CINXE.COM
Search results for: fiber loading
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fiber loading</title> <meta name="description" content="Search results for: fiber loading"> <meta name="keywords" content="fiber loading"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fiber loading" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fiber loading"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2712</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fiber loading</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2712</span> Effect the Use of Steel Fibers (Dramix) on Reinforced Concrete Slab</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Ananda">Faisal Ananda</a>, <a href="https://publications.waset.org/abstracts/search?q=Junaidi%20Al-Husein"> Junaidi Al-Husein</a>, <a href="https://publications.waset.org/abstracts/search?q=Oni%20Febriani"> Oni Febriani</a>, <a href="https://publications.waset.org/abstracts/search?q=Juli%20Ardita"> Juli Ardita</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Indra"> N. Indra</a>, <a href="https://publications.waset.org/abstracts/search?q=Syaari%20Al-Husein"> Syaari Al-Husein</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bukri"> A. Bukri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, concrete technology continues to grow and continue to innovate one of them using fibers. Fiber concrete has advantages over non-fiber concrete, among others, strong against the effect of shrinkage, ability to reduce crack, fire resistance, etc. In this study, concrete mix design using the procedures listed on SNI 03-2834-2000. The sample used is a cylinder with a height of 30 cm and a width of 15cm in diameter, which is used for compression and tensile testing, while the slab is 400cm x 100cm x 15cm. The fiber used is steel fiber (dramix), with the addition of 2/3 of the thickness of the slabs. The charging is done using a two-point loading. From the result of the research, it is found that the loading of non-fiber slab (0%) of the initial crack is the maximum crack that has passed the maximum crack allowed with a crack width of 1.3 mm with a loading of 1160 kg. The initial crack with the largest load is found on the 1% fiber mixed slab, with the initial crack also being a maximum crack of 0.5mm which also has exceeded the required maximum crack. In the 4% slab the initial crack of 0.1 mm is a minimal initial crack with a load greater than the load of a non-fiber (0%) slab by load1200 kg. While the maximum load on the maximum crack according to the applicable maximum crack conditions, on the 5% fiber mixed slab with a crack width of 0.32mm by loading 1250 kg. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack" title="crack">crack</a>, <a href="https://publications.waset.org/abstracts/search?q=dramix" title=" dramix"> dramix</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=load" title=" load"> load</a>, <a href="https://publications.waset.org/abstracts/search?q=slab" title=" slab"> slab</a> </p> <a href="https://publications.waset.org/abstracts/81402/effect-the-use-of-steel-fibers-dramix-on-reinforced-concrete-slab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2711</span> Thermo-Mechanical Properties of PBI Fiber Reinforced HDPE Composites: Effect of Fiber Length and Composition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shan%20Faiz">Shan Faiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Arfat%20Anis"> Arfat Anis</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20M.%20Al-Zarani"> Saeed M. Al-Zarani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High density polyethylene (HDPE) and poly benzimidazole fiber (PBI) composites were prepared by melt blending in a twin screw extruder (TSE). The thermo-mechanical properties of PBI fiber reinforced HDPE composite samples (1%, 4% and 8% fiber content) of fiber lengths 3 mm and 6 mm were investigated using differential scanning calorimeter (DSC), universal testing machine (UTM), rheometer and scanning electron microscopy (SEM). The effect of fiber content and fiber lengths on the thermo-mechanical properties of the HDPE-PBI composites was studied. The DSC analysis showed decrease in crystallinity of HDPE-PBI composites with the increase of fiber loading. Maximum decrease observed was 12% at 8% fiber length. The thermal stability was found to increase with the addition of fiber. T50% was notably increased to 40oC for both grades of HDPE using 8% of fiber content. The mechanical properties were not much affected by the increase in fiber content. The optimum value of tensile strength was achieved using 4% fiber content and slight increase of 9% in tensile strength was observed. No noticeable change was observed in flexural strength. In rheology study, the complex viscosities of HDPE-PBI composites were higher than the HDPE matrix and substantially increased with even minimum increase of PBI fiber loading i.e. 1%. We found that the addition of the PBI fiber resulted in a modest improvement in the thermal stability and mechanical properties of the prepared composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PBI%20fiber" title="PBI fiber">PBI fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20density%20polyethylene" title=" high density polyethylene"> high density polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20blending" title=" melt blending"> melt blending</a> </p> <a href="https://publications.waset.org/abstracts/26194/thermo-mechanical-properties-of-pbi-fiber-reinforced-hdpe-composites-effect-of-fiber-length-and-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2710</span> Study on High Performance Fiber Reinforced Concrete (HPFRC) Beams on Subjected to Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Siva">A. Siva</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bala%20Subramanian"> K. Bala Subramanian</a>, <a href="https://publications.waset.org/abstracts/search?q=Kinson%20Prabu"> Kinson Prabu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete is widely used construction materials all over the world. Now a day’s fibers are used in this construction due to its advantages like increase in stiffness, energy absorption, ductility and load carrying capacity. The fiber used in the concrete to increases the structural integrity of the member. It is one of the emerging techniques used in the construction industry. In this paper, the effective utilization of high-performance fiber reinforced concrete (HPFRC) beams has been experimental investigated. The experimental investigation has been conducted on different steel fibers (Hooked, Crimpled, and Hybrid) under cyclic loading. The behaviour of HPFRC beams is compared with the conventional beams. Totally four numbers of specimens were cast with different content of fiber concrete and compared conventional concrete. The fibers are added to the concrete by base volume replacement of concrete. The silica fume and superplasticizers were used to modify the properties of concrete. Single point loading was carried out for all the specimens, and the beam specimens were subjected to cyclic loading. The load-deflection behaviour of fibers is compared with the conventional concrete. The ultimate load carrying capacity, energy absorption and ductility of hybrid fiber reinforced concrete is higher than the conventional concrete by 5% to 10%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title="cyclic loading">cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20fiber%20reinforced%20concrete" title=" high performance fiber reinforced concrete"> high performance fiber reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20integrity" title=" structural integrity"> structural integrity</a> </p> <a href="https://publications.waset.org/abstracts/53590/study-on-high-performance-fiber-reinforced-concrete-hpfrc-beams-on-subjected-to-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2709</span> Bending Behaviour of Fiber Reinforced Polymer Composite Stiffened Panel Subjected to Transverse Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kumar">S. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar"> Rajesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mandal"> S. Mandal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber Reinforced Polymer (FRP) is gaining popularity in many branch of engineering and various applications due to their light weight, specific strength per unit weight and high stiffness in particular direction. As the strength of material is high it can be used in thin walled structure as industrial roof sheds satisfying the strength constraint with comparatively lesser thickness. Analysis of bending behavior of FRP panel has been done here with variation in oriented angle of stiffener panels, fiber orientation, aspect ratio and boundary conditions subjected to transverse loading by using Finite Element Method. The effect of fiber orientation and thickness of ply has also been studied to determine the minimum thickness of ply for optimized section of stiffened FRP panel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20behavior" title="bending behavior">bending behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20polymer" title=" fiber reinforced polymer"> fiber reinforced polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation%20of%20stiffeners" title=" orientation of stiffeners"> orientation of stiffeners</a> </p> <a href="https://publications.waset.org/abstracts/61179/bending-behaviour-of-fiber-reinforced-polymer-composite-stiffened-panel-subjected-to-transverse-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2708</span> Investigation the Effect of Nano-Alumina Particles on Physical Adsorption Property of Acrylic Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Ketabchi">Mehdi Ketabchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamsollah%20Alijanlou"> Shamsollah Alijanlou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flue gas from fossil fuels combustion contains harmful pollutants dangerous for human health and the environment. One of the air pollution control methods to restrict the emission of these pollutants is based on using the nanoparticle in the adsorption process. In the present research gamma, Nano-alumina particle is added to Polyacrylonitrile (PAN) polymer through simple loading method and the adsorption capacity of the wet spun fiber is investigated. The results of exposure the fiber to the acid gasses including SO2, CO, NO2, NO and CO2 show the noticeable increase of gas adsorption capacity on fiber contains nanoparticle. The research has been conducted in Acrylic II Plant of Polyacryl Iran Corporation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylic%20fiber" title="acrylic fiber">acrylic fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorbent" title=" adsorbent"> adsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20spun" title=" wet spun"> wet spun</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20gamma%20alumina" title=" nano gamma alumina"> nano gamma alumina</a> </p> <a href="https://publications.waset.org/abstracts/35916/investigation-the-effect-of-nano-alumina-particles-on-physical-adsorption-property-of-acrylic-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2707</span> Influence of Fiber Loading and Surface Treatments on Mechanical Properties of Pineapple Leaf Fiber Reinforced Polymer Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jain%20Jyoti">Jain Jyoti</a>, <a href="https://publications.waset.org/abstracts/search?q=Jain%20Shorab"> Jain Shorab</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinha%20Shishir"> Sinha Shishir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current scenario, development of new biodegradable composites with the reinforcement of some plant derived natural fibers are in major research concern. Abundant quantity of these natural plant derived fibers including sisal, ramp, jute, wheat straw, pine, pineapple, bagasse, etc. can be used exclusively or in combination with other natural or synthetic fibers to augment their specific properties like chemical, mechanical or thermal properties. Among all natural fibers, wheat straw, bagasse, kenaf, pineapple leaf, banana, coir, ramie, flax, etc. pineapple leaf fibers have very good mechanical properties. Being hydrophilic in nature, pineapple leaf fibers have very less affinity towards all types of polymer matrixes. Not much work has been carried out in this area. Surface treatments like alkaline treatment in different concentrations were conducted to improve its compatibility towards hydrophobic polymer matrix. Pineapple leaf fiber epoxy composites have been prepared using hand layup method. Effect of variation in fiber loading up to 20% in epoxy composites has been studied for mechanical properties like tensile strength and flexural strength. Analysis of fiber morphology has also been studied using FTIR, XRD. SEM micrographs have also been studied for fracture surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical" title=" mechanical"> mechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fiber" title=" natural fiber"> natural fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=pineapple%20leaf%20fiber" title=" pineapple leaf fiber"> pineapple leaf fiber</a> </p> <a href="https://publications.waset.org/abstracts/75998/influence-of-fiber-loading-and-surface-treatments-on-mechanical-properties-of-pineapple-leaf-fiber-reinforced-polymer-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2706</span> Damage Strain Analysis of Parallel Fiber Eutectic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Zheng">Jian Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinhua%20Ni"> Xinhua Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiequan%20Liu"> Xiequan Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to isotropy of parallel fiber eutectic, the no- damage strain field in parallel fiber eutectic is obtained from the flexibility tensor of parallel fiber eutectic. Considering the damage behavior of parallel fiber eutectic, damage variables are introduced to determine the strain field of parallel fiber eutectic. The damage strains in the matrix, interphase, and fiber of parallel fiber eutectic are quantitatively analyzed. Results show that damage strains are not only associated with the fiber volume fraction of parallel fiber eutectic, but also with the damage degree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20strain" title="damage strain">damage strain</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20strain" title=" initial strain"> initial strain</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20volume%20fraction" title=" fiber volume fraction"> fiber volume fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20fiber%20eutectic" title=" parallel fiber eutectic"> parallel fiber eutectic</a> </p> <a href="https://publications.waset.org/abstracts/60032/damage-strain-analysis-of-parallel-fiber-eutectic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2705</span> Use of PET Fibers for Enhancing the Ductility of Exterior RC Beam-Column Connections Subjected to Reversed Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Comingstarful%20Marthong">Comingstarful Marthong</a>, <a href="https://publications.waset.org/abstracts/search?q=Shembiang%20Marthong"> Shembiang Marthong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Application of Polyethylene terephthalate (PET) fiber for enhancing the seismic performance of exterior RC beam-column connections in substitution of steel fibers is experimentally investigated. The study involves the addition of Polyethylene terephthalate (PET) fiber-reinforced concrete, i.e., PFRC at the joint region of the connection. The PET fiber of 0.5% volume fraction used in the PFRC mix is obtained by hand cutting of post-consumer PET bottles. Specimens design as per relevant codes was casted and tested to reverse cyclic loading. PFRC specimen was also casted and subjected to similar loading sequence. Test results established that addition of PET fibers in the joint region is effective in enhancing the displacement ductility and energy dissipation capacity. The improvement of damage indices and principal tensile stresses of PFRC specimens gave experimental evidence of the suitability of PET fibers as a discrete reinforcement in the substitution of steel fiber for structural use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam-column%20connections" title="beam-column connections">beam-column connections</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20terephthalate%20fibers%20reinforced%20concrete" title=" polyethylene terephthalate fibers reinforced concrete"> polyethylene terephthalate fibers reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20region" title=" joint region"> joint region</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20capacity" title=" seismic capacity"> seismic capacity</a> </p> <a href="https://publications.waset.org/abstracts/41070/use-of-pet-fibers-for-enhancing-the-ductility-of-exterior-rc-beam-column-connections-subjected-to-reversed-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2704</span> Thermomechanical Coupled Analysis of Fiber Reinforced Polymer Composite Square Tube: A Finite Element Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ali">M. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Alam"> K. Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ohioma"> E. Ohioma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a numerical investigation on the behavior of fiber reinforced polymer composite tubes (FRP) under thermomechanical coupled loading using finite element software ABAQUS and a special add-on subroutine, CZone. Three cases were explored; pure mechanical loading, pure thermal loading, and coupled thermomechanical loading. The failure index (Tsai-Wu) under all three loading cases was assessed for all plies in the tube walls. The simulation results under pure mechanical loading showed that composite tube failed at a tensile load of 3.1 kN. However, with the superposition of thermal load on mechanical load on the composite tube, the failure index of the previously failed plies in tube walls reduced significantly causing the tube to fail at 6 kN. This showed 93% improvement in the load carrying capacity of the composite tube in present study. The increase in load carrying capacity was attributed to the stress effects of the coefficients of thermal expansion (CTE) on the laminate as well as the inter-lamina stresses induced due to the composite stack layup. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal" title="thermal">thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical" title=" mechanical"> mechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20tubes" title=" square tubes"> square tubes</a> </p> <a href="https://publications.waset.org/abstracts/43322/thermomechanical-coupled-analysis-of-fiber-reinforced-polymer-composite-square-tube-a-finite-element-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2703</span> Assessment of Material Type, Diameter, Orientation and Closeness of Fibers in Vulcanized Reinforced Rubbers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Osman%20G%C3%BCney">Ali Osman Güney</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahattin%20Kanber"> Bahattin Kanber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the effect of material type, diameter, orientation and closeness of fibers on the general performance of reinforced vulcanized rubbers are investigated using finite element method with experimental verification. Various fiber materials such as hemp, nylon, polyester are used for different fiber diameters, orientations and closeness. 3D finite element models are developed by considering bonded contact elements between fiber and rubber sheet interfaces. The fibers are assumed as linear elastic, while vulcanized rubber is considered as hyper-elastic. After an experimental verification of finite element results, the developed models are analyzed under prescribed displacement that causes tension. The normal stresses in fibers and shear stresses between fibers and rubber sheet are investigated in all models. Large deformation of reinforced rubber sheet also represented with various fiber conditions under incremental loading. A general assessment is achieved about best fiber properties of reinforced rubber sheets for tension-load conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20vulcanized%20rubbers" title="reinforced vulcanized rubbers">reinforced vulcanized rubbers</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20properties" title=" fiber properties"> fiber properties</a>, <a href="https://publications.waset.org/abstracts/search?q=out%20of%20plane%20loading" title=" out of plane loading"> out of plane loading</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/61294/assessment-of-material-type-diameter-orientation-and-closeness-of-fibers-in-vulcanized-reinforced-rubbers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2702</span> Investigation of the Effect of Nano-Alumina Particles on Adsorption Property of Acrylic Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Ketabchi">Mehdi Ketabchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shallah%20Alijanlo"> Shallah Alijanlo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flue gas from fossil fuels combustion contains harmful pollutants dangerous for human health and environment. One of the air pollution control methods to restrict the emission of these pollutants is based on using the nanoparticle in adsorption process. In the present research, gamma nano-alumina particle is added to polyacrylonitrile (PAN) polymer through simple loading method, and the adsorption capacity of the wet spun fiber is investigated. The results of exposure the fiber to the acid gases including SO<sub>2</sub>, CO, NO<sub>2</sub>, NO, and CO<sub>2</sub> show the noticeable increase of gas adsorption capacity on fiber contains nanoparticle. The research has been conducted in Acrylic II Plant of Polyacryl Iran Corporation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylic%20fiber" title="acrylic fiber">acrylic fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorbent" title=" adsorbent"> adsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20spun" title=" wet spun"> wet spun</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacryl%20company" title=" polyacryl company"> polyacryl company</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20gamma%20alumina" title=" nano gamma alumina"> nano gamma alumina</a> </p> <a href="https://publications.waset.org/abstracts/99415/investigation-of-the-effect-of-nano-alumina-particles-on-adsorption-property-of-acrylic-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2701</span> Sandwich Structure Composites: Effect of Kenaf on Mechanical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maizatulnisa%20Othman">Maizatulnisa Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Bukhari"> Mohamad Bukhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahurin%20Halim"> Zahurin Halim</a>, <a href="https://publications.waset.org/abstracts/search?q=Souad%20A.%20Muhammad"> Souad A. Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalisani%20Khalid"> Khalisani Khalid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sandwich structure composites produced by epoxy core and aluminium skin were developed as potential building materials. Interface bonding between core and skin was controlled by varying kenaf content. Five different weight percentage of kenaf loading ranging from 10 wt% to 50 wt% were employed in the core manufacturing in order to study the mechanical properties of the sandwich composite. Properties of skin aluminium with epoxy were found to be affected by drying time of the adhesive. Mechanical behavior of manufactured sandwich composites in relation with properties of constituent materials was studied. It was found that 30 wt% of kenaf loading contributed to increase the flexural strength and flexural modulus up to 102 MPa and 32 Gpa, respectively. Analysis were done on the flatwise and edgewise compression test. For flatwise test, it was found that 30 wt% of fiber loading could withstand maximum force until 250 kN, with compressive strength results at 96.94 MPa. However, at edgewise compression test, the sandwich composite with same fiber loading only can withstand 31 kN of the maximum load with 62 MPa of compressive strength results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sandwich%20structure%20composite" title="sandwich structure composite">sandwich structure composite</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminium" title=" aluminium"> aluminium</a>, <a href="https://publications.waset.org/abstracts/search?q=kenaf%20fiber" title=" kenaf fiber "> kenaf fiber </a> </p> <a href="https://publications.waset.org/abstracts/19014/sandwich-structure-composites-effect-of-kenaf-on-mechanical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2700</span> Numerical Investigation of Static and Dynamic Responses of Fiber Reinforced Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar">Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Kumar%20Jat"> Mahesh Kumar Jat</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajib%20Sarkar"> Rajib Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil reinforced with randomly distributed fibers is an attractive means to improve the performance of soil in a cost effective manner. Static and dynamic characterization of fiber reinforced soil have become important to evaluate adequate performance for all classes of geotechnical engineering problems. Present study investigates the behaviour of fiber reinforced cohesionless soil through numerical simulation of triaxial specimen. The numerical model has been validated with the existing literature of laboratory triaxial compression testing. A parametric study has been done to find out optimum fiber content for shear resistance. Cyclic triaxial testing has been simulated and the stress-strain response of fiber-reinforced sand has been examined considering different combination of fiber contents. Shear modulus values and damping values of fiber-reinforced sand are evaluated. It has been observed from results that for 1.0 percent fiber content shear modulus increased 2.28 times and damping ratio decreased 4.6 times. The influence of amplitude of cyclic strain, confining pressure and frequency of loading on the dynamic properties of fiber reinforced sand has been investigated and presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping" title="damping">damping</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20soil" title=" fiber reinforced soil"> fiber reinforced soil</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modelling" title=" numerical modelling"> numerical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus" title=" shear modulus"> shear modulus</a> </p> <a href="https://publications.waset.org/abstracts/77544/numerical-investigation-of-static-and-dynamic-responses-of-fiber-reinforced-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2699</span> Research on Carbon Fiber Tow Spreading Technique with Multi-Rolls </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soon%20Ok%20Jo">Soon Ok Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Kyu%20Jeung"> Han Kyu Jeung</a>, <a href="https://publications.waset.org/abstracts/search?q=Si%20Woo%20Park"> Si Woo Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the process of consistent expansion of carbon fiber in width (Carbon Fiber Tow Spreading Technique), it can be expected that such process can enhance the production of carbon fiber reinforced composite material and quality of the product. In this research, the method of mechanically expanding carbon fiber and increasing its width was investigated by using various geometric rolls. In addition, experimental type of carbon fiber expansion device was developed and tested using 12K carbon fiber. As a result, the effects of expansion of such fiber under optimized operating conditions and geometric structure of an elliptical roll, were analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title="carbon fiber">carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=tow%20spreading%20fiber" title=" tow spreading fiber"> tow spreading fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-preg" title=" pre-preg"> pre-preg</a>, <a href="https://publications.waset.org/abstracts/search?q=roll%20structure" title=" roll structure"> roll structure</a> </p> <a href="https://publications.waset.org/abstracts/51684/research-on-carbon-fiber-tow-spreading-technique-with-multi-rolls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2698</span> A Thermographic and Energy Based Approach to Define High Cycle Fatigue Strength of Flax Fiber Reinforced Thermoset Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Zahirul%20Islam">Md. Zahirul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Chad%20A.%20Ulven"> Chad A. Ulven</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber-reinforced polymer matrix composites have a wide range of applications in the sectors of automotive, aerospace, sports utilities, among others, due to their high specific strength, stiffness as well as reduced weight. In addition to those favorable properties, composites composed of natural fibers and bio-based resins (i.e., biocomposites) have eco-friendliness and biodegradability. However, the applications of biocomposites are limited due to the lack of knowledge about their long-term reliability under fluctuating loads. In order to explore the long-term reliability of flax fiber reinforced composites under fluctuating loads through high cycle fatigue strength (HCFS), fatigue test were conducted on unidirectional flax fiber reinforced thermoset composites at different percentage loads of ultimate tensile strength (UTS) with a loading frequency of 5 Hz. Change of temperature of the sample during cyclic loading was captured using an IR camera. Initially, the temperature increased rapidly, but after a certain time, it stabilized. A mathematical model was developed to predict the fatigue life from the data of stabilized temperature. Stabilized temperature and dissipated energy per cycle were compared with applied stress. Both showed bilinear behavior and the intersection of those curves were used to determine HCFS. HCFS for unidirectional flax fiber reinforced composites is around 45% of UTS for a loading frequency of 5Hz. Unlike fatigue life, stabilized temperature and dissipated energy-based models are convenient to define HCFS as they have little variation from sample to sample. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20method" title="energy method">energy method</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=flax%20fiber%20reinforced%20composite" title=" flax fiber reinforced composite"> flax fiber reinforced composite</a>, <a href="https://publications.waset.org/abstracts/search?q=HCFS" title=" HCFS"> HCFS</a>, <a href="https://publications.waset.org/abstracts/search?q=thermographic%20approach" title=" thermographic approach"> thermographic approach</a> </p> <a href="https://publications.waset.org/abstracts/108014/a-thermographic-and-energy-based-approach-to-define-high-cycle-fatigue-strength-of-flax-fiber-reinforced-thermoset-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2697</span> Tensile Behavior of Oil Palm Fiber Concrete (OPFC) with Different Fiber Volume </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khairul%20Zahreen%20Mohd%20Arof">Khairul Zahreen Mohd Arof</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahimah%20Muhamad"> Rahimah Muhamad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil palm fiber (OPF) is a fibrous material produced from the waste of palm oil industry which is suitable to be used in construction industry. The applications of OPF in concrete can reduce the material costs and enhance concrete behavior. Dog-bone test provides significant results for investigating the behavior of fiber reinforced concrete under tensile loading. It is able to provide stress-strain profile, modulus of elasticity, stress at cracking point and total crack width. In this research, dog-bone tests have been conducted to analyze total crack width, stress-strain profile, and modulus of elasticity of OPFC. Specimens are in a dog-bone shape with a long notch in the middle as compared to the end, to ensure cracks occur only within the notch. Tests were instrumented using a universal testing machine Shimadzu 300kN, a linear variable differential transformer and two strain gauges. A total of nine specimens with different fibers at fiber volume fractions of 0.75%, 1.00%, and 1.25% have been tested to analyze the behavior under tensile loading. Also, three specimens of plain concrete fiber have been tested as control specimens. The tensile test of all specimens have been carried out for concrete age exceed 28 days. It shows that OPFC able to reduce total crack width. In addition, OPFC has higher cracking stress than plain concrete. The study shows plain concrete can be improved with the addition of OPF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cracks" title="cracks">cracks</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20width" title=" crack width"> crack width</a>, <a href="https://publications.waset.org/abstracts/search?q=dog-bone%20test" title=" dog-bone test"> dog-bone test</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20fiber%20concrete" title=" oil palm fiber concrete"> oil palm fiber concrete</a> </p> <a href="https://publications.waset.org/abstracts/63754/tensile-behavior-of-oil-palm-fiber-concrete-opfc-with-different-fiber-volume" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2696</span> Characteristics of PET-Based Conductive Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chung-Yang%20Chuang">Chung-Yang Chuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Lung%20Chen"> Chi-Lung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui-Min%20Wang"> Hui-Min Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Jung%20Chang"> Chang-Jung Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conductive fiber is the key material for e-textiles and wearable devices. However, the durability of the conductive fiber after the wash process is an important issue for conductive fiber applications in e-textiles. Therefore, it is necessary for conductive fiber with good performance on electrically conductive behavior during the product life cycle. In this research, the PET-based conductive fiber was prepared by silver conductive ink continuous coating. The conductive fiber showed low fiber resistance (10-¹~10Ω/cm), and the conductive behavior still had good performance (fiber resistance:10-¹~10Ω/cm, percentage of fiber resistance change:<60%) after the water wash durability test (AATCC-135, 30 times). This research provides a better solution to resolve the issues of resistance increase after the water wash process due to the damage to the conductive fiber structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PET" title="PET">PET</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive%20fiber" title=" conductive fiber"> conductive fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=e-textiles" title=" e-textiles"> e-textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20devices" title=" wearable devices"> wearable devices</a> </p> <a href="https://publications.waset.org/abstracts/166142/characteristics-of-pet-based-conductive-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2695</span> Numerical Study of Fiber Bragg Grating Sensor: Longitudinal and Transverse Detection of Temperature and Strain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Khelil">K. Khelil</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ammar"> H. Ammar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Saouchi"> K. Saouchi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber Bragg Grating (FBG) structure is an periodically modulated optical fiber. It acts as a selective filter of wavelength whose reflected peak is called Bragg wavelength and it depends on the period of the fiber and the refractive index. The simulation of FBG is based on solving the Coupled Mode Theory equation by using the Transfer Matrix Method which is carried out using MATLAB. It is found that spectral reflectivity is shifted when the change of temperature and strain is uniform. Under non-uniform temperature or strain perturbation, the spectrum is both shifted and destroyed. In case of transverse loading, reflectivity spectrum is split into two peaks, the first is specific to X axis, and the second belongs to Y axis. FBGs are used in civil engineering to detect perturbations applied to buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bragg%20wavelength" title="Bragg wavelength">Bragg wavelength</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20mode%20theory" title=" coupled mode theory"> coupled mode theory</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20fiber" title=" optical fiber"> optical fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20measurement" title=" temperature measurement"> temperature measurement</a> </p> <a href="https://publications.waset.org/abstracts/80169/numerical-study-of-fiber-bragg-grating-sensor-longitudinal-and-transverse-detection-of-temperature-and-strain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2694</span> Effect of Chemical Modifier on the Properties of Polypropylene (PP) / Coconut Fiber (CF) in Automotive Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Shahril">K. Shahril</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nizam"> A. Nizam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sabri"> M. Sabri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Siti%20Rohana"> A. Siti Rohana</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Salmah"> H. Salmah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical modifier (Acrylic Acid) is used as filler treatment to improve mechanical properties and swelling behavior of polypropylene/coconut fiber (PP/CF) composites by creating more adherent bonding between CF filler and PP Matrix. Treated (with chemical modifier) and untreated (without chemical modifier) composites were prepared in the formulation of 10 wt%, 20 wt%, 30 wt%, and 40 wt%. The mechanical testing indicates that composite with 10 wt% of untreated composite has the optimum value of tensile strength, and the composite with chemical modifier shows the tensile strength was increased. By increasing of filler loading, elastic modulus was increased while the elongation at brake was decreased. Meanwhile, the swelling test discerned that the increase of filler loading increased the water absorption of composites and the presence of chemical modifier reduced the equilibrium water absorption percentage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20fiber" title="coconut fiber">coconut fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20acrylic" title=" acid acrylic"> acid acrylic</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20modifier" title=" chemical modifier"> chemical modifier</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a> </p> <a href="https://publications.waset.org/abstracts/14842/effect-of-chemical-modifier-on-the-properties-of-polypropylene-pp-coconut-fiber-cf-in-automotive-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2693</span> The Role of Secondary Filler on the Fracture Toughness of HDPE/Clay Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Kamarudzaman">R. Kamarudzaman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kalam"> A. Kalam</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Mohd%20Fadzil"> N. A. Mohd Fadzil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil Palm Fruit Bunch Fiber (OPEFB) was used as secondary filler in HDPE/clay nanocomposites. The composites were prepared by melt compounding which contains High Density Polyethylene (HDPE), OPEFB fibers, Maleic Anhydride Graft Polyethylene (MAPE) and four different clay loading (3, 5, 7 and 10 PE nanoclay pellets per hundred of HDPE pellets). Four OPEFB sizes (180 µm, 250 µm, 300 µm and 355 µm) were added in the composites to investigate their effects on fracture toughness. Fracture toughness of the composites were determined according to ASTM D5045 and Single Edge Notch Bending (SENB) been employed during the test. The effects of alkali treatment were also investigated in this study. The results indicate that the fracture toughness slightly increased as clay loading increased. The highest value of fracture toughness was 0.47 and 1.06 MPa.m1/2 at 5 phr for both types of clay loading. The presence of filler as reinforcement with the matrix indicates the enhancement of composites compared to those without the filler. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20empty%20fruit%20bunch" title="oil palm empty fruit bunch">oil palm empty fruit bunch</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene" title=" polyethylene"> polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposite" title=" polymer nanocomposite"> polymer nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20strength" title=" impact strength"> impact strength</a> </p> <a href="https://publications.waset.org/abstracts/9134/the-role-of-secondary-filler-on-the-fracture-toughness-of-hdpeclay-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">583</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2692</span> Multiscale Cohesive Zone Modeling of Composite Microstructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Iacobellis">Vincent Iacobellis</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Behdinan"> Kamran Behdinan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A finite element cohesive zone model is used to predict the temperature dependent material properties of a polyimide matrix composite with unidirectional carbon fiber arrangement. The cohesive zone parameters have been obtained from previous research involving an atomistic-to-continuum multiscale simulation of the fiber-matrix interface using the bridging cell multiscale method. The goal of the research was to both investigate the effect of temperature change on the composite behavior with respect to transverse loading as well as the validate the use of cohesive parameters obtained from atomistic-to-continuum multiscale modeling to predict fiber-matrix interfacial cracking. From the multiscale model cohesive zone parameters (i.e. maximum traction and energy of separation) were obtained by modeling the interface between the coarse-grained polyimide matrix and graphite based carbon fiber. The cohesive parameters from this simulation were used in a cohesive zone model of the composite microstructure in order to predict the properties of the macroscale composite with respect to changes in temperature ranging from 21 ˚C to 316 ˚C. Good agreement was found between the microscale RUC model and experimental results for stress-strain response, stiffness, and material strength at low and high temperatures. Examination of the deformation of the composite through localized crack initiation at the fiber-matrix interface also agreed with experimental observations of similar phenomena. Overall, the cohesive zone model was shown to be both effective at modeling the composite properties with respect to transverse loading as well as validated the use of cohesive zone parameters obtained from the multiscale simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cohesive%20zone%20model" title="cohesive zone model">cohesive zone model</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber-matrix%20interface" title=" fiber-matrix interface"> fiber-matrix interface</a>, <a href="https://publications.waset.org/abstracts/search?q=microscale%20damage" title=" microscale damage"> microscale damage</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20modeling" title=" multiscale modeling"> multiscale modeling</a> </p> <a href="https://publications.waset.org/abstracts/36952/multiscale-cohesive-zone-modeling-of-composite-microstructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2691</span> Strengthening RC Columns Using Carbon Fiber Reinforced Epoxy Composites Modified with Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20R.%20Irshidat">Mohammad R. Irshidat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20H.%20Al-Saleh"> Mohammed H. Al-Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Al-Shoubaki"> Mahmoud Al-Shoubaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the viability of using carbon fiber reinforced epoxy composites modified with carbon nano tubes to strengthening reinforced concrete (RC) columns. Six RC columns was designed and constructed according to ASCE standards. The columns were wrapped using carbon fiber sheets impregnated with either neat epoxy or CNTs modified epoxy. These columns were then tested under concentric axial loading. Test results show that; compared to the unwrapped specimens; wrapping concrete columns with carbon fiber sheet embedded in CNTs modified epoxy resulted in an increase in its axial load resistance, maximum displacement, and toughness values by 24%, 109% and 232%, respectively. These results reveal that adding CNTs into epoxy resin enhanced the confinement effect, specifically, increased the axial load resistance, maximum displacement, and toughness values by 11%, 6%, and 19%, respectively compared with columns strengthening with carbon fiber sheet embedded in neat epoxy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNT" title="CNT">CNT</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title=" carbon fiber"> carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20columns" title=" RC columns "> RC columns </a> </p> <a href="https://publications.waset.org/abstracts/20856/strengthening-rc-columns-using-carbon-fiber-reinforced-epoxy-composites-modified-with-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2690</span> Thermal Fracture Analysis of Fibrous Composites with Variable Fiber Spacing Using Jk-Integral</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farid%20Saeidi">Farid Saeidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Serkan%20Dag"> Serkan Dag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, fracture analysis of a fibrous composite laminate with variable fiber spacing is carried out using Jk-integral method. The laminate is assumed to be under thermal loading. Jk-integral is formulated by using the constitutive relations of plane orthotropic thermoelasticity. Developed domain independent form of the Jk-integral is then integrated into the general purpose finite element analysis software ANSYS. Numerical results are generated so as to assess the influence of variable fiber spacing on mode I and II stress intensity factors, energy release rate, and T-stress. For verification, some of the results are compared to those obtained using displacement correlation technique (DCT). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jk-integral" title="Jk-integral">Jk-integral</a>, <a href="https://publications.waset.org/abstracts/search?q=Variable%20Fiber%20Spacing" title=" Variable Fiber Spacing"> Variable Fiber Spacing</a>, <a href="https://publications.waset.org/abstracts/search?q=Thermoelasticity" title=" Thermoelasticity"> Thermoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=T-stress" title=" T-stress"> T-stress</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Method" title=" Finite Element Method"> Finite Element Method</a>, <a href="https://publications.waset.org/abstracts/search?q=Fibrous%20Composite." title=" Fibrous Composite."> Fibrous Composite.</a> </p> <a href="https://publications.waset.org/abstracts/58021/thermal-fracture-analysis-of-fibrous-composites-with-variable-fiber-spacing-using-jk-integral" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2689</span> Micromechanical Analysis of Interface Properties Effects on Transverse Tensile Response of Fiber-Reinforced Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Naderi">M. Naderi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Iyyer"> N. Iyyer</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Goel"> K. Goel</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Phan"> N. Phan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A micromechanical analysis of the influence of fiber-matrix interface fracture properties on the transverse tensile response of fiber-reinforced composite is investigated. Augmented finite element method (AFEM) is used to provide high-fidelity damage initiation and propagation along the micromechanical analysis. Effects of fiber volume fraction and fiber shapes are also studies in representative volume elements (RVE) to capture the stochastic behavior of the composite under loading. In addition, defects and voids influence on the composite response are investigated in micromechanical analysis. The results reveal that the response of RVE with constant interface properties overestimates the composite transverse strength. It is also seen that the damage initiation and propagation locations are controlled by the distributions of fracture properties, fibers’ shapes, and defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cohesive%20model" title="cohesive model">cohesive model</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20mechanics" title=" computational mechanics"> computational mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=micromechanics" title=" micromechanics"> micromechanics</a> </p> <a href="https://publications.waset.org/abstracts/74257/micromechanical-analysis-of-interface-properties-effects-on-transverse-tensile-response-of-fiber-reinforced-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2688</span> Behavior of Reinforced Soil by Polypropylene Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kamal%20Elbokl">M. Kamal Elbokl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The beneficial effects of reinforcing the subgrade soil in pavement system with randomly distributed polypropylene fibers were investigated. For this issue, two types of soils and one type of fiber were selected. Proctor, CBR and unconfined compression tests were conducted on unreinforced samples as well as reinforced ones at different concentrations and aspect ratio of fibers. OMC, CBR and modulus of elasticity were investigated and thereby, the optimum value of aspect ratio and fiber content were determined. The static and repeated triaxial tests were also conducted to study the behaviour of fiber reinforced soils under both static and repeated loading. The results indicated that CBR values of reinforced sand and clay were 3.1 and 4.2 times of their unreinforced values respectively. The modulus of elasticity of fiber reinforced soils has increased by 100% for silty sandy soil and 60.20% for silty clay soil due to fiber reinforcement. The reinforced soils exhibited higher failure stresses in the static triaxial tests than the unreinforced ones due to the apparent bond developed between soil particle and the fiber. Fiber reinforcement of subgrade soils can play an important role in control the rut formation in the pavement system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20fibers" title="polypropylene fibers">polypropylene fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=CBR" title=" CBR"> CBR</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20triaxial" title=" static triaxial"> static triaxial</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20triaxial" title=" cyclic triaxial"> cyclic triaxial</a>, <a href="https://publications.waset.org/abstracts/search?q=resilient%20strain" title=" resilient strain"> resilient strain</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20strain" title=" permanent strain"> permanent strain</a> </p> <a href="https://publications.waset.org/abstracts/4280/behavior-of-reinforced-soil-by-polypropylene-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">623</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2687</span> Experimental and Comparative Study of Composite Thin Cylinder Subjected to Internal Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hakim%20S.%20Sultan%20Aljibori">Hakim S. Sultan Aljibori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental procedure is developed to study the performance of composite thin wall cylinders subjected to internal pressure loading for investigations of stress distribution through the composite cylinders wall. Three types of fibers were used in this study are; woven roving glass fiber/epoxy, hybrid fiber/epoxy, and Kevlar fiber/epoxy composite specimens were fabricated and tested. All of these specimens subjected to uniformed pressure load using the hydraulic pump. Axial stress is identified, and values were found after collecting all the results. Comparison between the deferent types of specimens was done. Thus, the present investigation concludes the efficient and effective composite cylinder experimentally and provides a considerable advantage for using woven roving fibers in pressure vessels applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20distribution" title="stress distribution">stress distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title=" composite material"> composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20pressure" title=" internal pressure"> internal pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fiber" title=" glass fiber"> glass fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20fiber" title=" hybrid fiber"> hybrid fiber</a> </p> <a href="https://publications.waset.org/abstracts/109374/experimental-and-comparative-study-of-composite-thin-cylinder-subjected-to-internal-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2686</span> Water Absorption Studies on Natural Fiber Reinforced Polymer Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20L.%20Devnani">G. L. Devnani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shishir%20Sinha"> Shishir Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent years, researchers have drawn their focus on natural fibers reinforced composite materials because of their excellent properties like low cost, lower weight, better tensile and flexural strengths, biodegradability etc. There is little concern however that when these materials are put in moist conditions for long duration, their mechanical properties degrade. Therefore, in order to take maximum advantage of these novel materials, one should have a complete understanding of their moisture or water absorption phenomena. Various fiber surface treatment methods like alkaline treatment, acetylation etc. have also been suggested for reduction in water absorption of these composites. In the present study, a detailed review is done for water absorption behavior of natural fiber reinforced polymer composites, and experiments also have been performed on these composites with varying the parameters like fiber loading etc. for understanding the water absorption kinetics. Various surface treatment methods also performed to reduce the water absorption behavior of these materials and effort is made to develop a proper understanding of water absorption mechanism mathematically and experimentally for full potential utilization of natural fiber reinforced polymer composite materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20treatment" title="alkaline treatment">alkaline treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fiber" title=" natural fiber"> natural fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20absorption" title=" water absorption "> water absorption </a> </p> <a href="https://publications.waset.org/abstracts/77179/water-absorption-studies-on-natural-fiber-reinforced-polymer-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2685</span> A Study on the Improvement of the Bond Performance of Polypropylene Macro Fiber according to Longitudinal Shape Change</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung-yong%20Choi">Sung-yong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Woo-tai%20Jung"> Woo-tai Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-hwan%20Park"> Young-hwan Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study intends to improve the bond performance of the polypropylene fiber used as reinforcing fiber for concrete by changing its shape into double crimped type through the enhancement its fabrication process. The bond performance of such double crimped fiber is evaluated by applying the JCI SF-8 (dog-bone shape) testing method. The test results reveal that the double crimped fiber develops bond performance improved by more than 19% compared to the conventional crimped type fiber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bond" title="Bond">Bond</a>, <a href="https://publications.waset.org/abstracts/search?q=Polypropylene" title=" Polypropylene"> Polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforcement" title=" fiber reinforcement"> fiber reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=macro%20fiber" title=" macro fiber"> macro fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20change" title=" shape change"> shape change</a> </p> <a href="https://publications.waset.org/abstracts/1536/a-study-on-the-improvement-of-the-bond-performance-of-polypropylene-macro-fiber-according-to-longitudinal-shape-change" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2684</span> Effect of Fiber Orientation on the Mechanical Properties of Fabricated Plate Using Basalt Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharmili%20Routray">Sharmili Routray</a>, <a href="https://publications.waset.org/abstracts/search?q=Kishor%20Chandra%20Biswal"> Kishor Chandra Biswal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of corrosion resistant fiber reinforced polymer (FRP) reinforcement is beneficial in structures particularly those exposed to deicing salts, and/or located in highly corrosive environment. Generally Glass, Carbon and Aramid fibers are used for the strengthening purpose of the structures. Due to the necessities of low weight and high strength materials, it is required to find out the suitable substitute with low cost. Recent developments in fiber production technology allow the strengthening of structures using Basalt fiber which is made from basalt rock. Basalt fiber has good range of thermal performance, high tensile strength, resistance to acids, good electro‐magnetic properties, inert nature, resistance to corrosion, radiation and UV light, vibration and impact loading. This investigation focuses on the effect of fibre content and fiber orientation of basalt fibre on mechanical properties of the fabricated composites. Specimen prepared with unidirectional Basalt fabric as reinforcing materials and epoxy resin as a matrix in polymer composite. In this investigation different fiber orientation are taken and the fabrication is done by hand lay-up process. The variation of the properties with the increasing number of plies of fiber in the composites is also studied. Specimens are subjected to tensile strength test and the failure of the composite is examined with the help of INSTRON universal testing Machine (SATEC) of 600 kN capacities. The average tensile strength and modulus of elasticity of BFRP plates are determined from the test Program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BFRP" title="BFRP">BFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=fabrication" title=" fabrication"> fabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=Fiber%20Reinforced%20Polymer%20%28FRP%29" title=" Fiber Reinforced Polymer (FRP)"> Fiber Reinforced Polymer (FRP)</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/17477/effect-of-fiber-orientation-on-the-mechanical-properties-of-fabricated-plate-using-basalt-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2683</span> Simulation of Fiber Deposition on Molded Fiber Screen Using Multi-Sphere Discrete Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kim%20Quy%20Le">Kim Quy Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Duan%20Fei"> Duan Fei</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Wei%20Chew"> Jia Wei Chew</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Zeng"> Jun Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Fabiola%20Leyva"> Maria Fabiola Leyva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In line with the sustainable development goal, molded fiber products play important roles in reducing plastic-based packaging. To fabricate molded fiber products, besides using conventional meshing tools, 3D printing is employed to manufacture the molded fiber screen. 3D printing technique allows printing molded fiber screens with complex geometry, flexible in pore size and shape. The 3D printed molded fiber screens are in the progress of investigation to improve the de-watering efficiency, fiber collection, mechanical strength, etc. In addition, the fiber distribution on the screen is also necessary to access the quality of the screen. Besides using experimental methods to capture the fiber distribution on screen, simulation also offers using tools to access the uniformity of fiber. In this study, the fiber was simulated using the multi-sphere model to simulate the fibers. The interaction of the fibers was able to mimic by employing the discrete element method. The fiber distribution was captured and compared to the experiment. The simulation results were able to reveal the fiber deposition layer upon layer and explain the formation of uneven thickness on the tilted area of molded fiber screen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-jet%20fusion" title=" multi-jet fusion"> multi-jet fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=molded%20fiber%20screen" title=" molded fiber screen"> molded fiber screen</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a> </p> <a href="https://publications.waset.org/abstracts/157099/simulation-of-fiber-deposition-on-molded-fiber-screen-using-multi-sphere-discrete-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fiber%20loading&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fiber%20loading&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fiber%20loading&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fiber%20loading&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fiber%20loading&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fiber%20loading&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fiber%20loading&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fiber%20loading&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fiber%20loading&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fiber%20loading&page=90">90</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fiber%20loading&page=91">91</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fiber%20loading&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>