hours/day) and all groups were exposed for seven days, by designing a maze and calculating the time average for arriving to the decoy at special conditions. We found the time average before exposure for the all groups was G2=330 s, G3=172 s, G4=500 s and G5=174 s, respectively. We exposed all groups to ELF-MF and measured the time and we found: G2=465 s, G3=388 s, G4=501 s, and G5=442 s. It was observed that the time average increased directly with field strength. Histological samples of frontal lop of brain for all groups were taken and we found lesion, atrophy, empty vacuoles and disorder choroid plexus at frontal lope of brain. And finally we observed the disorder of choroid plexus in histological results and Alzheimer's symptoms increase when the magnetic field increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonionizing%20radiation" title="nonionizing radiation">nonionizing radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=biophysics" title=" biophysics"> biophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage" title=" shrinkage"> shrinkage</a> </p> <a href="https://publications.waset.org/abstracts/6126/the-effect-of-extremely-low-frequency-magnetic-field-on-rats-brain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16991</span> Hydroponic Cultivation Enhances the Morpho-Physiological Traits and Quality Flower Production in Tagetes patula L</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ujala">Ujala</a>, <a href="https://publications.waset.org/abstracts/search?q=Diksha%20Sharma"> Diksha Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahinder%20Partap"> Mahinder Partap</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20R.%20Warghat"> Ashish R. Warghat</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhavya%20Bhargava"> Bhavya Bhargava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In soil-less agriculture, hydroponic is considered a potential farming system for the production of uniform quality plant material in significantly less time. Therefore, for the first time, the current investigation corroborates the effect of different cultivation conditions (open-field, poly-house, and hydroponic) on morpho-physiological traits, phenolic content, and essential oil components analysis in three flower color variants (yellow, scarlet red, and orange) of Tagetes patula. The results revealed that the maximum plant height, number of secondary branches, number of flowers, photosynthesis, stomatal conductance, and transpiration rate were observed under the hydroponic system as compared to other conditions. However, the maximum content of gallic acid (0.82 mg/g DW), syringic acid (3.98 mg/g DW), epicatechin (0.48 mg/g DW), p-coumaric acid (7.28 mg/g DW), protocatechuic acid (0.59 mg/g DW), ferulic acid (2.58 mg/g DW), and luteolin (8.24 mg/g DW) were quantified maximally under open-field conditions. However, under hydroponic conditions, the higher content of vanillic acid (0.43 mg/g DW), caffeic acid (0.49 mg/g DW), and quercetin (0.92 mg/g DW) were quantified. Moreover, a total of nineteen volatile components were identified in the essential oil of different flower color variants of T. patula cultivated under different conditions. The major reported volatile components in essential oil were (-)-caryophyllene oxide, trans-β-caryophyllene, trans-geraniol, 3 methyl-benzyl alcohol, and 2,2’:5’,2”-terthiophene. It has also been observed that the volatile component percentage range in all variants was observed in open-field (70.85 % to 90.54 %), poly-house (59.03 % to 77.93 %), and hydroponic (68.78 % to 89.41 %). In conclusion, the research highlighted that morpho-physiological performance with flower production was enhanced in the hydroponic system. However, phenolic content and volatile components were maximally observed in open-field conditions. However, significant results have been reported under hydroponic conditions in all studied parameters, so it could be a potential strategy for quality biomass production in T. patula. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tagetes%20patula" title="Tagetes patula">Tagetes patula</a>, <a href="https://publications.waset.org/abstracts/search?q=cultivation%20conditions" title=" cultivation conditions"> cultivation conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroponic" title=" hydroponic"> hydroponic</a>, <a href="https://publications.waset.org/abstracts/search?q=morpho-physiology" title=" morpho-physiology"> morpho-physiology</a> </p> <a href="https://publications.waset.org/abstracts/171884/hydroponic-cultivation-enhances-the-morpho-physiological-traits-and-quality-flower-production-in-tagetes-patula-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16990</span> Electrical Resistivity of Solid and Liquid Pt: Insight into Electrical Resistivity of ε-Fe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Innocent%20C.%20Ezenwa">Innocent C. Ezenwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Yoshino"> Takashi Yoshino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Knowledge of the transport properties of Fe and its alloys at extreme high pressure (P), temperature (T) conditions are essential for understanding the generation and sustainability of the magnetic field of the rocky planets with a metallic core. Since Pt, an unfilled d-band late transition metal with an electronic structure of Xe4f¹⁴5d⁹6s¹, is paramagnetic and remains close-packed structure at ambient conditions and high P-T, it is expected that its transport properties at these conditions would be similar to those of ε-Fe. We investigated the T-dependent electrical resistivity of solid and liquid Pt up to 8 GPa and found it constant along its melting curve both on the liquid and solid sides in agreement with theoretical prediction and experimental results estimated from thermal conductivity measurements. Our results suggest that the T-dependent resistivity of ε-Fe is linear and would not saturate at high P, T conditions. This, in turn, suggests that the thermal conductivity of liquid Fe at Earth’s core conditions may not be as high as previously suggested by models employing saturation resistivity. Hence, thermal convection could have powered the geodynamo before the birth of the inner core. The electrical resistivity and thermal conductivity on the liquid and solid sides of the inner core boundary of the Earth would be significantly different in values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistivity" title="electrical resistivity">electrical resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20properties" title=" transport properties"> transport properties</a>, <a href="https://publications.waset.org/abstracts/search?q=geodynamo%20and%20geomagnetic%20field" title=" geodynamo and geomagnetic field "> geodynamo and geomagnetic field </a> </p> <a href="https://publications.waset.org/abstracts/122046/electrical-resistivity-of-solid-and-liquid-pt-insight-into-electrical-resistivity-of-e-fe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16989</span> Experimental Investigation of the Thermal Performance of Fe2O3 under Magnetic Field in an Oscillating Heat Pipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20R.%20Goshayeshi">H. R. Goshayeshi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalouei"> M. Khalouei</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Azarberamman"> S. Azarberamman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an experimental investigation regarding the use of Fe2O3 nano particles added to kerosene as a working fluid, under magnetic field. The experiment was made on Oscillating Heat Pipe (OHP). The experiment was performed in order to measure the temperature distribution and compare the heat transfer rate of the oscillating heat pipe with and without magnetic Field. Results showed that the addition of Fe2o3 nano particles under magnetic field improved thermal performance of OHP, compare with non-magnetic field. Furthermore applying a magnetic field enhance the heat transfer characteristic of Fe2O3 in both start up and steady state conditions. This paper presents an experimental investigation regarding the use of Fe2O3 nano particles added to kerosene as a working fluid, under magnetic field. The experiment was made on Oscillating Heat Pipe (OHP). The experiment was performed in order to measure the temperature distribution and compare the heat transfer rate of the oscillating heat pipe with and without magnetic Field. Results showed that the addition of Fe2o3 nano particles under magnetic field improved thermal performance of OHP, compare with non-magnetic field. Furthermore applying a magnetic field enhance the heat transfer characteristic of Fe2O3 in both start up and steady state conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental" title="experimental">experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillating%20heat%20pipe" title=" oscillating heat pipe"> oscillating heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field "> magnetic field </a> </p> <a href="https://publications.waset.org/abstracts/12931/experimental-investigation-of-the-thermal-performance-of-fe2o3-under-magnetic-field-in-an-oscillating-heat-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16988</span> Laboratory Calibration of Soil Pressure Transducer for a Specified Field Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zahidul%20Islam%20Bhuiyan">Mohammad Zahidul Islam Bhuiyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanyong%20Wang"> Shanyong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Scott%20William%20Sloan"> Scott William Sloan</a>, <a href="https://publications.waset.org/abstracts/search?q=Daichao%20%20Sheng"> Daichao Sheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays soil pressure transducers are widely used to measure the soil stress states in laboratory and field experiments. The soil pressure transducers, investigated here, are traditional diaphragm-type earth pressure cells (DEPC) based on strain gauge principle. It is found that the output of these sensors varies with the soil conditions as well as the position of a sensor. Therefore, it is highly recommended to calibrate the pressure sensors based on the similar conditions of their intended applications. The factory calibration coefficients of the EPCs are not reliable to use since they are normally calibrated by applying fluid (a special type of oil) pressure only over load sensing zone, which does not represent the actual field conditions. Thus, the calibration of these sensors is utmost important, and they play a pivotal role for assessing earth pressures precisely. In the present study, TML soil pressure sensor is used to compare its sensitivity under different calibration systems, for example, fluid calibration, and static load calibration with or without soil. The results report that the sensor provides higher sensitivity (more accurate results) under soil calibration system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calibration" title="calibration">calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20pressure" title=" soil pressure"> soil pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=earth%20pressure%20cell" title=" earth pressure cell"> earth pressure cell</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/79500/laboratory-calibration-of-soil-pressure-transducer-for-a-specified-field-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16987</span> Conditions on Expressing a Matrix as a Sum of α-Involutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ric%20Joseph%20R.%20Murillo">Ric Joseph R. Murillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Edna%20N.%20Gueco"> Edna N. Gueco</a>, <a href="https://publications.waset.org/abstracts/search?q=Dennis%20I.%20Merino"> Dennis I. Merino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let F be C or R, where C and R are the set of complex numbers and real numbers, respectively, and n be a natural number. An n-by-n matrix A over the field F is called an α-involutory matrix or an α-involution if there exists an α in the field such that the square of the matrix is equal to αI, where I is the n-by-n identity matrix. If α is a complex number or a nonnegative real number, then an n-by-n matrix A over the field F can be written as a sum of n-by-n α-involutory matrices over the field F if and only if the trace of that matrix is an integral multiple of the square root of α. Meanwhile, if α is a negative real number, then a 2n-by-2n matrix A over R can be written as a sum of 2n-by-2n α-involutory matrices over R if and only the trace of the matrix is zero. Some other properties of α-involutory matrices are also determined <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-involutory%20Matrices" title="α-involutory Matrices">α-involutory Matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=sum%20of%20%CE%B1-involutory%20Matrices" title=" sum of α-involutory Matrices"> sum of α-involutory Matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=Trace" title=" Trace"> Trace</a>, <a href="https://publications.waset.org/abstracts/search?q=Matrix%20Theory" title=" Matrix Theory"> Matrix Theory</a> </p> <a href="https://publications.waset.org/abstracts/95131/conditions-on-expressing-a-matrix-as-a-sum-of-a-involutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16986</span> Validating Thermal Performance of Existing Wall Assemblies Using In-Situ Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shibei%20Huang">Shibei Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In deep energy retrofits, the thermal performance of existing building envelopes is often difficult to determine with a high level of accuracy. For older buildings, the records of existing assemblies are often incomplete or inaccurate. To obtain greater baseline performance accuracy for energy models, in-field measurement tools can be used to obtain data on the thermal performance of the existing assemblies. For a known assembly, these field measurements assist in validating the U-factor estimates. If the field-measured U-factor consistently varies from the calculated prediction, those measurements prompt further study. For an unknown assembly, successful field measurements can provide approximate U-factor evaluation, validate assumptions, or identify anomalies requiring further investigation. Using case studies, this presentation will focus on the non-destructive methods utilizing a set of various field tools to validate the baseline U-factors for a range of existing buildings with various wall assemblies. The lessons learned cover what can be achieved, the limitations of these approaches and tools, and ideas for improving the validity of measurements. Key factors include the weather conditions, the interior conditions, the thermal mass of the measured assemblies, and the thermal profiles of the assemblies in question. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=existing%20building" title="existing building">existing building</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=retrofit" title=" retrofit"> retrofit</a> </p> <a href="https://publications.waset.org/abstracts/181448/validating-thermal-performance-of-existing-wall-assemblies-using-in-situ-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16985</span> Path Integrals and Effective Field Theory of Large Scale Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Revant%20Nayar">Revant Nayar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we recast the equations describing large scale structure, and by extension all nonlinear fluids, in the path integral formalism. We first calculate the well known two and three point functions using Schwinger Keldysh formalism used commonly to perturbatively solve path integrals in non- equilibrium systems. Then we include EFT corrections due to pressure, viscosity, and noise as effects on the time-dependent propagator. We are able to express results for arbitrary two and three point correlation functions in LSS in terms of differential operators acting on a triple K master intergral. We also, for the first time, get analytical results for more general initial conditions deviating from the usual power law P∝kⁿ by introducing a mass scale in the initial conditions. This robust field theoretic formalism empowers us with tools from strongly coupled QFT to study the strongly non-linear regime of LSS and turbulent fluid dynamics such as OPE and holographic duals. These could be used to capture fully the strongly non-linear dynamics of fluids and move towards solving the open problem of classical turbulence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20field%20theory" title="quantum field theory">quantum field theory</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmology" title=" cosmology"> cosmology</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20field%20theory" title=" effective field theory"> effective field theory</a>, <a href="https://publications.waset.org/abstracts/search?q=renormallisation" title=" renormallisation"> renormallisation</a> </p> <a href="https://publications.waset.org/abstracts/122417/path-integrals-and-effective-field-theory-of-large-scale-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16984</span> Studies on Pesticide Usage Pattern and Farmers Knowledge on Pesticide Usage and Technologies in Open Field and Poly House Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Raghu">B. Raghu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shashi%20Vemuri"> Shashi Vemuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch.%20Sreenivasa%20Rao"> Ch. Sreenivasa Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The survey on pesticide use pattern was carried out by interviewing farmers growing chill in open fields and poly houses based on the questionnaire prepared to assess their knowledge and practices on crop cultivation, general awareness on pesticide recommendations and use. Education levels of poly house farmers are high compared to open field farmers, where 57.14% poly house farmers are high school educated, whereas 35% open field farmers are illiterates. Majority farmers use nursery of 35 days and grow in <0.5 acre poly house in summer and rabi and < 1 acre in open field during kharif. Awareness on pesticide related issues is varying among poly house and open field farmers with some commonality, where 28.57% poly house farmers know about recommended pesticides while only 10% open field farmers are aware of this issue. However, in general, all farmers contact pesticide dealer for recommendations, poly house farmers prefer to contact scientists (35.71%) and open field farmers prefer to contact agricultural officers (33.33). Most farmers are unaware about pesticide classification and toxicity symbols on packing. Farmers are aware about endosulfan ban, but only 21.42% poly house and 11.66% open field farmers know about ban of monocrotofos on vegetables. Very few farmers know about pesticide residues and related issues, but know washing helps to reduce contamination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=open%20field" title="open field">open field</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20usage" title=" pesticide usage"> pesticide usage</a>, <a href="https://publications.waset.org/abstracts/search?q=polyhouses" title=" polyhouses"> polyhouses</a>, <a href="https://publications.waset.org/abstracts/search?q=residues%20survey" title=" residues survey"> residues survey</a> </p> <a href="https://publications.waset.org/abstracts/21476/studies-on-pesticide-usage-pattern-and-farmers-knowledge-on-pesticide-usage-and-technologies-in-open-field-and-poly-house-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16983</span> Electrodeposition of Nickel-Zinc Alloy on Stainless Steel in a Magnetic Field in a Chloride Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naima%20Benachour">Naima Benachour</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabiha%20Chouchane"> Sabiha Chouchane</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Paul%20Chopart"> J. Paul Chopart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to determine the appropriate conditions for a Ni-Zn deposit with good nickel content. The electrodeposition of zinc-nickel on a stainless steel is carried out in a chlorinated bath NiCl2.6H2O, ZnCl2, and H3BO3), whose composition is 1.1 M; 1.8 M; 0.1 M respectively. Studies show the effect of the concentration of NH4Cl, which reveals a significant effect on the reduction and ion transport in the electrolyte. In order to highlight the influence of magnetic field on the chemical composition and morphology of the deposit, chronopotentiometry tests were conducted, the curves obtained inform us that the application of a magnetic field promotes stability of the deposit. Characterization developed deposits was performed by scanning electron microscopy coupled with EDX and specified by the X-ray diffraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zn-Ni%20alloys" title="Zn-Ni alloys">Zn-Ni alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=electroplating" title=" electroplating"> electroplating</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=chronopotentiometry" title=" chronopotentiometry"> chronopotentiometry</a> </p> <a href="https://publications.waset.org/abstracts/21468/electrodeposition-of-nickel-zinc-alloy-on-stainless-steel-in-a-magnetic-field-in-a-chloride-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16982</span> The Combined Effect of the Magnetic Field and Ammonium Chlorides on Deposits Zn-Ni Obtained in Different Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.Benachour">N.Benachour</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chouchane"> S. Chouchane</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Chopart"> J. P. Chopart </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The zinc-nickel deposition on stainless steel substrate was obtained in a chloride bath composed of ZnCl2 (1.8M), NiCl2.6H2O (1.1M), boric acid H3BO3 (1M) and NH4Cl (4M). One configuration was studied the amplitude or field B (0.5 et1T) is parallel to the surface of the working electrodes .the other share the study of various layer was carried out by XRD. The study of the effect of ammonium chloride in combination with the magnetohydrodynamic effect gave several deposits supposedly good physical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20chloride" title="ammonium chloride">ammonium chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel-zinc%20alloys" title=" nickel-zinc alloys"> nickel-zinc alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=co-deposition" title=" co-deposition"> co-deposition</a> </p> <a href="https://publications.waset.org/abstracts/45247/the-combined-effect-of-the-magnetic-field-and-ammonium-chlorides-on-deposits-zn-ni-obtained-in-different-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16981</span> Releasing Two Insect Predators to Control of Aphids Under Open-field Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ahmed%20Gesraha">Mohamed Ahmed Gesraha</a>, <a href="https://publications.waset.org/abstracts/search?q=Amany%20Ramadan%20Ebeid"> Amany Ramadan Ebeid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aphids are noxious and serious persistent pests in the open fields worldwide. Many authors studied the possibility of aphid control by applying Ladybirds and Lacewings at different releasing rates under open-field conditions. Results clarify that releasing 3rd instar larvae of Coccinella undecimpunctata at the rate of 1 larva:50 aphid was more effective than 1:100 or 1:200 rates for controlling Aphis gossypii population in Okra field; reflecting more than 90% reduction in the aphid population within 15 days. When Chrysoperla carnea 2nd larval instar were releasing at 1:5, 1:10, and 1:20 (predator: aphid), it was noticed that the former rate was the most effective one, inducing 98.93% reduction in aphid population; while the two other rates reflecting less reduction. Additionally, in the case of double releases, the reduction percentage at the 1:5 rate was 99.63%, emphasize that this rate was the most effective one; the other rates induced 97.05 and 95.64% reduction. Generally, a double release was more effective in all tested rates than the single one because of the cumulative existence of the predators in large numbers at the same period of the experiment. It could be concluded that utilizing insect predators (Coccinella undecimpunctata or Chrysoperla carnea) at an early larval stag were faire enough to reduce the aphids’ populations under open fields conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=releasing%20predators" title="releasing predators">releasing predators</a>, <a href="https://publications.waset.org/abstracts/search?q=lacewings" title=" lacewings"> lacewings</a>, <a href="https://publications.waset.org/abstracts/search?q=ladybird" title=" ladybird"> ladybird</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20fields" title=" open fields"> open fields</a> </p> <a href="https://publications.waset.org/abstracts/142852/releasing-two-insect-predators-to-control-of-aphids-under-open-field-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16980</span> Finding the Elastic Field in an Arbitrary Anisotropic Media by Implementing Accurate Generalized Gaussian Quadrature Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Kabir">Hossein Kabir</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hossein%20Hassanpour%20Mati-Kolaie"> Amir Hossein Hassanpour Mati-Kolaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current study, the elastic field in an anisotropic elastic media is determined by implementing a general semi-analytical method. In this specific methodology, the displacement field is computed as a sum of finite functions with unknown coefficients. These aforementioned functions satisfy exactly both the homogeneous and inhomogeneous boundary conditions in the proposed media. It is worth mentioning that the unknown coefficients are determined by implementing the principle of minimum potential energy. The numerical integration is implemented by employing the Generalized Gaussian Quadrature solution. Furthermore, with the aid of the calculated unknown coefficients, the displacement field, as well as the other parameters of the elastic field, are obtainable as well. Finally, the comparison of the previous analytical method with the current semi-analytical method proposes the efficacy of the present methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20elastic%20media" title="anisotropic elastic media">anisotropic elastic media</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-analytical%20method" title=" semi-analytical method"> semi-analytical method</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20field" title=" elastic field"> elastic field</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20gaussian%20quadrature%20solution" title=" generalized gaussian quadrature solution"> generalized gaussian quadrature solution</a> </p> <a href="https://publications.waset.org/abstracts/74780/finding-the-elastic-field-in-an-arbitrary-anisotropic-media-by-implementing-accurate-generalized-gaussian-quadrature-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16979</span> Development of a Solar Energy Based Prototype, CyanoClean, for Arsenic Removal from Water with the Use of a Cyanobacterial Consortium in Field Conditions of India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anurakti%20Shukla">Anurakti Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhakar%20Srivastava"> Sudhakar Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cyanobacteria are known for rapid growth rates, high biomass, and the ability to accumulate potentially toxic elements and contaminants. The present work was planned to develop a low-cost, feasible prototype, CyanoClean, for the growth of a cyanobacterial consortium for the removal of arsenic (As) from water. The cyanobacterial consortium consisting of Oscillatoria, Phormidiumand Gloeotrichiawas used, and the conditions for optimal growth of the consortium were standardized. A pH of 7.6, initial cyanobacterial biomass of 10 g/L, and arsenite [As(III)] and arsenate [As(V)] concentration of 400 μΜand 600 μM, respectively, were found to be suitable. The CyanoClean prototype was designed with acrylic sheet and had arrangements for optimal cyanobacterial growth in natural sunlight and also in artificial light. The As removal experiments in concentration- and duration-dependent manner demonstrated removal of up to 39-69% and 9-33% As respectively from As(III) and As(V)-contaminated water. In field testing of CyanoClean, natural As-contaminated groundwater was used, and As reduction was monitored when a flow rate of 3 L/h was maintained. In a field experiment, As concentration in groundwater was found to reduce from 102.43 μg L⁻¹ to <10 μg L⁻¹ after 6 h in natural sunlight. However, in shaded conditions under artificial light, the same result was achieved after 9 h. The CyanoClean prototype is of simple design and can be easily up-scaled for application at a small- to medium-size land and shall be affordable even for a low- to middle-income group farmer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyanoclean" title="cyanoclean">cyanoclean</a>, <a href="https://publications.waset.org/abstracts/search?q=gloeotrichia" title=" gloeotrichia"> gloeotrichia</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillatoria" title=" oscillatoria"> oscillatoria</a>, <a href="https://publications.waset.org/abstracts/search?q=phormidium" title=" phormidium"> phormidium</a>, <a href="https://publications.waset.org/abstracts/search?q=phycoremediation" title=" phycoremediation"> phycoremediation</a> </p> <a href="https://publications.waset.org/abstracts/150216/development-of-a-solar-energy-based-prototype-cyanoclean-for-arsenic-removal-from-water-with-the-use-of-a-cyanobacterial-consortium-in-field-conditions-of-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16978</span> Multisymplectic Geometry and Noether Symmetries for the Field Theories and the Relativistic Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Loumi-Fergane">H. Loumi-Fergane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Belaidi"> A. Belaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of symmetries in field theory has been analyzed using geometric frameworks, such as the multisymplectic models by using in particular the multivector field formalism. In this paper, we expand the vector fields associated to infinitesimal symmetries which give rise to invariant quantities as Noether currents for classical field theories and relativistic mechanic using the multisymplectic geometry where the Poincar&eacute;-Cartan form has thus been greatly simplified using the Second Order Partial Differential Equation (SOPDE) for multi-vector fields verifying Euler equations. These symmetries have been classified naturally according to the construction of the fiber bundle used.&nbsp; In this work, unlike other works using the analytical method, our geometric model has allowed us firstly to distinguish the angular moments of the gauge field obtained during different transformations while these moments are gathered in a single expression and are obtained during a rotation in the Minkowsky space. Secondly, no conditions are imposed on the Lagrangian of the mechanics with respect to its dependence in time and in q<sup>i</sup>, the currents obtained naturally from the transformations are respectively the energy and the momentum of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation%20laws" title="conservation laws">conservation laws</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20theories" title=" field theories"> field theories</a>, <a href="https://publications.waset.org/abstracts/search?q=multisymplectic%20geometry" title=" multisymplectic geometry"> multisymplectic geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20mechanics" title=" relativistic mechanics"> relativistic mechanics</a> </p> <a href="https://publications.waset.org/abstracts/74108/multisymplectic-geometry-and-noether-symmetries-for-the-field-theories-and-the-relativistic-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16977</span> Video Processing of a Football Game: Detecting Features of a Football Match for Automated Calculation of Statistics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rishabh%20Beri">Rishabh Beri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahil%20Shah"> Sahil Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have applied a range of filters and processing in order to extract out the various features of the football game, like the field lines of a football field. Another important aspect was the detection of the players in the field and tagging them according to their teams distinguished by their jersey colours. This extracted information combined about the players and field helped us to create a virtual field that consists of the playing field and the players mapped to their locations in it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Detect" title="Detect">Detect</a>, <a href="https://publications.waset.org/abstracts/search?q=Football" title=" Football"> Football</a>, <a href="https://publications.waset.org/abstracts/search?q=Players" title=" Players"> Players</a>, <a href="https://publications.waset.org/abstracts/search?q=Virtual" title=" Virtual"> Virtual</a> </p> <a href="https://publications.waset.org/abstracts/73570/video-processing-of-a-football-game-detecting-features-of-a-football-match-for-automated-calculation-of-statistics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16976</span> Characterization of Stabilized Earth in the Construction Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sihem%20Chaibeddra">Sihem Chaibeddra</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatoum%20Kharchi"> Fatoum Kharchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study deals with the characterization of stabilized earth in the field of construction from the behavior under changes in conservation conditions that may occur during the lifetime of the material, namely, the exposure to high humidity and temperature variations. These two parameters are involved increasingly, because of climate changes that are confronting earth-based constructions to conditions for which they were not originally designed. These exposure conditions may affect the long-term behavior of the material and the entire structure. A cement treatment was adopted for stabilizing the earth with dosages ranging from 4, 6, 8 to 10%. The influence of addition percentage was analyzed in this context based on laboratory tests measuring the evolution of compressive strength, rate of absorption and shrinkage, and finally thermal conductivity. It was shown that the behaviour was dependent on the ambient conditions which influence the action of the binder. Temperate cure has proved beneficial for the material as the cement content increased. Moisture has less affected the compressive strength with increasing the cement content. The absorption was reduced with the increase of cement dosage. Regarding the variation of shrinkage, cement assays have presented an optimum value beyond which the addition of further quantities was less advantageous. The thermal conductivity on the other hand, increased with increasing cement content, which decreased the insulating properties of the material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behavior" title="behavior">behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=earth" title=" earth"> earth</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a> </p> <a href="https://publications.waset.org/abstracts/58591/characterization-of-stabilized-earth-in-the-construction-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16975</span> The Effect of Surface Conditions on Wear of a Railway Wheel and Rail</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Shebani">A. Shebani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Iwnicki"> S. Iwnicki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the nature of wheel and rail wear in the railway field is of fundamental importance to the safe and cost effective operation of the railways. Twin disc wear testing is used extensively for studying wear of wheel and rail materials. The University of Huddersfield twin disc rig was used in this paper to examine the effect of surface conditions on wheel and rail wear measurement under a range of wheel/rail contact conditions, with and without contaminants. This work focuses on an investigation of the effect of dry, wet, and lubricated conditions and the effect of contaminants such as sand on wheel and rail wear. The wheel and rail wear measurements were carried out by using a replica material and an optical profilometer that allows measurement of wear in difficult location with high accuracy. The results have demonstrated the rate at which both water and oil reduce wheel and rail wear. Scratches and other damage were seen on the wheel and rail surfaces after the addition of sand and consequently both wheel and rail wear damage rates increased under these conditions. This work introduced the replica material and an optical instrument as effective tools to study the effect of surface conditions on wheel and rail wear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=railway%20wheel%2Frail%20wear" title="railway wheel/rail wear">railway wheel/rail wear</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20conditions" title=" surface conditions"> surface conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=twin%20disc%20test%20rig" title=" twin disc test rig"> twin disc test rig</a>, <a href="https://publications.waset.org/abstracts/search?q=replica%20material" title=" replica material"> replica material</a>, <a href="https://publications.waset.org/abstracts/search?q=Alicona%20profilometer" title=" Alicona profilometer"> Alicona profilometer</a> </p> <a href="https://publications.waset.org/abstracts/47795/the-effect-of-surface-conditions-on-wear-of-a-railway-wheel-and-rail" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16974</span> A Study on Social and Economic Conditions of Street Vendors Using Field Survey Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruchika%20Yadav">Ruchika Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Street vendors are the integral component of urban economies of the world. They are the distributors of affordable goods and services and provide convenient and accessible retail options to the customers and form a vital part of the social and economic life of a city. A street vendor as an occupation existed for hundreds of years and considered to be as a cornerstone of many cities. In this paper, our objective is to analyze the socio-economic profile of street vendors, identification of their problems and to suggest remedial measures for the betterment based on the observation and suggestions of the street vendors. To conduct this study, primary data has been collected with the help of field survey and direct questionnaire to the respondents in Aligarh City which contains all the information relevant to social and economic conditions. The overall analysis of this study reveals street vendors are the backward sections of the society possess medium to the low-level standard of living due to illiteracy; their working environment and social security issues are not addressed properly. They are unaware of many of the governmental schemes launched for poverty alleviation and their poor accessibility in basic amenities leads to the backward socio-economic status in the society. The results found in this study can be very useful and helping tool for the policymakers to know the socio-economic conditions of the street vendors in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abject%20poverty" title="abject poverty">abject poverty</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-economic%20conditions" title=" socio-economic conditions"> socio-economic conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=street%20vendors" title=" street vendors"> street vendors</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a> </p> <a href="https://publications.waset.org/abstracts/97701/a-study-on-social-and-economic-conditions-of-street-vendors-using-field-survey-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16973</span> Combined Effect of Moving and Open Boundary Conditions in the Simulation of Inland Inundation Due to Far Field Tsunami</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ashaque%20Meah">M. Ashaque Meah</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Fazlul%20Karim"> Md. Fazlul Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shah%20Noor"> M. Shah Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazmun%20Nahar%20Papri"> Nazmun Nahar Papri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalid%20Hossen"> M. Khalid Hossen</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ismoen"> M. Ismoen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tsunami and inundation modelling due to far field tsunami propagation in a limited area is a very challenging numerical task because it involves many aspects such as the formation of various types of waves and the irregularities of coastal boundaries. To compute the effect of far field tsunami and extent of inland inundation due to far field tsunami along the coastal belts of west coast of Malaysia and Southern Thailand, a formulated boundary condition and a moving boundary condition are simultaneously used. In this study, a boundary fitted curvilinear grid system is used in order to incorporate the coastal and island boundaries accurately as the boundaries of the model domain are curvilinear in nature and the bending is high. The tsunami response of the event 26 December 2004 along the west open boundary of the model domain is computed to simulate the effect of far field tsunami. Based on the data of the tsunami source at the west open boundary of the model domain, a boundary condition is formulated and applied to simulate the tsunami response along the coastal and island boundaries. During the simulation process, a moving boundary condition is initiated instead of fixed vertical seaside wall. The extent of inland inundation and tsunami propagation pattern are computed. Some comparisons are carried out to test the validation of the simultaneous use of the two boundary conditions. All simulations show excellent agreement with the data of observation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=open%20boundary%20condition" title="open boundary condition">open boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20boundary%20condition" title=" moving boundary condition"> moving boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary-fitted%20curvilinear%20grids" title=" boundary-fitted curvilinear grids"> boundary-fitted curvilinear grids</a>, <a href="https://publications.waset.org/abstracts/search?q=far-field%20tsunami" title=" far-field tsunami"> far-field tsunami</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20water%20equations" title=" shallow water equations"> shallow water equations</a>, <a href="https://publications.waset.org/abstracts/search?q=tsunami%20source" title=" tsunami source"> tsunami source</a>, <a href="https://publications.waset.org/abstracts/search?q=Indonesian%20tsunami%20of%202004" title=" Indonesian tsunami of 2004"> Indonesian tsunami of 2004</a> </p> <a href="https://publications.waset.org/abstracts/38523/combined-effect-of-moving-and-open-boundary-conditions-in-the-simulation-of-inland-inundation-due-to-far-field-tsunami" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20conditions&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20conditions&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20conditions&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20conditions&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20conditions&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20conditions&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20conditions&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20conditions&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20conditions&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20conditions&amp;page=566">566</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20conditions&amp;page=567">567</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20conditions&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10