CINXE.COM
Search results for: species diversity
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: species diversity</title> <meta name="description" content="Search results for: species diversity"> <meta name="keywords" content="species diversity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="species diversity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="species diversity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4524</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: species diversity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4524</span> Butterfly Diversity along Urban-Rural Gradient in Kolkata, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sushmita%20Chaudhuri">Sushmita Chaudhuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Parthiba%20Basu"> Parthiba Basu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urbanization leads to habitat degradation and is responsible for the fast disappearance of native butterfly species. Random sampling of rural, suburban and urban sites in an around Kolkata metropolis revealed the presence of 28 species of butterfly belonging to 5 different families in winter (February-March). Butterfly diversity, species richness and abundance decreased with increase in urbanization. Psyche (Leptosia nina of family Pieridae) was the most predominant butterfly species found everywhere in Kolkata during the winter period. The most dominant family was Nymphalidae (11species), followed by Pieridae (6 species), Lycaenidae (5 species), Papilionidae (4 species) and Hesperiidae (2 species). The rural and suburban sites had butterfly species that were unique to those sites. Vegetation cover and flowering shrub density were significantly related to butterfly diversity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=butterfly" title="butterfly">butterfly</a>, <a href="https://publications.waset.org/abstracts/search?q=Kolkata%20metropolis" title=" Kolkata metropolis"> Kolkata metropolis</a>, <a href="https://publications.waset.org/abstracts/search?q=Shannon-Weiner%20diversity%20index" title=" Shannon-Weiner diversity index"> Shannon-Weiner diversity index</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20diversity" title=" species diversity"> species diversity</a> </p> <a href="https://publications.waset.org/abstracts/52028/butterfly-diversity-along-urban-rural-gradient-in-kolkata-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4523</span> Diversity of Bird Species and Conservation of Two Lacustrine Wetlands of the Upper Benue Basin, Adamawa, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20l.%20David"> D. l. David</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Wahedi"> J. A. Wahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Buba"> U. Buba</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Zakariya"> R. Zakariya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Between January, 2004 to December, 2005, studies were carried out on the bird species diversity and relative abundance of two lakes, Kiri and Gyawana near Numan using the “Timed Species Count (TSC)” method. 163 species in 53 bird families and 160 species in 55 bird families were recorded at Kiri and Gyawana lakes respectively. There was no significant difference in species diversity within bird families between the two lakes (p > 0.05), whereas in Gyawana Lake, one of the sites qualified as Ramsar site, none strongly qualified as an Important Bird Area (IBA). The significance of these findingsare also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation" title="conservation">conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=lacustrine" title=" lacustrine"> lacustrine</a>, <a href="https://publications.waset.org/abstracts/search?q=wetlands" title=" wetlands"> wetlands</a> </p> <a href="https://publications.waset.org/abstracts/35316/diversity-of-bird-species-and-conservation-of-two-lacustrine-wetlands-of-the-upper-benue-basin-adamawa-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">682</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4522</span> Species Diversity and Relative Abundance of Migratory Waterbirds in Abijata Lake, Central Rift Valley, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teklebrhan%20Kidane">Teklebrhan Kidane </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to investigate the species diversity and relative abundance of migratory waterbirds in Abijata Lake, an Important Bird Area and potential Ramsar site located in the Central Rift Valley of Ethiopia. The study was carried out, using line transect method along the shoreline and open area of the Lake. The data was analyzed with different diversity indices; t-Test and descriptive statistics. Thirty-two migratory waterbird species grouped into twelve families consisting of globally threatened birds were identified and recorded. Family Scolopacidae (12 species) had the highest number of species. The lowest number of species was observed under the families Ciconidae, Accipitridae, Laridae and Falconidae with one species each. The recorded bird species comprised 19 Palearctic, 5 Intra-African, 2 local migrants as well as 6 resident Palearctic migratory waterbird species. The dry season had higher species diversity (H'=1.01) compared to the wet season (H'=0.76). The highest and lowest diversity of migratory waterbirds were recorded during January (H'= 1.28) and June (H'= 0.52), respectively. However, the highest evenness (E) of bird species was recorded during wet season (E=0.21) and lower during the dry season (E=0.09). The computed seasonal effect reveals that there is significant effect of seasons on species diversity (t=2.80, P < 0.05), but the effect of seasons on individuals of migratory bird species was not significant (t=1.42, P > 0.05). Even though Lake Abijata is the sanctuary of several migratory waterbirds, anthropogenic activities are rigorously threatening their survival. Therefore, it needs an urgent conservation concern. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=migration" title="migration">migration</a>, <a href="https://publications.waset.org/abstracts/search?q=important%20bird%20area" title=" important bird area"> important bird area</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20diversity" title=" species diversity"> species diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=wetland%20birds" title=" wetland birds "> wetland birds </a> </p> <a href="https://publications.waset.org/abstracts/96761/species-diversity-and-relative-abundance-of-migratory-waterbirds-in-abijata-lake-central-rift-valley-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4521</span> Computing the Similarity and the Diversity in the Species Based on Cronobacter Genome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Al%20Daoud">E. Al Daoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of computing the similarity and the diversity in the species is to trace the process of evolution and to find the relationship between the species and discover the unique, the special, the common and the universal proteins. The proteins of the whole genome of 40 species are compared with the cronobacter genome which is used as reference genome. More than 3 billion pairwise alignments are performed using blastp. Several findings are introduced in this study, for example, we found 172 proteins in cronobacter genome which have insignificant hits in other species, 116 significant proteins in the all tested species with very high score value and 129 common proteins in the plants but have insignificant hits in mammals, birds, fishes, and insects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genome" title="genome">genome</a>, <a href="https://publications.waset.org/abstracts/search?q=species" title=" species"> species</a>, <a href="https://publications.waset.org/abstracts/search?q=blastp" title=" blastp"> blastp</a>, <a href="https://publications.waset.org/abstracts/search?q=conserved%20genes" title=" conserved genes"> conserved genes</a>, <a href="https://publications.waset.org/abstracts/search?q=Cronobacter" title=" Cronobacter"> Cronobacter</a> </p> <a href="https://publications.waset.org/abstracts/82396/computing-the-similarity-and-the-diversity-in-the-species-based-on-cronobacter-genome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4520</span> Diversity and Distribution of Benthic Invertebrates in the West Port, Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Belin%20Tavakoly%20Sany">Seyedeh Belin Tavakoly Sany</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosli%20Hashim"> Rosli Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Rezayi"> Majid Rezayi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aishah%20Salleh"> Aishah Salleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Omid%20Safari"> Omid Safari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to describe the main characteristics of macroinvertebrate species in response to environmental forcing factors. Overall, 23 species of Mollusca, 4 species of Arthropods, 3 species of Echinodermata and 3 species of Annelida were identified at the 9 sampling stations during four sampling periods. Individual species of Mollusca constituted 36.4% of the total abundance, followed by Arthropods (27.01%), Annelida (34.3%) and Echinodermata (2.4%). The results of Kruskal-Wallis test indicated that a significant difference (p <0.05) in the abundance, richness and diversity of the macro-benthic community in different stations. The correlation analysis revealed that anthropogenic pollution and natural variability caused by these variations in spatial scales. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benthic%20invertebrates" title="benthic invertebrates">benthic invertebrates</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=abundance" title=" abundance"> abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=West%20Port" title=" West Port"> West Port</a> </p> <a href="https://publications.waset.org/abstracts/6112/diversity-and-distribution-of-benthic-invertebrates-in-the-west-port-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4519</span> A Preliminary Study on Factors Determining the Success of High Conservation Value Area in Oil Palm Plantations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanto%20Santosa">Yanto Santosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozza%20Tri%20Kwatrina"> Rozza Tri Kwatrina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High Conservation Value (HCV) is an area with conservation function within oil palm plantation. Despite the important role of HCV area in biodiversity conservation and various studies on HCV, there was a lack of research studying the factors determining its success. A preliminary study was conducted to identify the determinant factor of HCV that affected the diversity. Line transect method was used to calculate the species diversity of butterfly, birds, mammals, and herpetofauna species as well as their richness. Specifically for mammals, camera traps were also used. The research sites comprised of 12 HCV areas in 3 provinces of Indonesia (Central Kalimantan, Riau, and Palembang). The relationship between the HCV biophysical factor with the species number and species diversity for each wildlife class was identified using Chi-Square analysis with Cross tab (contingency table). Results of the study revealed that species diversity varied by research locations. Four factors determining the success of HCV area in relations to the number and diversity of wildlife species are land cover types for mammals, the width of area and distance to rivers for birds, and distance to settlements for butterflies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wildlife%20diversity" title="wildlife diversity">wildlife diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20plantation" title=" oil palm plantation"> oil palm plantation</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20conservation%20value%20area" title=" high conservation value area"> high conservation value area</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20factors" title=" ecological factors"> ecological factors</a> </p> <a href="https://publications.waset.org/abstracts/99654/a-preliminary-study-on-factors-determining-the-success-of-high-conservation-value-area-in-oil-palm-plantations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4518</span> Biodiversity Affects Bovine Tuberculosis (bTB) Risk in Ethiopian Cattle: Prospects for Infectious Disease Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sintayehu%20W.%20Dejene">Sintayehu W. Dejene</a>, <a href="https://publications.waset.org/abstracts/search?q=Ignas%20M.%20A.%20Heitk%C3%B6nig"> Ignas M. A. Heitkönig</a>, <a href="https://publications.waset.org/abstracts/search?q=Herbert%20H.%20T.%20Prins"> Herbert H. T. Prins</a>, <a href="https://publications.waset.org/abstracts/search?q=Zewdu%20K.%20Tessema"> Zewdu K. Tessema</a>, <a href="https://publications.waset.org/abstracts/search?q=Willem%20F.%20de%20Boer"> Willem F. de Boer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current theories on diversity-disease relationships describe host species diversity and species identity as important factors influencing disease risk, either diluting or amplifying disease prevalence in a community. Whereas the simple term ‘diversity’ embodies a set of animal community characteristics, it is not clear how different measures of species diversity are correlated with disease risk. We, therefore, tested the effects of species richness, Pielou’s evenness and Shannon’s diversity on bTB risk in cattle in the Afar Region and Awash National Park between November 2013 and April 2015. We also analysed the identity effect of a particular species and the effect of host habitat use overlap on bTB risk. We used the comparative intradermal tuberculin test to assess the number of bTB infected cattle. Our results suggested a dilution effect through species evenness. We found that the identity effect of greater kudu - a maintenance host – confounded the dilution effect of species diversity on bTB risk. bTB infection was positively correlated with habitat use overlap between greater kudu and cattle. Different diversity indices have to be considered together for assessing diversity-disease relationships, for understanding the underlying causal mechanisms. We posit that unpacking diversity metrics is also relevant for formulating control strategies to manage cattle in ecosystems characterized by seasonally limited resources and intense wildlife-livestock interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evenness" title="evenness">evenness</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=greater%20kudu" title=" greater kudu"> greater kudu</a>, <a href="https://publications.waset.org/abstracts/search?q=identity%20effect" title=" identity effect"> identity effect</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance%20hosts" title=" maintenance hosts"> maintenance hosts</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-host%20disease%20ecology" title=" multi-host disease ecology"> multi-host disease ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=habitat%20use%20overlap" title=" habitat use overlap"> habitat use overlap</a> </p> <a href="https://publications.waset.org/abstracts/56862/biodiversity-affects-bovine-tuberculosis-btb-risk-in-ethiopian-cattle-prospects-for-infectious-disease-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4517</span> Plant Species Composition and Frequency Distribution Along a Disturbance Gradient in Kano Metropolis Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamisu%20Jibril">Hamisu Jibril</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study explores changes in plant species composition along disturbance gradient in urban areas in Nigeria at Bayero University Kano campuses. The aim is to assess changes in plant species composition and distribution within a degraded dryland environment in Kano Metropolis, Nigeria. Vegetation sampling was conducted using plots quadrat and transect methods, and different plant species were identified in the three study sites. Data were analyzed using ANOVA, t-tests and conventional indices to compare species richness, evenness and diversity. The study found no significant differences in species frequency among sites or sampling methods but observed higher species richness, evenness and diversity values in grasses species compared to trees. The study addressed changes in plant species composition along a disturbance gradient in an urban environment, focusing on species richness, evenness, and diversity. The study contributes to understanding the vegetation dynamics in degraded urban environments and highlights the need for conservation efforts. The research also adds to the existing literature by confirming previous findings and suggesting re-planting efforts. The study suggests similarities in plant species composition between old and new campus areas and emphasizes the importance of further investigating factors leading to vegetation loss for conservation purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=species%20diversity" title="species diversity">species diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20kano" title=" urban kano"> urban kano</a>, <a href="https://publications.waset.org/abstracts/search?q=dryland%20environment" title=" dryland environment"> dryland environment</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation%20sampling" title=" vegetation sampling"> vegetation sampling</a> </p> <a href="https://publications.waset.org/abstracts/184510/plant-species-composition-and-frequency-distribution-along-a-disturbance-gradient-in-kano-metropolis-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4516</span> Diversity of Short-Horned Grasshoppers (Orthoptera: Caelifera) from Forested Region of Kolhapur District, Maharashtra, India of Northern Western Ghats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunil%20M.%20Gaikwad">Sunil M. Gaikwad</a>, <a href="https://publications.waset.org/abstracts/search?q=Yogesh%20J.%20Koli"> Yogesh J. Koli</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopal%20A.%20Raut"> Gopal A. Raut</a>, <a href="https://publications.waset.org/abstracts/search?q=Ganesh%20P.%20Bhawane"> Ganesh P. Bhawane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigation was directed to study the diversity of short-horned grasshoppers from a forested area of Kolhapur district, Maharashtra, India, which is spread along the hilly terrain of the Northern Western Ghats. The collection was made during 2013 to 2015, and identified with the help of a reference collection of ZSI, Kolkata, and recent literature and dry preserved. The study resulted in the enumeration of 40 species of short-horned grasshoppers belonging to four families of suborder: Caelifera. The family Acrididae was dominant (27 species) followed by Tetrigidae (eight species), Pyrgomorphidae (four species) and Chorotypidae (one species). The report of 40 species from the forest habitat of the study region highlights the significance of the Western Ghats. Ecologically, short-horned grasshoppers are integral to food chains, being consumed by a wide variety of animals. The observations of the present investigation may prove useful for conservation of the Diversity in Northern Western Ghats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diversity" title="diversity">diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=Kolhapur" title=" Kolhapur"> Kolhapur</a>, <a href="https://publications.waset.org/abstracts/search?q=northern%20western%20Ghats" title=" northern western Ghats"> northern western Ghats</a>, <a href="https://publications.waset.org/abstracts/search?q=short-horned%20grasshoppers" title=" short-horned grasshoppers"> short-horned grasshoppers</a> </p> <a href="https://publications.waset.org/abstracts/86662/diversity-of-short-horned-grasshoppers-orthoptera-caelifera-from-forested-region-of-kolhapur-district-maharashtra-india-of-northern-western-ghats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4515</span> Patterns in Fish Diversity and Abundance of an Abandoned Gold Mine Reservoirs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20E.%20Obayemi">O. E. Obayemi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ayoade"> M. A. Ayoade</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20O.%20Komolafe"> O. O. Komolafe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish survey was carried out for an annual cycle covering both rainy and dry seasons using cast nets, gill nets and traps at two different reservoirs. The objective was to examined the fish assemblages of the reservoirs and provide more additional information on the reservoir. The fish species in the reservoirs comprised of twelve species of six families. The results of the study also showed that five species of fish were caught in reservoir five while ten fish species were captured in reservoir six. Species such as Malapterurus electricus, Ctenopoma kingsleyae, Mormyrus rume, Parachanna obscura, Sarotherodon galilaeus, Tilapia mariae, C. guntheri, Clarias macromystax, Coptodon zilii and Clarias gariepinus were caught during the sampling period. There was a significant difference (p=0.014, t = 1.711) in the abundance of fish species in the two reservoirs. Seasonally, reservoirs five (p=0.221, t = 1.859) and six (p=0.453, t = 1.734) showed there was no significant difference in their fish populations. Also, despite being impacted with gold mining the diversity indices were high when compared to less disturbed waterbodies. The study concluded that the environments recorded low abundant fish species which suggests the influence of mining on the abundance and diversity of fish species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igun" title="Igun">Igun</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=Shannon-Wiener%20Index" title=" Shannon-Wiener Index"> Shannon-Wiener Index</a>, <a href="https://publications.waset.org/abstracts/search?q=Simpson%20index" title=" Simpson index"> Simpson index</a>, <a href="https://publications.waset.org/abstracts/search?q=Pielou%20index" title=" Pielou index"> Pielou index</a> </p> <a href="https://publications.waset.org/abstracts/173907/patterns-in-fish-diversity-and-abundance-of-an-abandoned-gold-mine-reservoirs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4514</span> Coral Reef Fishes in the Marine Protected Areas in Southern Cebu, Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christine%20M.%20Corrales">Christine M. Corrales</a>, <a href="https://publications.waset.org/abstracts/search?q=Gloria%20G.%20Delan"> Gloria G. Delan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachel%20Luz%20V.%20Rica"> Rachel Luz V. Rica</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfonso%20S.%20Piquero"> Alfonso S. Piquero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Marine protected areas (MPAs) in the study sites were established 8-13 years ago and are presently operational. This study was conducted to gather baseline information on the diversity, density and biomass of coral reef fishes inside and outside the four marine protected areas (MPAs) of Cawayan, Dalaguete; Daan-Lungsod Guiwang, Alcoy; North Granada, Boljoon and Sta. Cruz, Ronda. Coral reef fishes in the MPAs were identified using Fish Visual Census Method. Results of the t-test showed that the mean diversity (fish species/250m2) of target and non-target reef fish species found inside and outside the MPAs were significantly different. Density (ind./1,000m2) of target species inside and outside the MPAs showed no significant difference. Similarly, density of non-target species inside and outside the MPAs also showed no significant difference. This is an indication that fish density inside and outside the MPAs were more or less of the same condition. The mean biomass (kg/1,000m2) of target species inside and outside the MPAs showed a significant difference in contrast with non-target species inside and outside the MPAs which showed a no significant difference. Higher biomass of target fish species belonging to family Caesonidae (fusiliers) and Scaridae (parrotfishes) were commonly observed inside the MPAs. Results showed that fish species were more diverse with higher density and biomass inside the MPAs than the outside area. However, fish diversity and density were mostly contributed by non-target species. Hence, long term protection and management of MPAs is needed to effectively increase fish diversity, density and biomass specifically on target fish species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20protected%20area" title=" marine protected area"> marine protected area</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20fish%20species" title=" target fish species"> target fish species</a> </p> <a href="https://publications.waset.org/abstracts/39481/coral-reef-fishes-in-the-marine-protected-areas-in-southern-cebu-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4513</span> Impact of Fire on Bird Diversity in Oil Palm Plantation: Case Study in South Sumatra Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanto%20Santosa">Yanto Santosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Windi%20Sugiharti"> Windi Sugiharti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fires occur annually in oil palm plantations. The objective of the study was to identify the impact of fire on bird diversity in oil palm plantations. Data of bird diversity were collected using the line transect method. Data were collected from February to March 2017. To estimate species richness, we used the Margalef index, to determine the evenness of species richness between site, we used an Evenness index, and to estimate the similarity of bird communities between different habitat, we used the Sørensen index. The result showed that the number of bird species and species richness in the post burned area was higher than those in unburned area. Different results were found for the Evenness Index, where the value was higher in unburned area that was in post burned area. These results indicate that fires did not decrease bird diversity as alleged by many parties whom stated that fires caused species extinction. Fire trigger the emerging of belowground plant and population of insects as a sources of food for the bird community. This result is consistent with several research findings in the United States and Australia that used controlled fires as one of regional management tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bird" title="bird">bird</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=index%20of%20similarity" title=" index of similarity"> index of similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm" title=" oil palm"> oil palm</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20diversity" title=" species diversity"> species diversity</a> </p> <a href="https://publications.waset.org/abstracts/79626/impact-of-fire-on-bird-diversity-in-oil-palm-plantation-case-study-in-south-sumatra-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4512</span> Study on the Effect of Weather Variables on the Spider Abundance in Two Ecological Zones of Ogun State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Odejayi%20Adedayo%20Olugbenga">Odejayi Adedayo Olugbenga</a>, <a href="https://publications.waset.org/abstracts/search?q=Aina%20Adebisi"> Aina Adebisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weather variables (rainfall and temperature) affect the diversity and abundance of both fauna and flora species. This study compared the weather variables with spider abundance in two ecological zones of Ogun State, Nigeria namely Ago-iwoye (Rainforest) in the Ijebu axis and Aiyetoro (Derived Savannah) in the Yewa axis. Seven study sites chosen by Simple Random Sampling in each ecosystem were used for the study. In each sampling area, a 60 m x 120 m land area was marked and sampled, spider collection techniques were; hand picking, use of sweep netting, and Pitfall trap. Adult spiders were identified to the species level. Species richness was estimated by a non-parametric species estimator while the diversity of spider species was assessed by Simpson Diversity Index and Species Richness by One-way Analysis of Variance. Results revealed that spiders were more abundant in rainforest zones than in derived savannah ecosystems. However, the pattern of spider abundance in rainforest zone and residential areas were similar. During high temperatures, the activities of spiders tended to increase according to this study. In contrast, results showed that there was a negative correlation between rainfall and spider species abundance in addition to a negative and weak correlation between rainfall and species richness. It was concluded that heavy downpour has lethal effects on both immature and sometimes matured spiders, which could lead to the extinction of some unknown species of spiders. Tree planting should be encouraged, as this shelters the spider. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spider" title="spider">spider</a>, <a href="https://publications.waset.org/abstracts/search?q=abundance" title=" abundance"> abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20richness" title=" species richness"> species richness</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20diversity" title=" species diversity"> species diversity</a> </p> <a href="https://publications.waset.org/abstracts/168175/study-on-the-effect-of-weather-variables-on-the-spider-abundance-in-two-ecological-zones-of-ogun-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4511</span> Diversity of Insect Pests of Paddy in Panhala Tehasil, Kolhapur, Maharashtra, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjiri%20A.%20More">Manjiri A. More</a>, <a href="https://publications.waset.org/abstracts/search?q=Manisha%20M.%20Bhosale"> Manisha M. Bhosale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture is the backbone of Indian economy and India is one of the world’s largest producers of Rice. Today, paddy crop is facing a severe problem of insect pests and is attacked by more than 100 species of insects, among those 20 species cause economic damage. Rice is the staple food of people of panhala tehasil, Kolhapur, Maharashtra, India. During June 2017 to September 2017 efforts were made to study the diversity of insect pests associated with the paddy crop in the study region. The collection and preservation of the specimens were done by following standard procedure and the identification was done with the help standard literature, taxonomic keys, and webography. In all, 6 species were recorded as pests of paddy in which order Lepidoptera was dominant with 2 species, while orders Diptera, Orthoptera, Hemiptera, and Coleoptera were represented by 1 species each respectively. The results of the present investigation will be helpful for formulating control strategies against these paddy pests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diversity" title="diversity">diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=insect%20pests" title=" insect pests"> insect pests</a>, <a href="https://publications.waset.org/abstracts/search?q=Panhala" title=" Panhala"> Panhala</a>, <a href="https://publications.waset.org/abstracts/search?q=staple" title=" staple"> staple</a> </p> <a href="https://publications.waset.org/abstracts/98200/diversity-of-insect-pests-of-paddy-in-panhala-tehasil-kolhapur-maharashtra-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4510</span> Avifaunal Diversity in the Mallathahalli Lake of Bangalore Urban District, Karnataka, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vidya%20Padmakumar">Vidya Padmakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20C.%20Tharavathy"> N. C. Tharavathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was conducted from July 2015 to July 2017 to determine and understand the occurrence, frequency and diversity of avifauna in the Mallathahalli Lake of Bangalore Urban district. During the study period, 46 species of both terrestrial, as well as, aquatic birds belonging to 30 families were identified out of which 9 families were aquatic birds and 21 families were terrestrial birds. There were 4 species of migratory birds out of 46, showing diurnal migration. There was a significant reduce in the number of bird species both terrestrial and aquatic during the summer season and also varied greatly during winters and monsoon. Of the total 24 species of aquatic birds, Fulica atra and Tachybaptus ruficolis were the most common with 100% frequency and the least frequent species with 3.02% frequency was identified as Threskiornis melanocephalus. Among the 22 species of terrestrial birds, Acridotheres tristis had a frequency of 89% and the least frequent was Pycnonotus cafer (4.45%). The most commonly encountered bird species were from the families- Anatidae, Podicipedidae, Ardeidae, Phalacrocoracidae, Rallidae, Accipitridae, Scolopacidae, Charadridae, Laridae, Meropidae, Hirudinidae. All the birds surviving around the area are dependent on the wetland and crop vegetation surrounding the lake, which are deteriorating due to anthropogenic interventions and urbanization which are rising to its peak gradually causing the decline in the avifaunal diversity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avifaunal%20diversity" title="Avifaunal diversity">Avifaunal diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=Mallathahalli%20lake" title=" Mallathahalli lake"> Mallathahalli lake</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20migration" title=" seasonal migration"> seasonal migration</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a> </p> <a href="https://publications.waset.org/abstracts/87938/avifaunal-diversity-in-the-mallathahalli-lake-of-bangalore-urban-district-karnataka-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4509</span> The Estimation of Bird Diversity Loss and Gain as an Impact of Oil Palm Plantation: Study Case in KJNP Estate Riau Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanto%20Santosa">Yanto Santosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Catharina%20Yudea"> Catharina Yudea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid growth of oil palm industry in Indonesia raised many negative accusations from various parties, who said that oil palm plantation is damaging the environment and biodiversity, including birds. Since research on oil palm plantation impacts on bird diversity is still limited, this study needs to be developed in order to gain further learning and understanding. Data on bird diversity were collected in March 2018 in KJNP Estate, Riau Province using strip transect method on five different land cover types (young, intermediate, and old growth of oil palm plantation, high conservation value area, and crops field or the baseline). The observations were conducted simultaneously, with three repetitions. The result shows that the baseline has 19 species of birds and land cover after the oil palm plantation has 39 species. HCV (high conservation value) area has the highest increase in diversity value. Oil palm plantation has changed the composition of bird species. The highest similarity index is shown by young growth oil palm land cover with total score 0.65, meanwhile the lowest similarity index with total score 0.43 is shown by HCV area. Overall, the existence of oil palm plantation made a positive impact by increasing bird species diversity, with total 23 species gained and 3 species lost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bird%20diversity" title="bird diversity">bird diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=crops%20field" title=" crops field"> crops field</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20of%20oil%20palm%20plantation" title=" impact of oil palm plantation"> impact of oil palm plantation</a>, <a href="https://publications.waset.org/abstracts/search?q=KJNP%20estate" title=" KJNP estate"> KJNP estate</a> </p> <a href="https://publications.waset.org/abstracts/99648/the-estimation-of-bird-diversity-loss-and-gain-as-an-impact-of-oil-palm-plantation-study-case-in-kjnp-estate-riau-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4508</span> Entomofauna Biodiversity of a Citrus Orchard in Baraki, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahlem%20Guerzou">Ahlem Guerzou</a>, <a href="https://publications.waset.org/abstracts/search?q=Salheddine%20Doumandji"> Salheddine Doumandji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orchards and minimally processed with surrounding hedges form a significant source of biodiversity. These orchards are an entire ecosystem, home to a rich insect fauna associated with the presence of a large diversity of plant species. The values of the richness and diversity rise when the intensity of the chemical protection is reduced emphasizing the importance of such orchard in the conservation of biodiversity. To show the interest hedges fauna perspective, we conducted a study in an orange grove located Baraki surrounded by hedges and windbreaks consist of several plant species. With the sweep net there were the invertebrate fauna of the herbaceous and after a year of inventory was collected consists of a 2177 individuals distributed among 156 species grouped into five classes and 15 orders fauna. Hymenoptera and Diptera are in first place with 34 species (AR% = 19.3%), followed by Coleoptera with 27 species (AR% = 15.3%), Homoptera dominate in the workforce with 735 individuals (AR% = 34.1%). The Shannon-Weaver index calculated reflects a great diversity of population sampled equal to 5.2 bits. The equitability is 0.7, showing a strong trend of balance between the numbers of species present. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title="biodiversity">biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=citrus%20orchard" title=" citrus orchard"> citrus orchard</a>, <a href="https://publications.waset.org/abstracts/search?q=reaps%20net" title=" reaps net"> reaps net</a>, <a href="https://publications.waset.org/abstracts/search?q=hedges" title=" hedges"> hedges</a>, <a href="https://publications.waset.org/abstracts/search?q=Baraki" title=" Baraki"> Baraki</a> </p> <a href="https://publications.waset.org/abstracts/28971/entomofauna-biodiversity-of-a-citrus-orchard-in-baraki-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4507</span> Systematic Taxonomy and Phylogenetic of Commercial Fish Species of Family Nemipetridae from Malaysian Waters and Neighboring Seas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayesha%20Imtiaz">Ayesha Imtiaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Darlina%20Md.%20Naim"> Darlina Md. Naim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Family Nemipteridae is among the most abundantly distributed family in Malaysian fish markets due to its high contribution to landing sites of Malaysia. Using an advanced molecular approach that used two mitochondrial (Cytochrome oxidase c I and Cytochrome oxidase b) and one nuclear gene (Recombination activating gene, RAGI) to expose cryptic diversity and phylogenetic relationships among commercially important species of family Nemipteridae. Our research covered all genera (including 31 species out total 45 species) of family Nemipteridae, distributed in Malaysia. We also found certain type of geographical barriers in the South China sea that reduces dispersal and stops a few species to intermix. Northside of the South China Sea (near Vietnam) does not allow genetic diversity to mix with the Southern side of the South China sea (Sarawak) and reduces dispersal. Straits of Malacca reduce the intermixing genetic diversity of South China Sea and the Indian Ocean. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nemipteridae" title="Nemipteridae">Nemipteridae</a>, <a href="https://publications.waset.org/abstracts/search?q=RAG%20I" title=" RAG I"> RAG I</a>, <a href="https://publications.waset.org/abstracts/search?q=south%20east%20Asia" title=" south east Asia"> south east Asia</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/116434/systematic-taxonomy-and-phylogenetic-of-commercial-fish-species-of-family-nemipetridae-from-malaysian-waters-and-neighboring-seas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4506</span> Effects of Conversion of Indigenous Forest to Plantation Forest on the Diversity of Macro-Fungi in Kereita Forest, Kikuyu Escarpment, Kenya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Susan%20Mwai">Susan Mwai</a>, <a href="https://publications.waset.org/abstracts/search?q=Mary%20Muchane"> Mary Muchane</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Wachira"> Peter Wachira</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheila%20%20Okoth"> Sheila Okoth</a>, <a href="https://publications.waset.org/abstracts/search?q=Muchai%20Muchane"> Muchai Muchane</a>, <a href="https://publications.waset.org/abstracts/search?q=Halima%20Saado"> Halima Saado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tropical forests harbor a wide range of biodiversity and rich macro-fungi diversity compared to the temperate regions in the World. However, biodiversity is facing the threat of extinction following the rate of forest loss taking place before proper study and documentation of macrofungi is achieved. The present study was undertaken to determine the effect of converting indigenous habitat to plantation forest on macrofungi diversity. To achieve the objective of this study, an inventory focusing on macro-fungi diversity was conducted within Kereita block in Kikuyu Escarpment forest which is on the southern side of Aberdare mountain range. The macrofungi diversity was conducted in the indigenous forest and in more than 15 year old Patula plantation forest , during the wet (long rain season, December 2014) and dry (Short rain season, May, 2015). In each forest type, 15 permanent (20m x 20m) sampling plots distributed across three (3) forest blocks were used. Both field and laboratory methods involved recording abundance of fruiting bodies, taxonomic identity of species and analysis of diversity indices and measures in terms of species richness, density and diversity. R statistical program was used to analyze for species diversity and Canoco 4.5 software for species composition. A total number of 76 genera in 28 families and 224 species were encountered in both forest types. The most represented taxa belonged to the Agaricaceae (16%), Polyporaceae (12%), Marasmiaceae, Mycenaceae (7%) families respectively. Most of the recorded macro-fungi were saprophytic, mostly colonizing the litter 38% and wood 34% based substrates, which was followed by soil organic dwelling species (17%). Ecto-mycorrhiza fungi (5%) and parasitic fungi (2%) were the least encountered. The data established that indigenous forests (native ecosystems) hosts a wide range of macrofungi assemblage in terms of density (2.6 individual fruit bodies / m2), species richness (8.3 species / plot) and species diversity (1.49/ plot level) compared to the plantation forest. The Conversion of native forest to plantation forest also interfered with species composition though did not alter species diversity. Seasonality was also shown to significantly affect the diversity of macro-fungi and 61% of the total species being present during the wet season. Based on the present findings, forested ecosystems in Kenya hold diverse macro-fungi community which warrants conservation measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diversity" title="diversity">diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=Indigenous%20forest" title=" Indigenous forest"> Indigenous forest</a>, <a href="https://publications.waset.org/abstracts/search?q=macro-fungi" title=" macro-fungi"> macro-fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=plantation%20forest" title=" plantation forest"> plantation forest</a>, <a href="https://publications.waset.org/abstracts/search?q=season" title=" season"> season</a> </p> <a href="https://publications.waset.org/abstracts/77779/effects-of-conversion-of-indigenous-forest-to-plantation-forest-on-the-diversity-of-macro-fungi-in-kereita-forest-kikuyu-escarpment-kenya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4505</span> Characteristics of Butterfly Communities according to Habitat Types of Jeongmaek in Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji-Suk%20Kim">Ji-Suk Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Pil%20Kim"> Dong-Pil Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kee-Rae%20Gang"> Kee-Rae Gang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoon%20Ho%20Choi"> Yoon Ho Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to investigate the characteristics of butterfly communities according to the habitat characteristics of Korean veins. The survey sites were 12 mountains located in the vein, and 12~30 quadrats (200 in total) were set. The species richness and biodiversity were different according to land use type. Two types of land use (forest and graveyard) showed lower species diversity index values than other land use types. The species abundance was low in the forest and graveyards, and grasslands, forest tops, cultivated areas and urban areas showed relatively high species richness. The altitude was not statistically significant with the number of species of butterflies and biodiversity index. The degree of canopy closure showed a negative correlation. As a result of interspecific correlation analysis, it was confirmed that there was a very high correlation (R2=0.746) between Lycaena phlaeas and Pseudozizeeria maha argia, Choaspes benjaminii japonica and Argyronome ruslana. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use%20type" title="land use type">land use type</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20diversity%20index" title=" species diversity index"> species diversity index</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=canopy%20closure" title=" canopy closure"> canopy closure</a> </p> <a href="https://publications.waset.org/abstracts/92508/characteristics-of-butterfly-communities-according-to-habitat-types-of-jeongmaek-in-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4504</span> Fish Diversity of Two Lacustrine Wetlands of the Upper Benue Basin, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20L.%20David">D. L. David</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Wahedi"> J. A. Wahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20T.%20Zaku"> Q. T. Zaku</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was conducted at River Mayo Ranewo and River Lau, Taraba State Nigeria. The two rivers empty into the Upper Benue Basin. A survey of visual encounter was conducted within the two wetlands from June to August, 2014. The fish record was based entirely on landings of fishermen, number of canoes that land fish was counted, types of nets and baits used on each sampling day. Fishes were sorted into taxonomic groups, identified to family/ species level, counted and weighed in groups by species. Other aquatic organisms captured by the fishermen were scallops, turtles and frogs. The relative species abundance was determined by dividing the number of species from a site by the total number of species from all tributaries/sites. The fish were preserved in 2% formaldehyde solution and taken to the laboratory, were identified through keys of identification to African fishes and field guides. Shannon-Wieiner index of species diversity indicated that the diversity was highest at River Mayo Ranewo than River Lau. Results showed that at River Mayo Ranewo, the family Mochokidae recorded the highest (23.15%), followed by Mormyridae (22.64%) and the least was the family Lepidosirenidae (0.04%). While at River Lau, the family Mochokidae recorded the highest occurrence of (24.1%), followed by Bagridae (20.20%), and then Mormyridae, which also was the second highest in River Lau, with 18.46% occurrence. There was no occurrence of Malapteruridae and Osteoglossidae (0%) in River Lau, but the least occurrence was the family Gymnarchidae (0.04%). According to the result from the t-test, the fish composition was not significantly different (p≤0.05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diversity%20Index" title="Diversity Index">Diversity Index</a>, <a href="https://publications.waset.org/abstracts/search?q=Lau" title=" Lau"> Lau</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayo%20Ranewo" title=" Mayo Ranewo"> Mayo Ranewo</a>, <a href="https://publications.waset.org/abstracts/search?q=Wetlands" title=" Wetlands"> Wetlands</a> </p> <a href="https://publications.waset.org/abstracts/32789/fish-diversity-of-two-lacustrine-wetlands-of-the-upper-benue-basin-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4503</span> Diversity and Utilize of Ignored, Underutilized, and Uncommercialized Horticultural Species in Nepal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prakriti%20Chand">Prakriti Chand</a>, <a href="https://publications.waset.org/abstracts/search?q=Binayak%20Prasad%20Rajbhandari"> Binayak Prasad Rajbhandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Prasad%20Mainali"> Ram Prasad Mainali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Local indigenous community in Lalitpur, Nepal, use Ignored, Underutilized and Uncommercialized Horticultural Species (IUUHS) for medicine, food, spice, pickles, and religious purposes. But, research and exploration about usage, status, potentialities, and importance of these future sustainable crops are inadequately documented and have been ignored for a positive food transformation system. The study aimed to assess the use and diversity of NUWHS in terms of current status investigation, documentation, management, and future potentialities of IUUHS. A wide range of participatory tools through the household survey ( 100 respondents), 8 focus group discussions, 20 key informant interviews was followed by individual assessment, participatory rural assessments and supplemented by literature review. This study recorded 95 IUUHS belonging to 43 families, of which 92 were angiosperms, 2 pteridophytes, and 1 gymnosperm. Twenty seven species had multiple uses. The IUUHS observed during the study were 31 vegetables, 20 fruits, 14 wild species, 7 spices, 7 pulses, 7 pickle, 7 medicine, and 2 religious species. Vegetables and fruits were the most observed category of IUUHS. Eighty nine species were observed as medicinally valued species, and 86% of the women had taken over all the agricultural activities. 84% of respondents used these species during food deficient period. IUUHS have future potential as an alternative food to major staple crops due to its remarkable ability to be adapted in marginal soil and thrive harsh climatic condition. There are various constraints regarding the utilization and development of IUUHS, which needs initiation of promotion, utilization, management, and conservation of species from the grass root level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agrobiodiversity" title="agrobiodiversity">agrobiodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=Ignored%20and%20underutilized%20species" title=" Ignored and underutilized species"> Ignored and underutilized species</a>, <a href="https://publications.waset.org/abstracts/search?q=uncultivated%20horticultural%20species" title=" uncultivated horticultural species"> uncultivated horticultural species</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity%20use" title=" diversity use"> diversity use</a> </p> <a href="https://publications.waset.org/abstracts/141568/diversity-and-utilize-of-ignored-underutilized-and-uncommercialized-horticultural-species-in-nepal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4502</span> Fish Diversity and Conservation of Two Lacustrine Wetlands of the Upper Benue Basin, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20L.%20David">D. L. David</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Wahedi"> J. A. Wahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20T.%20Zaku"> Q. T. Zaku </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was conducted at River Mayo Ranewo and River Lau, Taraba State Nigeria. The two rivers empty into the Upper Benue Basin. A visual encounter survey was conducted within the two wetlands from June to August, 2014. The fish record was based entirely on landings of fishermen, number of canoes that land fish was counted, types of nets and baits used on each sampling day. Fish were sorted into taxonomic groups, identified to family/species level, counted and weighed in groups. The relative species abundance was determined by dividing the number of species from a site by the total number of species from all tributaries/sites. Fish was preserved in 2% formaldehyde solution and taken to the laboratory, where they were identified. Shannon-Weiner index of species diversity indicated that the diversity was highest at River Mayo Ranewo than River Lau. In the result showed at River Mayo Ranewo, the family Mochokidae recorded the highest (23.15%), followed by Mormyridae (2.64%) and the least was the family Lepidosirenidae (0.04%). While at River Lau the family Mochokidae recorded the highest occurrence of (24.1%), followed by Bagridae (20.20%), and then Mormyridae, which also was the second highest in River Lau, with 18.46% occurrence. There was no occurrence of Malapteruridae and Osteoglossidae (0%) in River Lau, but the least occurrence was the family Gymnarchidae (0.04%). These results indicated that the fish composition were not significantly (p ≤ 0.05) different based on t-test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation" title="conservation">conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity%20index" title=" diversity index"> diversity index</a>, <a href="https://publications.waset.org/abstracts/search?q=Lau" title=" Lau"> Lau</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayo%20Ranewo" title=" Mayo Ranewo"> Mayo Ranewo</a>, <a href="https://publications.waset.org/abstracts/search?q=wetlands" title=" wetlands"> wetlands</a> </p> <a href="https://publications.waset.org/abstracts/28377/fish-diversity-and-conservation-of-two-lacustrine-wetlands-of-the-upper-benue-basin-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4501</span> Biodiversity and Climate Change: Consequences for Norway Spruce Mountain Forests in Slovakia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jozef%20Mindas">Jozef Mindas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Skvarenina"> Jaroslav Skvarenina</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Skvareninova"> Jana Skvareninova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Study of the effects of climate change on Norway Spruce (Picea abies) forests has mainly focused on the diversity of tree species diversity of tree species as a result of the ability of species to tolerate temperature and moisture changes as well as some effects of disturbance regime changes. The tree species’ diversity changes in spruce forests due to climate change have been analyzed via gap model. Forest gap model is a dynamic model for calculation basic characteristics of individual forest trees. Input ecological data for model calculations have been taken from the permanent research plots located in primeval forests in mountainous regions in Slovakia. The results of regional scenarios of the climatic change for the territory of Slovakia have been used, from which the values are according to the CGCM3.1 (global) model, KNMI and MPI (regional) models. Model results for conditions of the climate change scenarios suggest a shift of the upper forest limit to the region of the present subalpine zone, in supramontane zone. N. spruce representation will decrease at the expense of beech and precious broadleaved species (Acer sp., Sorbus sp., Fraxinus sp.). The most significant tree species diversity changes have been identified for the upper tree line and current belt of dwarf pine (Pinus mugo) occurrence. The results have been also discussed in relation to most important disturbances (wind storms, snow and ice storms) and phenological changes which consequences are little known. Special discussion is focused on biomass production changes in relation to carbon storage diversity in different carbon pools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title="biodiversity">biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Norway%20spruce%20forests" title=" Norway spruce forests"> Norway spruce forests</a>, <a href="https://publications.waset.org/abstracts/search?q=gap%20model" title=" gap model"> gap model</a> </p> <a href="https://publications.waset.org/abstracts/43557/biodiversity-and-climate-change-consequences-for-norway-spruce-mountain-forests-in-slovakia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4500</span> Species Diversity of Migratory Birds along Boat Touring Routes in Klong Kone Sub-District, Muang District, Samut Songkram Province, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Chitman">P. Chitman</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Charoenpokaraj"> N. Charoenpokaraj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to study the species, feeding behavior and activity characteristics of birds which reap benefits from the research area in boat touring routes in Klong Kone Sub-district, Muang District, Samut Songkram Province, Thailand from October 2013 – May 2014. The results from the survey of birds on all three routes found that there are 11 families and 22 species. Route 1 (Klong Kone canal) had the most species, 20 species. According to feeding behavior, there were insectivorous, piscivorous and aquatic invertebrate feeder birds. Activity characteristics of birds which reap benefits from the research were finding food, nesting and raise nestlings along boat touring routes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bird%20species%20diversity" title="bird species diversity">bird species diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=boat%20touring%20routes" title=" boat touring routes"> boat touring routes</a>, <a href="https://publications.waset.org/abstracts/search?q=Samut%20Songkram" title=" Samut Songkram"> Samut Songkram</a>, <a href="https://publications.waset.org/abstracts/search?q=feeding%20behavior" title=" feeding behavior"> feeding behavior</a> </p> <a href="https://publications.waset.org/abstracts/10543/species-diversity-of-migratory-birds-along-boat-touring-routes-in-klong-kone-sub-district-muang-district-samut-songkram-province-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4499</span> Bird Diversity along Boat Touring Routes in Tha Ka Sub-District, Amphawa District, Samut Songkram Province, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Charoenpokaraj">N. Charoenpokaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Chitman"> P. Chitman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to study species, abundance, status of birds, the similarities and activity characteristics of birds which reap benefits from the research area in boat touring routes in Tha Ka sub-district, Amphawa District, Samut Songkram Province, Thailand. from October 2012 – September 2013. The data was analyzed to find the abundance, and similarity index of the birds. The results from the survey of birds on all three routes found that there are 33 families and 63 species. Route 3 (traditional coconut sugar making kiln – resort) had the most species; 56 species. There were 18 species of commonly found birds with an abundance level of 5, which calculates to 28.57% of all bird species. In August, 46 species are found, being the greatest number of bird species benefiting from this route. As for the status of the birds, there are 51 resident birds, 7 resident and migratory birds, and 5 migratory birds. On Route 2 and Route 3, the similarity index value is equal to 0.881. The birds are classified by their activity characteristics i.e. insectivore, piscivore, granivore, nectrivore and aquatic invertebrate feeder birds. Some birds also use the area for nesting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bird%20diversity" title="bird diversity">bird diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=boat%20touring%20routes" title=" boat touring routes"> boat touring routes</a>, <a href="https://publications.waset.org/abstracts/search?q=Samut%20Songkram" title=" Samut Songkram"> Samut Songkram</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20index" title=" similarity index"> similarity index</a> </p> <a href="https://publications.waset.org/abstracts/10542/bird-diversity-along-boat-touring-routes-in-tha-ka-sub-district-amphawa-district-samut-songkram-province-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4498</span> Ground Beetle’s Diversity in Agroecosystems of a Steppe Region, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nawel%20Ganaoui">Nawel Ganaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Chadli%20Souhila"> Chadli Souhila</a>, <a href="https://publications.waset.org/abstracts/search?q=Gahdab%20Chakal"> Gahdab Chakal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the results of a comparative research aiming to examine the distribution of beetles in four agroecosystems in the Tiaret region, located in northwestern Algeria, during the year 2023. This study was initiated across 04 stations that were randomly distributed within the Ksar Chellala region and selected based on their plant composition. The sampling method used was based on pitfall traps, which were filled two-thirds with a solution of saltwater supplemented with vinegar. In total, 40 species of beetles belonging to 9 families were identified. Among them, tenebrionids were the most abundant group (43%), followed by scarab beetles (30%) The comparison between the four types of agroecosystems - olive culture, sheep farming, cereal cultivation, and Pomegranate cultivation- in this region revealed that cereal cultivation harbored the greatest species diversity (30 species), followed by the sheep farming site (32 species), and then the other sites based on their ecological importance and trophic interactions, these beetle species were mainly categorized as coprophages, phytophages, and predators. The spatiotemporal evolution of beetle activity highlighted peaks of rich-ness and abundance, mainly during the dry period (from April to May), while the cold period (January) showed the low-est levels. The specific diversity of beetles varied significantly from one habitat to another. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agroecosystem" title="agroecosystem">agroecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=beetle" title=" beetle"> beetle</a>, <a href="https://publications.waset.org/abstracts/search?q=entomology" title=" entomology"> entomology</a>, <a href="https://publications.waset.org/abstracts/search?q=steppe%20regoin" title=" steppe regoin"> steppe regoin</a> </p> <a href="https://publications.waset.org/abstracts/178813/ground-beetles-diversity-in-agroecosystems-of-a-steppe-region-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4497</span> The Composition, Abundance and Distribution of Zooplankton of Ugbogui River, Ugbogui, Edo State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rich%20Osaretin%20Iyagbaye">Rich Osaretin Iyagbaye</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Osasele%20Omoigberale"> Michael Osasele Omoigberale</a>, <a href="https://publications.waset.org/abstracts/search?q=Louis%20Aiwiegbenegbe%20Iyagbaye"> Louis Aiwiegbenegbe Iyagbaye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zooplankton communities of Ugbogui River at Ugbogui, Southwest Nigeria were investigated from August 2015 to April 2016. Four stations were studied from upstream to downstream with a distance of about 2 kilometres between each station. A total 10 species were identified; 5 copepods and 5 cladocerans in the following order of dominance: copepod > cladocera. A total zooplankton population of 272 individuals was recorded during the study period. Copepods and cladocera represented the predominant species (76.73% and 23.89% of the total zooplankton community respectively). Copepods and cladocera were dominated by both cycloid (77%) and bosmids (12.13%), respectively. The dominant copepod and Cladocera species were Tropocyclops prasinus and Bosmina longirostris representing 28.68% and 12.13% of the total zooplankton, respectively. The calculated diversity indices indicated that station 1 (1.992) was more diverse followed by station 4 (1.893), while zooplankton species in station 2 (1.4) were least diverse. Species richness was highest and lowest in stations 4 (2.015) and 2 (1.165) respectively. Community composition was similar at both stations 1 and 4, but varies seasonally across the four stations. Higher number and density was found during the wet season with a trend of declining proportion towards the dry months. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abundance" title="abundance">abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=population" title=" population"> population</a>, <a href="https://publications.waset.org/abstracts/search?q=species" title=" species"> species</a>, <a href="https://publications.waset.org/abstracts/search?q=Ugbogui%20river" title=" Ugbogui river"> Ugbogui river</a>, <a href="https://publications.waset.org/abstracts/search?q=zooplankton" title=" zooplankton"> zooplankton</a> </p> <a href="https://publications.waset.org/abstracts/97175/the-composition-abundance-and-distribution-of-zooplankton-of-ugbogui-river-ugbogui-edo-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4496</span> Harnessing Microorganism Having Potential for Biotreatment of Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haruna%20Saidu">Haruna Saidu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Mohammed"> Sulaiman Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulkarim%20Ali%20Deba"> Abdulkarim Ali Deba</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaza%20Eva%20Mohamad"> Shaza Eva Mohamad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determining the diversity of the indigenous microorganisms in Palm Oil Mill Effluent (POME) could allow their wider application for the treatment of recalcitrant agro-based wastewater discharge into the environment. Many research studies mainly determined the efficiency of microorganism or their co-cultivation with microalgae for enhanced treatment of wastewater, suggesting a limited emphasis on the application of microbial diversity. In this study, the microorganism was cultured in POME for a period of 15 days using microalgae as a source of carbon. Pyrosequencing analysis reveals a diversity of microbial community in 20% (v/v) culture than the control experiment. Most of the bacterial species identified in POME belong to the families of Bacillaceae, Paenibacillaceae, Enterococcaceae, Clostridiaceae, Peptostreptococcaceae, Caulobacteraceae, Enterobacteriaceae, Moraxellaceae, and Pseudomonadaceae. Alpha (α) diversity analysis reveals the high composition of the microbial community of 52 in both samples. Beta (β) diversity index indicated the occurrence of similar species of microorganisms in unweighted uni fra than the weighted uni fra of both samples. It is therefore suggested that bacteria found in these families could have a potential for synergistic treatment of high-strength wastewater generated from the palm oil industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diversity" title="diversity">diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganism" title=" microorganism"> microorganism</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrosequencing" title=" pyrosequencing"> pyrosequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent" title=" palm oil mill effluent"> palm oil mill effluent</a> </p> <a href="https://publications.waset.org/abstracts/187899/harnessing-microorganism-having-potential-for-biotreatment-of-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4495</span> Advances in the Studies on Evaluation of Diversity and Habitat Preferences of Amphibians of Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Mizanur%20Rahman">Md Mizanur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Lotanna%20Micah%20Nneji"> Lotanna Micah Nneji</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeola%20C.%20Adeniyi"> Adeola C. Adeniyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Edem%20Archibong%20Eniang"> Edem Archibong Eniang</a>, <a href="https://publications.waset.org/abstracts/search?q=Abiodun%20B.%20Onadeko"> Abiodun B. Onadeko</a>, <a href="https://publications.waset.org/abstracts/search?q=Felista%20Kasyoka%20Kilunda"> Felista Kasyoka Kilunda</a>, <a href="https://publications.waset.org/abstracts/search?q=Babatunde%20E.%20Adedeji"> Babatunde E. Adedeji</a>, <a href="https://publications.waset.org/abstracts/search?q=Ifeanyi%20C.%20Nneji"> Ifeanyi C. Nneji</a>, <a href="https://publications.waset.org/abstracts/search?q=Adiaha%20A.%20A.%20Ugwumba"> Adiaha A. A. Ugwumba</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie-Qiong%20Jin"> Jie-Qiong Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Sheng%20Peng"> Min-Sheng Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Caroline%20Olory"> Caroline Olory</a>, <a href="https://publications.waset.org/abstracts/search?q=Nsikan%20Eninekit"> Nsikan Eninekit</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Che"> Jing Che</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nigeria contains a number of forest habitats that believed to host highly rich amphibian diversity. However, a dearth of herpetological studies has restricted information on the amphibian diversity in Nigeria. To cover the gap of knowledge, this study focused field surveys on relatively less studied forests–Afi Forest Reserve and Ikpan forest ecosystem. The goal of this study is to make a checklist and to investigate the habitat preferences of amphibians in these two forests. The study areas were surveyed between August 2018 and July 2019 following visual and acoustic methods. Individuals were identified using the morphological and molecular (16S ribosomal RNA) approach. Literature searches were conducted to document additional species that were not encountered during the current field surveys. Using the observational records and arrays of diversity indices, the patterns of species richness and abundance across habitat types were evaluated. Voucher specimens and tissue samples were deposited in the museums of the Department of Zoology, University of Ibadan Nigeria, and the remainder at the Kunming Institute of Zoology (KIZ), Chinese Academy of Sciences, Kunming, China. The result of this study revealed the presence of 30 and 31 amphibian species from the Afi Forest Reserve and the Ikpan Forest Ecosystem, respectively. There were two unidentified species from AFR and one from IFE. In total, 324 individuals of amphibian species were observed from the two study areas. Forest and swamps showed high species diversity and richness than the agricultural field and savannah. Savannah and agricultural fields had the highest similarity in the species composition. Given the increased human disturbances and consequent threats to these forests, this study offers recommendations for the initiation of conservation plans immediately. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title="biodiversity">biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptic%20species" title=" cryptic species"> cryptic species</a>, <a href="https://publications.waset.org/abstracts/search?q=ecology" title=" ecology"> ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20taxonomy" title=" integrated taxonomy"> integrated taxonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20inventory" title=" species inventory"> species inventory</a> </p> <a href="https://publications.waset.org/abstracts/119663/advances-in-the-studies-on-evaluation-of-diversity-and-habitat-preferences-of-amphibians-of-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=species%20diversity&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=species%20diversity&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=species%20diversity&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=species%20diversity&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=species%20diversity&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=species%20diversity&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=species%20diversity&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=species%20diversity&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=species%20diversity&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=species%20diversity&page=150">150</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=species%20diversity&page=151">151</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=species%20diversity&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>