CINXE.COM
The latest in Machine Learning | Papers With Code
<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <script> const GTAG_ENABLED = true ; const GTAG_TRACKING_ID = "UA-121182717-1"; const SENTRY_DSN_FRONTEND = "".trim(); const GLOBAL_CSRF_TOKEN = 'KwOmKb5njAGqG3HCrESc8Pj56kK30eu5mwhSBZ6c1Gl8ygfNxG6SWRfrLipJjPWr'; const MEDIA_URL = "https://production-media.paperswithcode.com/"; const ASSETS_URL = "https://production-assets.paperswithcode.com"; run_after_frontend_loaded = window.run_after_frontend_loaded || []; </script> <link rel="preconnect" href="https://production-assets.paperswithcode.com"><link rel="dns-prefetch" href="https://production-assets.paperswithcode.com"><link rel="preload" as="font" type="font/woff2" href="https://production-assets.paperswithcode.com/perf/fonts/65e877e527022735c1a1.woff2" crossorigin><link rel="preload" as="font" type="font/woff2" href="https://production-assets.paperswithcode.com/perf/fonts/917632e36982ca7933c8.woff2" crossorigin><link rel="preload" as="font" type="font/woff2" href="https://production-assets.paperswithcode.com/perf/fonts/f1405bd8a987c2ea8a67.woff2" crossorigin><script>(()=>{if(GTAG_ENABLED){const t=document.createElement("script");function n(){window.dataLayer.push(arguments)}t.src=`https://www.googletagmanager.com/gtag/js?id=${GTAG_TRACKING_ID}`,document.head.appendChild(t),window.dataLayer=window.dataLayer||[],window.gtag=n,n("js",new Date),n("config",GTAG_TRACKING_ID),window.captureOutboundLink=function(t){n("event","click",{event_category:"outbound",event_label:t})}}else window.captureOutboundLink=function(n){document.location=n}})();</script><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/766.4af6b88b.js"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/351.a22a9607.js"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/452.d3ecdfa4.js"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/150.9d9e9e58.js"><link rel="preload" as="style" href="https://production-assets.paperswithcode.com/perf/918.c41196c3.css"><link rel="preload" as="style" href="https://production-assets.paperswithcode.com/perf/review_paper_results.c7f8a69d.css"><link rel="preload" as="script" href="https://production-assets.paperswithcode.com/perf/review_paper_results.4f9814fb.js"><link rel="stylesheet" href="https://production-assets.paperswithcode.com/perf/918.c41196c3.css"><link rel="stylesheet" href="https://production-assets.paperswithcode.com/perf/review_paper_results.c7f8a69d.css"> <!-- Metadata --> <title>The latest in Machine Learning | Papers With Code</title> <meta name="description" content="Papers With Code highlights trending Machine Learning research and the code to implement it." /> <!-- Open Graph protocol metadata --> <meta property="og:title" content="Papers with Code - The latest in Machine Learning"> <meta property="og:description" content="Papers With Code highlights trending Machine Learning research and the code to implement it."> <meta property="og:image" content="https://paperswithcode.com/static/logo.png"> <meta property="og:url" content="https://paperswithcode.com/paper/gpt-4-technical-report-1/review/?hl=117147"> <!-- Twitter metadata --> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:site" content="@paperswithcode"> <meta name="twitter:title" content="Papers with Code - The latest in Machine Learning"> <meta name="twitter:description" content="Papers With Code highlights trending Machine Learning research and the code to implement it."> <meta name="twitter:creator" content="@paperswithcode"> <meta name="twitter:url" content="https://paperswithcode.com/paper/gpt-4-technical-report-1/review/?hl=117147"> <meta name="twitter:domain" content="paperswithcode.com"> <!-- JSON LD --> <script type="application/ld+json">{ "@context": "http://schema.org", "@graph": { "@type": "WebPage", "name": "The latest in Machine Learning", "description": "Papers With Code highlights trending Machine Learning research and the code to implement it.", "url": "https://paperswithcode.com/paper/gpt-4-technical-report-1/review/?hl=117147", "image": "https://paperswithcode.com/static/logo.png", "headline": "The latest in Machine Learning" } }</script> <meta name="theme-color" content="#fff"/> <link rel="manifest" href="https://production-assets.paperswithcode.com/static/manifest.web.json"> </head> <body> <nav class="navbar navbar-expand-lg navbar-light header"> <a class="navbar-brand" href="/"> <span class=" icon-wrapper" data-name="pwc"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path d="M88 128h48v256H88zm144 0h48v256h-48zm-72 16h48v224h-48zm144 0h48v224h-48zm72-16h48v256h-48z"/><path d="M104 104V56H16v400h88v-48H64V104zm304-48v48h40v304h-40v48h88V56z"/></svg></span> </a> <div class="navbar-mobile-twitter d-lg-none"> <a rel="noreferrer" href="https://twitter.com/paperswithcode"> <span class=" icon-wrapper icon-fa icon-fa-brands" data-name="twitter"><svg viewBox="0 0 512.001 515.25" xmlns="http://www.w3.org/2000/svg"><path d="M459.37 152.016c.326 4.548.326 9.097.326 13.645 0 138.72-105.583 298.558-298.559 298.558C101.685 464.22 46.457 447 0 417.114c8.447.973 16.568 1.298 25.34 1.298 49.054 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.113-72.772 6.499.975 12.996 1.624 19.819 1.624 9.42 0 18.843-1.3 27.613-3.573-48.08-9.747-84.142-51.98-84.142-102.984v-1.3c13.968 7.798 30.213 12.67 47.43 13.32-28.263-18.843-46.78-51.006-46.78-87.391 0-19.492 5.196-37.36 14.294-52.954 51.654 63.674 129.3 105.258 216.364 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.827 46.782-104.934 104.934-104.934 30.214 0 57.502 12.67 76.671 33.136 23.715-4.548 46.455-13.319 66.599-25.34-7.798 24.367-24.366 44.834-46.132 57.828 21.117-2.274 41.584-8.122 60.426-16.244-14.292 20.791-32.161 39.309-52.628 54.253z"/></svg></span> </a> </div> <button class="navbar-toggler" type="button" data-toggle="collapse" data-bs-toggle="collapse" data-target="#top-menu" data-bs-target="#top-menu" aria-controls="top-menu" aria-expanded="false" aria-label="Toggle navigation" > <span class="navbar-toggler-icon"></span> </button> <div class="collapse navbar-collapse" id="top-menu"> <ul class="navbar-nav mr-auto navbar-nav__left light-header"> <li class="nav-item header-search"> <form action="/search" method="get" id="id_global_search_form" autocomplete="off"> <input type="text" name="q_meta" style="display:none" id="q_meta" /> <input type="hidden" name="q_type" id="q_type" /> <input id="id_global_search_input" autocomplete="off" value="" name='q' class="global-search" type="search" placeholder='Search'/> <button type="submit" class="icon"><span class=" icon-wrapper icon-fa icon-fa-light" data-name="search"><svg viewBox="0 0 512.025 520.146" xmlns="http://www.w3.org/2000/svg"><path d="M508.5 482.6c4.7 4.7 4.7 12.3 0 17l-9.9 9.9c-4.7 4.7-12.3 4.7-17 0l-129-129c-2.2-2.3-3.5-5.3-3.5-8.5v-10.2C312 396 262.5 417 208 417 93.1 417 0 323.9 0 209S93.1 1 208 1s208 93.1 208 208c0 54.5-21 104-55.3 141.1H371c3.2 0 6.2 1.2 8.5 3.5zM208 385c97.3 0 176-78.7 176-176S305.3 33 208 33 32 111.7 32 209s78.7 176 176 176z"/></svg></span></button> </form> </li> <li class="nav-item"> <a class="nav-link" href="/sota"> Browse State-of-the-Art </a> </li> <li class="nav-item"> <a class="nav-link" href="/datasets"> Datasets </a> </li> <li class="nav-item"> <a class="nav-link" href="/methods">Methods</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" role="button" id="navbarDropdownRepro" data-toggle="dropdown" data-bs-toggle="dropdown" aria-haspopup="true" aria-expanded="false" > More </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownRepro"> <a class="dropdown-item" href="/newsletter">Newsletter</a> <a class="dropdown-item" href="/rc2022">RC2022</a> <div class="dropdown-divider"></div> <a class="dropdown-item" href="/about">About</a> <a class="dropdown-item" href="/trends">Trends</a> <a class="dropdown-item" href="https://portal.paperswithcode.com/"> Portals </a> <a class="dropdown-item" href="/libraries"> Libraries </a> </div> </li> </ul> <ul class="navbar-nav ml-auto navbar-nav__right navbar-subscribe justify-content-center align-items-center"> <li class="nav-item"> <a class="nav-link" rel="noreferrer" href="https://twitter.com/paperswithcode"> <span class="nav-link-social-icon icon-wrapper icon-fa icon-fa-brands" data-name="twitter"><svg viewBox="0 0 512.001 515.25" xmlns="http://www.w3.org/2000/svg"><path d="M459.37 152.016c.326 4.548.326 9.097.326 13.645 0 138.72-105.583 298.558-298.559 298.558C101.685 464.22 46.457 447 0 417.114c8.447.973 16.568 1.298 25.34 1.298 49.054 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.113-72.772 6.499.975 12.996 1.624 19.819 1.624 9.42 0 18.843-1.3 27.613-3.573-48.08-9.747-84.142-51.98-84.142-102.984v-1.3c13.968 7.798 30.213 12.67 47.43 13.32-28.263-18.843-46.78-51.006-46.78-87.391 0-19.492 5.196-37.36 14.294-52.954 51.654 63.674 129.3 105.258 216.364 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.827 46.782-104.934 104.934-104.934 30.214 0 57.502 12.67 76.671 33.136 23.715-4.548 46.455-13.319 66.599-25.34-7.798 24.367-24.366 44.834-46.132 57.828 21.117-2.274 41.584-8.122 60.426-16.244-14.292 20.791-32.161 39.309-52.628 54.253z"/></svg></span> </a> </li> <li class="nav-item"> <a id="signin-link" class="nav-link" href="/accounts/login?next=/paper/gpt-4-technical-report-1/review/">Sign In</a> </li> </ul> </div> </nav> <!-- Page modals --> <div class="modal fade" id="emailModal" tabindex="-1" role="dialog" aria-labelledby="emailModalLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h3 class="modal-title" id="emailModalLabel">Subscribe to the PwC Newsletter</h3> <button type="button" class="close" data-dismiss="modal" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <form action="" method="post"> <div class="modal-body"> <div class="modal-body-info-text"> Stay informed on the latest trending ML papers with code, research developments, libraries, methods, and datasets.<br/><br/> <a href="/newsletter">Read previous issues</a> </div> <input type="hidden" name="csrfmiddlewaretoken" value="KwOmKb5njAGqG3HCrESc8Pj56kK30eu5mwhSBZ6c1Gl8ygfNxG6SWRfrLipJjPWr"> <input placeholder="Enter your email" type="email" class="form-control pwc-email" name="address" id="id_address" max_length="100" required> </div> <div class="modal-footer"> <button type="submit" class="btn btn-primary">Subscribe</button> </div> </form> </div> </div> </div> <!-- Login --> <div class="modal fade" id="loginModal" tabindex="-1" role="dialog" aria-labelledby="loginModalLabel" aria-hidden="true"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <h5 class="modal-title" id="loginModalLabel">Join the community</h5> <button type="button" class="close btn-close" data-dismiss="modal" data-bs-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="login-modal-message"> You need to <a href="/accounts/login?next=/paper/gpt-4-technical-report-1/review/">log in</a> to edit.<br/> You can <a href="/accounts/register?next=/paper/gpt-4-technical-report-1/review/">create a new account</a> if you don't have one.<br/><br/> </div> </div> </div> </div> <div class="container content content-buffer "> <form action="" method="post"> <input type="hidden" name="csrfmiddlewaretoken" value="KwOmKb5njAGqG3HCrESc8Pj56kK30eu5mwhSBZ6c1Gl8ygfNxG6SWRfrLipJjPWr"> <div class="container-fluid content review-content"> <div class="extracted-table"> <div class="row"> <div class="col-md-6 from-paper"> <div class="arxiv-tab"> Paper </div> <div class="container paper-extracts"> <h3>GPT-4 Technical Report </h3> <p> We report the development of GPT-4, a large-scale, multimodal model which can accept image and text inputs and produce text outputs. While less capable than humans in many real-world scenarios, GPT-4 exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers. GPT-4 is a Transformer-based model pre-trained to predict the next token in a document. The post-training alignment process results in improved performance on measures of factuality and adherence to desired behavior. A core component of this project was developing infrastructure and optimization methods that behave predictably across a wide range of scales. This allowed us to accurately predict some aspects of GPT-4's performance based on models trained with no more than 1/1,000th the compute of GPT-4. </p> <div class="paper-pdf-link"> <a href="https://arxiv.org/pdf/2303.08774v5.pdf" target="_blank" class="badge badge-light"> <span class=" icon-wrapper icon-fa icon-fa-regular" data-name="file-pdf"><svg viewBox="0 0 384 513.795" xmlns="http://www.w3.org/2000/svg"><path d="M369.9 98.88c9 9 14.1 21.3 14.1 34v332.1c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48v-416c0-26.5 21.5-48 48-48.1h204.1c12.7 0 24.9 5.1 33.9 14.1zm-37.8 30.1L256 52.88v76.1h76.1zM48 464.98h288v-288H232c-13.3 0-24-10.7-24-24v-104H48v416zm250.2-143.7c10.5 10.5 8 38.7-17.5 38.7-14.8 0-36.9-6.8-55.8-17-21.6 3.6-46 12.7-68.4 20.1-50.1 86.4-79.4 47-76.1 31.2 4-20 31-35.9 51-46.2 10.5-18.4 25.4-50.5 35.4-74.4-7.4-28.6-11.4-51-7-67.1 4.8-17.7 38.4-20.3 42.6 5.9 4.7 15.4-1.5 39.9-5.4 56 8.1 21.3 19.6 35.8 36.8 46.3 17.4-2.2 52.2-5.5 64.4 6.5zm-198.1 77.8c0 .7 11.4-4.7 30.4-35-5.9 5.5-25.299 21.3-30.4 35zm81.6-190.6c-2.5 0-2.6 26.9 1.8 40.8 4.9-8.7 5.6-40.8-1.8-40.8zm-24.4 136.6c15.9-6.1 34-14.9 54.8-19.2-11.199-8.3-21.8-20.4-30.1-35.5-6.7 17.7-15 37.8-24.7 54.7zm131.6-5c3.6-2.4-2.2-10.4-37.3-7.8 32.3 13.8 37.3 7.8 37.3 7.8z"/></svg></span> PDF </a> <a href="/paper/gpt-4-technical-report-1" class="badge badge-light" target="_blank"> <span class=" icon-wrapper" data-name="pwc"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path d="M88 128h48v256H88zm144 0h48v256h-48zm-72 16h48v224h-48zm144 0h48v224h-48zm72-16h48v256h-48z"/><path d="M104 104V56H16v400h88v-48H64V104zm304-48v48h40v304h-40v48h88V56z"/></svg></span> Paper record </a> </div> <script> setTimeout(function(){ window.location.reload(1); }, 3000); </script> <div id="arxiv-table-container"></div> </div> </div> <div class="col-md-6 from-paper"> <div class="pwc-tab"> Results in Papers With Code <div style="position:relative;top:10px;background-color:transparent;z-index:10;color:#777"> (↓ scroll down to see all results) </div> </div> <div class="manual-review"> <div id="sota-review-table-wrap"> <div id="sota-review-table"></div> </div> </div> </div> </div> <div id="arxiv-add-container" class="arxiv-add-wrapper"> </div> <div id="arxiv-modal-container" class="arxiv-modal-container"> </div> <div id="gray-blobs-modal-container" class="gray-blobs-modal-container"> </div> <div id="fixed-footer-container" class="fixed-footer"> </div> </div> </div> </form> <script id="arxiv-tables" type="application/json">""</script> <script id="extracted-results" type="application/json">""</script> <script id="autosuggests-json" type="application/json">""</script> <script id="referencesData-json" type="application/json">""</script> <template id="review-help-content" style="display: none"> <div class="modal-body-info-text"> <iframe width="100%" height="315" src="https://www.youtube.com/embed/dG_FzkoeHDs" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> <h3>Reader Guidelines</h3> <p><b>What is this page?</b> This page shows tables extracted from arXiv papers on the left-hand side. It shows extracted results on the right hand side that match the taxonomy on Papers With Code.</p> <p><b>What are the colored boxes on the right hand side?</b> These show results extracted from the paper and linked to tables on the left hand side. A result consists of a metric value, model name, dataset name and task name.</p> <p><b>What do the colors mean?</b> Green means the result is approved and shown on the website. Yellow is a result that you have added but have not yet saved. Blue is a referenced result that originates from a different paper.</p> <p><b>Where do suggested results come from?</b> We have a machine learning model running in the background that makes suggestions on papers.</p> <p><b>Where do referenced results come from?</b> If we find referenced results in a table to other papers, we show a parsed reference box that editors can use to annotate to get these extra results from other papers.</p> <h3>Editor Guidelines</h3> <p><b>I’m editing for the first time and scared of making mistakes. Help!</b> Don’t worry! If you make mistakes we can revert them: everything is versioned! So just tell us on the Slack channel if you’ve accidentally deleted something (and so on) - it’s not a problem at all, so just go for it!</p> <p><b>How do I add a new result from a table?</b> Click on a cell in a table on the left hand side where the result comes from. Then select one of the top-5 proposals. You can manually edit the incorrect or missing fields. Then choose a task, dataset and metric name from the Papers With Code taxonomy. You should check if a benchmark already exists to prevent duplication; if it doesn’t exist you can create a new dataset. E.g. ImageNet on Image Classification already exists with metrics Top 1 Accuracy and Top 5 Accuracy.</p> <p><b>What are the model naming conventions?</b> Model name should be straightforward, as presented in the paper. Note that you can use parentheses to highlight details, for example: BERT Large (12 layers), FoveaBox (ResNeXt-101), EfficientNet-B7 (NoisyStudent).</p> <p><b>Other tips and tricks</b></p> <ul> <li>If a benchmark already exists for a dataset/task pair you enter, you’ll see a link appear.</li> <li>If the benchmark doesn’t exist, a “new” icon will appear signifying a new leaderboard.</li> <li>If you're feeling lucky, Cmd+Click a cell in a table to get the first result automatically.</li> <li>When editing multiple results from the same table you can click the "Change all" button to copy the current value to all other records from that table.</li> </ul> <p><b>How do I add referenced results?</b> If a table has references, you can use the parse references feature to get more results from other papers. First, you’ll need at least one record in the cell that has results (see image below for an example). Then click the "Parse references" button to link references to papers in PapersWithCode and annotate the results. Below you can see an example. </p> <div class="image-box w-50"> <img class="" src="https://production-assets.paperswithcode.com/perf/images/review-images/refs-a7278400.png" /> <span class="image-caption">Comparison table extracted from <i>Universal Language Model Fine-tuning for Text Classification</i> paper (<a href="https://arxiv.org/abs/1801.06146" target="_blank">Howard and Ruder, 2018</a>) with parsed references.</span> </div> <p><b>How do I save my edits?</b> When you’re happy with your change click save and your suggested changes will turn green!</p> </div> </template> <link href="https://production-assets.paperswithcode.com/static/fonts/font-awesome/css/all.min.css" rel="stylesheet" /> <script> let taskAutocompleteUrl = "/task-autocomplete/"; let datasetAutocompleteUrl = "/dataset-autocomplete/"; let metricAutocompleteUrl = "/metric-autocomplete/"; let parseReferencesUrl="/api/parse-references/gpt-4-technical-report-1"; let isUserLoggedIn = false; let loginUrl = "/accounts/login?next=/paper/gpt-4-technical-report-1/review/"; let unsavedChanged = false; let evaluationtablerowHl = null; </script> <script type="module" src="https://unpkg.com/ionicons@5.1.2/dist/ionicons/ionicons.esm.js" ></script> <script nomodule="" src="https://unpkg.com/ionicons@5.1.2/dist/ionicons/ionicons.js" ></script> </div> <div class="footer"> <div class="footer-contact"> <span class="footer-contact-item">Contact us on:</span> <a class="footer-contact-item" href="mailto:hello@paperswithcode.com"> <span class=" icon-wrapper icon-ion" data-name="mail"><svg xmlns="http://www.w3.org/2000/svg" width="512" height="512" viewBox="0 0 512 512"><path d="M424 80H88a56.06 56.06 0 0 0-56 56v240a56.06 56.06 0 0 0 56 56h336a56.06 56.06 0 0 0 56-56V136a56.06 56.06 0 0 0-56-56zm-14.18 92.63l-144 112a16 16 0 0 1-19.64 0l-144-112a16 16 0 1 1 19.64-25.26L256 251.73l134.18-104.36a16 16 0 0 1 19.64 25.26z"/></svg></span> hello@paperswithcode.com </a>. <span class="footer-contact-item"> Papers With Code is a free resource with all data licensed under <a rel="noreferrer" href="https://creativecommons.org/licenses/by-sa/4.0/">CC-BY-SA</a>. </span> </div> <div class="footer-links"> <a href="/site/terms">Terms</a> <a href="/site/data-policy">Data policy</a> <a href="/site/cookies-policy">Cookies policy</a> <a href="/about#team" class="fair-logo"> from <img src=""> </a> </div> </div> <script> // MathJax window.MathJax = { tex: { inlineMath: [ ["$", "$"], ["\\(", "\\)"], ], }, }; const mathjaxScript = document.createElement("script"); mathjaxScript.src = "https://production-assets.paperswithcode.com/static/js/mathjax/tex-chtml.js"; document.head.appendChild(mathjaxScript); </script> <script src="https://production-assets.paperswithcode.com/perf/766.4af6b88b.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/351.a22a9607.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/452.d3ecdfa4.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/150.9d9e9e58.js" defer></script><script src="https://production-assets.paperswithcode.com/perf/review_paper_results.4f9814fb.js" defer></script> </body> </html>