CINXE.COM

Search results for: oscillation phase displacement

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: oscillation phase displacement</title> <meta name="description" content="Search results for: oscillation phase displacement"> <meta name="keywords" content="oscillation phase displacement"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="oscillation phase displacement" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="oscillation phase displacement"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5478</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: oscillation phase displacement</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5478</span> Numerical Simulation of Aeroelastic Influence Exerted by Kinematic and Geometrical Parameters on Oscillations&#039; Frequencies and Phase Shift Angles in a Simulated Compressor of Gas Transmittal Unit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liliia%20N.%20Butymova">Liliia N. Butymova</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Y.%20Modorsky"> Vladimir Y. Modorsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolai%20A.%20Shevelev"> Nikolai A. Shevelev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prediction of vibration processes in gas transmittal units (GTU) is an urgent problem. Despite numerous scientific publications on the problem of vibrations in general, there are not enough works concerning FSI-modeling interaction processes between several deformable blades in gas-dynamic flow. Since it is very difficult to solve the problem in full scope, with all factors considered, a unidirectional dynamic coupled 1FSI model is suggested for use at the first stage, which would include, from symmetry considerations, two blades, which might be considered as the first stage of solving more general bidirectional problem. ANSYS CFX programmed multi-processor was chosen as a numerical computation tool. The problem was solved on PNRPU high-capacity computer complex. At the first stage of the study, blades were believed oscillating with the same frequency, although oscillation phases could be equal and could be different. At that non-stationary gas-dynamic forces distribution over the blades surfaces is calculated in run of simulation experiment. Oscillations in the “gas — structure” dynamic system are assumed to increase if the resultant of these gas-dynamic forces is in-phase with blade oscillation, and phase shift (φ=0). Provided these oscillation occur with phase shift, then oscillations might increase or decrease, depending on the phase shift value. The most important results are as follows: the angle of phase shift in inter-blade oscillation and the gas-dynamic force depends on the flow velocity, the specific inter-blade gap, and the shaft rotation speed; a phase shift in oscillation of adjacent blades does not always correspond to phase shift of gas-dynamic forces affecting the blades. Thus, it was discovered, that asynchronous oscillation of blades might cause either attenuation or intensification of oscillation. It was revealed that clocking effect might depend not only on the mutual circumferential displacement of blade rows and the gap between the blades, but also on the blade dynamic deformation nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroelasticity" title="aeroelasticity">aeroelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20CFX" title=" ANSYS CFX"> ANSYS CFX</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillation" title=" oscillation"> oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20shift" title=" phase shift"> phase shift</a>, <a href="https://publications.waset.org/abstracts/search?q=clocking%20effect" title=" clocking effect"> clocking effect</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a> </p> <a href="https://publications.waset.org/abstracts/45119/numerical-simulation-of-aeroelastic-influence-exerted-by-kinematic-and-geometrical-parameters-on-oscillations-frequencies-and-phase-shift-angles-in-a-simulated-compressor-of-gas-transmittal-unit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5477</span> Rotary Machine Sealing Oscillation Frequencies and Phase Shift Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liliia%20N.%20Butymova">Liliia N. Butymova</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Ya%20Modorskii"> Vladimir Ya Modorskii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To ensure the gas transmittal GCU's efficient operation, leakages through the labyrinth packings (LP) should be minimized. Leakages can be minimized by decreasing the LP gap, which in turn depends on thermal processes and possible rotor vibrations and is designed to ensure absence of mechanical contact. Vibration mitigation allows to minimize the LP gap. It is advantageous to research influence of processes in the dynamic gas-structure system on LP vibrations. This paper considers influence of rotor vibrations on LP gas dynamics and influence of the latter on the rotor structure within the FSI unidirectional dynamical coupled problem. Dependences of nonstationary parameters of gas-dynamic process in LP on rotor vibrations under various gas speeds and pressures, shaft rotation speeds and vibration amplitudes, and working medium features were studied. The programmed multi-processor ANSYS CFX was chosen as a numerical computation tool. The problem was solved using PNRPU high-capacity computer complex. Deformed shaft vibrations are replaced with an unyielding profile that moves in the fixed annulus "up-and-down" according to set harmonic rule. This solves a nonstationary gas-dynamic problem and determines time dependence of total gas-dynamic force value influencing the shaft. Pressure increase from 0.1 to 10 MPa causes growth of gas-dynamic force oscillation amplitude and frequency. The phase shift angle between gas-dynamic force oscillations and those of shaft displacement decreases from 3π/4 to π/2. Damping constant has maximum value under 1 MPa pressure in the gap. Increase of shaft oscillation frequency from 50 to 150 Hz under P=10 MPa causes growth of gas-dynamic force oscillation amplitude. Damping constant has maximum value at 50 Hz equaling 1.012. Increase of shaft vibration amplitude from 20 to 80 µm under P=10 MPa causes the rise of gas-dynamic force amplitude up to 20 times. Damping constant increases from 0.092 to 0.251. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the minimum gas-dynamic force persistent oscillating amplitude under P=0.1 MPa being observed in methane, and maximum in the air. Frequency remains almost unchanged and the phase shift in the air changes from 3π/4 to π/2. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the maximum gas-dynamic force oscillating amplitude under P=10 MPa being observed in methane, and minimum in the air. Air demonstrates surging. Increase of leakage speed from 0 to 20 m/s through LP under P=0.1 MPa causes the gas-dynamic force oscillating amplitude to decrease by 3 orders and oscillation frequency and the phase shift to increase 2 times and stabilize. Increase of leakage speed from 0 to 20 m/s in LP under P=1 MPa causes gas-dynamic force oscillating amplitude to decrease by almost 4 orders. The phase shift angle increases from π/72 to π/2. Oscillations become persistent. Flow rate proved to influence greatly on pressure oscillations amplitude and a phase shift angle. Work medium influence depends on operation conditions. At pressure growth, vibrations are mostly affected in methane (of working substances list considered), and at pressure decrease, in the air at 25 ˚С. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroelasticity" title="aeroelasticity">aeroelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=labyrinth%20packings" title=" labyrinth packings"> labyrinth packings</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillation%20phase%20shift" title=" oscillation phase shift"> oscillation phase shift</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a> </p> <a href="https://publications.waset.org/abstracts/45122/rotary-machine-sealing-oscillation-frequencies-and-phase-shift-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5476</span> Geometric Optimisation of Piezoelectric Fan Arrays for Low Energy Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alastair%20Hales">Alastair Hales</a>, <a href="https://publications.waset.org/abstracts/search?q=Xi%20Jiang"> Xi Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical methods are used to evaluate the operation of confined face-to-face piezoelectric fan arrays as pitch, P, between the blades is varied. Both in-phase and counter-phase oscillation are considered. A piezoelectric fan consists of a fan blade, which is clamped at one end, and an extremely low powered actuator. This drives the blade tip’s oscillation at its first natural frequency. Sufficient blade tip speed, created by the high oscillation frequency and amplitude, is required to induce vortices and downstream volume flow in the surrounding air. A single piezoelectric fan may provide the ideal solution for low powered hot spot cooling in an electronic device, but is unable to induce sufficient downstream airflow to replace a conventional air mover, such as a convection fan, in power electronics. Piezoelectric fan arrays, which are assemblies including multiple fan blades usually in face-to-face orientation, must be developed to widen the field of feasible applications for the technology. The potential energy saving is significant, with a 50% power demand reduction compared to convection fans even in an unoptimised state. A numerical model of a typical piezoelectric fan blade is derived and validated against experimental data. Numerical error is found to be 5.4% and 9.8% using two data comparison methods. The model is used to explore the variation of pitch as a function of amplitude, A, for a confined two-blade piezoelectric fan array in face-to-face orientation, with the blades oscillating both in-phase and counter-phase. It has been reported that in-phase oscillation is optimal for generating maximum downstream velocity and flow rate in unconfined conditions, due at least in part to the beneficial coupling between the adjacent blades that leads to an increased oscillation amplitude. The present model demonstrates that confinement has a significant detrimental effect on in-phase oscillation. Even at low pitch, counter-phase oscillation produces enhanced downstream air velocities and flow rates. Downstream air velocity from counter-phase oscillation can be maximally enhanced, relative to that generated from a single blade, by 17.7% at P = 8A. Flow rate enhancement at the same pitch is found to be 18.6%. By comparison, in-phase oscillation at the same pitch outputs 23.9% and 24.8% reductions in peak downstream air velocity and flow rate, relative to that generated from a single blade. This optimal pitch, equivalent to those reported in the literature, suggests that counter-phase oscillation is less affected by confinement. The optimal pitch for generating bulk airflow from counter-phase oscillation is large, P > 16A, due to the small but significant downstream velocity across the span between adjacent blades. However, by considering design in a confined space, counterphase pitch should be minimised to maximise the bulk airflow generated from a certain cross-sectional area within a channel flow application. Quantitative values are found to deviate to a small degree as other geometric and operational parameters are varied, but the established relationships are maintained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20fans" title="piezoelectric fans">piezoelectric fans</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20energy%20cooling" title=" low energy cooling"> low energy cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20electronics" title=" power electronics"> power electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/84754/geometric-optimisation-of-piezoelectric-fan-arrays-for-low-energy-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5475</span> Inter-Area Oscillation Monitoring in Maghrebian Power Grid Using Phasor Measurement Unit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Tsebia">M. Tsebia</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Bentarzi"> H. Bentarzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the inter-connected power systems, a phenomenon called inter-area oscillation may be caused by several defects. In this paper, a study of the Maghreb countries inter-area power networks oscillation has been investigated. The inter-area oscillation monitoring can be enhanced by integrating Phasor Measurement Unit (PMU) technology installed in different places. The data provided by PMU and recorded by PDC will be used for the monitoring, analysis, and control purposes. The proposed approach has been validated by simulation using MATLAB/Simulink. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PMU" title="PMU">PMU</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-area%20oscillation" title=" inter-area oscillation"> inter-area oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=Maghrebian%20power%20system" title=" Maghrebian power system"> Maghrebian power system</a>, <a href="https://publications.waset.org/abstracts/search?q=Simulink" title=" Simulink"> Simulink</a> </p> <a href="https://publications.waset.org/abstracts/74645/inter-area-oscillation-monitoring-in-maghrebian-power-grid-using-phasor-measurement-unit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5474</span> Assessment Power and Oscillation Damping Using the POD Controller and Proposed FOD Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tohid%20Rahimi">Tohid Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahya%20Naderi"> Yahya Naderi</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Yousefi"> Babak Yousefi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Hossein%20Hoseini"> Seyed Hossein Hoseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. However, FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. However, Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper, firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. Therefore, FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20oscillation%20damping%20%28POD%29" title="power oscillation damping (POD)">power oscillation damping (POD)</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20oscillation%20damping%20%28FOD%29" title=" frequency oscillation damping (FOD)"> frequency oscillation damping (FOD)</a>, <a href="https://publications.waset.org/abstracts/search?q=Static%20synchronous%20series%20compensator%20%28SSSC%29" title=" Static synchronous series compensator (SSSC)"> Static synchronous series compensator (SSSC)</a>, <a href="https://publications.waset.org/abstracts/search?q=Genetic%20Algorithm%20%28GA%29" title=" Genetic Algorithm (GA)"> Genetic Algorithm (GA)</a> </p> <a href="https://publications.waset.org/abstracts/18560/assessment-power-and-oscillation-damping-using-the-pod-controller-and-proposed-fod-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5473</span> Laboratory Measurement of Relative Permeability of Immiscible Fluids in Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khwaja%20Naweed%20Seddiqi">Khwaja Naweed Seddiqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeo%20Honma"> Shigeo Honma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relative permeability is the important parameter controlling the immiscible displacement of multiphase fluids flow in porous medium. The relative permeability for immiscible displacement of two-phase fluids flow (oil and water) in porous medium has been measured in this paper. As a result of the experiment, irreducible water saturation, Swi, residual oil saturation, Sor, and relative permeability curves for Kerosene, Heavy oil and Lubricant oil were determined successfully. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=relative%20permeability" title="relative permeability">relative permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=immiscible%20displacement" title=" immiscible displacement"> immiscible displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium "> porous medium </a> </p> <a href="https://publications.waset.org/abstracts/47120/laboratory-measurement-of-relative-permeability-of-immiscible-fluids-in-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5472</span> Climate Teleconnections and Their Influence on the Spread of Dengue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edilene%20Machado">Edilene Machado</a>, <a href="https://publications.waset.org/abstracts/search?q=Carolina%20Karoly"> Carolina Karoly</a>, <a href="https://publications.waset.org/abstracts/search?q=Amanda%20Britz"> Amanda Britz</a>, <a href="https://publications.waset.org/abstracts/search?q=Luciane%20Salvi"> Luciane Salvi</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudineia%20Brazil"> Claudineia Brazil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate teleconnections refer to the climatic relationships between geographically distant regions, where changes in one location can influence weather patterns in another. These connections can occur through atmospheric and oceanic processes, leading to variations in temperature, precipitation, and other climatic elements. Studying teleconnections is crucial for better understanding the mechanisms that govern global climate and the potential consequences of climate change. A notable example of a teleconnection is the El Niño-Southern Oscillation (ENSO), which involves the interaction between the Equatorial Pacific Ocean and the atmosphere. During El Niño episodes, there is anomalous warming of the surface waters in the Equatorial Pacific, resulting in significant changes in global climate patterns. These changes can affect rainfall distribution, wind patterns, and temperatures in different parts of the world. The cold phase of ENSO, known as La Niña, is often associated with reduced precipitation and below-average temperatures in the state of Rio Grande do Sul, Brazil. Therefore, the objective of this research is to identify patterns between El Niño-Southern Oscillation (ENSO) events in their different phases and dengue transmission. Meteorological data and dengue case records for the city of Porto Alegre, in the southern region of Brazil, were used for the development of this research. The study highlighted that the highest incidence of dengue cases occurred during the cold phase of the El Niño-Southern Oscillation (ENSO). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20patterns" title="climate patterns">climate patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20teleconnections" title=" climate teleconnections"> climate teleconnections</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20variability" title=" climate variability"> climate variability</a>, <a href="https://publications.waset.org/abstracts/search?q=dengue" title=" dengue"> dengue</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Ni%C3%B1o-Southern%20oscillation" title=" El Niño-Southern oscillation"> El Niño-Southern oscillation</a> </p> <a href="https://publications.waset.org/abstracts/168481/climate-teleconnections-and-their-influence-on-the-spread-of-dengue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5471</span> Theoretical Study on the Forced Vibration of One Degree of Freedom System, Equipped with Inerter, under Load-Type or Displacement-Type Excitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barenten%20Suciu">Barenten Suciu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a theoretical study on the forced vibration of one degree of freedom system equipped with inerter, working under load-type or displacement-type excitation, is presented. Differential equations of movement are solved under cosinusoidal excitation, and explicit relations for the magnitude, resonant magnitude, phase angle, resonant frequency, and critical frequency are obtained. Influence of the inertance and damping on these dynamic characteristics is clarified. From the obtained results, one concludes that the inerter increases the magnitude of vibration and the phase angle of the damped mechanical system. Moreover, the magnitude ratio and difference of phase angles are not depending on the actual type of excitation. Consequently, such kind of similitude allows for the comparison of various theoretical and experimental results, which can be broadly found in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=displacement-type%20excitation" title="displacement-type excitation">displacement-type excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=inerter" title=" inerter"> inerter</a>, <a href="https://publications.waset.org/abstracts/search?q=load-type%20excitation" title=" load-type excitation"> load-type excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=one%20degree%20of%20freedom%20vibration" title=" one degree of freedom vibration"> one degree of freedom vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20connection" title=" parallel connection"> parallel connection</a> </p> <a href="https://publications.waset.org/abstracts/90102/theoretical-study-on-the-forced-vibration-of-one-degree-of-freedom-system-equipped-with-inerter-under-load-type-or-displacement-type-excitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5470</span> Influence of Kinematic, Physical and Mechanical Structure Parameters on Aeroelastic GTU Shaft Vibrations in Magnetic Bearings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeniia%20V.%20Mekhonoshina">Evgeniia V. Mekhonoshina</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Ya.%20Modorskii"> Vladimir Ya. Modorskii</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasilii%20Yu.%20Petrov"> Vasilii Yu. Petrov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, vibrations of rotors of gas transmittal unit evade sustainable forecasting. This paper describes elastic oscillation modes in resilient supports and rotor impellers modeled during computational experiments with regard to interference in the system of gas-dynamic flow and compressor rotor. Verification of aeroelastic approach was done on model problem of interaction between supersonic jet in shock tube with deformed plate. ANSYS 15.0 engineering analysis system was used as a modeling tool of numerical simulation in this paper. Finite volume method for gas dynamics and finite elements method for assessment of the strain stress state (SSS) components were used as research methods. Rotation speed and material’s elasticity modulus varied during calculations, and SSS components and gas-dynamic parameters in the dynamic system of gas-dynamic flow and compressor rotor were evaluated. The analysis of time dependence demonstrated that gas-dynamic parameters near the rotor blades oscillate at 200 Hz, and SSS parameters at the upper blade edge oscillate four times higher, i.e. with blade frequency. It has been detected that vibration amplitudes correction in the test points at magnetic bearings by aeroelasticity may correspond up to 50%, and about -π/4 for phases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Centrifugal%20compressor" title="Centrifugal compressor">Centrifugal compressor</a>, <a href="https://publications.waset.org/abstracts/search?q=aeroelasticity" title=" aeroelasticity"> aeroelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=interdisciplinary%20calculation" title=" interdisciplinary calculation"> interdisciplinary calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillation%20phase%20displacement" title=" oscillation phase displacement"> oscillation phase displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=nonstationarity" title=" nonstationarity"> nonstationarity</a> </p> <a href="https://publications.waset.org/abstracts/45111/influence-of-kinematic-physical-and-mechanical-structure-parameters-on-aeroelastic-gtu-shaft-vibrations-in-magnetic-bearings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5469</span> Hidden Oscillations in the Mathematical Model of the Optical Binary Phase Shift Keying (BPSK) Costas Loop</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20V.%20Kuznetsov">N. V. Kuznetsov</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Kuznetsova"> O. A. Kuznetsova</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Leonov"> G. A. Leonov</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Yuldashev"> M. V. Yuldashev</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Yuldashev"> R. V. Yuldashev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonlinear analysis of the phase locked loop (PLL)-based circuits is a challenging task. Thus, the simulation is widely used for their study. In this work, we consider a mathematical model of the optical Costas loop and demonstrate the limitations of simulation approach related to the existence of so-called hidden oscillations in the phase space of the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20Costas%20loop" title="optical Costas loop">optical Costas loop</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=hidden%20oscillation" title=" hidden oscillation"> hidden oscillation</a> </p> <a href="https://publications.waset.org/abstracts/51122/hidden-oscillations-in-the-mathematical-model-of-the-optical-binary-phase-shift-keying-bpsk-costas-loop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5468</span> Investigation of Oscillation Mechanism of a Large-scale Solar Photovoltaic and Wind Hybrid Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ting%20Kai%20Chia">Ting Kai Chia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruifeng%20Yan"> Ruifeng Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Feifei%20Bai"> Feifei Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Tapan%20Saha"> Tapan Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents a real-world power system oscillation incident in 2022 originated by a hybrid solar photovoltaic (PV) and wind renewable energy farm with a rated capacity of approximately 300MW in Australia. The voltage and reactive power outputs recorded at the point of common coupling (PCC) oscillated at a sub-synchronous frequency region, which sustained for approximately five hours in the network. The reactive power oscillation gradually increased over time and reached a recorded maximum of approximately 250MVar peak-to-peak (from inductive to capacitive). The network service provider was not able to quickly identify the location of the oscillation source because the issue was widespread across the network. After the incident, the original equipment manufacturer (OEM) concluded that the oscillation problem was caused by the incorrect setting recovery of the hybrid power plant controller (HPPC) in the voltage and reactive power control loop after a loss of communication event. The voltage controller normally outputs a reactive (Q) reference value to the Q controller which controls the Q dispatch setpoint of PV and wind plants in the hybrid farm. Meanwhile, a feed-forward (FF) configuration is used to bypass the Q controller in case there is a loss of communication. Further study found that the FF control mode was still engaged when communication was re-established, which ultimately resulted in the oscillation event. However, there was no detailed explanation of why the FF control mode can cause instability in the hybrid farm. Also, there was no duplication of the event in the simulation to analyze the root cause of the oscillation. Therefore, this research aims to model and replicate the oscillation event in a simulation environment and investigate the underlying behavior of the HPPC and the consequent oscillation mechanism during the incident. The outcome of this research will provide significant benefits to the safe operation of large-scale renewable energy generators and power networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PV" title="PV">PV</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillation" title=" oscillation"> oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a> </p> <a href="https://publications.waset.org/abstracts/186445/investigation-of-oscillation-mechanism-of-a-large-scale-solar-photovoltaic-and-wind-hybrid-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5467</span> Experimental and Graphical Investigation on Oil Recovery by Buckley-Leveret Theory </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khwaja%20Naweed%20Seddiqi">Khwaja Naweed Seddiqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zabihullah%20Mahdi"> Zabihullah Mahdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeo%20Honma"> Shigeo Honma </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently increasing oil production from petroleum reservoirs is one of the most important issues in the global energy sector. So, in this paper, the recovery of oil by the waterflooding technique from petroleum reservoir are considered. To investigate the aforementioned phenomena, the relative permeability of two immiscible fluids in sand is measured in the laboratory based on the steady-state method. Two sorts of oils, kerosene and heavy oil, and water are pumped simultaneously into a vertical sand column with different pumping ratio. From the change in fractional discharge measured at the outlet, a method for determining the relative permeability is developed focusing on the displacement mechanism in sand. Then, displacement mechanism of two immiscible fluids in the sand is investigated under the Buckley-Leveret frontal displacement theory and laboratory experiment. Two sorts of experiments, one is the displacement of pore water by oil, the other is the displacement of pore oil by water, are carried out. It is revealed that the relative permeability curves display tolerably different shape owing to the properties of oils, and produce different amount of residual oils and irreducible water saturation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20reservoir%20engineering" title="petroleum reservoir engineering">petroleum reservoir engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20permeability" title=" relative permeability"> relative permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=immiscible%20displacement%20in%20porous%20media" title=" immiscible displacement in porous media"> immiscible displacement in porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=steady-state%20method" title=" steady-state method"> steady-state method</a>, <a href="https://publications.waset.org/abstracts/search?q=waterflooding" title=" waterflooding"> waterflooding</a> </p> <a href="https://publications.waset.org/abstracts/59676/experimental-and-graphical-investigation-on-oil-recovery-by-buckley-leveret-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5466</span> Non−zero θ_13 and δ_CP phase with A_4 Flavor Symmetry and Deviations to Tri−Bi−Maximal mixing via Z_2 × Z_2 invariant perturbations in the Neutrino sector.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gayatri%20Ghosh">Gayatri Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a flavour theory of a neutrino mass model based on A_4 symmetry is considered to explain the phenomenology of neutrino mixing. The spontaneous symmetry breaking of A_4 symmetry in this model leads to tribimaximal mixing in the neutrino sector at a leading order. We consider the effect of Z_2 × Z_2 invariant perturbations in neutrino sector and find the allowed region of correction terms in the perturbation matrix that is consistent with 3σ ranges of the experimental values of the mixing angles. We study the entanglement of this formalism on the other phenomenological observables, such as δ_CP phase, the neutrino oscillation probability P(νµ → νe), the effective Majorana mass |mee| and |meff νe |. A Z_2 × Z_2 invariant perturbations in this model is introduced in the neutrino sector which leads to testable predictions of θ_13 and CP violation. By changing the magnitudes of perturbations in neutrino sector, one can generate viable values of δ_CP and neutrino oscillation parameters. Next we investigate the feasibility of charged lepton flavour violation in type-I seesaw models with leptonic flavour symmetries at high energy that leads to tribimaximal neutrino mixing. We consider an effective theory with an A_4 × Z_2 × Z_2 symmetry, which after spontaneous symmetry breaking at high scale which is much higher than the electroweak scale leads to charged lepton flavour violation processes once the heavy Majorana neutrino mass degeneracy is lifted either by renormalization group effects or by a soft breaking of the A_4 symmetry. In this context the implications for charged lepton flavour violation processes like µ → eγ, τ → eγ, τ → µγ are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z2%20%C3%97%20Z2%20invariant%20perturbations" title="Z2 × Z2 invariant perturbations">Z2 × Z2 invariant perturbations</a>, <a href="https://publications.waset.org/abstracts/search?q=CLFV" title=" CLFV"> CLFV</a>, <a href="https://publications.waset.org/abstracts/search?q=delta%20CP%20phase" title=" delta CP phase"> delta CP phase</a>, <a href="https://publications.waset.org/abstracts/search?q=tribimaximal%20neutrino%20mixing" title=" tribimaximal neutrino mixing"> tribimaximal neutrino mixing</a> </p> <a href="https://publications.waset.org/abstracts/153638/nonzero-th-13-and-d-cp-phase-with-a-4-flavor-symmetry-and-deviations-to-tribimaximal-mixing-via-z-2-z-2-invariant-perturbations-in-the-neutrino-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5465</span> Perceptual Organization within Temporal Displacement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michele%20Sinico">Michele Sinico</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The psychological present has an actual extension. When a sequence of instantaneous stimuli falls in this short interval of time, observers perceive a compresence of events in succession and the temporal order depends on the qualitative relationships between the perceptual properties of the events. Two experiments were carried out to study the influence of perceptual grouping, with and without temporal displacement, on the duration of auditory sequences. The psychophysical method of adjustment was adopted. The first experiment investigated the effect of temporal displacement of a white noise on sequence duration. The second experiment investigated the effect of temporal displacement, along the pitch dimension, on temporal shortening of sequence. The results suggest that the temporal order of sounds, in the case of temporal displacement, is organized along the pitch dimension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20perception" title="time perception">time perception</a>, <a href="https://publications.waset.org/abstracts/search?q=perceptual%20present" title=" perceptual present"> perceptual present</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20displacement" title=" temporal displacement"> temporal displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=Gestalt%20laws%20of%20perceptual%20organization" title=" Gestalt laws of perceptual organization"> Gestalt laws of perceptual organization</a> </p> <a href="https://publications.waset.org/abstracts/76211/perceptual-organization-within-temporal-displacement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5464</span> The Reliability Analysis of Concrete Chimneys Due to Random Vortex Shedding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Rahman">Saba Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20K.%20Jain"> Arvind K. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Bharti"> S. D. Bharti</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20K.%20Datta"> T. K. Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chimneys are generally tall and slender structures with circular cross-sections, due to which they are highly prone to wind forces. Wind exerts pressure on the wall of the chimneys, which produces unwanted forces. Vortex-induced oscillation is one of such excitations which can lead to the failure of the chimneys. Therefore, vortex-induced oscillation of chimneys is of great concern to researchers and practitioners since many failures of chimneys due to vortex shedding have occurred in the past. As a consequence, extensive research has taken place on the subject over decades. Many laboratory experiments have been performed to verify the theoretical models proposed to predict vortex-induced forces, including aero-elastic effects. Comparatively, very few proto-type measurement data have been recorded to verify the proposed theoretical models. Because of this reason, the theoretical models developed with the help of experimental laboratory data are utilized for analyzing the chimneys for vortex-induced forces. This calls for reliability analysis of the predictions of the responses of the chimneys produced due to vortex shedding phenomena. Although several works of literature exist on the vortex-induced oscillation of chimneys, including code provisions, the reliability analysis of chimneys against failure caused due to vortex shedding is scanty. In the present study, the reliability analysis of chimneys against vortex shedding failure is presented, assuming the uncertainty in vortex shedding phenomena to be significantly more than other uncertainties, and hence, the latter is ignored. The vortex shedding is modeled as a stationary random process and is represented by a power spectral density function (PSDF). It is assumed that the vortex shedding forces are perfectly correlated and act over the top one-third height of the chimney. The PSDF of the tip displacement of the chimney is obtained by performing a frequency domain spectral analysis using a matrix approach. For this purpose, both chimney and random wind forces are discretized over a number of points along with the height of the chimney. The method of analysis duly accounts for the aero-elastic effects. The double barrier threshold crossing level, as proposed by Vanmarcke, is used for determining the probability of crossing different threshold levels of the tip displacement of the chimney. Assuming the annual distribution of the mean wind velocity to be a Gumbel type-I distribution, the fragility curve denoting the variation of the annual probability of threshold crossing against different threshold levels of the tip displacement of the chimney is determined. The reliability estimate is derived from the fragility curve. A 210m tall concrete chimney with a base diameter of 35m, top diameter as 21m, and thickness as 0.3m has been taken as an illustrative example. The terrain condition is assumed to be that corresponding to the city center. The expression for the PSDF of the vortex shedding force is taken to be used by Vickery and Basu. The results of the study show that the threshold crossing reliability of the tip displacement of the chimney is significantly influenced by the assumed structural damping and the Gumbel distribution parameters. Further, the aero-elastic effect influences the reliability estimate to a great extent for small structural damping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chimney" title="chimney">chimney</a>, <a href="https://publications.waset.org/abstracts/search?q=fragility%20curve" title=" fragility curve"> fragility curve</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20analysis" title=" reliability analysis"> reliability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex-induced%20vibration" title=" vortex-induced vibration"> vortex-induced vibration</a> </p> <a href="https://publications.waset.org/abstracts/141508/the-reliability-analysis-of-concrete-chimneys-due-to-random-vortex-shedding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5463</span> Spatio-Temporal Properties of p53 States Raised by Glucose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Jahoor%20Alam">Md. Jahoor Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent studies suggest that Glucose controls several lifesaving pathways. Glucose molecule is reported to be responsible for the production of ROS (reactive oxygen species). In the present work, a p53-MDM2-Glucose model is developed in order to study spatiotemporal properties of the p53 pathway. The systematic model is mathematically described. The model is numerically simulated using high computational facility. It is observed that the variation in glucose concentration level triggers the system at different states, namely, oscillation death (stabilized), sustain and damped oscillations which correspond to various cellular states. The transition of these states induced by glucose is phase transition-like behaviour. Further, the amplitude of p53 dynamics with the variation of glucose concentration level follows power law behaviour, As(k) ~ kϒ, where, ϒ is a constant. Further Stochastic approach is needed for understanding of realistic behaviour of the model. The present model predicts the variation of p53 states under the influence of glucose molecule which is also supported by experimental facts reported by various research articles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oscillation" title="oscillation">oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20behavior" title=" temporal behavior"> temporal behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=p53" title=" p53"> p53</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a> </p> <a href="https://publications.waset.org/abstracts/47042/spatio-temporal-properties-of-p53-states-raised-by-glucose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5462</span> A Multiobjective Damping Function for Coordinated Control of Power System Stabilizer and Power Oscillation Damping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jose%20D.%20Herrera">Jose D. Herrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20A.%20Rios"> Mario A. Rios</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the coordinated tuning of the Power System Stabilizer (PSS) controller and Power Oscillation Damping (POD) Controller of Flexible AC Transmission System (FACTS) in a multi-machine power systems. The coordinated tuning is based on the critical eigenvalues of the power system and a model reduction technique where the Hankel Singular Value method is applied. Through the linearized system model and the parameter-constrained nonlinear optimization algorithm, it can compute the parameters of both controllers. Moreover, the parameters are optimized simultaneously obtaining the gains of both controllers. Then, the nonlinear simulation to observe the time response of the controller is performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromechanical%20oscillations" title="electromechanical oscillations">electromechanical oscillations</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system%20stabilizers" title=" power system stabilizers"> power system stabilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20oscillation%20damping" title=" power oscillation damping"> power oscillation damping</a>, <a href="https://publications.waset.org/abstracts/search?q=hankel%20singular%20values" title=" hankel singular values"> hankel singular values</a> </p> <a href="https://publications.waset.org/abstracts/58164/a-multiobjective-damping-function-for-coordinated-control-of-power-system-stabilizer-and-power-oscillation-damping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">592</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5461</span> Enhancing Oscillation Amplitude Response Generated by Vortex Induced Vibrations Through Experimental Identification of Optimum Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20F.%20Alhaddad">Mohammed F. Alhaddad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vortex induced Vibrations (VIV) is a phenomenon that occurs as a result of a flow passing by a bluff body. This phenomenon has been mainly studied to be suppressed to prevent fatigue and instability in offshore platforms. In 2006, some studies were conducted to maximize VIV instead of suppressing it, as these studies claimed that VIV is a potential method of generating energy. The aim of this paper is to identify factors for maximizing oscillation amplitude generated by VIV in order to enhance the energy harnessed through this method. The experimental study in this paper will examine the effect of oscillating cylinder diameter, surface roughness, the location of surface roughness with respect to the centerline of the oscillating cylinder and the velocity on the oscillation amplitude of the used module. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=generation" title=" generation"> generation</a>, <a href="https://publications.waset.org/abstracts/search?q=generating" title=" generating"> generating</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex." title=" vortex."> vortex.</a> </p> <a href="https://publications.waset.org/abstracts/187303/enhancing-oscillation-amplitude-response-generated-by-vortex-induced-vibrations-through-experimental-identification-of-optimum-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5460</span> Analysis of Vortex-Induced Vibration Characteristics for a Three-Dimensional Flexible Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhipeng%20Feng">Zhipeng Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Huanhuan%20Qi"> Huanhuan Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pingchuan%20Shen"> Pingchuan Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Fenggang%20Zang"> Fenggang Zang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yixiong%20Zhang"> Yixiong Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical simulations of vortex-induced vibration of a three-dimensional flexible tube under uniform turbulent flow are calculated when Reynolds number is 1.35&times;10<sup>4</sup>. In order to achieve the vortex-induced vibration, the three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model are solved with the finite volume approach, the tube is discretized according to the finite element theory, and its dynamic equilibrium equations are solved by the Newmark method. The fluid-tube interaction is realized by utilizing the diffusion-based smooth dynamic mesh method. Considering the vortex-induced vibration system, the variety trends of lift coefficient, drag coefficient, displacement, vertex shedding frequency, phase difference angle of tube are analyzed under different frequency ratios. The nonlinear phenomena of locked-in, phase-switch are captured successfully. Meanwhile, the limit cycle and bifurcation of lift coefficient and displacement are analyzed by using trajectory, phase portrait, and Poincar&eacute; sections. The results reveal that: when drag coefficient reaches its minimum value, the transverse amplitude reaches its maximum, and the &ldquo;lock-in&rdquo; begins simultaneously. In the range of lock-in, amplitude decreases gradually with increasing of frequency ratio. When lift coefficient reaches its minimum value, the phase difference undergoes a suddenly change from the &ldquo;out-of-phase&rdquo; to the &ldquo;in-phase&rdquo; mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vortex%20induced%20vibration" title="vortex induced vibration">vortex induced vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=limit%20cycle" title=" limit cycle"> limit cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=LES" title=" LES"> LES</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a> </p> <a href="https://publications.waset.org/abstracts/41577/analysis-of-vortex-induced-vibration-characteristics-for-a-three-dimensional-flexible-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5459</span> Sloshing Response of Liquid in Prismatic Container under Oscillation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20R.%20Maiti">P. R. Maiti</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Bhattacharyya"> S. K. Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sloshing is a physical phenomenon characterized by the oscillation of unrestrained free surface of liquid in a partially liquid filled container subjected to external excitation. Determination of sloshing frequency in container is important to avoid resonance condition of the system. The complex behavior of the free surface movement and its combined mode of vibration make difficulty for exact analysis of sloshing. In the present study, numerical analysis is carried out for a partially liquid filled tank under external forces. Boundary element approach is used to formulate the sloshing problem in two -dimensional prismatic container with potential flow. Effort has been made to find slosh response for two dimensional problems in partially liquid filled prismatic container. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sloshing" title="sloshing">sloshing</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20element%20method" title=" boundary element method"> boundary element method</a>, <a href="https://publications.waset.org/abstracts/search?q=prismatic%20container" title=" prismatic container"> prismatic container</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillation" title=" oscillation"> oscillation</a> </p> <a href="https://publications.waset.org/abstracts/28051/sloshing-response-of-liquid-in-prismatic-container-under-oscillation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5458</span> Application of Waterflooding to the Kashkari Oil Field in Northern Afghanistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zabihullah%20Mahdi">Zabihullah Mahdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Nayab"> Mahdi Nayab</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadaf%20Jalal"> Sadaf Jalal</a>, <a href="https://publications.waset.org/abstracts/search?q=Navid%20Seddiqi"> Navid Seddiqi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrocarbons represent an important natural resource for the rehabilitation and sustainable development of Afghanistan. In this paper, the use of waterflooding is demonstrated for the petroleum reservoirs of the Kashkari oil field in northern Afghanistan. The technique is based on the Buckley–Leverett frontal-displacement theory, which enables computation of the progress of the waterfront in the reservoir. The relative permeabilities of oil and water, the residual oil saturation, and the irreducible water saturation are obtained from a laboratory experiment. The technique is applied to the laboratory plane-reservoir model to investigate the displacement mechanism and is then compared with the theoretical calculation. Lastly, the technique is applied to the Kashkari oil field to predict the feasible amount of oil that could be produced from this reservoir. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buckley%E2%80%93Leverett" title="Buckley–Leverett">Buckley–Leverett</a>, <a href="https://publications.waset.org/abstracts/search?q=waterflooding" title=" waterflooding"> waterflooding</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20reservoir%20engineering" title=" petroleum reservoir engineering"> petroleum reservoir engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=immiscible%20displacement" title=" immiscible displacement"> immiscible displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20permeability" title=" relative permeability"> relative permeability</a> </p> <a href="https://publications.waset.org/abstracts/111058/application-of-waterflooding-to-the-kashkari-oil-field-in-northern-afghanistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5457</span> Study of Acoustic Resonance of Model Liquid Rocket Combustion Chamber and Its Suppression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vimal%20O.%20Kumar">Vimal O. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20K.%20Muthukumaran"> C. K. Muthukumaran</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rakesh"> P. Rakesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid rocket engine (LRE) combustion chamber is subjected to pressure oscillation during the combustion process. The combustion noise (acoustic noise) is a broad band, small amplitude, high frequency component pressure oscillation. They constitute only a minor fraction ( < 1%) of the entire combustion process. However, this high frequency oscillation is huge concern during the design phase of LRE combustion chamber as it would cause catastrophic failure of the chamber. Depends on the chamber geometry, certain frequencies form standing wave pattern, and they resonate with high amplitude and are known as Eigen modes. These Eigen modes could cause failures unless it is suppressed to be within safe limits. These modes are categorized into radial, tangential, and azimuthal modes, and their structure inside the combustion chamber is of interest to the researchers. In the present proposal, experimental as well as numerical simulation will be performed to obtain the frequency-amplitude characteristics of the model combustion chamber for different baffle configuration. The main objective of this study is to find effect of baffle configuration that would provide better suppression of acoustic modes. The experimental study aims at measuring the frequency amplitude characteristics at certain points in the chamber wall. The experimental measurement will be also used for scheme used in numerical simulation. In addition to experiments, numerical simulation would provide detailed structure of the Eigenmodes exhibited and their level of suppression with the aid of different baffle configurations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baffle" title="baffle">baffle</a>, <a href="https://publications.waset.org/abstracts/search?q=instability" title=" instability"> instability</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20rocket%20engine" title=" liquid rocket engine"> liquid rocket engine</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20response%20of%20chamber" title=" pressure response of chamber"> pressure response of chamber</a> </p> <a href="https://publications.waset.org/abstracts/129395/study-of-acoustic-resonance-of-model-liquid-rocket-combustion-chamber-and-its-suppression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5456</span> Studying the Impact of Soil Characteristics in Displacement of Retaining Walls Using Finite Element</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Ahmadabadi">Mojtaba Ahmadabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Akbar%20Masoudi"> Akbar Masoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Rezai"> Morteza Rezai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, using the finite element method, the effect of soil and wall characteristics was investigated. Thirty and two different models were studied by different parameters. These studies could calculate displacement at any height of the wall for frictional-cohesive soils. The main purpose of this research is to determine the most effective soil characteristics in reducing the wall displacement. Comparing different models showed that the overall increase in internal friction angle, angle of friction between soil and wall and modulus of elasticity reduce the replacement of the wall. In addition, increase in special weight of soil will increase the wall displacement. Based on results, it can be said that all wall displacements were overturning and in the backfill, soil was bulging. Results show that the highest impact is seen in reducing wall displacement, internal friction angle, and the angle friction between soil and wall. One of the advantages of this study is taking into account all the parameters of the soil and walls replacement distribution in wall and backfill soil. In this paper, using the finite element method and considering all parameters of the soil, we investigated the impact of soil parameter in wall displacement. The aim of this study is to provide the best conditions in reducing the wall displacement and displacement wall and soil distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retaining%20wall" title="retaining wall">retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=fem" title=" fem"> fem</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20and%20wall%20interaction" title=" soil and wall interaction"> soil and wall interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20internal%20friction%20of%20the%20soil" title=" angle of internal friction of the soil"> angle of internal friction of the soil</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20displacement" title=" wall displacement"> wall displacement</a> </p> <a href="https://publications.waset.org/abstracts/44288/studying-the-impact-of-soil-characteristics-in-displacement-of-retaining-walls-using-finite-element" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5455</span> Water Droplet Impact on Vibrating Rigid Superhydrophobic Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jingcheng%20Ma">Jingcheng Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20B.%20Weisensee"> Patricia B. Weisensee</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20H.%20Shin"> Young H. Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yujin%20Chang"> Yujin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Junjiao%20Tian"> Junjiao Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20P.%20King"> William P. King</a>, <a href="https://publications.waset.org/abstracts/search?q=Nenad%20Miljkovic"> Nenad Miljkovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water droplet impact on surfaces is a ubiquitous phenomenon in both nature and industry. The transfer of mass, momentum and energy can be influenced by the time of contact between droplet and surface. In order to reduce the contact time, we study the influence of substrate motion prior to impact on the dynamics of droplet recoil. Using optical high speed imaging, we investigated the impact dynamics of macroscopic water droplets (~ 2mm) on rigid nanostructured superhydrophobic surfaces vibrating at 60 – 300 Hz and amplitudes of 0 – 3 mm. In addition, we studied the influence of the phase of the substrate at the moment of impact on total contact time. We demonstrate that substrate vibration can alter droplet dynamics, and decrease total contact time by as much as 50% compared to impact on stationary rigid superhydrophobic surfaces. Impact analysis revealed that the vibration frequency mainly affected the maximum contact time, while the amplitude of vibration had little direct effect on the contact time. Through mathematical modeling, we show that the oscillation amplitude influences the possibility density function of droplet impact at a given phase, and thus indirectly influences the average contact time. We also observed more vigorous droplet splashing and breakup during impact at larger amplitudes. Through semi-empirical mathematical modeling, we describe the relationship between contact time and vibration frequency, phase, and amplitude of the substrate. We also show that the maximum acceleration during the impact process is better suited as a threshold parameter for the onset of splashing than a Weber-number criterion. This study not only provides new insights into droplet impact physics on vibrating surfaces, but develops guidelines for the rational design of surfaces to achieve controllable droplet wetting in applications utilizing vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20time" title="contact time">contact time</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20dynamics" title=" impact dynamics"> impact dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillation" title=" oscillation"> oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=pear-shape%20droplet" title=" pear-shape droplet"> pear-shape droplet</a> </p> <a href="https://publications.waset.org/abstracts/58337/water-droplet-impact-on-vibrating-rigid-superhydrophobic-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5454</span> Vulnerability Assessment of Reinforced Concrete Frames Based on Inelastic Spectral Displacement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao%20Xu">Chao Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selecting ground motion intensity measures reasonably is one of the very important issues to affect the input ground motions selecting and the reliability of vulnerability analysis results. In this paper, inelastic spectral displacement is used as an alternative intensity measure to characterize the ground motion damage potential. The inelastic spectral displacement is calculated based modal pushover analysis and inelastic spectral displacement based incremental dynamic analysis is developed. Probability seismic demand analysis of a six story and an eleven story RC frame are carried out through cloud analysis and advanced incremental dynamic analysis. The sufficiency and efficiency of inelastic spectral displacement are investigated by means of regression and residual analysis, and compared with elastic spectral displacement. Vulnerability curves are developed based on inelastic spectral displacement. The study shows that inelastic spectral displacement reflects the impact of different frequency components with periods larger than fundamental period on inelastic structural response. The damage potential of ground motion on structures with fundamental period prolonging caused by structural soften can be caught by inelastic spectral displacement. To be compared with elastic spectral displacement, inelastic spectral displacement is a more sufficient and efficient intensity measure, which reduces the uncertainty of vulnerability analysis and the impact of input ground motion selection on vulnerability analysis result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title="vulnerability">vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20seismic%20demand%20analysis" title=" probability seismic demand analysis"> probability seismic demand analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20motion%20intensity%20measure" title=" ground motion intensity measure"> ground motion intensity measure</a>, <a href="https://publications.waset.org/abstracts/search?q=sufficiency" title=" sufficiency"> sufficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=inelastic%20time%20history%20analysis" title=" inelastic time history analysis"> inelastic time history analysis</a> </p> <a href="https://publications.waset.org/abstracts/48653/vulnerability-assessment-of-reinforced-concrete-frames-based-on-inelastic-spectral-displacement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5453</span> Numerical Study on Vortex-Driven Pressure Oscillation and Roll Torque Characteristics in a SRM with Two Inhibitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji-Seok%20Hong">Ji-Seok Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee-Jang%20Moon"> Hee-Jang Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong-Gye%20Sung"> Hong-Gye Sung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The details of flow structures and the coupling mechanism between vortex shedding and acoustic excitation in a solid rocket motor with two inhibitors have been investigated using 3D Large Eddy Simulation (LES) and Proper Orthogonal Decomposition (POD) analysis. The oscillation frequencies and vortex shedding periods from two inhibitors compare reasonably well with the experimental data and numerical result. A total of four different locations of the rear inhibitor has been numerically tested to characterize the coupling relation of vortex shedding frequency and acoustic mode. The major source of triggering pressure oscillation in the combustor is the resonance with the acoustic longitudinal half mode. It was observed that the counter-rotating vortices in the nozzle flow produce roll torque. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large%20eddy%20simulation" title="large eddy simulation">large eddy simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=proper%20orthogonal%20decomposition" title=" proper orthogonal decomposition"> proper orthogonal decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=SRM%20instability" title=" SRM instability"> SRM instability</a>, <a href="https://publications.waset.org/abstracts/search?q=flow-acoustic%20coupling" title=" flow-acoustic coupling"> flow-acoustic coupling</a> </p> <a href="https://publications.waset.org/abstracts/1480/numerical-study-on-vortex-driven-pressure-oscillation-and-roll-torque-characteristics-in-a-srm-with-two-inhibitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5452</span> Remediation and Health: A Systematic Review of the Role of Resulting Displacement in Damaging Health and Wellbeing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rupert%20G.%20S.%20Legg">Rupert G. S. Legg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The connection between poor health outcomes and living near contaminated land has long been understood. Less examined has been the impact of remediation on residents’ health. The cleaning process undoubtedly changes the local area in which it occurs, leading to the possibility that local housing and rental prices could increase resulting in the displacement of those least able to cope. Whether or not this potential displacement resulting from remediation has a considerable impact on health remains unknown. This review aims to determine how these health effects have been approached in the health geography literature. A systematic review of health geographies literature was conducted, searching for two-word clusters: ‘health’ and ‘remediation’ (100 articles); and ‘health’, ‘displacement’ and ‘gentrification’ (43 articles). 43 articles were selected for their relevance (7 from the first cluster, 20 from the second, and 16 from those cited within the reviewed articles). Several of the reviewed cases identified that potential displacement was a contributor to stress and worry in residents living near remediation projects. Likewise, the experience of displacement in other cases beyond remediation was linked with several mental health issues. However, no remediation cases followed-up on the ultimate effects of experiencing displacement on residents’ health. A reason identified for this was a tendency for reviewed studies to adopt a contextual or compositional approach, as opposed to a relational approach, which is more concerned with dimensions of mobility and temporality. Given that remediation and displacement both involve changing mobility and temporality, focussing solely on contextual or compositional factors is problematic. This review concludes by suggesting that more thorough, relational research is conducted into the extent to which potential displacement resulting from remediation affects health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination" title="contamination">contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement" title=" displacement"> displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20geography" title=" health geography"> health geography</a>, <a href="https://publications.waset.org/abstracts/search?q=remediation" title=" remediation"> remediation</a> </p> <a href="https://publications.waset.org/abstracts/99490/remediation-and-health-a-systematic-review-of-the-role-of-resulting-displacement-in-damaging-health-and-wellbeing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5451</span> Impact of Forced Displacement on Place Attachment and Home Perception of Internally Displaced Turkish Cypriots </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Makbule%20Oktay">Makbule Oktay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Home is a significant entity in people’s lives. It is a place that provides shelter to people and a place to which one feels a sense of attachment and belonging. It is an entity that people develop feelings and meaning to it. People – place bond, or in other words place attachment, and home perception might alter as a consequence of lifetime experiences. Thus, forced displacement appears as a dramatic experience for people who lose their homes, belongings and communities. It impacts people who involuntarily leave their homes and belongings behind, experience physical, social, cultural and economic disruption and are forced to settle in an unfamiliar environment. Place attachment and home perception of internally displaced people who involuntarily leave their homes might be different from those who haven’t experience forced displacement. Although place attachment, meaning of home and forced displacement are the subjects that have been broadly studied, there is a lack of studies which question the relation between the three subjects in general and on Turkish Cypriot case in particular. Considering this, it is the aim of this paper to investigate the impact of forced displacement to internally displaced people’s attachment to a particular place and home perception. To do so, the study focuses on internally displaced Turkish Cypriots who have been internally displaced as a result of conflict. Interview and questionnaire as two of the commonly used techniques in the place attachment and home perception studies have been used in this study too. The results of the study indicate that internal displacement has an apparent impact on place attachment of forcibly displaced people. As a consequence of longstanding displacement, forcibly displaced people developed multiple attachments. Compared to people who have not experienced displacement, forcibly displaced people have low attachments. Forced displacement does not strongly impact the home perception in terms of meaning of home in longstanding displacement situations even though displacement-related meanings of home exist. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forcibly%20displaced%20people" title="forcibly displaced people">forcibly displaced people</a>, <a href="https://publications.waset.org/abstracts/search?q=home%20perception" title=" home perception"> home perception</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20displacement" title=" internal displacement"> internal displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=place%20attachment" title=" place attachment"> place attachment</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkish%20Cypriots" title=" Turkish Cypriots"> Turkish Cypriots</a> </p> <a href="https://publications.waset.org/abstracts/123839/impact-of-forced-displacement-on-place-attachment-and-home-perception-of-internally-displaced-turkish-cypriots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5450</span> Displacement Due to Natural Disasters Vis-à-Vis Policy Framework: Case Study of Mising Community of Majuli, Assam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mausumi%20Chetia">Mausumi Chetia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main causes of impoverishment of the rural areas of Assam has been the recurrent floods and riverbank erosion. One of the life-changing consequences is displacement. This results not only in a loss of livelihoods but also has wide-reaching socio-economic and cultural effects. Thus, due to such disasters, not only families but communities too are being displaced at large. This compels them to find temporary shelter and begin life from scratch. The role of the state has been highly negligible, with a displacement not being perceived as an ‘issue’ to be addressed. A more holistic approach is thus needed to take socio-economic, cultural, political as well as ecological considerations into account. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=displacement" title="displacement">displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=policy-framework" title=" policy-framework"> policy-framework</a>, <a href="https://publications.waset.org/abstracts/search?q=human-induced%20disasters" title=" human-induced disasters"> human-induced disasters</a>, <a href="https://publications.waset.org/abstracts/search?q=marginalised%20communities" title=" marginalised communities"> marginalised communities</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a>, <a href="https://publications.waset.org/abstracts/search?q=Assam" title=" Assam"> Assam</a> </p> <a href="https://publications.waset.org/abstracts/69872/displacement-due-to-natural-disasters-vis-a-vis-policy-framework-case-study-of-mising-community-of-majuli-assam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5449</span> Experimental Study of Heat Transfer in Pulsation Mist Flow in Rectanglar Duct Partially Filled with a Porous Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hosein%20Shokoohmand">Hosein Shokoohmand</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Esmaeil%20Jomeh"> Mohamad Esmaeil Jomeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present thesis studies the effect of different factors such as frequency of oscillatory flow, change in constant wall heat flux and two-phase current state, on heat transfer in a pipe in presence of porous medium. In this experimental study is conducted for Reynolds numbers in a range of Re=850 to Re=10000 and oscillatory frequencies of 5, 20, 10, 30 and 40 Hz with constant heat flux of 585 w/m2 and 819 w/m2. The results indicate that increase in oscillation frequency in higher frequencies for heat flux of 585 w/m2 leads to an increase in heat transfer; however, in the rest of tests it results in a heat transfer decrease. Increasing Reynolds number in a pulsation mist flow causes an increase in average Nusselt number values. The effect of oscillation frequencies in a pulsation mist flow for different Reynolds numbers has revealed different results, in a way that for some Reynolds numbers an increase of frequency has led to a heat transfer decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20numbers" title="Reynolds numbers">Reynolds numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20of%20oscillatory%20flow" title=" frequency of oscillatory flow"> frequency of oscillatory flow</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20heat%20flux" title=" constant heat flux"> constant heat flux</a>, <a href="https://publications.waset.org/abstracts/search?q=mist%20flow" title=" mist flow "> mist flow </a> </p> <a href="https://publications.waset.org/abstracts/31780/experimental-study-of-heat-transfer-in-pulsation-mist-flow-in-rectanglar-duct-partially-filled-with-a-porous-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillation%20phase%20displacement&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillation%20phase%20displacement&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillation%20phase%20displacement&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillation%20phase%20displacement&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillation%20phase%20displacement&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillation%20phase%20displacement&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillation%20phase%20displacement&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillation%20phase%20displacement&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillation%20phase%20displacement&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillation%20phase%20displacement&amp;page=182">182</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillation%20phase%20displacement&amp;page=183">183</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=oscillation%20phase%20displacement&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10