CINXE.COM
Search results for: wall shear stress
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: wall shear stress</title> <meta name="description" content="Search results for: wall shear stress"> <meta name="keywords" content="wall shear stress"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="wall shear stress" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="wall shear stress"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5812</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: wall shear stress</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5812</span> Wall Shear Stress Under an Impinging Planar Jet Using the Razor Blade Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ritcey">A. Ritcey</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Mcdermid"> J. R. Mcdermid</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ziada"> S. Ziada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wall shear stress was experimentally measured under a planar impinging air jet as a function of jet Reynolds number (Rejet = 5000, 8000, 11000) and different normalized impingement distances (H/D = 4, 6, 8, 10, 12) using the razor blade technique to complete a parametric study. The wall pressure, wall pressure gradient, and wall shear stress information were obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20fluid%20mechanics" title="experimental fluid mechanics">experimental fluid mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=impinging%20planar%20jets" title=" impinging planar jets"> impinging planar jets</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20friction%20factor" title=" skin friction factor"> skin friction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress" title=" wall shear stress"> wall shear stress</a> </p> <a href="https://publications.waset.org/abstracts/25336/wall-shear-stress-under-an-impinging-planar-jet-using-the-razor-blade-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5811</span> The Effect of Opening on Mode Shapes and Frequencies of Composite Shear Wall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Arabzadeh">A. Arabzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20R.%20Kazemi%20Nia%20Korrani"> H. R. Kazemi Nia Korrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite steel plate shear wall is a lateral loading resistance system, which is used especially in tall buildings. This wall is made of a thin steel plate with reinforced a concrete cover, which is attached to one or both sides of the steel plate. This system is similar to stiffened steel plate shear wall, in which reinforced concrete replaces the steel stiffeners. Composite shear wall have in-plane and out-plane significant strength. Also, they have appropriate ductility. The present numerical investigations were focused on the effects of opening on wall mode shapes. In addition, frequencies of composite shear wall with and without opening are compared. For analyzing composite shear wall, a new program will be developed using of finite element theory and the effects of shape, size and position openings on the behavior of composite shear wall will be studied. Results indicated that the existence of opening decreases wall frequency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20shear%20wall" title="composite shear wall">composite shear wall</a>, <a href="https://publications.waset.org/abstracts/search?q=opening" title=" opening"> opening</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a> </p> <a href="https://publications.waset.org/abstracts/8715/the-effect-of-opening-on-mode-shapes-and-frequencies-of-composite-shear-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">540</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5810</span> Numerical Analysis on the Effect of Abrasive Parameters on Wall Shear Stress and Jet Exit Kinetic Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Deepak">D. Deepak</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Yagnesh%20Sharma"> N. Yagnesh Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abrasive Water Jet (AWJ) machining is a relatively new nontraditional machine tool used in machining of fiber reinforced composite. The quality of machined surface depends on jet exit kinetic energy which depends on various operating and material parameters. In the present work the effect abrasive parameters such as its size, concentration and type on jet kinetic energy is investigated using computational fluid dynamics (CFD). In addition, the effect of these parameters on wall shear stress developed inside the nozzle is also investigated. It is found that for the same operating parameters, increase in the abrasive volume fraction (concentration) results in significant decrease in the wall shear stress as well as the jet exit kinetic energy. Increase in the abrasive particle size results in marginal decrease in the jet exit kinetic energy. Numerical simulation also indicates that garnet abrasives produce better jet exit kinetic energy than aluminium oxide and silicon carbide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abrasive%20water%20jet%20machining" title="abrasive water jet machining">abrasive water jet machining</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20kinetic%20energy" title=" jet kinetic energy"> jet kinetic energy</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20pressure" title=" operating pressure"> operating pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress" title=" wall shear stress"> wall shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=Garnet%20abrasive" title=" Garnet abrasive"> Garnet abrasive</a> </p> <a href="https://publications.waset.org/abstracts/27545/numerical-analysis-on-the-effect-of-abrasive-parameters-on-wall-shear-stress-and-jet-exit-kinetic-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5809</span> Computational Study of Blood Flow Analysis for Coronary Artery Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radhe%20Tado">Radhe Tado</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20B.%20Deoghare"> Ashish B. Deoghare</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Pandey"> K. M. Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to estimate the effect of blood flow through the coronary artery in human heart so as to assess the coronary artery disease.Velocity, wall shear stress (WSS), strain rate and wall pressure distribution are some of the important hemodynamic parameters that are non-invasively assessed with computational fluid dynamics (CFD). These parameters are used to identify the mechanical factors responsible for the plaque progression and/or rupture in left coronary arteries (LCA) in coronary arteries.The initial step for CFD simulations was the construction of a geometrical model of the LCA. Patient specific artery model is constructed using computed tomography (CT) scan data with the help of MIMICS Research 19.0. For CFD analysis ANSYS FLUENT-14.5 is used.Hemodynamic parameters were quantified and flow patterns were visualized both in the absence and presence of coronary plaques. The wall pressure continuously decreased towards distal segments and showed pressure drops in stenotic segments. Areas of high WSS and high flow velocities were found adjacent to plaques deposition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angiography" title="angiography">angiography</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title=" computational fluid dynamics (CFD)"> computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=time-average%20wall%20shear%20stress%20%28TAWSS%29" title=" time-average wall shear stress (TAWSS)"> time-average wall shear stress (TAWSS)</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20pressure" title=" wall pressure"> wall pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress%20%28WSS%29" title=" wall shear stress (WSS)"> wall shear stress (WSS)</a> </p> <a href="https://publications.waset.org/abstracts/78979/computational-study-of-blood-flow-analysis-for-coronary-artery-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5808</span> Modelling and Analysis of Shear Banding in Flow of Complex Fluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Chinyoka">T. Chinyoka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present the Johnson-Segalman constitutive model to capture certain fluid flow phenomena that has been experimentally observed in the flow of complex polymeric fluids. In particular, experimentally observed phenomena such as shear banding, spurt and slip are explored and/or explained in terms of the non-monotonic shear-stress versus shear-rate relationships. We also explore the effects of the inclusion of physical flow aspects such as wall porosity on shear banding. We similarly also explore the effects of the inclusion of mathematical modelling aspects such as stress diffusion into the stress constitutive models in order to predict shear-stress (or shear-rate) paths. We employ semi-implicit finite difference methods for all the computational solution procedures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johnson-Segalman%20model" title="Johnson-Segalman model">Johnson-Segalman model</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusive%20Johnson-Segalman%20model" title=" diffusive Johnson-Segalman model"> diffusive Johnson-Segalman model</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20banding" title=" shear banding"> shear banding</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20methods" title=" finite difference methods"> finite difference methods</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20fluid%20flow" title=" complex fluid flow"> complex fluid flow</a> </p> <a href="https://publications.waset.org/abstracts/8509/modelling-and-analysis-of-shear-banding-in-flow-of-complex-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5807</span> Flow of a Second Order Fluid through Constricted Tube with Slip Velocity at Wall Using Integral Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nosheen%20Zareen%20Khan">Nosheen Zareen Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Majeed%20Siddiqui"> Abdul Majeed Siddiqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Afzal%20Rana"> Muhammad Afzal Rana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The steady flow of a second order fluid through constricted tube with slip velocity at wall is modeled and analyzed theoretically. The governing equations are simplified by implying no slip in radial direction. Based on Karman Pohlhausen procedure polynomial solution for axial velocity profile is presented. An expressions for pressure gradient, shear stress, separation and reattachment points and radial velocity are also calculated. The effect of slip and no slip velocity on velocity, shear stress, pressure gradient are discussed and depicted graphically. It is noted that when Reynolds number increases velocity of the fluid decreases in both slip and no slip conditions. It is also found that the wall shear stress, separation and reattachment points are strongly effected by Reynolds number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximate%20solution" title="approximate solution">approximate solution</a>, <a href="https://publications.waset.org/abstracts/search?q=constricted%20tube" title=" constricted tube"> constricted tube</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20fluids" title=" non-Newtonian fluids"> non-Newtonian fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/34309/flow-of-a-second-order-fluid-through-constricted-tube-with-slip-velocity-at-wall-using-integral-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5806</span> Design of Reinforced Concrete (RC) Walls Considering Shear Amplification by Nonlinear Dynamic Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunghyun%20Kim">Sunghyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong-Gun%20Park"> Hong-Gun Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the performance-based design (PBD), by using the nonlinear dynamic analysis (NDA), the actual performance of the structure is evaluated. Unlike frame structures, in the wall structures, base shear force which is resulted from the NDA, is greatly amplified than that from the elastic analysis. This shear amplifying effect causes repeated designs which make designer difficult to apply the PBD. Therefore, in this paper, factors which affect shear amplification were studied. For the 20-story wall model, the NDA was performed. From the analysis results, the base shear amplification factor was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=performance%20based%20design" title="performance based design">performance based design</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20amplification%20factor" title=" shear amplification factor"> shear amplification factor</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamic%20analysis" title=" nonlinear dynamic analysis"> nonlinear dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20shear%20wall" title=" RC shear wall"> RC shear wall</a> </p> <a href="https://publications.waset.org/abstracts/60242/design-of-reinforced-concrete-rc-walls-considering-shear-amplification-by-nonlinear-dynamic-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5805</span> Structural Optimization Method for 3D Reinforced Concrete Building Structure with Shear Wall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Nikzad">H. Nikzad</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Yoshitomi"> S. Yoshitomi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an optimization procedure is applied for 3D Reinforced concrete building structure with shear wall. In the optimization problem, cross sections of beams, columns and shear wall dimensions are considered as design variables and the optimal cross sections can be derived to minimize the total cost of the structure. As for final design application, the most suitable sections are selected to satisfy ACI 318-14 code provision based on static linear analysis. The validity of the method is examined through numerical example of 15 storied 3D RC building with shear wall. This optimization method is expected to assist in providing a useful reference in design early stage, and to be an effective and powerful tool for structural design of RC shear wall structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20optimization" title="structural optimization">structural optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20static%20analysis" title=" linear static analysis"> linear static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ETABS" title=" ETABS"> ETABS</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20moment%20frame" title=" RC moment frame"> RC moment frame</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20shear%20wall%20structures" title=" RC shear wall structures"> RC shear wall structures</a> </p> <a href="https://publications.waset.org/abstracts/77143/structural-optimization-method-for-3d-reinforced-concrete-building-structure-with-shear-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5804</span> Application Research on Large Profiled Statues of Steel-Concrete Composite Shear Wall </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Cai-qi">Zhao Cai-qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma%20Jun"> Ma Jun </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Twin steel plates-concrete composite shear walls are composed of a pair of steel plate layers and a concrete layer sandwiched between them, which have the characteristics of both reinforced concrete shear walls and steel plate shear walls. Twin steel plates-composite shear walls contain very high ultimate bearing capacity and ductility, which have great potential to be applied in the super high-rise buildings and special structures. In this paper, we analyzed the basic characteristics and stress mechanism of the twin steel plates-composite shear walls. Specifically, we analyzed the effects of the steel plate thickness, wall thickness and concrete strength on the bearing capacity of the twin steel plates-composite shear walls. The analysis results indicate that:(1)the initial shear stiffness and ultimate shear-carrying capacity is not significantly affected by the thickness of concrete wall but by the class of concrete,(2)both factors significantly impact the shear distribution of the shear walls in ultimate shear-carrying capacity. The technique of twin steel plates-composite shear walls has been successfully applied in the construction of a 88-meter Huge Statue of Buddha located in Hunan Province, China. The analysis results and engineering experiences showed that the twin steel plates-composite shear walls have great potential for future research and applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=twin%20steel%20plates-concrete%20composite%20shear%20wall" title="twin steel plates-concrete composite shear wall">twin steel plates-concrete composite shear wall</a>, <a href="https://publications.waset.org/abstracts/search?q=huge%20statue%20of%20Buddha" title=" huge statue of Buddha"> huge statue of Buddha</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20capacity" title=" shear capacity"> shear capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20lateral%20stiffness" title=" initial lateral stiffness"> initial lateral stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=overturning%20moment%20bearing" title=" overturning moment bearing"> overturning moment bearing</a> </p> <a href="https://publications.waset.org/abstracts/31153/application-research-on-large-profiled-statues-of-steel-concrete-composite-shear-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5803</span> A Mathematical Model of Pulsatile Blood Flow through a Bifurcated Artery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Srinivasacharya">D. Srinivasacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Madhava%20Rao"> G. Madhava Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, the pulsatile flow of blood flow in bifurcated artery with mild stenosis is investigated. Blood is treated to be a micropolar fluid with constant density. The arteries forming bifurcation are assumed to be symmetric about its axes and straight cylinders of restricted length. As the geometry of the stenosed bifurcated artery is irregular, it is changed to regular geometry utilizing the appropriate transformations. The numerical solutions, using the finite difference method, are computed for the flow rate, the shear stress, and the impedance. The influence of time, coupling number, half of the bifurcated angle and Womersley number on shear stress, flow rate and impedance (resistance to the flow) on both sides of the flow divider is shown graphically. It has been observed that the shear stress and flow rate are increasing with increase in the values of Womersley number and bifurcation angle on both sides of the apex. The shear stress is increasing along the inner wall and decreasing along the outer wall of the daughter artery with an increase in the value of coupling number. Further, it has been noticed that the shear stress, flow rate, and impedance are perturbed largely near to the apex in the parent artery due to the presence of backflow near the apex. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micropolar%20fluid" title="micropolar fluid">micropolar fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=bifurcated%20artery" title=" bifurcated artery"> bifurcated artery</a>, <a href="https://publications.waset.org/abstracts/search?q=stenosis" title=" stenosis"> stenosis</a>, <a href="https://publications.waset.org/abstracts/search?q=back%20flow" title=" back flow"> back flow</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20flow" title=" secondary flow"> secondary flow</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsatile%20flow" title=" pulsatile flow"> pulsatile flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Womersley%20number" title=" Womersley number"> Womersley number</a> </p> <a href="https://publications.waset.org/abstracts/86224/a-mathematical-model-of-pulsatile-blood-flow-through-a-bifurcated-artery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5802</span> Strength of the Basement Wall Combined with a Temporary Retaining Wall for Excavation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soo-yeon%20Seo">Soo-yeon Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Su-jin%20Jung"> Su-jin Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the need for remodeling of many apartments built 30 years ago is increasing. Therefore, researches on the structural reinforcement technology of existing apartments have been conducted. On the other hand, there is a growing need for research on the existing underground space expansion technology to expand the parking space required for remodeling. When expanding an existing underground space, for earthworks, an earth retaining wall must be installed between the existing apartment building and it. In order to maximize the possible underground space, it is necessary to minimize the thickness of the portion of earth retaining wall and underground basement wall. In this manner, the calculation procedure is studied for the evaluation of shear strength of the composite basement wall corresponding to shear span-to-depth ratio in this study. As a result, it was shown that the proposed calculation procedure can be used to evaluate the shear strength of the composite basement wall as safe. On the other hand, when shear span-to-depth ratio is small, shear strength is very underestimated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=underground%20space%20expansion" title="underground space expansion">underground space expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20structure" title=" combined structure"> combined structure</a>, <a href="https://publications.waset.org/abstracts/search?q=temporary%20retaining%20wall" title=" temporary retaining wall"> temporary retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=basement%20wall" title=" basement wall"> basement wall</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20connectors" title=" shear connectors"> shear connectors</a> </p> <a href="https://publications.waset.org/abstracts/86079/strength-of-the-basement-wall-combined-with-a-temporary-retaining-wall-for-excavation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5801</span> Limited Component Evaluation of the Effect of Regular Cavities on the Sheet Metal Element of the Steel Plate Shear Wall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Abbas%20Mojtabavi">Seyyed Abbas Mojtabavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Fatzaneh%20Moghadam"> Mojtaba Fatzaneh Moghadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Mahdavi"> Masoud Mahdavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel Metal Shear Wall is one of the most common and widely used energy dissipation systems in structures, which is used today as a damping system due to the increase in the construction of metal structures. In the present study, the shear wall of the steel plate with dimensions of 5×3 m and thickness of 0.024 m was modeled with 2 floors of total height from the base level with finite element method in Abaqus software. The loading is done as a concentrated load at the upper point of the shear wall on the second floor based on step type buckle. The mesh in the model is applied in two directions of length and width of the shear wall, equal to 0.02 and 0.033, respectively, and the mesh in the models is of sweep type. Finally, it was found that the steel plate shear wall with cavity (CSPSW) compared to the SPSW model, S (Mises), Smax (In-Plane Principal), Smax (In-Plane Principal-ABS), Smax (Min Principal) increased by 53%, 70%, 68% and 43%, respectively. The presence of cavities has led to an increase in the estimated stresses, but their presence has caused critical stresses and critical deformations created to be removed from the inner surface of the shear wall and transferred to the desired sections (regular cavities) which can be suggested as a solution in seismic design and improvement of the structure to transfer possible damage during the earthquake and storm to the desired and pre-designed location in the structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20plate%20shear%20wall" title="steel plate shear wall">steel plate shear wall</a>, <a href="https://publications.waset.org/abstracts/search?q=abacus%20software" title=" abacus software"> abacus software</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20element" title=" boundary element"> boundary element</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20structural%20improvement" title=" seismic structural improvement"> seismic structural improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=von%20misses%20stress" title=" von misses stress"> von misses stress</a> </p> <a href="https://publications.waset.org/abstracts/126768/limited-component-evaluation-of-the-effect-of-regular-cavities-on-the-sheet-metal-element-of-the-steel-plate-shear-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5800</span> Evaluation of Seismic Behavior of Steel Shear Wall with Opening with Hardener and Beam with Reduced Cross Section under Cycle Loading with Finite Element Analysis Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Mahdavi">Masoud Mahdavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During an earthquake, the structure is subjected to seismic loads that cause tension in the members of the building. The use of energy dissipation elements in the structure reduces the percentage of seismic forces on the main members of the building (especially the columns). Steel plate shear wall, as one of the most widely used types of energy dissipation element, has evolved today, and regular drilling of its inner plate is one of the common cases. In the present study, using a finite element method, the shear wall of the steel plate is designed as a floor (with dimensions of 447 × 6/246 cm) with Abacus software and in three different modes on which a cyclic load has been applied. The steel shear wall has a horizontal element (beam) with a reduced beam section (RBS). The hole in the interior plate of the models is created in such a way that it has the process of increasing the area, which makes the effect of increasing the surface area of the hole on the seismic performance of the steel shear wall completely clear. In the end, it was found that with increasing the opening level in the steel shear wall (with reduced cross-section beam), total displacement and plastic strain indicators increased, structural capacity and total energy indicators decreased and the Mises Monson stress index did not change much. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20plate%20shear%20wall%20with%20opening" title="steel plate shear wall with opening">steel plate shear wall with opening</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20cross-section%20beam" title=" reduced cross-section beam"> reduced cross-section beam</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=Abaqus%20software" title=" Abaqus software"> Abaqus software</a> </p> <a href="https://publications.waset.org/abstracts/127920/evaluation-of-seismic-behavior-of-steel-shear-wall-with-opening-with-hardener-and-beam-with-reduced-cross-section-under-cycle-loading-with-finite-element-analysis-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5799</span> Numerical Simulation on Airflow Structure in the Human Upper Respiratory Tract Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiuguo%20Zhao">Xiuguo Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Ren"> Xudong Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Su"> Chen Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinxi%20Xu"> Xinxi Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Fu%20Niu"> Fu Niu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingshuai%20Meng"> Lingshuai Meng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The respiratory diseases such as asthma, emphysema and bronchitis are connected with the air pollution and the number of these diseases tends to increase, which may attribute to the toxic aerosol deposition in human upper respiratory tract or in the bifurcation of human lung. The therapy of these diseases mostly uses pharmaceuticals in the form of aerosol delivered into the human upper respiratory tract or the lung. Understanding of airflow structures in human upper respiratory tract plays a very important role in the analysis of the “filtering” effect in the pharynx/larynx and for obtaining correct air-particle inlet conditions to the lung. However, numerical simulation based CFD (Computational Fluid Dynamics) technology has its own advantage on studying airflow structure in human upper respiratory tract. In this paper, a representative human upper respiratory tract is built and the CFD technology was used to investigate the air movement characteristic in the human upper respiratory tract. The airflow movement characteristic, the effect of the airflow movement on the shear stress distribution and the probability of the wall injury caused by the shear stress are discussed. Experimentally validated computational fluid-aerosol dynamics results showed the following: the phenomenon of airflow separation appears near the outer wall of the pharynx and the trachea. The high velocity zone is created near the inner wall of the trachea. The airflow splits at the divider and a new boundary layer is generated at the inner wall of the downstream from the bifurcation with the high velocity near the inner wall of the trachea. The maximum velocity appears at the exterior of the boundary layer. The secondary swirls and axial velocity distribution result in the high shear stress acting on the inner wall of the trachea and bifurcation, finally lead to the inner wall injury. The enhancement of breathing intensity enhances the intensity of the shear stress acting on the inner wall of the trachea and the bifurcation. If human keep the high breathing intensity for long time, not only the ability for the transportation and regulation of the gas through the trachea and the bifurcation fall, but also result in the increase of the probability of the wall strain and tissue injury. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airflow%20structure" title="airflow structure">airflow structure</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20upper%20respiratory%20tract" title=" human upper respiratory tract"> human upper respiratory tract</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress" title=" wall shear stress"> wall shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/62549/numerical-simulation-on-airflow-structure-in-the-human-upper-respiratory-tract-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5798</span> Numerical Study on the Hazards of Gravitational Forces on Cerebral Aneurysms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hashem%20M.%20Alargha">Hashem M. Alargha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20O.%20Hamdan"> Mohammad O. Hamdan</a>, <a href="https://publications.waset.org/abstracts/search?q=Waseem%20H.%20Aziz"> Waseem H. Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerobatic and military pilots are subjected to high gravitational forces that could cause blackout, physical injuries or death. A CFD simulation using fluid-solid interactions scheme has been conducted to investigate the gravitational effects and hazards inside cerebral aneurysms. Medical data have been used to derive the size and geometry of a simple aneurysm on a T-shaped bifurcation. The results show that gravitational force has no effect on maximum Wall Shear Stress (WSS); hence, it will not cause aneurysm initiation/formation. However, gravitational force cause causes hypertension which could contribute to aneurysm rupture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aneurysm" title="aneurysm">aneurysm</a>, <a href="https://publications.waset.org/abstracts/search?q=cfd" title=" cfd"> cfd</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress" title=" wall shear stress"> wall shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity" title=" gravity"> gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20dynamics" title=" fluid dynamics"> fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=bifurcation%20artery" title=" bifurcation artery"> bifurcation artery</a> </p> <a href="https://publications.waset.org/abstracts/50418/numerical-study-on-the-hazards-of-gravitational-forces-on-cerebral-aneurysms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5797</span> Optimization of a Four-Lobed Swirl Pipe for Clean-In-Place Procedures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guozhen%20Li">Guozhen Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Philip%20Hall"> Philip Hall</a>, <a href="https://publications.waset.org/abstracts/search?q=Nick%20Miles"> Nick Miles</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Wu"> Tao Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a numerical investigation of two horizontally mounted four-lobed swirl pipes in terms of swirl induction effectiveness into flows passing through them. The swirl flows induced by the two swirl pipes have the potential to improve the efficiency of Clean-In-Place procedures in a closed processing system by local intensification of hydrodynamic impact on the internal pipe surface. Pressure losses, swirl development within the two swirl pipe, swirl induction effectiveness, swirl decay and wall shear stress variation downstream of two swirl pipes are analyzed and compared. It was found that a shorter length of swirl inducing pipe used in joint with transition pipes is more effective in swirl induction than when a longer one is used, in that it has a less constraint to the induced swirl and results in slightly higher swirl intensity just downstream of it with the expense of a smaller pressure loss. The wall shear stress downstream of the shorter swirl pipe is also slightly larger than that downstream of the longer swirl pipe due to the slightly higher swirl intensity induced by the shorter swirl pipe. The advantage of the shorter swirl pipe in terms of swirl induction is more significant in flows with a larger Reynolds Number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swirl%20pipe" title="swirl pipe">swirl pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl%20effectiveness" title=" swirl effectiveness"> swirl effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress" title=" wall shear stress"> wall shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl%20intensity" title=" swirl intensity"> swirl intensity</a> </p> <a href="https://publications.waset.org/abstracts/29038/optimization-of-a-four-lobed-swirl-pipe-for-clean-in-place-procedures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5796</span> Seismic Response of Large-Scale Rectangular Steel-Plate Concrete Composite Shear Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siamak%20Epackachi">Siamak Epackachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20S.%20Whittaker"> Andrew S. Whittaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20H.%20Varma"> Amit H. Varma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental program on steel-plate concrete (SC) composite shear walls was executed in the NEES laboratory at the University at Buffalo. Four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and faceplate slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure-critical. This paper presents the damage to SC walls at different drift ratios, the cyclic force-displacement relationships, energy dissipation and equivalent viscous damping ratios, the strain and stress fields in the steel faceplates and the contribution of the steel faceplates to the total shear load, the variation of vertical strain in the steel faceplates along the length of the wall, near the base, at different drift ratios, the contributions of shear, flexure, and base rotation to the total lateral displacement, the displacement ductility of the SC walls, and the cyclic secant stiffness of the four SC walls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel-plate%20composite%20shear%20wall" title="steel-plate composite shear wall">steel-plate composite shear wall</a>, <a href="https://publications.waset.org/abstracts/search?q=safety-related%20nuclear%20structure" title=" safety-related nuclear structure"> safety-related nuclear structure</a>, <a href="https://publications.waset.org/abstracts/search?q=flexure-critical%20wall" title=" flexure-critical wall"> flexure-critical wall</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a> </p> <a href="https://publications.waset.org/abstracts/25770/seismic-response-of-large-scale-rectangular-steel-plate-concrete-composite-shear-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5795</span> The Application of Extend Spectrum-Based Pushover Analysis for Seismic Evaluation of Reinforced Concrete Wall Structures </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Liu">Yang Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete (RC) shear wall structures are one of the most popular and efficient structural forms for medium- and high-rise buildings to resist the action of earthquake loading. Thus, it is of great significance to evaluate the seismic demands of the RC shear walls. In this paper, the application of the extend spectrum-based pushover analysis (ESPA) method on the seismic evaluation of the shear wall structure is presented. The ESPA method includes a nonlinear consecutive pushover analysis procedure and a linear elastic modal response analysis procedure to consider the combination of modes in both elastic and inelastic cases. It is found from the results of case study that the ESPA method can predict the seismic performance of shear wall structures, including internal forces and deformations very well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20shear%20wall" title="reinforced concrete shear wall">reinforced concrete shear wall</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance"> seismic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20mode%20effect" title=" high mode effect"> high mode effect</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title=" nonlinear analysis"> nonlinear analysis</a> </p> <a href="https://publications.waset.org/abstracts/109639/the-application-of-extend-spectrum-based-pushover-analysis-for-seismic-evaluation-of-reinforced-concrete-wall-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5794</span> Semi Empirical Equations for Peak Shear Strength of Rectangular Reinforced Concrete Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kezmane">Ali Kezmane</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Boukais"> Said Boukais</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohand%20Hamizi"> Mohand Hamizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an analytical study on the behavior of reinforced concrete walls with rectangular cross section. Several experiments on such walls have been selected to be studied. Database from various experiments were collected and nominal shear wall strengths have been calculated using formulas, such as those of the ACI (American), NZS (New Zealand), Mexican (NTCC), and Wood and Barda equations. Subsequently, nominal shear wall strengths from the formulas were compared with the ultimate shear wall strengths from the database. These formulas vary substantially in functional form and do not account for all variables that affect the response of walls. There is substantial scatter in the predicted values of ultimate shear strength. Two new semi empirical equations are developed using data from tests of 57 walls for transitions walls and 27 for slender walls with the objective of improving the prediction of peak strength of walls with the most possible accurate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title="shear strength">shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20walls" title=" reinforced concrete walls"> reinforced concrete walls</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20walls" title=" rectangular walls"> rectangular walls</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20walls" title=" shear walls"> shear walls</a>, <a href="https://publications.waset.org/abstracts/search?q=models" title=" models "> models </a> </p> <a href="https://publications.waset.org/abstracts/12121/semi-empirical-equations-for-peak-shear-strength-of-rectangular-reinforced-concrete-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5793</span> Effect of Silt Presence on Shear Strength Parameters of Unsaturated Sandy Soils </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed">R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Khavaninzadeh"> E. Khavaninzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghorbani%20Tochaee"> M. Ghorbani Tochaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Direct shear test is widely used in soil mechanics experiment to determine the shear strength parameters of granular soils. For analysis of soil stability problems such as bearing capacity, slope stability and lateral pressure on soil retaining structures, the shear strength parameters must be known well. In the present study, shear strength parameters are determined in silty-sand mixtures. Direct shear tests are performed on 161 Firoozkooh sand with different silt content at a relative density of 70% in three vertical stress of 100, 150, and 200 kPa. Wet tamping method is used for soil sample preparation, and the results include diagrams of shear stress versus shear deformation and sample height changes against shear deformation. Accordingly, in different silt percent, the shear strength parameters of the soil such as internal friction angle and dilation angle are calculated and compared. According to the results, when the sample contains up to 10% silt, peak shear strength and internal friction angle have an upward trend. However, if the sample contains 10% to 50% of silt a downward trend is seen in peak shear strength and internal friction angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20strength%20parameters" title="shear strength parameters">shear strength parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20shear%20test" title=" direct shear test"> direct shear test</a>, <a href="https://publications.waset.org/abstracts/search?q=silty%20sand" title=" silty sand"> silty sand</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20stress" title=" shear stress"> shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20deformation" title=" shear deformation"> shear deformation</a> </p> <a href="https://publications.waset.org/abstracts/106132/effect-of-silt-presence-on-shear-strength-parameters-of-unsaturated-sandy-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5792</span> Effects of Roughness on Forward Facing Step in an Open Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Rifat">S. M. Rifat</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20L.%20Marchildon"> André L. Marchildon</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20F.%20Tachie"> Mark F. Tachie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experiments were performed to investigate the effects of roughness on the reattachment and redevelopment regions over a 12 mm forward facing step (FFS) in an open channel flow. The experiments were performed over an upstream smooth wall and a smooth FFS, an upstream wall coated with sandpaper 36 grit and a smooth FFS and an upstream rough wall produced from sandpaper 36 grit and a FFS coated with sandpaper 36 grit. To investigate only the wall roughness effects, Reynolds number, Froude number, aspect ratio and blockage ratio were kept constant. Upstream profiles showed reduced streamwise mean velocities close to the rough wall compared to the smooth wall, but the turbulence level was increased by upstream wall roughness. The reattachment length for the smooth-smooth wall experiment was 1.78h; however, when it is replaced with rough-smooth wall the reattachment length decreased to 1.53h. It was observed that the upstream roughness increased the physical size of contours of maximum turbulence level; however, the downstream roughness decreased both the size and magnitude of contours in the vicinity of the leading edge of the step. Quadrant analysis was performed to investigate the dominant Reynolds shear stress contribution in the recirculation region. The Reynolds shear stress and turbulent kinetic energy profiles after the reattachment showed slower recovery compared to the streamwise mean velocity, however all the profiles fairly collapse on their corresponding upstream profiles at x/h = 60. It was concluded that to obtain a complete collapse several more streamwise distances would be required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forward%20facing%20step" title="forward facing step">forward facing step</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channel" title=" open channel"> open channel</a>, <a href="https://publications.waset.org/abstracts/search?q=separated%20and%20reattached%20turbulent%20flows" title=" separated and reattached turbulent flows"> separated and reattached turbulent flows</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20roughness" title=" wall roughness"> wall roughness</a> </p> <a href="https://publications.waset.org/abstracts/37175/effects-of-roughness-on-forward-facing-step-in-an-open-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5791</span> A Study on Performance-Based Design Analysis for Vertical Extension of Apartment Units</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minsun%20Kim">Minsun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-Sun%20Choi"> Ki-Sun Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Jee%20Lee"> Hyun-Jee Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Chan%20You"> Young-Chan You</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is no reinforcement example for the renovation of the vertical and horizontal extension to existing building structures which is a shear wall type in apartment units in Korea. Among these existing structures, the structures which are shear wall type are rare overseas, while Korea has many shear wall apartment units. Recently, in Korea, a few researchers are trying to confirm the possibility of the vertical extension in existing building with shear walls. This study evaluates the possibility of the renovation by applying performance-based seismic design to existing buildings with shear walls in the analysis phase of the structure. In addition, force-based seismic design, used by general structural engineers in Korea, is carried out to compare the amount of reinforcement of walls, which is a main component of wall structure. As a result, we suggest that performance-based design obtains more economical advantages than force-based seismic design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20for%20extension" title="design for extension">design for extension</a>, <a href="https://publications.waset.org/abstracts/search?q=performance-based%20design" title=" performance-based design"> performance-based design</a>, <a href="https://publications.waset.org/abstracts/search?q=remodeling" title=" remodeling"> remodeling</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wall%20frame" title=" shear wall frame"> shear wall frame</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a> </p> <a href="https://publications.waset.org/abstracts/79730/a-study-on-performance-based-design-analysis-for-vertical-extension-of-apartment-units" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5790</span> Non-Linear Static Pushover Analysis of 15 Storied Reinforced Concrete Building Structure with Shear Wall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Nikzad">Hamid Nikzad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinta%20Yoshitomi"> Shinta Yoshitomi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, nonlinear static pushover analysis is performed on 15 storied RC building structure with a shear wall to evaluate the seismic performance of the building. Section sizes of the members are obtained based on structural optimization method utilizing MATLAB frame optimizer, then the structure is simulated and designed in ETABS program conforming ACI 318-14 design code. The pushover curve has been generated by pushing the top node of the structure to the limited target displacement. Members failure due to the formation of plastic hinges, considering shear wall-frame structure was observed and the result of this study is presented based on current regulation of FEMA356, ASCE7-10, and ACI 318-14 design criteria <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20optimization" title="structural optimization">structural optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20static%20analysis" title=" linear static analysis"> linear static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ETABS" title=" ETABS"> ETABS</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20moment%20frame" title=" RC moment frame"> RC moment frame</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20shear%20wall%20structures" title=" RC shear wall structures"> RC shear wall structures</a> </p> <a href="https://publications.waset.org/abstracts/95712/non-linear-static-pushover-analysis-of-15-storied-reinforced-concrete-building-structure-with-shear-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5789</span> Application Problems of Anchor Dowels in Reinforced Concrete Shear Wall and Frame Connections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musa%20H.%20Arslan">Musa H. Arslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strengthening of the existing seismically deficient reinforced concrete (RC) buildings is an important issue in earthquake prone regions. Addition of RC shear wall as infill or external walls into the structural system has been a commonly preferred strengthening technique since the Big Erzincan Earthquake occurred in Turkey, 1992. The newly added rigid infill walls act primarily as shear walls and relieve the non-ductile existing frames from being subjected to large shear demands providing that new RC inner or external walls are adequately anchored to the existing weak RC frame. The performance of the RC shear walls-RC weak frame connections by steel anchor dowels depends on some parameters such as compressive strength of the existing RC frame concrete, diameter and embedment length of anchored rebar, type of rebar, yielding stress of bar, properties of used chemicals, position of the anchor bars in RC. In this study, application problems of the steel anchor dowels have been checked with some field studies such as tensile test. Two different RC buildings which will be strengthened were selected, and before strengthening, some tests have been performed in the existing RC buildings. According to the field observation and experimental studies, if the concrete compressive strength is lower than 10 MPa, the performance of the anchors is reduced by 70%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anchor%20dowel" title="anchor dowel">anchor dowel</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wall" title=" shear wall"> shear wall</a>, <a href="https://publications.waset.org/abstracts/search?q=frame" title=" frame"> frame</a> </p> <a href="https://publications.waset.org/abstracts/47308/application-problems-of-anchor-dowels-in-reinforced-concrete-shear-wall-and-frame-connections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5788</span> Innovative Pump Design Using the Concept of Viscous Fluid Sinusoidal Excitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20H.%20Elkholy">Ahmed H. Elkholy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of applying a prescribed oscillation to viscous fluids to aid or increase flow is used to produce a maintenance free pump. Application of this technique to fluids presents unique problems such as physical separation; control of heat and mass transfer in certain industrial applications; and improvement of some fluid process methods. The problem as stated is to obtain the velocity distribution, wall shear stress and energy expended when a pipe containing a stagnant viscous fluid is externally excited by a sinusoidal pulse, one end of the pipe being pinned. On the other hand, the effect of different parameters on the results are presented. Such parameters include fluid viscosity, frequency of oscillations and pipe geometry. It was found that the flow velocity through the pump is maximum at the pipe wall, and it decreases rapidly towards the pipe centerline. The frequency of oscillation should be above a certain value in order to obtain meaningful flow velocity. The amount of energy absorbed in the system is mainly due to pipe wall strain energy, while the fluid pressure and kinetic energies are comparatively small. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sinusoidal%20excitation" title="sinusoidal excitation">sinusoidal excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=pump" title=" pump"> pump</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20stress" title=" shear stress"> shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=flow" title=" flow"> flow</a> </p> <a href="https://publications.waset.org/abstracts/48529/innovative-pump-design-using-the-concept-of-viscous-fluid-sinusoidal-excitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5787</span> Numerical Evaluation of Shear Strength for Cold-Formed Steel Shear Wall Panel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rouaz%20Idriss">Rouaz Idriss</a>, <a href="https://publications.waset.org/abstracts/search?q=Bourahla%20Nour-Eddine"> Bourahla Nour-Eddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Kahlouche%20Farah"> Kahlouche Farah</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%20Sid%20Ali"> Rafa Sid Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stability of structures made of light-gauge steel depends highly on the contribution of Shear Wall Panel (SWP) systems under horizontal forces due to wind or earthquake loads. Steel plate sheathing is often used with these panels made of cold formed steel (CFS) to improve its shear strength. In order to predict the shear strength resistance, two methods are presented in this paper. In the first method, the steel plate sheathing is modeled with plats strip taking into account only the tension and compression force due to the horizontal load, where both track and stud are modeled according to the geometrical and mechanical characteristics of the specimen used in the experiments. The theoretical background and empirical formulations of this method are presented in this paper. However, the second method is based on a micro modeling of the cold formed steel Shear Wall Panel “CFS-SWP” using Abaqus software. A nonlinear analysis was carried out with an in-plan monotonic load. Finally, the comparison between these two methods shows that the micro modeling with Abaqus gives better prediction of shear resistance of SWP than strips method. However, the latter is easier and less time consuming than the micro modeling method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20formed%20steel%20%27CFS%27" title="cold formed steel 'CFS'">cold formed steel 'CFS'</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wall%20panel" title=" shear wall panel"> shear wall panel</a>, <a href="https://publications.waset.org/abstracts/search?q=strip%20method" title=" strip method"> strip method</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20elements" title=" finite elements"> finite elements</a> </p> <a href="https://publications.waset.org/abstracts/46456/numerical-evaluation-of-shear-strength-for-cold-formed-steel-shear-wall-panel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5786</span> Assessing the Effect of the Position of the Cavities on the Inner Plate of the Steel Shear Wall under Time History Dynamic Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Mahdavi">Masoud Mahdavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Farzaneh%20Moghadam"> Mojtaba Farzaneh Moghadam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The seismic forces caused by the waves created in the depths of the earth during the earthquake hit the structure and cause the building to vibrate<span dir="RTL">.</span> Creating large seismic forces will cause low-strength sections in the structure to suffer extensive surface damage. The use of new steel shear walls in steel structures has caused the strength of the building and its main members (columns) to increase due to the reduction and depreciation of seismic forces during earthquakes. In the present study, an attempt was made to evaluate a type of steel shear wall that has regular holes in the inner sheet by modeling the finite element model with Abacus software. The shear wall of the steel plate, measuring 6000 × 3000 mm (one floor) and 3 mm thickness, was modeled with four different pores with a cross-sectional area. The shear wall was dynamically subjected to a time history of 5 seconds by three accelerators, El Centro, Imperial Valley and Kobe. The results showed that increasing the distance between the geometric center of the hole and the geometric center of the inner plate in the steel shear wall (increasing the R<sub>CS</sub> index) caused the total maximum acceleration to be transferred from the perimeter of the hole to horizontal and vertical beams. The results also show that there is no direct relationship between R<sub>CS</sub> index and total acceleration in steel shear wall and R<sub>CS</sub> index is separate from the peak ground acceleration value of earthquake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hollow%20steel%20plate%20shear%20wall" title="hollow steel plate shear wall">hollow steel plate shear wall</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20history%20analysis" title=" time history analysis"> time history analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=abaqus%20software" title=" abaqus software"> abaqus software</a> </p> <a href="https://publications.waset.org/abstracts/127716/assessing-the-effect-of-the-position-of-the-cavities-on-the-inner-plate-of-the-steel-shear-wall-under-time-history-dynamic-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5785</span> A Study of a Plaque Inhibition Through Stenosed Bifurcation Artery considering a Biomagnetic Blood Flow and Elastic Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Anwar">M. A. Anwar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Iqbal"> K. Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Razzaq"> M. Razzaq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Objectives: This numerical study reflects the magnetic field's effect on the reduction of plaque formation due to stenosis in a stenosed bifurcated artery. The entire arterythe wall is assumed as linearly elastic, and blood flow is modeled as a Newtonian, viscous, steady, incompressible, laminar, biomagnetic fluid. Methods: An Arbitrary Lagrangian-Eulerian (ALE) technique is employed to formulate the hemodynamic flow in a bifurcated artery under the effect of the asymmetric magnetic field by two-way Fluid-structure interaction coupling. A stable P2P1 finite element pair is used to discretize thenonlinear system of partial differential equations. The resulting nonlinear system of algebraic equations is solved by the Newton Raphson method. Results: The numerical results for displacement, velocity magnitude, pressure, and wall shear stresses for Reynolds numbers, Re = 500, 1000, 1500, 2000, in the presence of magnetic fields are presented graphically. Conclusions: The numerical results show that the presence of the magnetic field influences the displacement and flows velocity magnitude considerably. The magnetic field reduces the flow separation, recirculation area adjacent to stenosis and gives rise to wall shear stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bifurcation" title="bifurcation">bifurcation</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20walls" title=" elastic walls"> elastic walls</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress" title=" wall shear stress"> wall shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a> </p> <a href="https://publications.waset.org/abstracts/142091/a-study-of-a-plaque-inhibition-through-stenosed-bifurcation-artery-considering-a-biomagnetic-blood-flow-and-elastic-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5784</span> Numerical Modeling of Film Cooling of the Surface at Non-Uniform Heat Flux Distributions on the Wall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Bartashevich">M. V. Bartashevich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of heat transfer at thin laminar liquid film is solved numerically. A thin film of liquid flows down an inclined surface under conditions of variable heat flux on the wall. The use of thin films of liquid allows to create the effective technologies for cooling surfaces. However, it is important to investigate the most suitable cooling regimes from a safety point of view, in order, for example, to avoid overheating caused by the ruptures of the liquid film, and also to study the most effective cooling regimes depending on the character of the distribution of the heat flux on the wall, as well as the character of the blowing of the film surface, i.e., the external shear stress on its surface. In the statement of the problem on the film surface, the heat transfer coefficient between the liquid and gas is set, as well as a variable external shear stress - the intensity of blowing. It is shown that the combination of these factors - the degree of uniformity of the distribution of heat flux on the wall and the intensity of blowing, affects the efficiency of heat transfer. In this case, with an increase in the intensity of blowing, the cooling efficiency increases, reaching a maximum, and then decreases. It is also shown that the more uniform the heating of the wall, the more efficient the heat sink. A separate study was made for the flow regime along the horizontal surface when the liquid film moves solely due to external stress influence. For this mode, the analytical solution is used for the temperature at the entrance region for further numerical calculations downstream. Also the influence of the degree of uniformity of the heat flux distribution on the wall and the intensity of blowing of the film surface on the heat transfer efficiency was also studied. This work was carried out at the Kutateladze Institute of Thermophysics SB RAS (Russia) and supported by FASO Russia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heat%20Flux" title="Heat Flux">Heat Flux</a>, <a href="https://publications.waset.org/abstracts/search?q=Heat%20Transfer%20Enhancement" title=" Heat Transfer Enhancement"> Heat Transfer Enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=External%20Blowing" title=" External Blowing"> External Blowing</a>, <a href="https://publications.waset.org/abstracts/search?q=Thin%20Liquid%20Film" title=" Thin Liquid Film"> Thin Liquid Film</a> </p> <a href="https://publications.waset.org/abstracts/121069/numerical-modeling-of-film-cooling-of-the-surface-at-non-uniform-heat-flux-distributions-on-the-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5783</span> Design Application Procedures of 15 Storied 3D Reinforced Concrete Shear Wall-Frame Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Nikzad">H. Nikzad</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Yoshitomi"> S. Yoshitomi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design application and reinforcement detailing of 15 storied reinforced concrete shear wall-frame structure based on linear static analysis. Databases are generated for section sizes based on automated structural optimization method utilizing Active-set Algorithm in MATLAB platform. The design constraints of allowable section sizes, capacity criteria and seismic provisions for static loads, combination of gravity and lateral loads are checked and determined based on ASCE 7-10 documents and ACI 318-14 design provision. The result of this study illustrates the efficiency of proposed method, and is expected to provide a useful reference in designing of RC shear wall-frame structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20constraints" title="design constraints">design constraints</a>, <a href="https://publications.waset.org/abstracts/search?q=ETABS" title=" ETABS"> ETABS</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20static%20analysis" title=" linear static analysis"> linear static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20shear%20wall-frame%20structures" title=" RC shear wall-frame structures"> RC shear wall-frame structures</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20optimization" title=" structural optimization"> structural optimization</a> </p> <a href="https://publications.waset.org/abstracts/86851/design-application-procedures-of-15-storied-3d-reinforced-concrete-shear-wall-frame-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress&page=193">193</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress&page=194">194</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>