CINXE.COM
Research in lithium-ion batteries - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Research in lithium-ion batteries - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"8ff16fe8-59b9-4960-8efd-2834070da2da","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Research_in_lithium-ion_batteries","wgTitle":"Research in lithium-ion batteries","wgCurRevisionId":1258452275,"wgRevisionId":1258452275,"wgArticleId":42601555,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: location missing publisher","Articles with short description","Short description matches Wikidata","Articles that may contain original research from January 2020","All articles that may contain original research","Articles with multiple maintenance issues","Use dmy dates from December 2016","Lithium-ion batteries"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName": "Research_in_lithium-ion_batteries","wgRelevantArticleId":42601555,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q18394089","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"], "GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin", "mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.15"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Research in lithium-ion batteries - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Research_in_lithium-ion_batteries"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Research_in_lithium-ion_batteries"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Research_in_lithium-ion_batteries rootpage-Research_in_lithium-ion_batteries skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Research+in+lithium-ion+batteries" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Research+in+lithium-ion+batteries" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Research+in+lithium-ion+batteries" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Research+in+lithium-ion+batteries" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Design" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Design"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Design</span> </div> </a> <button aria-controls="toc-Design-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Design subsection</span> </button> <ul id="toc-Design-sublist" class="vector-toc-list"> <li id="toc-Negative_electrode" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Negative_electrode"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Negative electrode</span> </div> </a> <ul id="toc-Negative_electrode-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Si@void@C_microreactor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Si@void@C_microreactor"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Si@void@C microreactor</span> </div> </a> <ul id="toc-Si@void@C_microreactor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Intercalation_oxides" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Intercalation_oxides"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Intercalation oxides</span> </div> </a> <ul id="toc-Intercalation_oxides-sublist" class="vector-toc-list"> <li id="toc-Titanium_dioxide" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Titanium_dioxide"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3.1</span> <span>Titanium dioxide</span> </div> </a> <ul id="toc-Titanium_dioxide-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Niobates" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Niobates"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3.2</span> <span>Niobates</span> </div> </a> <ul id="toc-Niobates-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Transition-metal_oxides" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Transition-metal_oxides"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3.3</span> <span>Transition-metal oxides</span> </div> </a> <ul id="toc-Transition-metal_oxides-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Lithium" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lithium"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Lithium</span> </div> </a> <ul id="toc-Lithium-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Non-graphitic_carbon" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Non-graphitic_carbon"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.5</span> <span>Non-graphitic carbon</span> </div> </a> <ul id="toc-Non-graphitic_carbon-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Silicon" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Silicon"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.6</span> <span>Silicon</span> </div> </a> <ul id="toc-Silicon-sublist" class="vector-toc-list"> <li id="toc-Silicon_encapsulation" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Silicon_encapsulation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.6.1</span> <span>Silicon encapsulation</span> </div> </a> <ul id="toc-Silicon_encapsulation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Silicon_nanowire" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Silicon_nanowire"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.6.2</span> <span>Silicon nanowire</span> </div> </a> <ul id="toc-Silicon_nanowire-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Porous-silicon_inorganic-electrode_design" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Porous-silicon_inorganic-electrode_design"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.6.3</span> <span>Porous-silicon inorganic-electrode design</span> </div> </a> <ul id="toc-Porous-silicon_inorganic-electrode_design-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Silicon_nanofiber" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Silicon_nanofiber"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.6.4</span> <span>Silicon nanofiber</span> </div> </a> <ul id="toc-Silicon_nanofiber-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Tin" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Tin"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.7</span> <span>Tin</span> </div> </a> <ul id="toc-Tin-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Intermetallic_insertion_materials" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Intermetallic_insertion_materials"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.8</span> <span>Intermetallic insertion materials</span> </div> </a> <ul id="toc-Intermetallic_insertion_materials-sublist" class="vector-toc-list"> <li id="toc-Cu6Sn5" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Cu6Sn5"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.8.1</span> <span>Cu<sub>6</sub>Sn<sub>5</sub></span> </div> </a> <ul id="toc-Cu6Sn5-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Copper_antimonide" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Copper_antimonide"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.8.2</span> <span>Copper antimonide</span> </div> </a> <ul id="toc-Copper_antimonide-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Three-dimensional_nanostructure" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Three-dimensional_nanostructure"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.9</span> <span>Three-dimensional nanostructure</span> </div> </a> <ul id="toc-Three-dimensional_nanostructure-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Semi-solid" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Semi-solid"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.10</span> <span>Semi-solid</span> </div> </a> <ul id="toc-Semi-solid-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Redox-targeted_solids" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Redox-targeted_solids"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.11</span> <span>Redox-targeted solids</span> </div> </a> <ul id="toc-Redox-targeted_solids-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Cathode" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Cathode"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Cathode</span> </div> </a> <button aria-controls="toc-Cathode-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Cathode subsection</span> </button> <ul id="toc-Cathode-sublist" class="vector-toc-list"> <li id="toc-Vanadium_oxides" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Vanadium_oxides"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Vanadium oxides</span> </div> </a> <ul id="toc-Vanadium_oxides-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Disordered_materials" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Disordered_materials"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Disordered materials</span> </div> </a> <ul id="toc-Disordered_materials-sublist" class="vector-toc-list"> <li id="toc-Glasses" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Glasses"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.1</span> <span>Glasses</span> </div> </a> <ul id="toc-Glasses-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Sulfur" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sulfur"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Sulfur</span> </div> </a> <ul id="toc-Sulfur-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Seawater" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Seawater"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Seawater</span> </div> </a> <ul id="toc-Seawater-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lithium-based_cathodes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lithium-based_cathodes"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Lithium-based cathodes</span> </div> </a> <ul id="toc-Lithium-based_cathodes-sublist" class="vector-toc-list"> <li id="toc-Lithium_nickel_manganese_cobalt_oxide" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Lithium_nickel_manganese_cobalt_oxide"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5.1</span> <span>Lithium nickel manganese cobalt oxide</span> </div> </a> <ul id="toc-Lithium_nickel_manganese_cobalt_oxide-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lithium–iron_phosphate" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Lithium–iron_phosphate"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5.2</span> <span>Lithium–iron phosphate</span> </div> </a> <ul id="toc-Lithium–iron_phosphate-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lithium_manganese_silicon_oxide" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Lithium_manganese_silicon_oxide"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5.3</span> <span>Lithium manganese silicon oxide</span> </div> </a> <ul id="toc-Lithium_manganese_silicon_oxide-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Air" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Air"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5.4</span> <span>Air</span> </div> </a> <ul id="toc-Air-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Transition_Metal_Fluorides_(TMFs)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Transition_Metal_Fluorides_(TMFs)"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6</span> <span>Transition Metal Fluorides (TMFs)</span> </div> </a> <ul id="toc-Transition_Metal_Fluorides_(TMFs)-sublist" class="vector-toc-list"> <li id="toc-Iron_Fluoride" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Iron_Fluoride"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6.1</span> <span>Iron Fluoride</span> </div> </a> <ul id="toc-Iron_Fluoride-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Electrolyte" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Electrolyte"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Electrolyte</span> </div> </a> <button aria-controls="toc-Electrolyte-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Electrolyte subsection</span> </button> <ul id="toc-Electrolyte-sublist" class="vector-toc-list"> <li id="toc-Perfluoropolyether" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Perfluoropolyether"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Perfluoropolyether</span> </div> </a> <ul id="toc-Perfluoropolyether-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Solid-state" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Solid-state"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Solid-state</span> </div> </a> <ul id="toc-Solid-state-sublist" class="vector-toc-list"> <li id="toc-Thiophosphate" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Thiophosphate"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.1</span> <span>Thiophosphate</span> </div> </a> <ul id="toc-Thiophosphate-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Glassy_electrolytes" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Glassy_electrolytes"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.2</span> <span>Glassy electrolytes</span> </div> </a> <ul id="toc-Glassy_electrolytes-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Salts" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Salts"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Salts</span> </div> </a> <ul id="toc-Salts-sublist" class="vector-toc-list"> <li id="toc-Superhalogen" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Superhalogen"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3.1</span> <span>Superhalogen</span> </div> </a> <ul id="toc-Superhalogen-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Water-in-salt" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Water-in-salt"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3.2</span> <span>Water-in-salt</span> </div> </a> <ul id="toc-Water-in-salt-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Dual_anionic_liquid" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Dual_anionic_liquid"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3.3</span> <span>Dual anionic liquid</span> </div> </a> <ul id="toc-Dual_anionic_liquid-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Management" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Management"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Management</span> </div> </a> <button aria-controls="toc-Management-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Management subsection</span> </button> <ul id="toc-Management-sublist" class="vector-toc-list"> <li id="toc-Charging" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Charging"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Charging</span> </div> </a> <ul id="toc-Charging-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Durability" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Durability"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Durability</span> </div> </a> <ul id="toc-Durability-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Thermal" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Thermal"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Thermal</span> </div> </a> <ul id="toc-Thermal-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Flexibility" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Flexibility"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Flexibility</span> </div> </a> <ul id="toc-Flexibility-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Volume_expansion" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Volume_expansion"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Volume expansion</span> </div> </a> <ul id="toc-Volume_expansion-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nanotechnology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Nanotechnology"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Nanotechnology</span> </div> </a> <ul id="toc-Nanotechnology-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Economy" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Economy"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Economy</span> </div> </a> <ul id="toc-Economy-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Repurposing_and_reuse" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Repurposing_and_reuse"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Repurposing and reuse</span> </div> </a> <ul id="toc-Repurposing_and_reuse-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Research in lithium-ion batteries</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="This article exist only in this language. Add the article for other languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-0" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">Add languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> <div class="after-portlet after-portlet-lang"><span class="uls-after-portlet-link"></span><span class="wb-langlinks-add wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q18394089#sitelinks-wikipedia" title="Add interlanguage links" class="wbc-editpage">Add links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Research_in_lithium-ion_batteries" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Research_in_lithium-ion_batteries" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Research_in_lithium-ion_batteries"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Research_in_lithium-ion_batteries"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Research_in_lithium-ion_batteries" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Research_in_lithium-ion_batteries" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Research_in_lithium-ion_batteries&oldid=1258452275" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Research_in_lithium-ion_batteries&id=1258452275&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FResearch_in_lithium-ion_batteries"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FResearch_in_lithium-ion_batteries"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Research_in_lithium-ion_batteries&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Research_in_lithium-ion_batteries&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q18394089" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Overview of the research in lithium-ion batteries</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1248332772">.mw-parser-output .multiple-issues-text{width:95%;margin:0.2em 0}.mw-parser-output .multiple-issues-text>.mw-collapsible-content{margin-top:0.3em}.mw-parser-output .compact-ambox .ambox{border:none;border-collapse:collapse;background-color:transparent;margin:0 0 0 1.6em!important;padding:0!important;width:auto;display:block}body.mediawiki .mw-parser-output .compact-ambox .ambox.mbox-small-left{font-size:100%;width:auto;margin:0}.mw-parser-output .compact-ambox .ambox .mbox-text{padding:0!important;margin:0!important}.mw-parser-output .compact-ambox .ambox .mbox-text-span{display:list-item;line-height:1.5em;list-style-type:disc}body.skin-minerva .mw-parser-output .multiple-issues-text>.mw-collapsible-toggle,.mw-parser-output .compact-ambox .ambox .mbox-image,.mw-parser-output .compact-ambox .ambox .mbox-imageright,.mw-parser-output .compact-ambox .ambox .mbox-empty-cell,.mw-parser-output .compact-ambox .hide-when-compact{display:none}</style><table class="box-Multiple_issues plainlinks metadata ambox ambox-content ambox-multiple_issues compact-ambox" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/40px-Ambox_important.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/60px-Ambox_important.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/80px-Ambox_important.svg.png 2x" data-file-width="40" data-file-height="40" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span"><div class="multiple-issues-text mw-collapsible"><b>This article has multiple issues.</b> Please help <b><a href="/wiki/Special:EditPage/Research_in_lithium-ion_batteries" title="Special:EditPage/Research in lithium-ion batteries">improve it</a></b> or discuss these issues on the <b><a href="/wiki/Talk:Research_in_lithium-ion_batteries" title="Talk:Research in lithium-ion batteries">talk page</a></b>. <small><i>(<a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove these messages</a>)</i></small> <div class="mw-collapsible-content"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Original_research plainlinks metadata ambox ambox-content ambox-Original_research" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/40px-Ambox_important.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/60px-Ambox_important.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/80px-Ambox_important.svg.png 2x" data-file-width="40" data-file-height="40" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>possibly contains <a href="/wiki/Wikipedia:No_original_research" title="Wikipedia:No original research">original research</a></b>.<span class="hide-when-compact"> Please <a class="external text" href="https://en.wikipedia.org/w/index.php?title=Research_in_lithium-ion_batteries&action=edit">improve it</a> by <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verifying</a> the claims made and adding <a href="/wiki/Wikipedia:Citing_sources#Inline_citations" title="Wikipedia:Citing sources">inline citations</a>. Statements consisting only of original research should be removed.</span> <span class="date-container"><i>(<span class="date">January 2020</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Synthesis plainlinks metadata ambox ambox-content" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Ambox_question.svg/40px-Ambox_question.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Ambox_question.svg/60px-Ambox_question.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Ambox_question.svg/80px-Ambox_question.svg.png 2x" data-file-width="40" data-file-height="40" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article or section <b>possibly contains original <a href="/wiki/Wikipedia:SYNTH" class="mw-redirect" title="Wikipedia:SYNTH">synthesis</a>.</b> Source material should <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verifiably mention</a> and <a href="/wiki/Wikipedia:Content_removal#Irrelevant_information" title="Wikipedia:Content removal">relate</a> to the main topic.<span class="hide-when-compact"> Relevant discussion may be found on the <a href="/wiki/Talk:Research_in_lithium-ion_batteries" title="Talk:Research in lithium-ion batteries">talk page</a>.</span> <span class="date-container"><i>(<span class="date">January 2020</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> </div> </div><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p class="mw-empty-elt"> </p><p><b>Research in lithium-ion batteries</b> has produced many proposed refinements of <a href="/wiki/Lithium-ion_battery" title="Lithium-ion battery">lithium-ion batteries</a>. Areas of research interest have focused on improving <a href="/wiki/Energy_density" title="Energy density">energy density</a>, safety, rate capability, cycle durability, flexibility, and reducing cost. </p><p><a href="/wiki/Artificial_intelligence" title="Artificial intelligence">Artificial intelligence</a> (AI) and <a href="/wiki/Machine_learning" title="Machine learning">machine learning</a> (ML) is becoming popular in many fields including using it for lithium-ion battery research. These methods have been used in all aspects of battery research including materials, manufacturing, characterization, and prognosis/diagnosis of batteries.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r886046785">.mw-parser-output .toclimit-2 .toclevel-1 ul,.mw-parser-output .toclimit-3 .toclevel-2 ul,.mw-parser-output .toclimit-4 .toclevel-3 ul,.mw-parser-output .toclimit-5 .toclevel-4 ul,.mw-parser-output .toclimit-6 .toclevel-5 ul,.mw-parser-output .toclimit-7 .toclevel-6 ul{display:none}</style><div class="toclimit-3"><meta property="mw:PageProp/toc" /></div> <div class="mw-heading mw-heading2"><h2 id="Design">Design</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=1" title="Edit section: Design"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Negative_electrode">Negative electrode</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=2" title="Edit section: Negative electrode"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Materials that are taken into consideration for the next generation lithium-ion battery (LIBs) negative electrode share common characteristics such as low cost, high theoretical specific capacity, and good electrical conductivity, etc. Carbon- and silicon- based materials have shown to be promising materials for the negative electrode. However, along with the desired characteristics from some of the materials, a number of weaknesses have also been shown. For example, although silicon has a theoretical specific capacity that is 10 times higher than graphite, it has low intrinsic electrical conductivity. Current research focuses on engineering materials so that their characteristics are retained and their weaknesses are accommodated.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>Lithium-ion battery <a href="/w/index.php?title=Negative_electrode&action=edit&redlink=1" class="new" title="Negative electrode (page does not exist)">negative electrodes</a> are most commonly made of <a href="/wiki/Graphite" title="Graphite">graphite</a>. Graphite anodes are limited to a theoretical capacity of 372 mAh/g for their fully lithiated state.<sup id="cite_ref-SiOC_4-0" class="reference"><a href="#cite_note-SiOC-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> At this time, significant other types of lithium-ion battery anode materials have been proposed and evaluated as alternatives to graphite, especially in cases where niche applications require novel approaches. </p> <div class="mw-heading mw-heading3"><h3 id="Si@void@C_microreactor"><span id="Si.40void.40C_microreactor"></span>Si@void@C microreactor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=3" title="Edit section: Si@void@C microreactor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Dr. Leon Shaw’s research group from Illinois Institute of Technology has developed the Si@void@C microreactors which show exceptional test results to be LIBs anode. The process of creating Si@void@C microreactors begins with the production of nanostructured silicon particles through a high-energy ball milling process with micron-sized silicon powder. The nanostructured Si particles are then encapsulated with carbon through <a href="/wiki/Carbonization" title="Carbonization">carbonization</a> of a carbon precursor containing nitrogen element. Finally, the particles are etched with NaOH to create voids with nano-channel morphology inside the Si core to form the Si@void@C microreactors.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p><p>Tests from the Si@void@C microreactors demonstrated high Coulombic Efficiency of 91% during the first lithiation process, which is significantly higher than other reported silicon anodes.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> The design also enabled high Coulombic Efficiency of 100% after 5 cycles, indicating no discernible SEI layer formation beyond 5 cycles. Additionally, the specific capacity increased in subsequent cycles due to the activation of more electrode material, suggesting robust electrochemical stability.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>The Si@void@C(N) electrode was tested to be capable of ultrafast charging and durability over 1000 cycles, the specific capacity maintained high levels (~800 mAh g<sup>−1</sup>) even at very high current densities (up to 8 A g<sup>−1</sup>). No lithium plating was observed for the Si@void@C(N) electrode even after 1000 cycles at 8 A g<sup>−1</sup>, indicating their capability for ultrafast charging without compromising safety and capacity retention. </p> <div class="mw-heading mw-heading3"><h3 id="Intercalation_oxides">Intercalation oxides</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=4" title="Edit section: Intercalation oxides"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Several types of metal oxides and sulfides can reversibly intercalate lithium cations at voltages between 1 and 2 V against <a href="/wiki/Lithium" title="Lithium">lithium</a> metal with little difference between the charge and discharge steps. Specifically the mechanism of insertion involves lithium cations filling crystallographic vacancies in the host lattice with minimal changes to the bonding within the host lattice. This differentiates intercalation negative electrode from conversion negative electrode that store lithium by complete disruption and formation of alternate phases, usually as <a href="/wiki/Lithium_oxide" title="Lithium oxide">lithia</a>. Conversion systems typically disproportionate to lithia and a metal (or lower metal oxide) at low voltages, < 1 V vs Li, and reform the metal oxide at voltage > 2 V, for example, CoO + 2Li -> Co+Li<sub>2</sub>O. </p> <div class="mw-heading mw-heading4"><h4 id="Titanium_dioxide">Titanium dioxide</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=5" title="Edit section: Titanium dioxide"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1984, researchers at <a href="/wiki/Bell_Labs" title="Bell Labs">Bell Labs</a> reported the synthesis and evaluation of a series of lithiated titanates. Of specific interest were the <a href="/wiki/Anatase" title="Anatase">anatase</a> form of titanium dioxide and the lithium <a href="/wiki/Spinel" title="Spinel">spinel</a> LiTi<sub>2</sub>O<sub>4</sub><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Anatase" title="Anatase">Anatase</a> has been observed to have a maximum capacity of 150 mAh/g (0.5Li/Ti) with the capacity limited by the availability of crystallographic vacancies in the framework. The TiO<sub>2</sub> polytype <a href="/wiki/Brookite" title="Brookite">brookite</a> has also been evaluated and found to be electrochemically active when produced as nanoparticles with a capacity approximately half that of anatase (0.25Li/Ti). In 2014, researchers at <a href="/wiki/Nanyang_Technological_University" title="Nanyang Technological University">Nanyang Technological University</a> used a materials derived from a titanium dioxide gel derived from naturally spherical titanium dioxide particles into <a href="/wiki/Non-carbon_nanotube" title="Non-carbon nanotube">nanotubes</a><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> In addition, a non-naturally occurring electrochemically active titanate referred to as TiO<sub>2</sub>(B) can be made by ion-exchange followed by dehydration of the potassium titanate K<sub>2</sub>Ti<sub>4</sub>O<sub>9</sub>.<sup id="cite_ref-Fujishima_12-0" class="reference"><a href="#cite_note-Fujishima-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> This layered oxide can be produced in multiple forms including nanowires, nanotubes, or oblong particles with an observed capacity of 210 mAh/g in the voltage window 1.5–2.0 V (vs Li). </p> <div class="mw-heading mw-heading4"><h4 id="Niobates">Niobates</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=6" title="Edit section: Niobates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2011, Lu et al., reported reversible electrochemical activity in the porous niobate KNb<sub>5</sub>O<sub>13</sub>.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> This material inserted approximately 3.5Li per formula unit (about 125 mAh/g) at a voltage near 1.3 V (vs Li). This lower voltage (compared to titantes) is useful in systems where higher energy density is desirable without significant SEI formation as it operates above the typical electrolyte breakdown voltage. A high rate titanium niobate (TiNb<sub>2</sub>O<sub>7</sub>) was reported in 2011 by Han, Huang, and <a href="/wiki/John_B._Goodenough" title="John B. Goodenough">John B. Goodenough</a> with an average voltage near 1.3 V (vs Li).<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Transition-metal_oxides">Transition-metal oxides</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=7" title="Edit section: Transition-metal oxides"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2000, researchers from the Université de Picardie Jules Verne examined the use of nano-sized transition-metal oxides as conversion anode materials. The metals used were cobalt, nickel, copper, and iron, which proved to have capacities of 700 mAh/g and maintain full capacity for 100 cycles. The materials operate by reduction of the metal cation to either metal nanoparticles or to a lower oxidation state oxide. These promising results show that transition-metal oxides may be useful in ensuring the integrity of the lithium-ion battery over many discharge-recharge cycles.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Lithium">Lithium</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=8" title="Edit section: Lithium"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Lithium" title="Lithium">Lithium</a> anodes were used for the first lithium-ion batteries in the 1960s, based on the <span class="chemf nowrap">TiS<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span>/Li</span> cell chemistry, but were eventually replaced due to dendrite formation which caused internal short-circuits and was a fire hazard.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> Effort continued in areas that required lithium, including charged cathodes such as <a href="/wiki/Manganese_dioxide" title="Manganese dioxide">manganese dioxide</a>, <a href="/wiki/Vanadium_pentoxide" class="mw-redirect" title="Vanadium pentoxide">vanadium pentoxide</a>, or <a href="/wiki/Molybdenum_oxide" title="Molybdenum oxide">molybdenum oxide</a> and some <a href="/wiki/Polymer_electrolyte" class="mw-redirect" title="Polymer electrolyte">polymer electrolyte</a> based cell designs. The interest in lithium metal anodes was re-established with the increased interest in high capacity <a href="/wiki/Lithium%E2%80%93air_battery" title="Lithium–air battery">lithium–air battery</a> and <a href="/wiki/Lithium%E2%80%93sulfur_battery" title="Lithium–sulfur battery">lithium–sulfur battery</a> systems. </p><p>Research to inhibit dendrite formation has been an active area. <a href="/wiki/Doron_Aurbach" title="Doron Aurbach">Doron Aurbach</a> and co-workers at <a href="/wiki/Bar-Ilan_University" title="Bar-Ilan University">Bar-Ilan University</a> have extensively studied the role of solvent and salt in the formation of films on the lithium surface. Notable observations were the addition of LiNO<sub>3</sub>, <a href="/wiki/Dioxolane" title="Dioxolane">dioxolane</a>, and hexafluoroarsenate salts. They appeared to create films that inhibit dendrite formation while incorporating reduced Li<sub>3</sub>As as a lithium-ion conductive component.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p><p>In 2021, researchers announced the use of thin (20 <a href="/wiki/Micrometre" title="Micrometre">micron</a>) lithium metal strips. They were able to achieve energy density of 350 Wh/kg over 600 charge/discharge cycles.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Further information on the American battery technology innovator and entrepreneur: <a href="/wiki/Hany_Eitouni" title="Hany Eitouni">Hany Eitouni</a></div> <div class="mw-heading mw-heading3"><h3 id="Non-graphitic_carbon">Non-graphitic carbon</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=9" title="Edit section: Non-graphitic carbon"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Various forms of carbon are used in lithium-ion battery cell configurations. Besides graphite poorly or non-electrochemically active types of carbon are used in cells such as CNTs, carbon black, <a href="/wiki/Graphene" title="Graphene">graphene</a>, graphene oxides, or MWCNTs. </p><p>Recent work includes efforts in 2014 by researchers at <a href="/wiki/Northwestern_University" title="Northwestern University">Northwestern University</a> who found that metallic single-walled <a href="/wiki/Carbon_nanotube" title="Carbon nanotube">carbon nanotubes</a> (SWCNTs) accommodate lithium much more efficiently than their semiconducting counterparts. If made denser, semiconducting SWCNT films take up lithium at levels comparable to metallic SWCNTs.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> </p><p>Hydrogen treatment of <a href="/wiki/Graphene" title="Graphene">graphene</a> <a href="/wiki/Nanofoam" title="Nanofoam">nanofoam</a> electrodes in LIBs was shown to improve their capacity and transport properties. Chemical synthesis methods used in standard anode manufacture leave significant amounts of atomic <a href="/wiki/Hydrogen" title="Hydrogen">hydrogen</a>. Experiments and multiscale calculations revealed that low-temperature hydrogen treatment of defect-rich graphene can improve rate capacity. The hydrogen interacts with the graphene defects to open gaps to facilitate lithium penetration, improving transport. Additional reversible capacity is provided by enhanced lithium binding near edges, where hydrogen is most likely to bind.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> Rate capacities increased by 17–43% at 200 mA/g.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> In 2015, researchers in China used porous graphene as the material for a lithium-ion battery anode in order to increase the specific capacity and binding energy between lithium atoms at the anode. The properties of the battery can be tuned by applying strain. The binding energy increases as biaxial strain is applied.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Silicon">Silicon</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=10" title="Edit section: Silicon"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Lithium%E2%80%93silicon_battery" title="Lithium–silicon battery">Lithium–silicon battery</a></div> <p><a href="/wiki/Silicon" title="Silicon">Silicon</a> is an earth abundant <a href="/wiki/Chemical_element" title="Chemical element">element</a>, and is fairly inexpensive to refine to high purity. When alloyed with <a href="/wiki/Lithium" title="Lithium">lithium</a> it has a theoretical capacity of ~3,600 milliampere hours per gram (mAh/g), which is nearly 10 times the <a href="/wiki/Energy_density" title="Energy density">energy density</a> of <a href="/wiki/Graphite" title="Graphite">graphite</a> electrodes, which exhibit a maximum capacity of 372 mAh/g for their fully lithiated state of LiC<sub>6</sub>.<sup id="cite_ref-SiOC_4-1" class="reference"><a href="#cite_note-SiOC-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> One of silicon's inherent traits, unlike carbon, is the expansion of the lattice structure by as much as 400% upon full lithiation (charging). For bulk electrodes, this causes great structural stress gradients within the expanding material, inevitably leading to fractures and mechanical failure, which significantly limits the lifetime of the silicon anodes.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> In 2011, a group of researchers assembled data tables that summarized the morphology, composition, and method of preparation of those nanoscale and nanostructured silicon anodes, along with their electrochemical performance.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> </p><p>Porous silicon nanoparticles are more reactive than bulk silicon materials and tend to have a higher weight percentage of silica as a result of the smaller size. Porous materials allow for internal volume expansion to help control overall materials expansion. Methods include a silicon anode with an energy density above 1,100 mAh/g and a durability of 600 cycles that used porous silicon particles using ball-milling and stain-etching.<sup id="cite_ref-pddnet1_28-0" class="reference"><a href="#cite_note-pddnet1-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> In 2013, researchers developed a battery made from porous silicon <a href="/wiki/Nanoparticle" title="Nanoparticle">nanoparticles</a>.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> Below are various structural morphologies attempted to overcome issue with silicon's intrinsic properties. </p><p>The major obstacle in the commercialization of silicon as anode material for Li-ion battery is higher volumetric changes and formation of SEI. Recent research works have highlighted the strategies for the optimization and maintaining the structural stability of the electrode. Another aspect that contributes to fast anode degradation is the solid-electrolyte interface (SEI). During the first lithium insertion phase, the SEI forms on the electrode's surface and acts as a massive impediment between the electrode and the electrolyte. Because of this blockage, Lithium-ion conduction is permitted while functioning as an insulator, restricting additional electrolyte breakdown and keeping the lithium-ion battery's cycle performance from gradually declining. Everything from the most fundamental battery performance to the overall efficacy and cyclability of the LIB is influenced by the kind of SEI.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Silicon_encapsulation">Silicon encapsulation</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=11" title="Edit section: Silicon encapsulation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As a method to control the ability of fully lithiated silicon to expand and become electronically isolated, a method for caging 3 nm-diameter silicon particles in a shell of <a href="/wiki/Graphene" title="Graphene">graphene</a> was reported in 2016. The particles were first coated with <a href="/wiki/Nickel" title="Nickel">nickel</a>. Graphene layers then coated the metal. Acid dissolved the nickel, leaving enough of a void within the cage for the silicon to expand. The particles broke into smaller pieces, but remained functional within the cages.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> </p><p>In 2014, researchers encapsulated silicon <a href="/wiki/Nanoparticles" class="mw-redirect" title="Nanoparticles">nanoparticles</a> inside carbon shells, and then encapsulated clusters of the shells with more carbon. The shells provide enough room inside to allow the nanoparticles to swell and shrink without damaging the shells, improving durability.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Silicon_nanowire">Silicon nanowire</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=12" title="Edit section: Silicon nanowire"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div><p> In 2021 Paul V.Braun's group at <a href="/wiki/University_of_Illinois_at_Urbana-Champaign" class="mw-redirect" title="University of Illinois at Urbana-Champaign">University of Illinois at Urbana-Champaign</a> developed a large-scale and low-cost approach for synthesizing Si/Cu nanowires. Firstly, Si/Cu/Zn ternary microspheres are prepared by a pulsed electrical discharging method in a scalable manner, and then Zn and partial Si in the microspheres was partially removed by chemical etching to form Si/Cu nanowires. This technology utilizes relatively cheap materials and flexible processing methods, costing approximately $0.3 g−1, which is promising to boost the yield of Si alloy NWs with low cost.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"></p><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Nanowire_battery" title="Nanowire battery">Nanowire battery</a></div> <div class="mw-heading mw-heading4"><h4 id="Porous-silicon_inorganic-electrode_design">Porous-silicon inorganic-electrode design</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=13" title="Edit section: Porous-silicon inorganic-electrode design"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2012, Vaughey, et al., reported a new all-inorganic electrode structure based on electrochemically active silicon particles bound to a copper substrate by a Cu<sub>3</sub>Si intermetallic.<sup id="cite_ref-Vaughey2012e_37-0" class="reference"><a href="#cite_note-Vaughey2012e-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Vaughey2011c_38-0" class="reference"><a href="#cite_note-Vaughey2011c-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> Copper nanoparticles were deposited on silicon particles articles, dried, and laminated onto a copper foil. After annealing, the copper nanoparticles annealed to each other and to the copper current collector to produce a porous electrode with a copper binder once the initial polymeric binder burned out. The design had performance similar to conventional electrode polymer binders with exceptional rate capability owing to the metallic nature of the structure and current pathways. </p> <div class="mw-heading mw-heading4"><h4 id="Silicon_nanofiber">Silicon nanofiber</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=14" title="Edit section: Silicon nanofiber"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2015, a prototype electrode was demonstrated that consists of sponge-like silicon <a href="/wiki/Nanofibers" class="mw-redirect" title="Nanofibers">nanofibers</a> increases Coulombic efficiency and avoids the physical damage from silicon's expansion/contractions. The nanofibers were created by applying a high voltage between a rotating drum and a nozzle emitting a solution of <a href="/wiki/Tetraethyl_orthosilicate" title="Tetraethyl orthosilicate">tetraethyl orthosilicate</a> (TEOS). The material was then exposed to <a href="/wiki/Magnesium" title="Magnesium">magnesium</a> vapors. The nanofibers contain 10 nm diameter nanopores on their surface. Along with additional gaps in the fiber network, these allow for silicon to expand without damaging the cell. Three other factors reduce expansion: a 1 nm shell of silicon dioxide; a second carbon coating that creates a buffer layer; and the 8-25 nm fiber size, which is below the size at which silicon tends to fracture.<sup id="cite_ref-:1_39-0" class="reference"><a href="#cite_note-:1-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> </p><p>Conventional lithium-ion cells use binders to hold together the active material and keep it in contact with the current collectors. These inactive materials make the battery bigger and heavier. Experimental binderless batteries do not scale because their active materials can be produced only in small quantities. The prototype has no need for current collectors, polymer binders or conductive powder additives. Silicon comprises over 80 percent of the electrode by weight. The electrode delivered 802 mAh/g after more than 600 cycles, with a Coulombic efficiency of 99.9 percent.<sup id="cite_ref-:1_39-1" class="reference"><a href="#cite_note-:1-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Tin">Tin</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=15" title="Edit section: Tin"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Lithium tin <a href="/wiki/Zintl_phase" title="Zintl phase">Zintl phases</a>, discovered by <a href="/wiki/Eduard_Zintl" title="Eduard Zintl">Eduard Zintl</a>, have been studied as anode materials in lithium-ion energy storage systems for several decades. First reported in 1981 by <a href="/wiki/Robert_Huggins" title="Robert Huggins">Robert Huggins</a>,<sup id="cite_ref-Huggins1981_40-0" class="reference"><a href="#cite_note-Huggins1981-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> the system has a multiphase discharge curve and stores approximately 1000 mAh/g (Li<sub>22</sub>Sn<sub>5</sub>). Tin and its compounds have been extensively studied but, similar to <a href="/wiki/Silicon" title="Silicon">silicon</a> or <a href="/wiki/Germanium" title="Germanium">germanium</a> anode systems, issues associated with volume expansion (associated with gradual filling of p-orbitals and essential cation insertion), unstable SEI formation, and electronic isolation have been studied in an attempt to commercialize these materials. In 2013, work on morphological variation by researchers at <a href="/wiki/Washington_State_University" title="Washington State University">Washington State University</a> used standard <a href="/wiki/Electroplating" title="Electroplating">electroplating</a> processes to create nanoscale tin needles that show 33% lower volume expansion during charging.<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> In 2015, the research team at <a href="/wiki/University_of_Illinois_at_Urbana-Champaign" class="mw-redirect" title="University of Illinois at Urbana-Champaign">University of Illinois at Urbana-Champaign</a> create a 3D mechanically stable nickel–tin nanocomposite scaffold as a <a href="/wiki/Li-ion_battery" class="mw-redirect" title="Li-ion battery">Li-ion battery</a> anode. This scaffold can accommodate the volume change of a high-specific-capacity during operation. And nickel–tin anode is supported by an electrochemically inactive conductive scaffold with an engineered free volume and controlled characteristic dimensions, so the electrode with significantly improved cyclability.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Intermetallic_insertion_materials">Intermetallic insertion materials</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=16" title="Edit section: Intermetallic insertion materials"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As for oxide intercalation (or insertion) anode materials, similar classes of materials where the lithium cation is inserted into crystallographic vacancies within a metal host lattice have been discovered and studied since 1997. In general because of the metallic lattice, these types of materials, for example Cu<sub>6</sub>Sn<sub>5</sub>,<sup id="cite_ref-Vaughey1999_44-0" class="reference"><a href="#cite_note-Vaughey1999-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> Mn<sub>2</sub>Sb,<sup id="cite_ref-Vaughey2003_45-0" class="reference"><a href="#cite_note-Vaughey2003-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> lower voltages and higher capacities have been found when compared to their oxide counterparts. </p> <div class="mw-heading mw-heading4"><h4 id="Cu6Sn5">Cu<sub>6</sub>Sn<sub>5</sub></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=17" title="Edit section: Cu6Sn5"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Cu<sub>6</sub>Sn<sub>5</sub> is an intermetallic alloy with a defect <a href="/wiki/NiAs" class="mw-redirect" title="NiAs">NiAs</a> type structure. In <a href="/wiki/NiAs" class="mw-redirect" title="NiAs">NiAs</a> type nomenclature it would have the stoichiometry Cu<sub>0.2</sub>CuSn, with 0.2 Cu atoms occupying a usually unoccupied crystallographic position in the lattice. These copper atoms are displaced to the grain boundaries when charged to form Li<sub>2</sub>CuSn. With retention of most of the metal-metal bonding down to 0.5 V, Cu<sub>6</sub>Sn<sub>5</sub> has become an attractive potential anode material due to its high theoretical specific capacity, resistance against Li metal plating especially when compared to carbon-based anodes, and ambient stability.<sup id="cite_ref-Vaughey1999_44-1" class="reference"><a href="#cite_note-Vaughey1999-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-TanMcDonald2019_46-0" class="reference"><a href="#cite_note-TanMcDonald2019-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-WangShan2017_47-0" class="reference"><a href="#cite_note-WangShan2017-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> In this and related NiAs-type materials, lithium intercalation occurs through an insertion process to fill the two crystallographic vacancies in the lattice, at the same time as the 0.2 extra coppers are displaced to the grain boundaries. Efforts to charge compensate the main group metal lattice to remove the excess copper have had limited success.<sup id="cite_ref-Vaughey2011_48-0" class="reference"><a href="#cite_note-Vaughey2011-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> Although significant retention of structure is noted down to the ternary lithium compound Li<sub>2</sub>CuSn, over discharging the material results in disproportionation with formation of Li<sub>22</sub>Sn<sub>5</sub> and elemental copper. This complete lithiation is accompanied by volume expansion of approximately 250%. Current research focuses on investigating alloying and low dimensional geometries to mitigate mechanical stress during lithiation. Alloying tin with elements that do not react with lithium, such as copper, has been shown to reduce stress. As for low dimensional applications, thin films have been produced with discharge capacities of 1127 mAhg<sup>−1</sup> with excess capacity assigned to lithium ion storage at grain boundaries and associated with defect sites.<sup id="cite_ref-Vaughey2008_49-0" class="reference"><a href="#cite_note-Vaughey2008-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> Other approaches include making nanocomposites with Cu<sub>6</sub>Sn<sub>5</sub> at its core with a nonreactive outer shell, SnO<sub>2</sub>-c hybrids have been shown to be effective,<sup id="cite_ref-HuWaller2015_50-0" class="reference"><a href="#cite_note-HuWaller2015-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> to accommodate volume changes and overall stability over cycles. </p> <div class="mw-heading mw-heading4"><h4 id="Copper_antimonide">Copper antimonide</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=18" title="Edit section: Copper antimonide"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The layered intermetallic materials derived from the Cu<sub>2</sub>Sb-type structure are attractive anode materials due to the open gallery space available and structural similarities to the discharge Li<sub>2</sub>CuSb product. First reported in 2001.<sup id="cite_ref-Vaughey2011b_51-0" class="reference"><a href="#cite_note-Vaughey2011b-51"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup> In 2011, researchers reported a method to create porous three dimensional electrodes materials based on electrodeposited antimony onto copper foams followed by a low temperature annealing step. It was noted to increase the rate capacity by lowering the lithium diffusion distances while increasing the surface area of the current collector.<sup id="cite_ref-Vaughey2011c_38-1" class="reference"><a href="#cite_note-Vaughey2011c-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> In 2015, researchers announced a solid-state 3-D battery anode using the electroplated copper antimonide (copper foam). The anode is then layered with a solid polymer electrolyte that provides a physical barrier across which ions (but not electrons) can travel. The cathode is an inky slurry. The volumetric energy density was up to twice as much energy conventional batteries. The solid electrolyte prevents dendrite formation.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Three-dimensional_nanostructure">Three-dimensional nanostructure</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=19" title="Edit section: Three-dimensional nanostructure"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Nanoengineered porous electrodes have the advantage of short diffusion distances, room for expansion and contraction, and high activity. In 2006 an example of a three dimensional engineered ceramic oxide based on lithium titanate was reported that had dramatic rate enhancement over the non-porous analogue.<sup id="cite_ref-Vaughey2006_53-0" class="reference"><a href="#cite_note-Vaughey2006-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> Later work by Vaughey et al., highlighted the utility of electrodeposition of electroactive metals on copper foams to create thin film intermetallic anodes. These porous anodes have high power in addition to higher stability as the porous open nature of the electrode allows for space to absorb some of the volume expansion. In 2011, researchers at <a href="/wiki/University_of_Illinois_at_Urbana-Champaign" class="mw-redirect" title="University of Illinois at Urbana-Champaign">University of Illinois at Urbana-Champaign</a> discovered that wrapping a thin film into a <a href="/wiki/Three-dimensional" class="mw-redirect" title="Three-dimensional">three-dimensional</a> nanostructure can decrease charge time by a factor of 10 to 100. The technology is also capable of delivering a higher voltage output.<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> In 2013, the team improved the microbattery design, delivering 30 times the <a href="/wiki/Energy_density" title="Energy density">energy density</a> 1,000x faster charging.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> The technology also delivers better <a href="/wiki/Power_density" title="Power density">power density</a> than <a href="/wiki/Supercapacitor" title="Supercapacitor">supercapacitors</a>. The device achieved a power density of 7.4 W/cm<sup>2</sup>/mm.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> In 2019, the team develop a high areal and volumetric capacity 3D-structured tin-carbon anode by using a two steps electroplating process, which exhibits a high volumetric/areal capacity of ~879 mAh/cm<sup>3</sup> and 6.59 mAh/cm<sup>2</sup> after 100 cycles at 0.5 °C and 750 mAh/cm<sup>3</sup> and 5.5 mAh/cm<sup>2</sup> (delithiation) at 10 °C with a 20%<a href="/wiki/V/v" class="mw-redirect" title="V/v">v/v</a> Sn loading in a <a href="/wiki/Half-cell" title="Half-cell">half-cell</a> configuration.<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Semi-solid">Semi-solid</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=20" title="Edit section: Semi-solid"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2016, researchers announced an anode composed of a slurry of Lithium-iron phosphate and graphite with a liquid electrolyte. They claimed that the technique increased safety (the anode could be deformed without damage) and energy density.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> A flow battery without carbon, called <a href="/wiki/Solid_dispersion_redox_flow_battery" title="Solid dispersion redox flow battery">Solid Dispersion Redox Flow Battery</a>, was reported, proposing increased energy density and high operating efficiencies.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> A review of different semi-solid battery systems can be found here.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Redox-targeted_solids">Redox-targeted solids</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=21" title="Edit section: Redox-targeted solids"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2007, <a href="/wiki/Michael_Gratzel" class="mw-redirect" title="Michael Gratzel">Michael Gratzel</a> and his co-workers at the <a href="/wiki/University_of_Geneva" title="University of Geneva">University of Geneva</a> reported lithium-ion batteries, where the electroactive solids are stored as pure (i.e. without binders, conductive additives, current collectors) powders in tanks, and washed by liquids with dissolved redox couples, capable of electron exchange with the electroactive solids, with a <a href="/wiki/Flow_battery" title="Flow battery">flow battery</a> stack being added. Such devices are expected to provide a higher <a href="/wiki/Energy_density" title="Energy density">energy density</a> than traditional batteries, but suffer from a lower <a href="/wiki/Energy_efficiency_(physics)" class="mw-redirect" title="Energy efficiency (physics)">energy efficiency</a>.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Cathode">Cathode</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=22" title="Edit section: Cathode"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Several varieties of cathode exist, but typically they can easily divided into two categories, namely charged and discharged. Charged cathodes are materials with pre-existing crystallographic vacancies. These materials, for instance <a href="/wiki/Spinels" class="mw-redirect" title="Spinels">spinels</a>, <a href="/wiki/Vanadium_pentoxide" class="mw-redirect" title="Vanadium pentoxide">vanadium pentoxide</a>, <a href="/wiki/Molybdenum_oxide" title="Molybdenum oxide">molybdenum oxide</a> or LiV<sub>3</sub>O<sub>8</sub>, typically are tested in cell configurations with a <a href="/wiki/Lithium" title="Lithium">lithium</a> metal anode as they need a source of lithium to function. While not as common in secondary cell designs, this class is commonly seen in primary batteries that do not require recharging, such as implantable medical device batteries. The second variety are discharged cathodes where the cathode typically in a discharged state (cation in a stable reduced oxidation state), has electrochemically active lithium, and when charged, crystallographic vacancies are created. Due to their increased manufacturing safety and without the need for a lithium source at the <a href="/wiki/Anode" title="Anode">anode</a>, this class is more commonly studied. Examples include <a href="/wiki/Lithium_cobalt_oxide" title="Lithium cobalt oxide">lithium cobalt oxide</a>, lithium nickel manganese cobalt oxide <a href="/wiki/Lithium_nickel_manganese_cobalt_oxide" class="mw-redirect" title="Lithium nickel manganese cobalt oxide">NMC</a>, or lithium iron phosphate <a href="/wiki/Olivine" title="Olivine">olivine</a> which can be combined with most <a href="/wiki/Anodes" class="mw-redirect" title="Anodes">anodes</a> such as <a href="/wiki/Graphite" title="Graphite">graphite</a>, lithium titanate spinel, <a href="/wiki/Titanium_oxide" title="Titanium oxide">titanium oxide</a>, <a href="/wiki/Silicon" title="Silicon">silicon</a>, or intermetallic insertion materials to create a working electrochemical cell. </p> <div class="mw-heading mw-heading3"><h3 id="Vanadium_oxides">Vanadium oxides</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=23" title="Edit section: Vanadium oxides"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Vanadium oxides have been a common class of cathodes to study due to their high capacity, ease of synthesis, and electrochemical window that matches well with common <a href="/wiki/Polymer_electrolyte" class="mw-redirect" title="Polymer electrolyte">polymer electrolytes</a>. Vanadium oxides cathodes, typically classed as charged cathodes, are found in many different structure types. These materials have been extensively studied by <a href="/wiki/Stanley_Whittingham" class="mw-redirect" title="Stanley Whittingham">Stanley Whittingham</a> among others.<sup id="cite_ref-Whittingham01_63-0" class="reference"><a href="#cite_note-Whittingham01-63"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Whittingham02_64-0" class="reference"><a href="#cite_note-Whittingham02-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Whittingham03_65-0" class="reference"><a href="#cite_note-Whittingham03-65"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup> In 2007, <a href="/wiki/Subaru" title="Subaru">Subaru</a> introduced a battery with double the energy density while only taking 15 minutes for an 80% charge. They used a nanostructured vanadium oxide, which is able to load two to three times more lithium ions onto the cathode than the layered lithium cobalt oxide.<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> In 2013 researchers announced a synthesis of hierarchical vanadium oxide nanoflowers (V<sub>10</sub>O<sub>24</sub>·<i>n</i>H<sub>2</sub>O) synthesized by an oxidation reaction of vanadium foil in a <a href="/wiki/Sodium_chloride" title="Sodium chloride">NaCl</a> aqueous solution. Electrochemical tests demonstrate deliver high reversible specific capacities with 100% coulombic efficiency, especially at high C rates (<i>e.g.</i>, 140 mAh g<sup>−1</sup> at 10 C).<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup> In 2014, researchers announced the use of vanadate-borate glasses (V<sub>2</sub>O<sub>5</sub> – LiBO<sub>2</sub> glass with reduced graphite oxide) as a cathode material. The cathode achieved around 1000 Wh/kg with high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles.<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Disordered_materials">Disordered materials</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=24" title="Edit section: Disordered materials"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2014, researchers at <a href="/wiki/Massachusetts_Institute_of_Technology" title="Massachusetts Institute of Technology">Massachusetts Institute of Technology</a> found that creating high lithium content lithium-ion batteries materials with cation disorder among the electroactive metals could achieve 660 <a href="/wiki/Watt-hours_per_kilogram" class="mw-redirect" title="Watt-hours per kilogram">watt-hours per kilogram</a> at 2.5 <a href="/wiki/Volts" class="mw-redirect" title="Volts">volts</a>.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup> The materials of the stoichiometry Li<sub>2</sub>MO<sub>3</sub>-LiMO<sub>2</sub> are similar to the lithium rich <a href="/wiki/Lithium_nickel_manganese_cobalt_oxide" class="mw-redirect" title="Lithium nickel manganese cobalt oxide">lithium nickel manganese cobalt oxide</a> (NMC) materials but without the cation ordering. The extra lithium creates better diffusion pathways and eliminates high energy transition points in the structure that inhibit lithium diffusion. </p> <div class="mw-heading mw-heading4"><h4 id="Glasses">Glasses</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=25" title="Edit section: Glasses"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2015 researchers blended powdered <a href="/wiki/Vanadium_pentoxide" class="mw-redirect" title="Vanadium pentoxide">vanadium pentoxide</a> with borate compounds at 900 C and quickly cooled the melt to form glass. The resulting paper-thin sheets were then crushed into a powder to increase their surface area. The powder was coated with reduced graphite oxide (RGO) to increase conductivity while protecting the electrode. The coated powder was used for the battery cathodes. Trials indicated that capacity was quite stable at high discharge rates and remained consistently over 100 charge/discharge cycles. Energy density reached around 1,000 watt-hours per kilogram and a discharge capacity that exceeded 300 mAh/g.<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Sulfur">Sulfur</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=26" title="Edit section: Sulfur"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Used as the cathode for a <a href="/wiki/Lithium%E2%80%93sulfur_battery" title="Lithium–sulfur battery">lithium–sulfur battery</a> this system has high capacity on the formation of Li<sub>2</sub>S. In 2014, researchers at <a href="/wiki/USC_Viterbi_School_of_Engineering" title="USC Viterbi School of Engineering">USC Viterbi School of Engineering</a> used a <a href="/wiki/Graphite_oxide" title="Graphite oxide">graphite oxide</a> coated <a href="/wiki/Sulfur" title="Sulfur">sulfur</a> cathode to create a battery with 800 mAh/g for 1,000 cycles of charge/discharge, over 5 times the energy density of commercial cathodes. Sulfur is abundant, low cost and has low toxicity. Sulfur has been a promising cathode candidate owing to its high theoretical energy density, over 10 times that of metal oxide or phosphate cathodes. However, sulfur's low cycle durability has prevented its commercialization. Graphene oxide coating over sulfur is claimed to solve the cycle durability problem. Graphene oxide high surface area, chemical stability, mechanical strength and flexibility.<sup id="cite_ref-pddnet1_28-1" class="reference"><a href="#cite_note-pddnet1-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Seawater">Seawater</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=27" title="Edit section: Seawater"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2012, researchers at Polyplus Corporation created a battery with an <a href="/wiki/Energy_density" title="Energy density">energy density</a> more than triple that of traditional lithium-ion batteries using the halides or organic materials in <a href="/wiki/Seawater" title="Seawater">seawater</a> as the active cathode. Its energy density is 1,300 <a href="/wiki/W%C2%B7h/kg" class="mw-redirect" title="W·h/kg">W·h/kg</a>, which is a lot more than the traditional 400 W·h/kg. It has a solid lithium positive electrode and a solid electrolyte. It could be used in underwater applications.<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Lithium-based_cathodes">Lithium-based cathodes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=28" title="Edit section: Lithium-based cathodes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Lithium_nickel_cobalt_aluminium_oxides" title="Lithium nickel cobalt aluminium oxides">Lithium nickel cobalt aluminium oxides</a></div> <div class="mw-heading mw-heading4"><h4 id="Lithium_nickel_manganese_cobalt_oxide">Lithium nickel manganese cobalt oxide</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=29" title="Edit section: Lithium nickel manganese cobalt oxide"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Lithium_nickel_manganese_cobalt_oxides" title="Lithium nickel manganese cobalt oxides">Lithium nickel manganese cobalt oxides</a></div> <p>In 1998, a team from <a href="/wiki/Argonne_National_Laboratory" title="Argonne National Laboratory">Argonne National Laboratory</a> reported on the discovery of lithium rich <a href="/wiki/Lithium_nickel_manganese_cobalt_oxide" class="mw-redirect" title="Lithium nickel manganese cobalt oxide">NMC</a> cathodes.,<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Thack03_73-0" class="reference"><a href="#cite_note-Thack03-73"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup> These high-capacity high-voltage materials consist of nanodomains of the two structurally similar but different materials. On first charge, noted by its long plateau around 4.5 V (vs Li), the activation step creates a structure that gradually equilibrates to a more stable materials by cation re-positioning from high-energy points to lower-energy points in the lattice. The intellectual property surrounding these materials has been licensed to several manufacturers, including BASF, General Motors for the <a href="/wiki/Chevrolet_Volt" title="Chevrolet Volt">Chevrolet Volt</a> and <a href="/wiki/Chevrolet_Bolt" title="Chevrolet Bolt">Chevrolet Bolt</a>, and <a href="/w/index.php?title=Toda_Kogyo&action=edit&redlink=1" class="new" title="Toda Kogyo (page does not exist)">Toda</a>. The mechanism for the high capacity and the gradual voltage fade has been extensively examined. It is generally believed the high-voltage activation step induces various cation defects that on cycling equilibrate through the lithium-layer sites to a lower energy state that exhibits a lower cell voltage but with a similar capacity,.<sup id="cite_ref-Dogan04_74-0" class="reference"><a href="#cite_note-Dogan04-74"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Croy02_75-0" class="reference"><a href="#cite_note-Croy02-75"><span class="cite-bracket">[</span>75<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Lithium–iron_phosphate"><span id="Lithium.E2.80.93iron_phosphate"></span>Lithium–iron phosphate</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=30" title="Edit section: Lithium–iron phosphate"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>LiFePO<sub>4</sub> is a 3.6 V lithium-ion battery cathode initially reported by <a href="/wiki/John_Goodenough" class="mw-redirect" title="John Goodenough">John Goodenough</a> and is structurally related to the mineral <a href="/wiki/Olivine" title="Olivine">olivine</a> and consists of a three dimensional lattice of an [FePO4] framework surrounding a lithium cation. The lithium cation sits in a one dimensional channel along the [010] axis of the crystal structure. This alignment yields anisotropic ionic conductivity that has implications for its usage as a battery cathode and makes morphological control an important variable in its electrochemical cell rate performance. Although the iron analogue is the most commercial owing to its stability, the same composition exists for nickel, manganese, and cobalt although the observed high cell charging voltages and synthetic challenges for these materials make them viable but more difficult to commercialize. While the material has good ionic conductivity it possesses poor intrinsic electronic conductivity. This combination makes nanophase compositions and composites or coatings (to increase electronic conductivity of the whole matrix) with materials such as carbon advantageous. Alternatives to nanoparticles include mesoscale structure such as <a href="/wiki/Nanoball_batteries" title="Nanoball batteries">nanoball batteries</a> of the olivine LiFePO<sub>4</sub> that can have rate capabilities two orders of magnitude higher than randomly ordered materials. The rapid charging is related to the nanoballs high surface area where electrons are transmitted to the surface of the cathode at a higher rate. </p><p>In 2012, researchers at <a href="/wiki/A123_Systems" title="A123 Systems">A123 Systems</a> developed a battery that operates in extreme temperatures without the need for thermal management material. It went through 2,000 full charge-discharge cycles at 45 °C while maintaining over 90% energy density. It does this using a nanophosphate positive electrode.<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">[</span>77<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Lithium_manganese_silicon_oxide">Lithium manganese silicon oxide</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=31" title="Edit section: Lithium manganese silicon oxide"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A "<a href="/wiki/Lithium_orthosilicate" title="Lithium orthosilicate">lithium orthosilicate</a>-related" cathode compound, <span class="chemf nowrap">Li<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span>MnSiO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span>, was able to support a charging capacity of 335 mAh/g.<sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup> Li<sub>2</sub>MnSiO<sub>4</sub>@C porous nanoboxes were synthesized via a wet-chemistry solid-state reaction method. The material displayed a hollow nanostructure with a crystalline porous shell composed of phase-pure Li<sub>2</sub>MnSiO<sub>4</sub> nanocrystals. <a href="/wiki/Powder_diffraction" title="Powder diffraction">Powder X-ray diffraction</a> patterns and <a href="/wiki/Transmission_electron_microscopy" title="Transmission electron microscopy">transmission electron microscopy</a> images revealed that the high phase purity and porous nanobox architecture were achieved via monodispersed MnCO<sub>3</sub>@SiO<sub>2</sub> core–shell nanocubes with controlled shell thickness.<sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">[</span>79<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Air">Air</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=32" title="Edit section: Air"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Lithium%E2%80%93air_battery" title="Lithium–air battery">Lithium–air battery</a></div> <p>In 2009, researchers at the <a href="/wiki/University_of_Dayton_Research_Institute" title="University of Dayton Research Institute">University of Dayton Research Institute</a> announced a solid-state battery with higher <a href="/wiki/Energy_density" title="Energy density">energy density</a> that uses air as its cathode. When fully developed, the energy density could exceed 1,000 Wh/kg.<sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">[</span>80<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">[</span>81<span class="cite-bracket">]</span></a></sup> In 2014, researchers at the School of Engineering at the University of Tokyo and Nippon Shokubai discovered that adding <a href="/wiki/Cobalt" title="Cobalt">cobalt</a> to the <a href="/wiki/Lithium_oxide" title="Lithium oxide">lithium oxide</a> crystal structure gave it seven times the <a href="/wiki/Energy_density" title="Energy density">energy density</a>.<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">[</span>82<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">[</span>83<span class="cite-bracket">]</span></a></sup> In 2017, researchers at University of Virginia reported a scalable method to produce sub-micrometer scale lithium cobalt oxide.<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">[</span>84<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Transition_Metal_Fluorides_(TMFs)"><span id="Transition_Metal_Fluorides_.28TMFs.29"></span>Transition Metal Fluorides (TMFs)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=33" title="Edit section: Transition Metal Fluorides (TMFs)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Transition_metal" title="Transition metal">Transition metal</a> fluorides (TMFs) form a metallic phase within a LiF matrix upon reacting with lithium. TMFs typically display poor electrochemical reversibility, and poor ionic and electronic conductivity. Although researchers are still working to understand the exact electrochemical reaction mechanisms of TMFs, there is a general agreement that the strong metal-fluoride <a href="/wiki/Ionic_bonding" title="Ionic bonding">ionic bond</a> contributes to poor kinetics within battery cells.<sup id="cite_ref-:0_85-0" class="reference"><a href="#cite_note-:0-85"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup> Among TMFs, iron fluoride is of particular interest because iron is Earth abundant and environmentally friendly compared to popular intercalation-type cathode materials, <a href="/wiki/Nickel" title="Nickel">nickel</a> and <a href="/wiki/Cobalt" title="Cobalt">cobalt</a>.<sup id="cite_ref-:0_85-1" class="reference"><a href="#cite_note-:0-85"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:2_86-0" class="reference"><a href="#cite_note-:2-86"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Iron_Fluoride">Iron Fluoride</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=34" title="Edit section: Iron Fluoride"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Iron(II)_fluoride" title="Iron(II) fluoride">Iron (II) fluoride</a> (FeF<sub>2</sub>) and <a href="/wiki/Iron(III)_fluoride" title="Iron(III) fluoride">iron (III) fluoride</a> (FeF<sub>3</sub>) have garnered recent interest as conversion-type cathode materials due to their high theoretical gravimetric energy densities and specific capacities, 571 mAh g<sup>−1</sup> and 712 mAh g<sup>−1</sup> respectively.<sup id="cite_ref-:2_86-1" class="reference"><a href="#cite_note-:2-86"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">[</span>87<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:4_88-0" class="reference"><a href="#cite_note-:4-88"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup> This high energy density and capacity derives from iron fluorides’ ability to transfer 2-3 electrons per Fe atom per reaction.<sup id="cite_ref-:2_86-2" class="reference"><a href="#cite_note-:2-86"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup> </p><p>Decreasing particle size is one of the main methods researchers have used to overcome iron fluoride’s insulating properties. <a href="/wiki/Ball_mill" title="Ball mill">Ball milling</a> utilizes shear-forces to form fine particles which can improve conductivity by increasing particle surface area and reducing carrier pathlength to reaction sites. While there has been some success with ball milling, this method can lead to a non-uniform particle size distribution.<sup id="cite_ref-:4_88-1" class="reference"><a href="#cite_note-:4-88"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">[</span>89<span class="cite-bracket">]</span></a></sup> </p><p>Another challenge with metal fluoride conversion cathodes includes volume expansion upon cycling.<sup id="cite_ref-:2_86-3" class="reference"><a href="#cite_note-:2-86"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:4_88-2" class="reference"><a href="#cite_note-:4-88"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup> Volume expansion decreases the reversibility of reactions and cycle stability. In addition, volume expansion results in the mechanical fatigue and fracture of the metal/LiF matrix, and can ultimately lead to the failure of the cell.<sup id="cite_ref-:2_86-4" class="reference"><a href="#cite_note-:2-86"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup> Recent success with solid polymer electrolytes (SPE) has increased the electrochemical stability and elasticity of the cathode electrolyte interface (CEI). Unlike traditional liquid electrolytes that form a thick, brittle CEI layer, these FeF<sub>2</sub>-SPE cathodes form elastic CEI layers which are encapsulated by the elastic electrolyte and strong composite layer. The elastic SPE is able to withstand the volume expansion of FeF<sub>2</sub> and carbon nanotubes (CNTs) strengthen the composite to prevent mechanical fatigue.<sup id="cite_ref-:4_88-3" class="reference"><a href="#cite_note-:4-88"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup> Another technique to circumvent volume expansion includes creating a lithiated FeF<sub>3</sub> nanocomposite with carbon. A lithiated FeF<sub>3</sub>/C <a href="/wiki/Nanocomposite" title="Nanocomposite">nanocomposite</a> already contains lithium in close contact with FeF<sub>3</sub>, therefore significantly reduces the stress/strain that occurs during lithiation upon the first cycle.<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">[</span>90<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Electrolyte">Electrolyte</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=35" title="Edit section: Electrolyte"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Currently, <a href="/wiki/Electrolyte" title="Electrolyte">electrolytes</a> are typically made of lithium <a href="/wiki/Salts" class="mw-redirect" title="Salts">salts</a> in a liquid <a href="/wiki/Organic_solvent" class="mw-redirect" title="Organic solvent">organic solvent</a>. Common solvents are organic carbonates (cyclic, straight chain), sulfones, imides, polymers (polyethylene oxide) and fluorinated derivatives. Common salts include LiPF<sub>6</sub>, LiBF<sub>4</sub>, LiTFSI, and LiFSI. Research centers on increased safety via reduced flammability and reducing shorts via preventing <a href="/wiki/Dendrite_(crystal)" title="Dendrite (crystal)">dendrites</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Perfluoropolyether">Perfluoropolyether</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=36" title="Edit section: Perfluoropolyether"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2014, researchers at <a href="/wiki/University_of_North_Carolina" title="University of North Carolina">University of North Carolina</a> found a way to replace the electrolyte's flammable organic solvent with nonflammable <a href="/wiki/Perfluoropolyether" title="Perfluoropolyether">perfluoropolyether</a> (PFPE). PFPE is usually used as an industrial lubricant, e.g., to prevent marine life from sticking to the ship bottoms. The material exhibited unprecedented high transference numbers and low electrochemical polarization, indicative of a higher cycle durability.<sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">[</span>91<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Solid-state">Solid-state</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=37" title="Edit section: Solid-state"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Solid-state_lithium-ion_battery" class="mw-redirect" title="Solid-state lithium-ion battery">Solid-state lithium-ion battery</a></div> <p>While no solid-state batteries have reached the market, multiple groups are researching this alternative. The notion is that solid-state designs are safer because they prevent dendrites from causing short circuits. They also have the potential to substantially increase energy density because their solid nature prevents dendrite formation and allows the use of pure metallic lithium anodes. They may have other benefits such as lower temperature operation. </p><p>In 2015, researchers announced an electrolyte using superionic lithium-ion conductors, which are compounds of lithium, germanium, phosphorus and sulfur.<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Thiophosphate">Thiophosphate</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=38" title="Edit section: Thiophosphate"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2015, researchers worked with a lithium carbon fluoride battery. They incorporated a solid lithium thiophosphate electrolyte wherein the electrolyte and the cathode worked in cooperation, resulting in capacity 26 percent. Under discharge, the electrolyte generates a lithium fluoride salt that further catalyzes the electrochemical activity, converting an inactive component to an active one. More significantly, the technique was expected to substantially increase battery life.<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">[</span>93<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Glassy_electrolytes">Glassy electrolytes</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=39" title="Edit section: Glassy electrolytes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In March 2017, researchers announced a solid-state battery with a glassy <a href="/wiki/Ferroelectric" class="mw-redirect" title="Ferroelectric">ferroelectric</a> electrolyte of lithium, oxygen, and chlorine ions doped with barium, a lithium metal anode, and a composite cathode in contact with a copper substrate. A spring behind the copper cathode substrate holds the layers together as the electrodes change thickness. The cathode comprises particles of sulfur "redox center", carbon, and electrolyte. During discharge, the lithium ions plate the cathode with lithium metal and the sulfur is not reduced unless irreversible deep discharge occurs. The thickened cathode is a compact way to store the used lithium. During recharge, this lithium moves back into the glassy electrolyte and eventually plates the anode, which thickens. No dendrites form.<sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">[</span>94<span class="cite-bracket">]</span></a></sup> The cell has 3 times the energy density of conventional lithium-ion batteries. An extended life of more than 1,200 cycles was demonstrated. The design also allows the substitution of sodium for lithium minimizing lithium environmental issues.<sup id="cite_ref-Hislop_95-0" class="reference"><a href="#cite_note-Hislop-95"><span class="cite-bracket">[</span>95<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Salts">Salts</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=40" title="Edit section: Salts"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Superhalogen">Superhalogen</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=41" title="Edit section: Superhalogen"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Conventional electrolytes generally contain <a href="/wiki/Halogens" class="mw-redirect" title="Halogens">halogens</a>, which are toxic. In 2015 researchers claimed that these materials could be replaced with non-toxic <a href="/wiki/Halogen#Superhalogen" title="Halogen">superhalogens</a> with no compromise in performance. In superhalogens the vertical electron detachment energies of the moieties that make up the negative ions are larger than those of any halogen atom.<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">[</span>96<span class="cite-bracket">]</span></a></sup> The researchers also found that the procedure outlined for Li-ion batteries is equally valid for other metal-ion batteries, such as sodium-ion or <a href="/wiki/Magnesium-ion_batteries" class="mw-redirect" title="Magnesium-ion batteries">magnesium-ion batteries</a>.<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">[</span>97<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Water-in-salt">Water-in-salt</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=42" title="Edit section: Water-in-salt"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2015, researchers at the University of Maryland and the <a href="/wiki/United_States_Army_Research_Laboratory" title="United States Army Research Laboratory">Army Research Laboratory</a> showed significantly increased stable <a href="/wiki/Electrochemical_window" title="Electrochemical window">potential windows</a> for <a href="/wiki/Aqueous_solution" title="Aqueous solution">aqueous</a> electrolytes with very high salt concentration.<sup id="cite_ref-:3_98-0" class="reference"><a href="#cite_note-:3-98"><span class="cite-bracket">[</span>98<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-99" class="reference"><a href="#cite_note-99"><span class="cite-bracket">[</span>99<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">[</span>100<span class="cite-bracket">]</span></a></sup> By increasing the <a href="/wiki/Molality" title="Molality">molality</a> of <a href="/wiki/Lithium_bis(trimethylsilyl)amide" title="Lithium bis(trimethylsilyl)amide">Bis(trifluoromethane)sulfonimide lithium salt</a> to 21 <a href="/wiki/Molality" title="Molality">m</a>, the potential window could be increased from 1.23 to 3 <a href="/wiki/Volt" title="Volt">V</a> due to the formation of SEI on the anode electrode, which has previously only been accomplished with non-aqueous electrolytes.<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">[</span>101<span class="cite-bracket">]</span></a></sup> Using aqueous rather than organic electrolyte could significantly improve the safety of Li-ion batteries.<sup id="cite_ref-:3_98-1" class="reference"><a href="#cite_note-:3-98"><span class="cite-bracket">[</span>98<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Dual_anionic_liquid">Dual anionic liquid</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=43" title="Edit section: Dual anionic liquid"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An experimental lithium metal battery with a <span class="chemf nowrap">LiNi<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0.88</sub></span></span>Co<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0.09</sub></span></span>Mn<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0.03</sub></span></span>O<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span>/NCM88 cathode material with a dual-anion <a href="/wiki/Ionic_liquid" title="Ionic liquid">ionic liquid</a> electrolyte (ILE) <span class="chemf nowrap">0.8Pyr<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">14</sub></span></span>FSI<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0.2</sub></span></span>LiTFSI</span> was demonstrated in 2021. This electrolyte enables initial <a href="/wiki/Specific_capacity" class="mw-redirect" title="Specific capacity">specific capacity</a> of 214 mAh g−1 and 88% capacity retention over 1,000 cycles with an average <a href="/wiki/Coulombic_efficiency" class="mw-redirect" title="Coulombic efficiency">Coulombic efficiency</a> of 99.94%. The cells achieved a <a href="/wiki/Specific_energy" title="Specific energy">specific energy</a> above 560 Wh kg−1 at >4 volts. Capacity after 1k cycles was 88%. Importantly, the cathode retained its structural integrity throughout the charging cycles.<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">[</span>102<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Management">Management</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=44" title="Edit section: Management"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Charging">Charging</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=45" title="Edit section: Charging"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2014, researchers at MIT, <a href="/wiki/Sandia_National_Laboratories" title="Sandia National Laboratories">Sandia National Laboratories</a>, Samsung Advanced Institute of Technology America and <a href="/wiki/Lawrence_Berkeley_National_Laboratory" title="Lawrence Berkeley National Laboratory">Lawrence Berkeley National Laboratory</a> discovered that uniform charging could be used with increased charge speed to speed up battery charging. This discovery could also increase cycle durability to ten years. Traditionally slower charging prevented overheating, which shortens cycle durability. The researchers used a <a href="/wiki/Particle_accelerator" title="Particle accelerator">particle accelerator</a> to learn that in conventional devices each increment of charge is absorbed by a single or a small number of particles until they are charged, then moves on. By distributing charge/discharge circuitry throughout the electrode, heating and degradation could be reduced while allowing much greater power density.<sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">[</span>103<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-104" class="reference"><a href="#cite_note-104"><span class="cite-bracket">[</span>104<span class="cite-bracket">]</span></a></sup> </p><p>In 2014, researchers at <a rel="nofollow" class="external text" href="https://qnovo.com/">Qnovo</a> developed <a href="/wiki/Software" title="Software">software</a> for a <a href="/wiki/Smartphone" title="Smartphone">smartphone</a> and a <a href="/wiki/Computer_chip" class="mw-redirect" title="Computer chip">computer chip</a> capable of speeding up re-charge time by a factor of 3-6, while also increasing cycle durability. The technology is able to understand how the battery needs to be charged most effectively, while avoiding the formation of <a href="/wiki/Dendrite_(metal)" title="Dendrite (metal)">dendrites</a>.<sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">[</span>105<span class="cite-bracket">]</span></a></sup> </p><p>In 2019, Chao-Yang Wang from <a href="/wiki/Penn_State_University" class="mw-redirect" title="Penn State University">Penn State University</a> found that it is possible to recharge the (conventional) lithium-ion batteries of EV's in under 10 minutes. He did so by heating the battery to 60 °C, recharging it and then cooling if quickly afterwards. This causes only very little damage to the batteries. Professor Wang used a thin nickel foil with one end attached to the negative terminal and the other end extending to outside the cell in order to create a third terminal. A temperature sensor attached to a switch completes the circuit.<sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">[</span>106<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Durability">Durability</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=46" title="Edit section: Durability"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2014, independent researchers from <a href="/wiki/Canada" title="Canada">Canada</a> announced a battery management system that increased cycles four-fold, that with specific energy of 110–175 Wh/kg using a battery pack architecture and controlling <a href="/wiki/Algorithm" title="Algorithm">algorithm</a> that allows it to fully utilize the active materials in battery cells. The process maintains lithium-ion diffusion at optimal levels and eliminates concentration polarization, thus allowing the <a href="/wiki/Ion" title="Ion">ions</a> to be more uniformly attached/detached to the cathode. The SEI layer remains stable, preventing energy density losses.<sup id="cite_ref-treehuggerli_107-0" class="reference"><a href="#cite_note-treehuggerli-107"><span class="cite-bracket">[</span>107<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">[</span>108<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Thermal">Thermal</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=47" title="Edit section: Thermal"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2016, researchers announced a reversible shutdown system for preventing thermal runaway. The system employed a thermoresponsive polymer switching material. This material consists of electrochemically stable, graphene-coated, spiky nickel nanoparticles in a polymer matrix with a high thermal expansion coefficient. Film electrical conductivity at ambient temperature was up to 50 S cm−1. Conductivity decreases within one second by 10<sup>7</sup>-10<sup>8</sup> at the transition temperature and spontaneously recovers at room temperature. The system offers 10<sup>3</sup>–10<sup>4</sup>x greater sensitivity than previous devices.<sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">[</span>109<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-110" class="reference"><a href="#cite_note-110"><span class="cite-bracket">[</span>110<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Flexibility">Flexibility</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=48" title="Edit section: Flexibility"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2014, multiple research teams and vendors demonstrated flexible battery technologies for potential use in textiles and other applications. </p><p>One technique made li-ion batteries flexible, bendable, twistable and crunchable using the <a href="/wiki/Miura_fold" title="Miura fold">Miura fold</a>. This discovery uses conventional materials and could be commercialized for foldable smartphones and other applications.<sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">[</span>111<span class="cite-bracket">]</span></a></sup> </p><p>Another approached used carbon nanotube fiber <a href="/wiki/Yarn" title="Yarn">yarns</a>. The 1 mm diameter fibers were claimed to be lightweight enough to create weavable and wearable textile batteries. The yarn was capable of storing nearly 71 mAh/g. Lithium manganate (LMO) particles were deposited on a carbon nanotube (CNT) sheet to create a CNT-LMO composite yarn for the cathode. The anode composite yarns sandwiched a CNT sheet between two silicon-coated CNT sheets. When separately rolled up and then wound together separated by a gel electrolyte the two fibers form a battery. They can also be wound onto a polymer fiber, for adding to an existing textile. When silicon fibers charge and discharge, the silicon expands in volume up to 300 percent, damaging the fiber. The CNT layer between the silicon-coated sheet buffered the silicon's volume change and held it in place.<sup id="cite_ref-112" class="reference"><a href="#cite_note-112"><span class="cite-bracket">[</span>112<span class="cite-bracket">]</span></a></sup> </p><p>A third approach produced rechargeable batteries that can be printed cheaply on commonly used industrial screen printers. The batteries used a zinc charge carrier with a solid polymer electrolyte that prevents dendrite formation and provides greater stability. The device survived 1,000 bending cycles without damage.<sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">[</span>113<span class="cite-bracket">]</span></a></sup> </p><p>A fourth group created a device that is one hundredth of an inch thick and doubles as a supercapacitor. The technique involved etching a 900 nanometer-thick layer of <a href="/wiki/Nickel(II)_fluoride" title="Nickel(II) fluoride">Nickel(II) fluoride</a> with regularly spaced five nanometer holes to increase capacity. The device used an electrolyte made of <a href="/wiki/Potassium_hydroxide" title="Potassium hydroxide">potassium hydroxide</a> in <a href="/wiki/Polyvinyl_alcohol" title="Polyvinyl alcohol">polyvinyl alcohol</a>. The device can also be used as a supercapacitor. Rapid charging allows supercapacitor-like rapid discharge, while charging with a lower current rate provides slower discharge. It retained 76 percent of its original capacity after 10,000 charge-discharge cycles and 1,000 bending cycles. Energy density was measured at 384 Wh/kg, and power density at 112 kW/kg.<sup id="cite_ref-114" class="reference"><a href="#cite_note-114"><span class="cite-bracket">[</span>114<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Volume_expansion">Volume expansion</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=49" title="Edit section: Volume expansion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Current research has been primarily focused on finding new materials and characterising them by means of specific capacity (mAh/<b>g</b>), which provides a good metric to compare and contrast all electrode materials. Recently, some of the more promising materials are showing some large volume expansions which need to be considered when engineering devices. Lesser known to this realm of data is the volumetric capacity (mAh/<b>cm<sup>3</sup></b>) of various materials to their design. </p> <div class="mw-heading mw-heading3"><h3 id="Nanotechnology">Nanotechnology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=50" title="Edit section: Nanotechnology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Nanoarchitectures_for_lithium-ion_batteries" title="Nanoarchitectures for lithium-ion batteries">Nanoarchitectures for lithium-ion batteries</a></div> <p>Researchers have taken various approaches to improving performance and other characteristics by using nanostructured materials. One strategy is to increase electrode surface area. Another strategy is to reduce the distance between electrodes to reduce transport distances. Yet another strategy is to allow the use of materials that exhibit unacceptable flaws when used in bulk forms, such as silicon. </p><p>Finally, adjusting the geometries of the electrodes, e.g., by interdigitating anode and cathode units variously as rows of anodes and cathodes, alternating anodes and cathodes, hexagonally packed 1:2 anodes:cathodes and alternating anodic and cathodic triangular poles. One electrode can be nested within another. </p><p><a href="/wiki/Carbon_nanotube" title="Carbon nanotube">Carbon nanotubes</a> and <a href="/wiki/Nanowire" title="Nanowire">nanowires</a> have been examined for various purposes, as have <a href="/wiki/Aerogel" title="Aerogel">aerogels</a> and other novel bulk materials. </p><p>Finally, various nanocoatings have been examined, to increase electrode stability and performance. </p><p><a href="/wiki/Nanosensor" title="Nanosensor">Nanosensors</a> is now being integrated in to each cell of the battery. This will help to monitor the state of charge in real time which will be helpful not only for security reason but also be useful to maximize the use of the battery.<sup id="cite_ref-115" class="reference"><a href="#cite_note-115"><span class="cite-bracket">[</span>115<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Economy">Economy</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=51" title="Edit section: Economy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2016, researchers from <a href="/wiki/Carnegie_Mellon_College_of_Engineering" title="Carnegie Mellon College of Engineering">CMU</a> found that prismatic cells are more likely to benefit from production scaling than cylindrical cells.<sup id="cite_ref-116" class="reference"><a href="#cite_note-116"><span class="cite-bracket">[</span>116<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-117" class="reference"><a href="#cite_note-117"><span class="cite-bracket">[</span>117<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Repurposing_and_reuse">Repurposing and reuse</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=52" title="Edit section: Repurposing and reuse"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The elimination of power batteries made by lithium-ion batteries has largely increased, causing environmental protection threats and waste of resources. About 100-120 GWh of electric vehicle batteries will be retired by 2030.<sup id="cite_ref-SciDataChung2021_118-0" class="reference"><a href="#cite_note-SciDataChung2021-118"><span class="cite-bracket">[</span>118<span class="cite-bracket">]</span></a></sup> Hence, recycling and reuse of such retired power batteries have been suggested.<sup id="cite_ref-119" class="reference"><a href="#cite_note-119"><span class="cite-bracket">[</span>119<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-120" class="reference"><a href="#cite_note-120"><span class="cite-bracket">[</span>120<span class="cite-bracket">]</span></a></sup> Some retired power batteries still have ~80% of their initial capacity.<sup id="cite_ref-121" class="reference"><a href="#cite_note-121"><span class="cite-bracket">[</span>121<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-122" class="reference"><a href="#cite_note-122"><span class="cite-bracket">[</span>122<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-123" class="reference"><a href="#cite_note-123"><span class="cite-bracket">[</span>123<span class="cite-bracket">]</span></a></sup> So they can be repurposed and reused as second-life applications, for instance, to serve the batteries in the energy storage systems.<sup id="cite_ref-124" class="reference"><a href="#cite_note-124"><span class="cite-bracket">[</span>124<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-125" class="reference"><a href="#cite_note-125"><span class="cite-bracket">[</span>125<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-126" class="reference"><a href="#cite_note-126"><span class="cite-bracket">[</span>126<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-127" class="reference"><a href="#cite_note-127"><span class="cite-bracket">[</span>127<span class="cite-bracket">]</span></a></sup> Governments in different countries have acknowledged this emergent problem and prepared to launch their policies to deal with repurposed batteries, such as coding principles, traceability management system, manufacturing factory guidelines, dismantling process guidelines, residual energy measurement, tax credits, rebates, and financial support.<sup id="cite_ref-TaipowerChung2020_128-0" class="reference"><a href="#cite_note-TaipowerChung2020-128"><span class="cite-bracket">[</span>128<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-129" class="reference"><a href="#cite_note-129"><span class="cite-bracket">[</span>129<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-TaiwanEnergyChung2019_130-0" class="reference"><a href="#cite_note-TaiwanEnergyChung2019-130"><span class="cite-bracket">[</span>130<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-131" class="reference"><a href="#cite_note-131"><span class="cite-bracket">[</span>131<span class="cite-bracket">]</span></a></sup> </p><p>Standards for second-life applications of retired electric vehicle batteries are still emerging technology. One of the few standards, UL 1974, was published by Underwriters Laboratories (UL).<sup id="cite_ref-132" class="reference"><a href="#cite_note-132"><span class="cite-bracket">[</span>132<span class="cite-bracket">]</span></a></sup> The document gives a general procedure of the safety operations and performance tests on retired power battery cells, packs, and modules, but could not detail the steps and specifics. For applications in the real world, the design, form factor, and materials of the existing battery cells, packs, and modules often vary greatly from one another. It is difficult to develop a unified technical procedure. Furthermore, information on the detailed technical procedures applied is usually not available in the open literature, except for Schneider et al. who demonstrated the procedure to refurbish small cylindrical NiMH batteries used in mobile phones,<sup id="cite_ref-133" class="reference"><a href="#cite_note-133"><span class="cite-bracket">[</span>133<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-134" class="reference"><a href="#cite_note-134"><span class="cite-bracket">[</span>134<span class="cite-bracket">]</span></a></sup> Zhao who published the successful experiences of some grid-oriented applications of electric vehicle lithium-ion batteries in China,<sup id="cite_ref-135" class="reference"><a href="#cite_note-135"><span class="cite-bracket">[</span>135<span class="cite-bracket">]</span></a></sup> and Chung who reported the procedure described in UL 1974 on a LiFePO<sub>4</sub> repurposing battery.<sup id="cite_ref-SciDataChung2021_118-1" class="reference"><a href="#cite_note-SciDataChung2021-118"><span class="cite-bracket">[</span>118<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=53" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Lithium%E2%80%93sulfur_battery" title="Lithium–sulfur battery">Lithium–sulfur battery</a></li> <li><a href="/wiki/Trickle_charging" title="Trickle charging">Trickle charging</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Research_in_lithium-ion_batteries&action=edit&section=54" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFLombardoDuquesnoyEl-BouysidyÅrén2021" class="citation journal cs1">Lombardo, Teo; Duquesnoy, Marc; El-Bouysidy, Hassna; Årén, Fabian; Gallo-Bueno, Alfonso; Jørgensen, Peter Bjørn; Bhowmik, Arghya; Demortière, Arnaud; Ayerbe, Elixabete; Alcaide, Francisco; Reynaud, Marine; Carrasco, Javier; Grimaud, Alexis; Zhang, Chao; Vegge, Tejs; Johansson, Patrik; Franco, Alejandro A. (16 September 2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227745">"Artificial Intelligence Applied to Battery Research: Hype or Reality?"</a>. <i>Chemical Reviews</i>. <b>122</b> (12): <span class="nowrap">10899–</span>10969. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facs.chemrev.1c00108">10.1021/acs.chemrev.1c00108</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0009-2665">0009-2665</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227745">9227745</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34529918">34529918</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Chemical+Reviews&rft.atitle=Artificial+Intelligence+Applied+to+Battery+Research%3A+Hype+or+Reality%3F&rft.volume=122&rft.issue=12&rft.pages=%3Cspan+class%3D%22nowrap%22%3E10899-%3C%2Fspan%3E10969&rft.date=2021-09-16&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9227745%23id-name%3DPMC&rft.issn=0009-2665&rft_id=info%3Apmid%2F34529918&rft_id=info%3Adoi%2F10.1021%2Facs.chemrev.1c00108&rft.aulast=Lombardo&rft.aufirst=Teo&rft.au=Duquesnoy%2C+Marc&rft.au=El-Bouysidy%2C+Hassna&rft.au=%C3%85r%C3%A9n%2C+Fabian&rft.au=Gallo-Bueno%2C+Alfonso&rft.au=J%C3%B8rgensen%2C+Peter+Bj%C3%B8rn&rft.au=Bhowmik%2C+Arghya&rft.au=Demorti%C3%A8re%2C+Arnaud&rft.au=Ayerbe%2C+Elixabete&rft.au=Alcaide%2C+Francisco&rft.au=Reynaud%2C+Marine&rft.au=Carrasco%2C+Javier&rft.au=Grimaud%2C+Alexis&rft.au=Zhang%2C+Chao&rft.au=Vegge%2C+Tejs&rft.au=Johansson%2C+Patrik&rft.au=Franco%2C+Alejandro+A.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9227745&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChengShapterLiGao2021" class="citation journal cs1">Cheng, Hui; Shapter, Joseph G.; Li, Yongying; Gao, Guo (1 June 2021). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S2095495620306197">"Recent progress of advanced anode materials of lithium-ion batteries"</a>. <i>Journal of Energy Chemistry</i>. <b>57</b>: <span class="nowrap">451–</span>468. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jechem.2020.08.056">10.1016/j.jechem.2020.08.056</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2095-4956">2095-4956</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Energy+Chemistry&rft.atitle=Recent+progress+of+advanced+anode+materials+of+lithium-ion+batteries&rft.volume=57&rft.pages=%3Cspan+class%3D%22nowrap%22%3E451-%3C%2Fspan%3E468&rft.date=2021-06-01&rft_id=info%3Adoi%2F10.1016%2Fj.jechem.2020.08.056&rft.issn=2095-4956&rft.aulast=Cheng&rft.aufirst=Hui&rft.au=Shapter%2C+Joseph+G.&rft.au=Li%2C+Yongying&rft.au=Gao%2C+Guo&rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS2095495620306197&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNzereoguOmahEzemaIwuoha2022" class="citation journal cs1">Nzereogu, P. U.; Omah, A. D.; Ezema, F. I.; Iwuoha, E. I.; Nwanya, A. C. (1 June 2022). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S2666523922000253">"Anode materials for lithium-ion batteries: A review"</a>. <i>Applied Surface Science Advances</i>. <b>9</b>: 100233. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.apsadv.2022.100233">10.1016/j.apsadv.2022.100233</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10566%2F7724">10566/7724</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2666-5239">2666-5239</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Applied+Surface+Science+Advances&rft.atitle=Anode+materials+for+lithium-ion+batteries%3A+A+review&rft.volume=9&rft.pages=100233&rft.date=2022-06-01&rft_id=info%3Ahdl%2F10566%2F7724&rft.issn=2666-5239&rft_id=info%3Adoi%2F10.1016%2Fj.apsadv.2022.100233&rft.aulast=Nzereogu&rft.aufirst=P.+U.&rft.au=Omah%2C+A.+D.&rft.au=Ezema%2C+F.+I.&rft.au=Iwuoha%2C+E.+I.&rft.au=Nwanya%2C+A.+C.&rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS2666523922000253&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-SiOC-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-SiOC_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-SiOC_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://pubs.acs.org/doi/full/10.1021/acsami.0c12376">G. Shao et al. Polymer-Derived SiOC Integrated with a Graphene Aerogel As a Highly Stable Li-Ion Battery Anode</a> ACS Appl. Mater. Interfaces 2020, 12, 41, 46045–46056</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeAshuriLiuLiu2021" class="citation journal cs1">He, Qianran; Ashuri, Maziar; Liu, Yuzi; Liu, Bingyu; Shaw, Leon (24 May 2021). <a rel="nofollow" class="external text" href="https://pubs.acs.org/doi/10.1021/acsaem.1c00351">"Silicon Microreactor as a Fast Charge, Long Cycle Life Anode with High Initial Coulombic Efficiency Synthesized via a Scalable Method"</a>. <i>ACS Applied Energy Materials</i>. <b>4</b> (5): <span class="nowrap">4744–</span>4757. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facsaem.1c00351">10.1021/acsaem.1c00351</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2574-0962">2574-0962</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ACS+Applied+Energy+Materials&rft.atitle=Silicon+Microreactor+as+a+Fast+Charge%2C+Long+Cycle+Life+Anode+with+High+Initial+Coulombic+Efficiency+Synthesized+via+a+Scalable+Method&rft.volume=4&rft.issue=5&rft.pages=%3Cspan+class%3D%22nowrap%22%3E4744-%3C%2Fspan%3E4757&rft.date=2021-05-24&rft_id=info%3Adoi%2F10.1021%2Facsaem.1c00351&rft.issn=2574-0962&rft.aulast=He&rft.aufirst=Qianran&rft.au=Ashuri%2C+Maziar&rft.au=Liu%2C+Yuzi&rft.au=Liu%2C+Bingyu&rft.au=Shaw%2C+Leon&rft_id=https%3A%2F%2Fpubs.acs.org%2Fdoi%2F10.1021%2Facsaem.1c00351&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeeHwangHwangKim2014" class="citation journal cs1">Lee, Won Jun; Hwang, Tae Hoon; Hwang, Jin Ok; Kim, Hyun Wook; Lim, Joonwon; Jeong, Hu Young; Shim, Jongwon; Han, Tae Hee; Kim, Je Young; Choi, Jang Wook; Kim, Sang Ouk (23 January 2014). <a rel="nofollow" class="external text" href="https://pubs.rsc.org/en/content/articlelanding/2014/ee/c3ee43322f">"N-doped graphitic self-encapsulation for high performance silicon anodes in lithium-ion batteries"</a>. <i>Energy & Environmental Science</i>. <b>7</b> (2): <span class="nowrap">621–</span>626. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FC3EE43322F">10.1039/C3EE43322F</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1754-5706">1754-5706</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Energy+%26+Environmental+Science&rft.atitle=N-doped+graphitic+self-encapsulation+for+high+performance+silicon+anodes+in+lithium-ion+batteries&rft.volume=7&rft.issue=2&rft.pages=%3Cspan+class%3D%22nowrap%22%3E621-%3C%2Fspan%3E626&rft.date=2014-01-23&rft_id=info%3Adoi%2F10.1039%2FC3EE43322F&rft.issn=1754-5706&rft.aulast=Lee&rft.aufirst=Won+Jun&rft.au=Hwang%2C+Tae+Hoon&rft.au=Hwang%2C+Jin+Ok&rft.au=Kim%2C+Hyun+Wook&rft.au=Lim%2C+Joonwon&rft.au=Jeong%2C+Hu+Young&rft.au=Shim%2C+Jongwon&rft.au=Han%2C+Tae+Hee&rft.au=Kim%2C+Je+Young&rft.au=Choi%2C+Jang+Wook&rft.au=Kim%2C+Sang+Ouk&rft_id=https%3A%2F%2Fpubs.rsc.org%2Fen%2Fcontent%2Farticlelanding%2F2014%2Fee%2Fc3ee43322f&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJungHwangParkChoi2013" class="citation journal cs1">Jung, Dae Soo; Hwang, Tae Hoon; Park, Seung Bin; Choi, Jang Wook (8 May 2013). <a rel="nofollow" class="external text" href="https://pubs.acs.org/doi/10.1021/nl400437f">"Spray Drying Method for Large-Scale and High-Performance Silicon Negative Electrodes in Li-Ion Batteries"</a>. <i>Nano Letters</i>. <b>13</b> (5): <span class="nowrap">2092–</span>2097. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fnl400437f">10.1021/nl400437f</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1530-6984">1530-6984</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nano+Letters&rft.atitle=Spray+Drying+Method+for+Large-Scale+and+High-Performance+Silicon+Negative+Electrodes+in+Li-Ion+Batteries&rft.volume=13&rft.issue=5&rft.pages=%3Cspan+class%3D%22nowrap%22%3E2092-%3C%2Fspan%3E2097&rft.date=2013-05-08&rft_id=info%3Adoi%2F10.1021%2Fnl400437f&rft.issn=1530-6984&rft.aulast=Jung&rft.aufirst=Dae+Soo&rft.au=Hwang%2C+Tae+Hoon&rft.au=Park%2C+Seung+Bin&rft.au=Choi%2C+Jang+Wook&rft_id=https%3A%2F%2Fpubs.acs.org%2Fdoi%2F10.1021%2Fnl400437f&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYangWenXuLin2007" class="citation journal cs1">Yang, Xuelin; Wen, Zhaoyin; Xu, Xiaoxiong; Lin, Bin; Huang, Shahua (10 February 2007). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S0378775306022944">"Nanosized silicon-based composite derived by in situ mechanochemical reduction for lithium ion batteries"</a>. <i>Journal of Power Sources</i>. <b>164</b> (2): <span class="nowrap">880–</span>884. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2006.11.010">10.1016/j.jpowsour.2006.11.010</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0378-7753">0378-7753</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Power+Sources&rft.atitle=Nanosized+silicon-based+composite+derived+by+in+situ+mechanochemical+reduction+for+lithium+ion+batteries&rft.volume=164&rft.issue=2&rft.pages=%3Cspan+class%3D%22nowrap%22%3E880-%3C%2Fspan%3E884&rft.date=2007-02-10&rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2006.11.010&rft.issn=0378-7753&rft.aulast=Yang&rft.aufirst=Xuelin&rft.au=Wen%2C+Zhaoyin&rft.au=Xu%2C+Xiaoxiong&rft.au=Lin%2C+Bin&rft.au=Huang%2C+Shahua&rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0378775306022944&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhouTangYangZou2012" class="citation journal cs1">Zhou, Xiang-yang; Tang, Jing-jing; Yang, Juan; Zou, You-lan; Wang, Song-can; Xie, Jing; Ma, Lu-lu (30 May 2012). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S0013468612004501">"Effect of polypyrrole on improving electrochemical performance of silicon based anode materials"</a>. <i>Electrochimica Acta</i>. <b>70</b>: <span class="nowrap">296–</span>303. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.electacta.2012.03.098">10.1016/j.electacta.2012.03.098</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0013-4686">0013-4686</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Electrochimica+Acta&rft.atitle=Effect+of+polypyrrole+on+improving+electrochemical+performance+of+silicon+based+anode+materials&rft.volume=70&rft.pages=%3Cspan+class%3D%22nowrap%22%3E296-%3C%2Fspan%3E303&rft.date=2012-05-30&rft_id=info%3Adoi%2F10.1016%2Fj.electacta.2012.03.098&rft.issn=0013-4686&rft.aulast=Zhou&rft.aufirst=Xiang-yang&rft.au=Tang%2C+Jing-jing&rft.au=Yang%2C+Juan&rft.au=Zou%2C+You-lan&rft.au=Wang%2C+Song-can&rft.au=Xie%2C+Jing&rft.au=Ma%2C+Lu-lu&rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0013468612004501&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCava1978" class="citation journal cs1">Cava, Robert (1978). "The Crystal Structures of Lithium-Inserted Titanium Oxides Li<sub>x</sub>TiO<sub>2</sub> anatase, LiTi<sub>2</sub>O<sub>4</sub> Spinel and Li<sub>2</sub>Ti<sub>2</sub>O<sub>4</sub>". <i>Journal of Solid State Chemistry</i>. <b>53</b>: <span class="nowrap">64–</span>75. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0022-4596%2884%2990228-7">10.1016/0022-4596(84)90228-7</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Solid+State+Chemistry&rft.atitle=The+Crystal+Structures+of+Lithium-Inserted+Titanium+Oxides+Li%3Csub%3Ex%3C%2Fsub%3ETiO%3Csub%3E2%3C%2Fsub%3E+anatase%2C+LiTi%3Csub%3E2%3C%2Fsub%3EO%3Csub%3E4%3C%2Fsub%3E+Spinel+and+Li%3Csub%3E2%3C%2Fsub%3ETi%3Csub%3E2%3C%2Fsub%3EO%3Csub%3E4%3C%2Fsub%3E&rft.volume=53&rft.pages=%3Cspan+class%3D%22nowrap%22%3E64-%3C%2Fspan%3E75&rft.date=1978&rft_id=info%3Adoi%2F10.1016%2F0022-4596%2884%2990228-7&rft.aulast=Cava&rft.aufirst=Robert&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.sciencedaily.com/releases/2014/10/141013090449.htm">"Ultra-fast charging batteries that can be 70% recharged in just two minutes"</a>. <i>Science Daily</i>. 13 October 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">7 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Science+Daily&rft.atitle=Ultra-fast+charging+batteries+that+can+be+70%25+recharged+in+just+two+minutes&rft.date=2014-10-13&rft_id=https%3A%2F%2Fwww.sciencedaily.com%2Freleases%2F2014%2F10%2F141013090449.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-Fujishima-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-Fujishima_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFujishimaHonda1972" class="citation journal cs1">Fujishima, A; Honda, K (1972). "A New Layered Titanate Produced by Ion Exchange". <i>Nature</i>. <b>238</b> (5358): <span class="nowrap">37–</span>40. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1972Natur.238...37F">1972Natur.238...37F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F238037a0">10.1038/238037a0</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12635268">12635268</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4251015">4251015</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=A+New+Layered+Titanate+Produced+by+Ion+Exchange&rft.volume=238&rft.issue=5358&rft.pages=%3Cspan+class%3D%22nowrap%22%3E37-%3C%2Fspan%3E40&rft.date=1972&rft_id=info%3Adoi%2F10.1038%2F238037a0&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4251015%23id-name%3DS2CID&rft_id=info%3Apmid%2F12635268&rft_id=info%3Abibcode%2F1972Natur.238...37F&rft.aulast=Fujishima&rft.aufirst=A&rft.au=Honda%2C+K&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLu2011" class="citation journal cs1">Lu, Yuhao (2011). "Behavior of Li Guest in KNb5O13 Host with One-Dimensional Tunnels and Multiple Interstitial Sites". <i>Chemistry of Materials</i>. <b>23</b> (13): <span class="nowrap">3210–</span>3216. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fcm200958r">10.1021/cm200958r</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Chemistry+of+Materials&rft.atitle=Behavior+of+Li+Guest+in+KNb5O13+Host+with+One-Dimensional+Tunnels+and+Multiple+Interstitial+Sites&rft.volume=23&rft.issue=13&rft.pages=%3Cspan+class%3D%22nowrap%22%3E3210-%3C%2Fspan%3E3216&rft.date=2011&rft_id=info%3Adoi%2F10.1021%2Fcm200958r&rft.aulast=Lu&rft.aufirst=Yuhao&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHanHuangGoodenough2011" class="citation journal cs1">Han, Jian-Tao; Huang, Yunhui; Goodenough, John B. (2011). "New Anode Framework for Rechargeable Lithium Batteries". <i>Chemistry of Materials</i>. <b>23</b> (8): <span class="nowrap">2027–</span>2029. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fcm200441h">10.1021/cm200441h</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Chemistry+of+Materials&rft.atitle=New+Anode+Framework+for+Rechargeable+Lithium+Batteries&rft.volume=23&rft.issue=8&rft.pages=%3Cspan+class%3D%22nowrap%22%3E2027-%3C%2Fspan%3E2029&rft.date=2011&rft_id=info%3Adoi%2F10.1021%2Fcm200441h&rft.aulast=Han&rft.aufirst=Jian-Tao&rft.au=Huang%2C+Yunhui&rft.au=Goodenough%2C+John+B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPoizot2000" class="citation journal cs1">Poizot, P. (2000). "Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries". <i>Nature</i>. <b>407</b> (6803): <span class="nowrap">496–</span>499. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000Natur.407..496P">2000Natur.407..496P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F35035045">10.1038/35035045</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11028997">11028997</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:205009092">205009092</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Nano-sized+transition-metal+oxides+as+negative-electrode+materials+for+lithium-ion+batteries&rft.volume=407&rft.issue=6803&rft.pages=%3Cspan+class%3D%22nowrap%22%3E496-%3C%2Fspan%3E499&rft.date=2000&rft_id=info%3Adoi%2F10.1038%2F35035045&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A205009092%23id-name%3DS2CID&rft_id=info%3Apmid%2F11028997&rft_id=info%3Abibcode%2F2000Natur.407..496P&rft.aulast=Poizot&rft.aufirst=P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWhittingham1978" class="citation journal cs1">Whittingham, M.Stanley (1978). "Chemistry of intercalation compounds: Metal guests in chalcogenide hosts". <i>Progress in Solid State Chemistry</i>. <b>12</b>: <span class="nowrap">41–</span>99. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0079-6786%2878%2990003-1">10.1016/0079-6786(78)90003-1</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Progress+in+Solid+State+Chemistry&rft.atitle=Chemistry+of+intercalation+compounds%3A+Metal+guests+in+chalcogenide+hosts&rft.volume=12&rft.pages=%3Cspan+class%3D%22nowrap%22%3E41-%3C%2Fspan%3E99&rft.date=1978&rft_id=info%3Adoi%2F10.1016%2F0079-6786%2878%2990003-1&rft.aulast=Whittingham&rft.aufirst=M.Stanley&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWhittingham1976" class="citation journal cs1">Whittingham, M. S. (1976). "Electrical Energy Storage and Intercalation Chemistry". <i>Science</i>. <b>192</b> (4244): <span class="nowrap">1126–</span>1127. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1976Sci...192.1126W">1976Sci...192.1126W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.192.4244.1126">10.1126/science.192.4244.1126</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17748676">17748676</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:36607505">36607505</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Electrical+Energy+Storage+and+Intercalation+Chemistry&rft.volume=192&rft.issue=4244&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1126-%3C%2Fspan%3E1127&rft.date=1976&rft_id=info%3Adoi%2F10.1126%2Fscience.192.4244.1126&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A36607505%23id-name%3DS2CID&rft_id=info%3Apmid%2F17748676&rft_id=info%3Abibcode%2F1976Sci...192.1126W&rft.aulast=Whittingham&rft.aufirst=M.+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPan1995" class="citation journal cs1">Pan, B (1995). "Performance and Safety Behavior of Rechargeable AA Li/LiMnO2 Cell". <i>Journal of Power Sources</i>. <b>54</b>: <span class="nowrap">143–</span>47. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0378-7753%2894%2902055-8">10.1016/0378-7753(94)02055-8</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Power+Sources&rft.atitle=Performance+and+Safety+Behavior+of+Rechargeable+AA+Li%2FLiMnO2+Cell&rft.volume=54&rft.pages=%3Cspan+class%3D%22nowrap%22%3E143-%3C%2Fspan%3E47&rft.date=1995&rft_id=info%3Adoi%2F10.1016%2F0378-7753%2894%2902055-8&rft.aulast=Pan&rft.aufirst=B&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLei2015" class="citation journal cs1">Lei, W (2015). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fncomms8436">"The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth"</a>. <i>Nature Communications</i>. <b>6</b>: <span class="nowrap">7436–</span>9. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015NatCo...6.7436L">2015NatCo...6.7436L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fncomms8436">10.1038/ncomms8436</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/1721.1%2F103047">1721.1/103047</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26081242">26081242</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Communications&rft.atitle=The+synergetic+effect+of+lithium+polysulfide+and+lithium+nitrate+to+prevent+lithium+dendrite+growth&rft.volume=6&rft.pages=%3Cspan+class%3D%22nowrap%22%3E7436-%3C%2Fspan%3E9&rft.date=2015&rft_id=info%3Ahdl%2F1721.1%2F103047&rft_id=info%3Apmid%2F26081242&rft_id=info%3Adoi%2F10.1038%2Fncomms8436&rft_id=info%3Abibcode%2F2015NatCo...6.7436L&rft.aulast=Lei&rft.aufirst=W&rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252Fncomms8436&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLavars2021" class="citation web cs1">Lavars, Nick (1 July 2021). <a rel="nofollow" class="external text" href="https://newatlas.com/energy/thin-lithium-strips-metal-battery-record/">"Lithium strips take next-gen battery into record-breaking territory"</a>. <i>New Atlas</i><span class="reference-accessdate">. Retrieved <span class="nowrap">3 August</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=New+Atlas&rft.atitle=Lithium+strips+take+next-gen+battery+into+record-breaking+territory&rft.date=2021-07-01&rft.aulast=Lavars&rft.aufirst=Nick&rft_id=https%3A%2F%2Fnewatlas.com%2Fenergy%2Fthin-lithium-strips-metal-battery-record%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://nanotechweb.org/cws/article/tech/56432">Nanotubes make for better lithium-ion batteries</a>, Nanotechweb.org, 3 March 2014.</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYeOngHeoCampbell2015" class="citation journal cs1">Ye, Jianchao; Ong, Mitchell T.; Heo, Tae Wook; Campbell, Patrick G.; Worsley, Marcus A.; Liu, Yuanyue; Shin, Swanee J.; Charnvanichborikarn, Supakit; Matthews, Manyalibo J. (5 November 2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633639">"Universal roles of hydrogen in electrochemical performance of graphene: high rate capacity and atomistic origins"</a>. <i>Scientific Reports</i>. <b>5</b>: 16190. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015NatSR...516190Y">2015NatSR...516190Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fsrep16190">10.1038/srep16190</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633639">4633639</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26536830">26536830</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scientific+Reports&rft.atitle=Universal+roles+of+hydrogen+in+electrochemical+performance+of+graphene%3A+high+rate+capacity+and+atomistic+origins&rft.volume=5&rft.pages=16190&rft.date=2015-11-05&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4633639%23id-name%3DPMC&rft_id=info%3Apmid%2F26536830&rft_id=info%3Adoi%2F10.1038%2Fsrep16190&rft_id=info%3Abibcode%2F2015NatSR...516190Y&rft.aulast=Ye&rft.aufirst=Jianchao&rft.au=Ong%2C+Mitchell+T.&rft.au=Heo%2C+Tae+Wook&rft.au=Campbell%2C+Patrick+G.&rft.au=Worsley%2C+Marcus+A.&rft.au=Liu%2C+Yuanyue&rft.au=Shin%2C+Swanee+J.&rft.au=Charnvanichborikarn%2C+Supakit&rft.au=Matthews%2C+Manyalibo+J.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4633639&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStark2015" class="citation web cs1">Stark, Anne M. (5 November 2015). <a rel="nofollow" class="external text" href="http://www.rdmag.com/news/2015/11/using-hydrogen-enhance-lithium-ion-batteries">"Using hydrogen to enhance lithium-ion batteries"</a>. <i>Research & Development</i><span class="reference-accessdate">. Retrieved <span class="nowrap">10 February</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Research+%26+Development&rft.atitle=Using+hydrogen+to+enhance+lithium-ion+batteries&rft.date=2015-11-05&rft.aulast=Stark&rft.aufirst=Anne+M.&rft_id=http%3A%2F%2Fwww.rdmag.com%2Fnews%2F2015%2F11%2Fusing-hydrogen-enhance-lithium-ion-batteries&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWang2015" class="citation journal cs1">Wang, Yusheng (2015). "Porous graphene for high capacity lithium ion battery anode material". <i>Applied Surface Science</i>. <b>363</b>: <span class="nowrap">318–</span>322. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.apsusc.2015.11.264">10.1016/j.apsusc.2015.11.264</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Applied+Surface+Science&rft.atitle=Porous+graphene+for+high+capacity+lithium+ion+battery+anode+material&rft.volume=363&rft.pages=%3Cspan+class%3D%22nowrap%22%3E318-%3C%2Fspan%3E322&rft.date=2015&rft_id=info%3Adoi%2F10.1016%2Fj.apsusc.2015.11.264&rft.aulast=Wang&rft.aufirst=Yusheng&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAricòBruceScrosatiTarascon2005" class="citation journal cs1">Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno; Tarascon, Jean-Marie; van Schalkwijk, Walter (May 2005). "Nanostructured materials for advanced energy conversion and storage devices". <i>Nature Materials</i>. <b>4</b> (5): <span class="nowrap">366–</span>377. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005NatMa...4..366A">2005NatMa...4..366A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnmat1368">10.1038/nmat1368</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15867920">15867920</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:35269951">35269951</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Materials&rft.atitle=Nanostructured+materials+for+advanced+energy+conversion+and+storage+devices&rft.volume=4&rft.issue=5&rft.pages=%3Cspan+class%3D%22nowrap%22%3E366-%3C%2Fspan%3E377&rft.date=2005-05&rft_id=info%3Adoi%2F10.1038%2Fnmat1368&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A35269951%23id-name%3DS2CID&rft_id=info%3Apmid%2F15867920&rft_id=info%3Abibcode%2F2005NatMa...4..366A&rft.aulast=Aric%C3%B2&rft.aufirst=Antonino+Salvatore&rft.au=Bruce%2C+Peter&rft.au=Scrosati%2C+Bruno&rft.au=Tarascon%2C+Jean-Marie&rft.au=van+Schalkwijk%2C+Walter&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChanPengLiuMcIlwrath2007" class="citation journal cs1">Chan, Candace K.; Peng, Hailin; Liu, Gao; McIlwrath, Kevin; Zhang, Xiao Feng; Huggins, Robert A.; Cui, Yi (16 December 2007). "High-performance lithium battery anodes using silicon nanowires". <i>Nature Nanotechnology</i>. <b>3</b> (1): <span class="nowrap">31–</span>35. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008NatNa...3...31C">2008NatNa...3...31C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnnano.2007.411">10.1038/nnano.2007.411</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18654447">18654447</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Nanotechnology&rft.atitle=High-performance+lithium+battery+anodes+using+silicon+nanowires&rft.volume=3&rft.issue=1&rft.pages=%3Cspan+class%3D%22nowrap%22%3E31-%3C%2Fspan%3E35&rft.date=2007-12-16&rft_id=info%3Apmid%2F18654447&rft_id=info%3Adoi%2F10.1038%2Fnnano.2007.411&rft_id=info%3Abibcode%2F2008NatNa...3...31C&rft.aulast=Chan&rft.aufirst=Candace+K.&rft.au=Peng%2C+Hailin&rft.au=Liu%2C+Gao&rft.au=McIlwrath%2C+Kevin&rft.au=Zhang%2C+Xiao+Feng&rft.au=Huggins%2C+Robert+A.&rft.au=Cui%2C+Yi&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSzczechJin2011" class="citation journal cs1">Szczech, Jeannine R.; Jin, Song (2011). "Nanostructured silicon for high capacity lithium battery anodes". <i>Energy & Environmental Science</i>. <b>4</b> (1): <span class="nowrap">56–</span>72. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FC0EE00281J">10.1039/C0EE00281J</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Energy+%26+Environmental+Science&rft.atitle=Nanostructured+silicon+for+high+capacity+lithium+battery+anodes&rft.volume=4&rft.issue=1&rft.pages=%3Cspan+class%3D%22nowrap%22%3E56-%3C%2Fspan%3E72&rft.date=2011&rft_id=info%3Adoi%2F10.1039%2FC0EE00281J&rft.aulast=Szczech&rft.aufirst=Jeannine+R.&rft.au=Jin%2C+Song&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-pddnet1-28"><span class="mw-cite-backlink">^ <a href="#cite_ref-pddnet1_28-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pddnet1_28-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.pddnet.com/news/2014/04/researchers-developing-cheap-better-performing-lithium-ion-batteries">Researchers Developing Cheap, Better-Performing Lithium-Ion Batteries</a>, Product Design & Development, 1 April 2014, Megan Hazle</span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBen_Coxworth2013" class="citation web cs1">Ben Coxworth (14 February 2013). <a rel="nofollow" class="external text" href="http://newatlas.com/silicon-anode-lithium-ion-battery/26256/">"Silicon nanoparticles used to create a super-performing battery"</a>. <i>New Atlas</i><span class="reference-accessdate">. Retrieved <span class="nowrap">7 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=New+Atlas&rft.atitle=Silicon+nanoparticles+used+to+create+a+super-performing+battery&rft.date=2013-02-14&rft.au=Ben+Coxworth&rft_id=http%3A%2F%2Fnewatlas.com%2Fsilicon-anode-lithium-ion-battery%2F26256%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGeRongFangZhang2013" class="citation journal cs1">Ge, Mingyuan; Rong, Jiepeng; Fang, Xin; Zhang, Anyi; Lu, Yunhao; Zhou, Chongwu (12 February 2013). <a rel="nofollow" class="external text" href="http://www.greencarcongress.com/2013/02/usc-20130212.html">"USC team develops new porous silicon nanoparticle material for high-performance Li-ion anodes"</a>. <i>Nano Research</i>. <b>6</b> (3): <span class="nowrap">174–</span>181. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs12274-013-0293-y">10.1007/s12274-013-0293-y</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:31924978">31924978</a><span class="reference-accessdate">. Retrieved <span class="nowrap">4 June</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nano+Research&rft.atitle=USC+team+develops+new+porous+silicon+nanoparticle+material+for+high-performance+Li-ion+anodes&rft.volume=6&rft.issue=3&rft.pages=%3Cspan+class%3D%22nowrap%22%3E174-%3C%2Fspan%3E181&rft.date=2013-02-12&rft_id=info%3Adoi%2F10.1007%2Fs12274-013-0293-y&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A31924978%23id-name%3DS2CID&rft.aulast=Ge&rft.aufirst=Mingyuan&rft.au=Rong%2C+Jiepeng&rft.au=Fang%2C+Xin&rft.au=Zhang%2C+Anyi&rft.au=Lu%2C+Yunhao&rft.au=Zhou%2C+Chongwu&rft_id=http%3A%2F%2Fwww.greencarcongress.com%2F2013%2F02%2Fusc-20130212.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChadhaSelvarajAshokanHariharan2022" class="citation journal cs1">Chadha, Utkarsh; Selvaraj, Senthil Kumaran; Ashokan, Hridya; Hariharan, Sai P.; Mathew Paul, V.; Venkatarangan, Vishal; Paramasivam, Velmurugan (8 February 2022). <a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2022%2F1552334">"Complex Nanomaterials in Catalysis for Chemically Significant Applications: From Synthesis and Hydrocarbon Processing to Renewable Energy Applications"</a>. <i>Advances in Materials Science and Engineering</i>. <b>2022</b>: e1552334. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2022%2F1552334">10.1155/2022/1552334</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1687-8434">1687-8434</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advances+in+Materials+Science+and+Engineering&rft.atitle=Complex+Nanomaterials+in+Catalysis+for+Chemically+Significant+Applications%3A+From+Synthesis+and+Hydrocarbon+Processing+to+Renewable+Energy+Applications&rft.volume=2022&rft.pages=e1552334&rft.date=2022-02-08&rft_id=info%3Adoi%2F10.1155%2F2022%2F1552334&rft.issn=1687-8434&rft.aulast=Chadha&rft.aufirst=Utkarsh&rft.au=Selvaraj%2C+Senthil+Kumaran&rft.au=Ashokan%2C+Hridya&rft.au=Hariharan%2C+Sai+P.&rft.au=Mathew+Paul%2C+V.&rft.au=Venkatarangan%2C+Vishal&rft.au=Paramasivam%2C+Velmurugan&rft_id=https%3A%2F%2Fdoi.org%2F10.1155%252F2022%252F1552334&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChadhaHafizBhardwajPadmanaban2022" class="citation journal cs1">Chadha, Utkarsh; Hafiz, Mohammed; Bhardwaj, Preetam; Padmanaban, Sanjeevikumar; Sinha, Sanyukta; Hariharan, Sai; Kabra, Dikshita; Venkatarangan, Vishal; Khanna, Mayank; Selvaraj, Senthil Kumaran; Banavoth, Murali; Sonar, Prashant; Badoni, Badrish; R, Vimala (November 2022). "Theoretical progresses in silicon anode substitutes for Lithium-ion batteries". <i>Journal of Energy Storage</i>. <b>55</b>: 105352. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.est.2022.105352">10.1016/j.est.2022.105352</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:251820707">251820707</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Energy+Storage&rft.atitle=Theoretical+progresses+in+silicon+anode+substitutes+for+Lithium-ion+batteries&rft.volume=55&rft.pages=105352&rft.date=2022-11&rft_id=info%3Adoi%2F10.1016%2Fj.est.2022.105352&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A251820707%23id-name%3DS2CID&rft.aulast=Chadha&rft.aufirst=Utkarsh&rft.au=Hafiz%2C+Mohammed&rft.au=Bhardwaj%2C+Preetam&rft.au=Padmanaban%2C+Sanjeevikumar&rft.au=Sinha%2C+Sanyukta&rft.au=Hariharan%2C+Sai&rft.au=Kabra%2C+Dikshita&rft.au=Venkatarangan%2C+Vishal&rft.au=Khanna%2C+Mayank&rft.au=Selvaraj%2C+Senthil+Kumaran&rft.au=Banavoth%2C+Murali&rft.au=Sonar%2C+Prashant&rft.au=Badoni%2C+Badrish&rft.au=R%2C+Vimala&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMack2016" class="citation web cs1">Mack, Eric (30 January 2016). <a rel="nofollow" class="external text" href="http://newatlas.com/graphene-cages-silicon-anodes-lithium-ion-batteries/41583/">"Lithium-ion battery boost could come from "caging" silicon in graphene"</a>. <i>New Atlas</i><span class="reference-accessdate">. Retrieved <span class="nowrap">6 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=New+Atlas&rft.atitle=Lithium-ion+battery+boost+could+come+from+%22caging%22+silicon+in+graphene&rft.date=2016-01-30&rft.aulast=Mack&rft.aufirst=Eric&rft_id=http%3A%2F%2Fnewatlas.com%2Fgraphene-cages-silicon-anodes-lithium-ion-batteries%2F41583%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiYanLeeLu2016" class="citation journal cs1">Li, Yuzhang; Yan, Kai; Lee, Hyun-Wook; Lu, Zhenda; Liu, Nian; Cui, Yi (2016). "Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes". <i>Nature Energy</i>. <b>1</b> (2): 15029. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016NatEn...115029L">2016NatEn...115029L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnenergy.2015.29">10.1038/nenergy.2015.29</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:256713197">256713197</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Energy&rft.atitle=Growth+of+conformal+graphene+cages+on+micrometre-sized+silicon+particles+as+stable+battery+anodes&rft.volume=1&rft.issue=2&rft.pages=15029&rft.date=2016&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A256713197%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1038%2Fnenergy.2015.29&rft_id=info%3Abibcode%2F2016NatEn...115029L&rft.aulast=Li&rft.aufirst=Yuzhang&rft.au=Yan%2C+Kai&rft.au=Lee%2C+Hyun-Wook&rft.au=Lu%2C+Zhenda&rft.au=Liu%2C+Nian&rft.au=Cui%2C+Yi&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNick_Lavars2014" class="citation web cs1">Nick Lavars (19 February 2014). <a rel="nofollow" class="external text" href="http://newatlas.com/pomegranate-electrode-lithium-battery/30892/">"Pomegranate-inspired electrode could mean longer lithium-ion battery life"</a>. <i>New Atlas</i><span class="reference-accessdate">. Retrieved <span class="nowrap">6 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=New+Atlas&rft.atitle=Pomegranate-inspired+electrode+could+mean+longer+lithium-ion+battery+life&rft.date=2014-02-19&rft.au=Nick+Lavars&rft_id=http%3A%2F%2Fnewatlas.com%2Fpomegranate-electrode-lithium-battery%2F30892%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHongChengXuStapelberg2021" class="citation journal cs1">Hong, Juan; Cheng, Kun; Xu, Guiyin; Stapelberg, Myles; Kuai, Yuan; Sun, Pengcheng; Qu, Subing; Zhang, Zexin; Geng, Qidong; Wu, Zhuangzhao; Zhu, Meifang (15 September 2021). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S0925838821013360">"Novel silicon/copper nanowires as high-performance anodes for lithium ion batteries"</a>. <i>Journal of Alloys and Compounds</i>. <b>875</b>: 159927. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jallcom.2021.159927">10.1016/j.jallcom.2021.159927</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0925-8388">0925-8388</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Alloys+and+Compounds&rft.atitle=Novel+silicon%2Fcopper+nanowires+as+high-performance+anodes+for+lithium+ion+batteries&rft.volume=875&rft.pages=159927&rft.date=2021-09-15&rft_id=info%3Adoi%2F10.1016%2Fj.jallcom.2021.159927&rft.issn=0925-8388&rft.aulast=Hong&rft.aufirst=Juan&rft.au=Cheng%2C+Kun&rft.au=Xu%2C+Guiyin&rft.au=Stapelberg%2C+Myles&rft.au=Kuai%2C+Yuan&rft.au=Sun%2C+Pengcheng&rft.au=Qu%2C+Subing&rft.au=Zhang%2C+Zexin&rft.au=Geng%2C+Qidong&rft.au=Wu%2C+Zhuangzhao&rft.au=Zhu%2C+Meifang&rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0925838821013360&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-Vaughey2012e-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-Vaughey2012e_37-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJoyceTrahyBauerDogan2012" class="citation journal cs1">Joyce, C.; Trahy, L; Bauer, Sara; Dogan, Fulya; Vaughey, John (2012). <a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F2.107206jes">"Metallic Copper Binders for Lithium-Ion Battery Silicon Electrodes"</a>. <i>Journal of the Electrochemical Society</i>. <b>159</b> (6): A909–15. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F2.107206jes">10.1149/2.107206jes</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0013-4651">0013-4651</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Electrochemical+Society&rft.atitle=Metallic+Copper+Binders+for+Lithium-Ion+Battery+Silicon+Electrodes&rft.volume=159&rft.issue=6&rft.pages=A909-15&rft.date=2012&rft_id=info%3Adoi%2F10.1149%2F2.107206jes&rft.issn=0013-4651&rft.aulast=Joyce&rft.aufirst=C.&rft.au=Trahy%2C+L&rft.au=Bauer%2C+Sara&rft.au=Dogan%2C+Fulya&rft.au=Vaughey%2C+John&rft_id=https%3A%2F%2Fdoi.org%2F10.1149%252F2.107206jes&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-Vaughey2011c-38"><span class="mw-cite-backlink">^ <a href="#cite_ref-Vaughey2011c_38-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Vaughey2011c_38-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTraheyKungThackerayVaughey2011" class="citation journal cs1">Trahey, L.; Kung, H; Thackeray, M.; Vaughey, John (2011). "Effect of Electrode Dimensionality and Morphology on the Performance of Cu<sub>2</sub>Sb Thin Film Electrodes for Lithium Batteries". <i>European Journal of Inorganic Chemistry</i>. <b>2011</b> (26): <span class="nowrap">3984–</span>3988. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fejic.201100329">10.1002/ejic.201100329</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=European+Journal+of+Inorganic+Chemistry&rft.atitle=Effect+of+Electrode+Dimensionality+and+Morphology+on+the+Performance+of+Cu%3Csub%3E2%3C%2Fsub%3ESb+Thin+Film+Electrodes+for+Lithium+Batteries&rft.volume=2011&rft.issue=26&rft.pages=%3Cspan+class%3D%22nowrap%22%3E3984-%3C%2Fspan%3E3988&rft.date=2011&rft_id=info%3Adoi%2F10.1002%2Fejic.201100329&rft.aulast=Trahey&rft.aufirst=L.&rft.au=Kung%2C+H&rft.au=Thackeray%2C+M.&rft.au=Vaughey%2C+John&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-:1-39"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_39-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_39-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBorghino2015" class="citation news cs1">Borghino, Dario (25 February 2015). <a rel="nofollow" class="external text" href="http://newatlas.com/silicon-anode-battery/36152/">"Going small with silicon potentially has big implications for lithium-ion battery capacity"</a>. <i>New Atlas</i><span class="reference-accessdate">. Retrieved <span class="nowrap">6 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Atlas&rft.atitle=Going+small+with+silicon+potentially+has+big+implications+for+lithium-ion+battery+capacity&rft.date=2015-02-25&rft.aulast=Borghino&rft.aufirst=Dario&rft_id=http%3A%2F%2Fnewatlas.com%2Fsilicon-anode-battery%2F36152%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-Huggins1981-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-Huggins1981_40-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoukampLeshHuggins1981" class="citation journal cs1">Boukamp, B.A.; Lesh, G. C.; Huggins, R.A (1981). "All Solid Lithium Electrodes with a Mixed Conductor Matrix". <i>Journal of the Electrochemical Society</i>. <b>128</b> (4): <span class="nowrap">725–</span>29. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1981JElS..128..725B">1981JElS..128..725B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1.2127495">10.1149/1.2127495</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Electrochemical+Society&rft.atitle=All+Solid+Lithium+Electrodes+with+a+Mixed+Conductor+Matrix&rft.volume=128&rft.issue=4&rft.pages=%3Cspan+class%3D%22nowrap%22%3E725-%3C%2Fspan%3E29&rft.date=1981&rft_id=info%3Adoi%2F10.1149%2F1.2127495&rft_id=info%3Abibcode%2F1981JElS..128..725B&rft.aulast=Boukamp&rft.aufirst=B.A.&rft.au=Lesh%2C+G.+C.&rft.au=Huggins%2C+R.A&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://news.wsu.edu/pages/publications.asp?Action=Detail&PublicationID=31776">WSU Researchers Create Super Lithium-ion Battery</a> Retrieved 10 January 2013</span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20140428031552/http://www.macrocurrent.com/washington-state-university-gets-funding-to-scale-up-new-tin-batteries/">"Washington State University Gets Funding to Scale Up New Tin Batteries"</a>. MacroCurrent. 30 April 2013. Archived from <a rel="nofollow" class="external text" href="http://www.macrocurrent.com/washington-state-university-gets-funding-to-scale-up-new-tin-batteries/">the original</a> on 28 April 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">4 June</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Washington+State+University+Gets+Funding+to+Scale+Up+New+Tin+Batteries&rft.pub=MacroCurrent&rft.date=2013-04-30&rft_id=http%3A%2F%2Fwww.macrocurrent.com%2Fwashington-state-university-gets-funding-to-scale-up-new-tin-batteries%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhangShiWetzelNuzzo2016" class="citation journal cs1">Zhang, H.; Shi, T.; Wetzel, D. J.; Nuzzo, R. G.; Braun, P. V. (2016). <a rel="nofollow" class="external text" href="https://prd-nusso.it.northwestern.edu/nusso/XUI/?realm=%2Fnorthwestern&goto=https%3A%2F%2Fprd-nusso.it.northwestern.edu%3A443%2Fnusso%2Foauth2%2Fauthorize%3Fresponse_mode%3Dform_post%26state%3Dc1b2683d-f144-1a43-055b-88115e6f2404%26redirect_uri%3Dhttps%253A%252F%252Fsesame1.library.northwestern.edu%253A443%252Fagent%252Fcdsso-oauth2%26response_type%3Did_token%26scope%3Dopenid%26client_id%3Dlibrary-sesame%26agent_provider%3Dtrue%26agent_realm%3D%252Fnorthwestern%26nonce%3DC018FCE1CBC1FFDEC1AC092D60C2585E#login/">"Northwestern SSO"</a>. <i>Advanced Materials</i>. <b>28</b> (4): <span class="nowrap">742–</span>747. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1504.07047">1504.07047</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.201504780">10.1002/adma.201504780</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26618617">26618617</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9956207">9956207</a><span class="reference-accessdate">. Retrieved <span class="nowrap">20 November</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advanced+Materials&rft.atitle=Northwestern+SSO&rft.volume=28&rft.issue=4&rft.pages=%3Cspan+class%3D%22nowrap%22%3E742-%3C%2Fspan%3E747&rft.date=2016&rft_id=info%3Aarxiv%2F1504.07047&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9956207%23id-name%3DS2CID&rft_id=info%3Apmid%2F26618617&rft_id=info%3Adoi%2F10.1002%2Fadma.201504780&rft.aulast=Zhang&rft.aufirst=H.&rft.au=Shi%2C+T.&rft.au=Wetzel%2C+D.+J.&rft.au=Nuzzo%2C+R.+G.&rft.au=Braun%2C+P.+V.&rft_id=https%3A%2F%2Fprd-nusso.it.northwestern.edu%2Fnusso%2FXUI%2F%3Frealm%3D%252Fnorthwestern%26goto%3Dhttps%253A%252F%252Fprd-nusso.it.northwestern.edu%253A443%252Fnusso%252Foauth2%252Fauthorize%253Fresponse_mode%253Dform_post%2526state%253Dc1b2683d-f144-1a43-055b-88115e6f2404%2526redirect_uri%253Dhttps%25253A%25252F%25252Fsesame1.library.northwestern.edu%25253A443%25252Fagent%25252Fcdsso-oauth2%2526response_type%253Did_token%2526scope%253Dopenid%2526client_id%253Dlibrary-sesame%2526agent_provider%253Dtrue%2526agent_realm%253D%25252Fnorthwestern%2526nonce%253DC018FCE1CBC1FFDEC1AC092D60C2585E%23login%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-Vaughey1999-44"><span class="mw-cite-backlink">^ <a href="#cite_ref-Vaughey1999_44-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Vaughey1999_44-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKeplerVaugheyThackeray1999" class="citation journal cs1">Kepler, K.; Vaughey, John; Thackeray, M.M. (1999). "Li<sub>x</sub>Cu<sub>6</sub>Sn<sub>5</sub> An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries". <i>Electrochemical and Solid-State Letters</i>. <b>2</b>: <span class="nowrap">307–</span>309. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1.1390819">10.1149/1.1390819</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Electrochemical+and+Solid-State+Letters&rft.atitle=Li%3Csub%3Ex%3C%2Fsub%3ECu%3Csub%3E6%3C%2Fsub%3ESn%3Csub%3E5%3C%2Fsub%3E+An+Intermetallic+Insertion+Electrode+for+Rechargeable+Lithium+Batteries&rft.volume=2&rft.pages=%3Cspan+class%3D%22nowrap%22%3E307-%3C%2Fspan%3E309&rft.date=1999&rft_id=info%3Adoi%2F10.1149%2F1.1390819&rft.aulast=Kepler&rft.aufirst=K.&rft.au=Vaughey%2C+John&rft.au=Thackeray%2C+M.M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-Vaughey2003-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-Vaughey2003_45-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFranssonVaugheyThackerayEdstrom2003" class="citation journal cs1">Fransson, L.; Vaughey, John; Thackeray, M.; <a href="/wiki/Kristina_Edstr%C3%B6m" title="Kristina Edström">Edstrom, K.</a> (2003). "Structural Transformations in Intermetallic Electrode for Lithium Batteries". <i>Journal of the Electrochemical Society</i>. <b>150</b>: A86-91. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1.1524610">10.1149/1.1524610</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Electrochemical+Society&rft.atitle=Structural+Transformations+in+Intermetallic+Electrode+for+Lithium+Batteries&rft.volume=150&rft.pages=A86-91&rft.date=2003&rft_id=info%3Adoi%2F10.1149%2F1.1524610&rft.aulast=Fransson&rft.aufirst=L.&rft.au=Vaughey%2C+John&rft.au=Thackeray%2C+M.&rft.au=Edstrom%2C+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-TanMcDonald2019-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-TanMcDonald2019_46-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTanMcDonaldGuHu2019" class="citation journal cs1">Tan, Xin Fu; McDonald, Stuart D.; Gu, Qinfen; Hu, Yuxiang; Wang, Lianzhou; Matsumura, Syo; Nishimura, Tetsuro; Nogita, Kazuhiro (2019). "Characterisation of lithium-ion battery anodes fabricated via in-situ Cu<sub>6</sub>Sn<sub>5</sub> growth on a copper current collector". <i>Journal of Power Sources</i>. <b>415</b>: <span class="nowrap">50–</span>61. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019JPS...415...50T">2019JPS...415...50T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2019.01.034">10.1016/j.jpowsour.2019.01.034</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0378-7753">0378-7753</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:104470427">104470427</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Power+Sources&rft.atitle=Characterisation+of+lithium-ion+battery+anodes+fabricated+via+in-situ+Cu%3Csub%3E6%3C%2Fsub%3ESn%3Csub%3E5%3C%2Fsub%3E+growth+on+a+copper+current+collector&rft.volume=415&rft.pages=%3Cspan+class%3D%22nowrap%22%3E50-%3C%2Fspan%3E61&rft.date=2019&rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2019.01.034&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A104470427%23id-name%3DS2CID&rft.issn=0378-7753&rft_id=info%3Abibcode%2F2019JPS...415...50T&rft.aulast=Tan&rft.aufirst=Xin+Fu&rft.au=McDonald%2C+Stuart+D.&rft.au=Gu%2C+Qinfen&rft.au=Hu%2C+Yuxiang&rft.au=Wang%2C+Lianzhou&rft.au=Matsumura%2C+Syo&rft.au=Nishimura%2C+Tetsuro&rft.au=Nogita%2C+Kazuhiro&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-WangShan2017-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-WangShan2017_47-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangShanTianHuang2017" class="citation journal cs1">Wang, Zhaodong; Shan, Zhongqiang; Tian, Jianhua; Huang, Wenlong; Luo, Didi; Zhu, Xi; Meng, Shuxian (2017). "Immersion-plated Cu<sub>6</sub>Sn<sub>5</sub>/Sn composite film anode for lithium ion battery". <i>Journal of Materials Science</i>. <b>52</b> (10): <span class="nowrap">6020–</span>6033. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017JMatS..52.6020W">2017JMatS..52.6020W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10853-017-0841-z">10.1007/s10853-017-0841-z</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0022-2461">0022-2461</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:135963600">135963600</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Materials+Science&rft.atitle=Immersion-plated+Cu%3Csub%3E6%3C%2Fsub%3ESn%3Csub%3E5%3C%2Fsub%3E%2FSn+composite+film+anode+for+lithium+ion+battery&rft.volume=52&rft.issue=10&rft.pages=%3Cspan+class%3D%22nowrap%22%3E6020-%3C%2Fspan%3E6033&rft.date=2017&rft_id=info%3Adoi%2F10.1007%2Fs10853-017-0841-z&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A135963600%23id-name%3DS2CID&rft.issn=0022-2461&rft_id=info%3Abibcode%2F2017JMatS..52.6020W&rft.aulast=Wang&rft.aufirst=Zhaodong&rft.au=Shan%2C+Zhongqiang&rft.au=Tian%2C+Jianhua&rft.au=Huang%2C+Wenlong&rft.au=Luo%2C+Didi&rft.au=Zhu%2C+Xi&rft.au=Meng%2C+Shuxian&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-Vaughey2011-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-Vaughey2011_48-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJansenClevengerBaeblerVaughey2011" class="citation journal cs1">Jansen, A.; Clevenger, Jessica; Baebler, Anna; Vaughey, John (2011). "Variable Temperature Performance of Intermetallic Lithium Ion Battery Anode Materials". <i>Journal of Alloys and Compounds</i>. <b>509</b> (13): <span class="nowrap">4457–</span>61. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jallcom.2011.01.111">10.1016/j.jallcom.2011.01.111</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0925-8388">0925-8388</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Alloys+and+Compounds&rft.atitle=Variable+Temperature+Performance+of+Intermetallic+Lithium+Ion+Battery+Anode+Materials&rft.volume=509&rft.issue=13&rft.pages=%3Cspan+class%3D%22nowrap%22%3E4457-%3C%2Fspan%3E61&rft.date=2011&rft_id=info%3Adoi%2F10.1016%2Fj.jallcom.2011.01.111&rft.issn=0925-8388&rft.aulast=Jansen&rft.aufirst=A.&rft.au=Clevenger%2C+Jessica&rft.au=Baebler%2C+Anna&rft.au=Vaughey%2C+John&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-Vaughey2008-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-Vaughey2008_49-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKimVaugheyAuciello2008" class="citation journal cs1">Kim, Il Seok.; Vaughey, John; Auciello, Orlando (2008). "Thin Film Cu<sub>6</sub>Sn<sub>5</sub> Electrodes: Synthesis< Properties, and Current Collector Interactions". <i>Journal of the Electrochemical Society</i>. <b>155</b> (6): A448–51. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008JElS..155A.448K">2008JElS..155A.448K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1.2904525">10.1149/1.2904525</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0013-4651">0013-4651</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Electrochemical+Society&rft.atitle=Thin+Film+Cu%3Csub%3E6%3C%2Fsub%3ESn%3Csub%3E5%3C%2Fsub%3E+Electrodes%3A+Synthesis%3C+Properties%2C+and+Current+Collector+Interactions&rft.volume=155&rft.issue=6&rft.pages=A448-51&rft.date=2008&rft.issn=0013-4651&rft_id=info%3Adoi%2F10.1149%2F1.2904525&rft_id=info%3Abibcode%2F2008JElS..155A.448K&rft.aulast=Kim&rft.aufirst=Il+Seok.&rft.au=Vaughey%2C+John&rft.au=Auciello%2C+Orlando&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-HuWaller2015-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-HuWaller2015_50-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuWallerWangChen2015" class="citation journal cs1">Hu, Renzong; Waller, Gordon Henry; Wang, Yukun; Chen, Yu; Yang, Chenghao; Zhou, Weijia; Zhu, Min; Liu, Meilin (2015). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.nanoen.2015.10.037">"Cu6Sn5@SnO2–C nanocomposite with stable core/shell structure as a high reversible anode for Li-ion batteries"</a>. <i>Nano Energy</i>. <b>18</b>: <span class="nowrap">232–</span>244. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.nanoen.2015.10.037">10.1016/j.nanoen.2015.10.037</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2211-2855">2211-2855</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nano+Energy&rft.atitle=Cu6Sn5%40SnO2%E2%80%93C+nanocomposite+with+stable+core%2Fshell+structure+as+a+high+reversible+anode+for+Li-ion+batteries&rft.volume=18&rft.pages=%3Cspan+class%3D%22nowrap%22%3E232-%3C%2Fspan%3E244&rft.date=2015&rft_id=info%3Adoi%2F10.1016%2Fj.nanoen.2015.10.037&rft.issn=2211-2855&rft.aulast=Hu&rft.aufirst=Renzong&rft.au=Waller%2C+Gordon+Henry&rft.au=Wang%2C+Yukun&rft.au=Chen%2C+Yu&rft.au=Yang%2C+Chenghao&rft.au=Zhou%2C+Weijia&rft.au=Zhu%2C+Min&rft.au=Liu%2C+Meilin&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.nanoen.2015.10.037&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-Vaughey2011b-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-Vaughey2011b_51-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFranssonVaugheyBenedekVaughey2001" class="citation journal cs1">Fransson, L.; Vaughey, J; Benedek, R.; Vaughey, John; Edstrom, K; Thomas, J.; Thackeray, M.M. (2001). "Phase Transition in Lithiated Cu<sub>2</sub>Sb Anodes for lithium Batteries: An In-Situ X-Ray Diffraction". <i>Electrochemistry Communications</i>. <b>3</b>: <span class="nowrap">317–</span>323. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS1388-2481%2801%2900140-0">10.1016/S1388-2481(01)00140-0</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1388-2481">1388-2481</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Electrochemistry+Communications&rft.atitle=Phase+Transition+in+Lithiated+Cu%3Csub%3E2%3C%2Fsub%3ESb+Anodes+for+lithium+Batteries%3A+An+In-Situ+X-Ray+Diffraction&rft.volume=3&rft.pages=%3Cspan+class%3D%22nowrap%22%3E317-%3C%2Fspan%3E323&rft.date=2001&rft_id=info%3Adoi%2F10.1016%2FS1388-2481%2801%2900140-0&rft.issn=1388-2481&rft.aulast=Fransson&rft.aufirst=L.&rft.au=Vaughey%2C+J&rft.au=Benedek%2C+R.&rft.au=Vaughey%2C+John&rft.au=Edstrom%2C+K&rft.au=Thomas%2C+J.&rft.au=Thackeray%2C+M.M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMartin2015" class="citation web cs1">Martin, Richard (25 October 2015). <a rel="nofollow" class="external text" href="https://www.technologyreview.com/s/542796/new-foam-batteries-promise-fast-charging-higher-capacity/">"New Foam Batteries Promise Fast Charging, Higher Capacity"</a>. <i>MIT Technology Review</i><span class="reference-accessdate">. Retrieved <span class="nowrap">10 February</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MIT+Technology+Review&rft.atitle=New+Foam+Batteries+Promise+Fast+Charging%2C+Higher+Capacity&rft.date=2015-10-25&rft.aulast=Martin&rft.aufirst=Richard&rft_id=https%3A%2F%2Fwww.technologyreview.com%2Fs%2F542796%2Fnew-foam-batteries-promise-fast-charging-higher-capacity%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-Vaughey2006-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-Vaughey2006_53-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSorensonBarryJungRondinelli2006" class="citation journal cs1">Sorenson, E.; Barry, S; Jung, H.K.; Rondinelli, James; Vaughey, John; <a href="/wiki/Kenneth_Poeppelmeier" title="Kenneth Poeppelmeier">Poeppelmeier, Kenneth</a> (2006). "Three Dimensionally Ordered Macroporous Li4Ti5O12:Effect of Wall Structure of Electrochemical Performance". <i>Chemistry of Materials</i>. <b>18</b>: <span class="nowrap">482–</span>489. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fcm052203y">10.1021/cm052203y</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Chemistry+of+Materials&rft.atitle=Three+Dimensionally+Ordered+Macroporous+Li4Ti5O12%3AEffect+of+Wall+Structure+of+Electrochemical+Performance&rft.volume=18&rft.pages=%3Cspan+class%3D%22nowrap%22%3E482-%3C%2Fspan%3E489&rft.date=2006&rft_id=info%3Adoi%2F10.1021%2Fcm052203y&rft.aulast=Sorenson&rft.aufirst=E.&rft.au=Barry%2C+S&rft.au=Jung%2C+H.K.&rft.au=Rondinelli%2C+James&rft.au=Vaughey%2C+John&rft.au=Poeppelmeier%2C+Kenneth&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.news.illinois.edu/news/11/0321batteries_PaulBraun.html">Batteries charge very quickly and retain capacity, thanks to new structure</a>, News Bureau Illinois, 21 March 2011, Liz Ahlberg</span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://news.illinois.edu/news/13/0416microbatteries_WilliamKing.html">Small in size, big on power: New microbatteries a boost for electronics</a>, News Bureau Illinois, 16 April 2013, Liz Ahlberg</span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPikulGang_ZhangChoBraun2013" class="citation journal cs1">Pikul, JH; Gang Zhang, H; Cho, J; Braun, PV; King, WP (2013). <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fncomms2747">"High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes"</a>. <i>Nature Communications</i>. <b>4</b>: 1732. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013NatCo...4.1732P">2013NatCo...4.1732P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fncomms2747">10.1038/ncomms2747</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23591899">23591899</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Communications&rft.atitle=High-power+lithium+ion+microbatteries+from+interdigitated+three-dimensional+bicontinuous+nanoporous+electrodes&rft.volume=4&rft.pages=1732&rft.date=2013&rft_id=info%3Apmid%2F23591899&rft_id=info%3Adoi%2F10.1038%2Fncomms2747&rft_id=info%3Abibcode%2F2013NatCo...4.1732P&rft.aulast=Pikul&rft.aufirst=JH&rft.au=Gang+Zhang%2C+H&rft.au=Cho%2C+J&rft.au=Braun%2C+PV&rft.au=King%2C+WP&rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252Fncomms2747&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSunDavisCaoJiang2019" class="citation journal cs1">Sun, Pengcheng; Davis, Jerome; Cao, Luoxia; Jiang, Zhelong; Cook, John B.; Ning, Hailong; Liu, Jinyun; Kim, Sanghyeon; Fan, Feifei; Nuzzo, Ralph G.; Braun, Paul V. (1 February 2019). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S2405829718306743">"High capacity 3D structured tin-based electroplated Li-ion battery anodes"</a>. <i>Energy Storage Materials</i>. <b>17</b>: <span class="nowrap">151–</span>156. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ensm.2018.11.017">10.1016/j.ensm.2018.11.017</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2405-8297">2405-8297</a>. <a href="/wiki/OSTI_(identifier)" class="mw-redirect" title="OSTI (identifier)">OSTI</a> <a rel="nofollow" class="external text" href="https://www.osti.gov/biblio/1606379">1606379</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:139973258">139973258</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Energy+Storage+Materials&rft.atitle=High+capacity+3D+structured+tin-based+electroplated+Li-ion+battery+anodes&rft.volume=17&rft.pages=%3Cspan+class%3D%22nowrap%22%3E151-%3C%2Fspan%3E156&rft.date=2019-02-01&rft.issn=2405-8297&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A139973258%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.osti.gov%2Fbiblio%2F1606379%23id-name%3DOSTI&rft_id=info%3Adoi%2F10.1016%2Fj.ensm.2018.11.017&rft.aulast=Sun&rft.aufirst=Pengcheng&rft.au=Davis%2C+Jerome&rft.au=Cao%2C+Luoxia&rft.au=Jiang%2C+Zhelong&rft.au=Cook%2C+John+B.&rft.au=Ning%2C+Hailong&rft.au=Liu%2C+Jinyun&rft.au=Kim%2C+Sanghyeon&rft.au=Fan%2C+Feifei&rft.au=Nuzzo%2C+Ralph+G.&rft.au=Braun%2C+Paul+V.&rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS2405829718306743&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWoyke" class="citation news cs1">Woyke, Elizabeth. <a rel="nofollow" class="external text" href="https://www.technologyreview.com/s/601500/24ms-batteries-could-better-harness-wind-and-solar-power/?set=601766&goal=0_997ed6f472-5c46acc366-153945917&mc_cid=5c46acc366&mc_eid=6e7303fddd">"A clever twist on the batteries in smartphones could help us better harness wind and solar power"</a>. <i>MIT Technology Review</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2 February</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=MIT+Technology+Review&rft.atitle=A+clever+twist+on+the+batteries+in+smartphones+could+help+us+better+harness+wind+and+solar+power&rft.aulast=Woyke&rft.aufirst=Elizabeth&rft_id=https%3A%2F%2Fwww.technologyreview.com%2Fs%2F601500%2F24ms-batteries-could-better-harness-wind-and-solar-power%2F%3Fset%3D601766%26goal%3D0_997ed6f472-5c46acc366-153945917%26mc_cid%3D5c46acc366%26mc_eid%3D6e7303fddd&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQiKoenig2016" class="citation journal cs1">Qi, Zhaoxiang; Koenig, Gary M. (15 August 2016). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2016.05.033">"A carbon-free lithium-ion solid dispersion redox couple with low viscosity for redox flow batteries"</a>. <i>Journal of Power Sources</i>. <b>323</b>: <span class="nowrap">97–</span>106. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016JPS...323...97Q">2016JPS...323...97Q</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2016.05.033">10.1016/j.jpowsour.2016.05.033</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0378-7753">0378-7753</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Power+Sources&rft.atitle=A+carbon-free+lithium-ion+solid+dispersion+redox+couple+with+low+viscosity+for+redox+flow+batteries&rft.volume=323&rft.pages=%3Cspan+class%3D%22nowrap%22%3E97-%3C%2Fspan%3E106&rft.date=2016-08-15&rft.issn=0378-7753&rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2016.05.033&rft_id=info%3Abibcode%2F2016JPS...323...97Q&rft.aulast=Qi&rft.aufirst=Zhaoxiang&rft.au=Koenig%2C+Gary+M.&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.jpowsour.2016.05.033&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQiLiuKoenig2017" class="citation journal cs1">Qi, Zhaoxiang; Liu, Aaron L.; Koenig, Gary M. (20 February 2017). "Carbon-free Solid Dispersion LiCoO2 Redox Couple Characterization and Electrochemical Evaluation for All Solid Dispersion Redox Flow Batteries". <i>Electrochimica Acta</i>. <b>228</b>: <span class="nowrap">91–</span>99. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.electacta.2017.01.061">10.1016/j.electacta.2017.01.061</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0013-4686">0013-4686</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Electrochimica+Acta&rft.atitle=Carbon-free+Solid+Dispersion+LiCoO2+Redox+Couple+Characterization+and+Electrochemical+Evaluation+for+All+Solid+Dispersion+Redox+Flow+Batteries&rft.volume=228&rft.pages=%3Cspan+class%3D%22nowrap%22%3E91-%3C%2Fspan%3E99&rft.date=2017-02-20&rft_id=info%3Adoi%2F10.1016%2Fj.electacta.2017.01.061&rft.issn=0013-4686&rft.aulast=Qi&rft.aufirst=Zhaoxiang&rft.au=Liu%2C+Aaron+L.&rft.au=Koenig%2C+Gary+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQiKoenig2017" class="citation journal cs1">Qi, Zhaoxiang; Koenig, Gary M. (July 2017). <a rel="nofollow" class="external text" href="https://doi.org/10.1116%2F1.4983210">"Review Article: Flow battery systems with solid electroactive materials"</a>. <i>Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena</i>. <b>35</b> (4): 040801. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017JVSTB..35d0801Q">2017JVSTB..35d0801Q</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1116%2F1.4983210">10.1116/1.4983210</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2166-2746">2166-2746</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Vacuum+Science+%26+Technology+B%2C+Nanotechnology+and+Microelectronics%3A+Materials%2C+Processing%2C+Measurement%2C+and+Phenomena&rft.atitle=Review+Article%3A+Flow+battery+systems+with+solid+electroactive+materials&rft.volume=35&rft.issue=4&rft.pages=040801&rft.date=2017-07&rft.issn=2166-2746&rft_id=info%3Adoi%2F10.1116%2F1.4983210&rft_id=info%3Abibcode%2F2017JVSTB..35d0801Q&rft.aulast=Qi&rft.aufirst=Zhaoxiang&rft.au=Koenig%2C+Gary+M.&rft_id=https%3A%2F%2Fdoi.org%2F10.1116%252F1.4983210&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTolmachevStarodubceva2022" class="citation journal cs1">Tolmachev, Yuriy; Starodubceva, Svetlana (5 August 2022). <a rel="nofollow" class="external text" href="https://doi.org/10.5599%2Fjese.1363">"Flow batteries with solid energy boosters"</a>. <i>J.Electrochem.Sci.Eng</i>. <b>12</b> (4): <span class="nowrap">731–</span>766. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.5599%2Fjese.1363">10.5599/jese.1363</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1847-9286">1847-9286</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:252374044">252374044</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=J.Electrochem.Sci.Eng.&rft.atitle=Flow+batteries+with+solid+energy+boosters&rft.volume=12&rft.issue=4&rft.pages=%3Cspan+class%3D%22nowrap%22%3E731-%3C%2Fspan%3E766&rft.date=2022-08-05&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A252374044%23id-name%3DS2CID&rft.issn=1847-9286&rft_id=info%3Adoi%2F10.5599%2Fjese.1363&rft.aulast=Tolmachev&rft.aufirst=Yuriy&rft.au=Starodubceva%2C+Svetlana&rft_id=https%3A%2F%2Fdoi.org%2F10.5599%252Fjese.1363&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-Whittingham01-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-Whittingham01_63-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChernovaRoppoloDillonWhittingham2009" class="citation journal cs1">Chernova, N.; Roppolo, M; Dillon, Anne; Whittingham, Stanley (2009). "Layered vanadium and molybdenum oxides: batteries and electrochromics". <i>Journal of Materials Chemistry</i>. <b>19</b> (17): <span class="nowrap">2526–</span>2552. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2Fb819629j">10.1039/b819629j</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Materials+Chemistry&rft.atitle=Layered+vanadium+and+molybdenum+oxides%3A+batteries+and+electrochromics&rft.volume=19&rft.issue=17&rft.pages=%3Cspan+class%3D%22nowrap%22%3E2526-%3C%2Fspan%3E2552&rft.date=2009&rft_id=info%3Adoi%2F10.1039%2Fb819629j&rft.aulast=Chernova&rft.aufirst=N.&rft.au=Roppolo%2C+M&rft.au=Dillon%2C+Anne&rft.au=Whittingham%2C+Stanley&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-Whittingham02-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-Whittingham02_64-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZavalijWhittingham1999" class="citation journal cs1">Zavalij, Peter; Whittingham, Stanley (1999). <a rel="nofollow" class="external text" href="https://doi.org/10.1107%2FS0108768199004000">"Structural chemistry of vanadium oxides with open frameworks"</a>. <i>Acta Crystallographica Section B</i>. <b>55</b> (5): <span class="nowrap">627–</span>663. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1107%2FS0108768199004000">10.1107/S0108768199004000</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10927405">10927405</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Crystallographica+Section+B&rft.atitle=Structural+chemistry+of+vanadium+oxides+with+open+frameworks&rft.volume=55&rft.issue=5&rft.pages=%3Cspan+class%3D%22nowrap%22%3E627-%3C%2Fspan%3E663&rft.date=1999&rft_id=info%3Adoi%2F10.1107%2FS0108768199004000&rft_id=info%3Apmid%2F10927405&rft.aulast=Zavalij&rft.aufirst=Peter&rft.au=Whittingham%2C+Stanley&rft_id=https%3A%2F%2Fdoi.org%2F10.1107%252FS0108768199004000&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-Whittingham03-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-Whittingham03_65-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChirayilZavalijWhittingham1998" class="citation journal cs1">Chirayil, Thomas; Zavalij, Peter; Whittingham, Stanley (1998). "Hydrothermal Synthesis of vanadium Oxides". <i>Chemistry of Materials</i>. <b>10</b> (10): <span class="nowrap">2629–</span>2640. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fcm980242m">10.1021/cm980242m</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Chemistry+of+Materials&rft.atitle=Hydrothermal+Synthesis+of+vanadium+Oxides&rft.volume=10&rft.issue=10&rft.pages=%3Cspan+class%3D%22nowrap%22%3E2629-%3C%2Fspan%3E2640&rft.date=1998&rft_id=info%3Adoi%2F10.1021%2Fcm980242m&rft.aulast=Chirayil&rft.aufirst=Thomas&rft.au=Zavalij%2C+Peter&rft.au=Whittingham%2C+Stanley&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLoz_Blain2007" class="citation web cs1">Loz Blain (2 November 2007). <a rel="nofollow" class="external text" href="http://newatlas.com/go/8281/">"Subaru doubles the battery range on its electric car concept"</a>. <i>New Atlas</i><span class="reference-accessdate">. Retrieved <span class="nowrap">7 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=New+Atlas&rft.atitle=Subaru+doubles+the+battery+range+on+its+electric+car+concept&rft.date=2007-11-02&rft.au=Loz+Blain&rft_id=http%3A%2F%2Fnewatlas.com%2Fgo%2F8281%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTangRuiZhangLim2013" class="citation journal cs1">Tang, Yuxin; Rui, Xianhong; Zhang, Yanyan; Lim, Tuti Mariana; Dong, Zhili; Hng, Huey Hoon; Chen, Xiaodong; Yan, Qingyu; Chen, Zhong (2013). "Vanadium pentoxide cathode materials for high-performance lithium-ion batteries enabled by a hierarchical nanoflower structure via an electrochemical process". <i>J. Mater. Chem. A</i>. <b>1</b> (1): <span class="nowrap">82–</span>88. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FC2TA00351A">10.1039/C2TA00351A</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2050-7488">2050-7488</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=J.+Mater.+Chem.+A&rft.atitle=Vanadium+pentoxide+cathode+materials+for+high-performance+lithium-ion+batteries+enabled+by+a+hierarchical+nanoflower+structure+via+an+electrochemical+process&rft.volume=1&rft.issue=1&rft.pages=%3Cspan+class%3D%22nowrap%22%3E82-%3C%2Fspan%3E88&rft.date=2013&rft_id=info%3Adoi%2F10.1039%2FC2TA00351A&rft.issn=2050-7488&rft.aulast=Tang&rft.aufirst=Yuxin&rft.au=Rui%2C+Xianhong&rft.au=Zhang%2C+Yanyan&rft.au=Lim%2C+Tuti+Mariana&rft.au=Dong%2C+Zhili&rft.au=Hng%2C+Huey+Hoon&rft.au=Chen%2C+Xiaodong&rft.au=Yan%2C+Qingyu&rft.au=Chen%2C+Zhong&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAfyonKrumeichMensingBorgschulte2014" class="citation journal cs1">Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard (19 November 2014). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382707">"New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses"</a>. <i>Scientific Reports</i>. <b>4</b> (1): 7113. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014NatSR...4E7113A">2014NatSR...4E7113A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fsrep07113">10.1038/srep07113</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2045-2322">2045-2322</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382707">5382707</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25408200">25408200</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scientific+Reports&rft.atitle=New+High+Capacity+Cathode+Materials+for+Rechargeable+Li-ion+Batteries%3A+Vanadate-Borate+Glasses&rft.volume=4&rft.issue=1&rft.pages=7113&rft.date=2014-11-19&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5382707%23id-name%3DPMC&rft_id=info%3Abibcode%2F2014NatSR...4E7113A&rft_id=info%3Apmid%2F25408200&rft_id=info%3Adoi%2F10.1038%2Fsrep07113&rft.issn=2045-2322&rft.aulast=Afyon&rft.aufirst=Semih&rft.au=Krumeich%2C+Frank&rft.au=Mensing%2C+Christian&rft.au=Borgschulte%2C+Andreas&rft.au=Nesper%2C+Reinhard&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5382707&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFUmair_Irfan_and_ClimateWire2014" class="citation web cs1">Umair Irfan and ClimateWire (17 January 2014). <a rel="nofollow" class="external text" href="https://www.scientificamerican.com/article/messy-innards-make-for-a-better-lithium-ion-battery1/">"Messy Innards Make for a Better Lithium Ion Battery"</a>. <i>Scientific American</i><span class="reference-accessdate">. Retrieved <span class="nowrap">7 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Scientific+American&rft.atitle=Messy+Innards+Make+for+a+Better+Lithium+Ion+Battery&rft.date=2014-01-17&rft.au=Umair+Irfan+and+ClimateWire&rft_id=https%3A%2F%2Fwww.scientificamerican.com%2Farticle%2Fmessy-innards-make-for-a-better-lithium-ion-battery1%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="http://www.rdmag.com/news/2015/01/glass-battery-electrodes">"Glass for battery electrodes"</a>. <i>R&D</i>. 13 January 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">6 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=R%26D&rft.atitle=Glass+for+battery+electrodes&rft.date=2015-01-13&rft_id=http%3A%2F%2Fwww.rdmag.com%2Fnews%2F2015%2F01%2Fglass-battery-electrodes&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.newscientist.com/article/mg21428615.800-seawater-battery-sparks-sub-dreams.html">"Seawater battery sparks sub dreams"</a>. New Scientist. 25 April 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">22 June</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Seawater+battery+sparks+sub+dreams&rft.pub=New+Scientist&rft.date=2012-04-25&rft_id=https%3A%2F%2Fwww.newscientist.com%2Farticle%2Fmg21428615.800-seawater-battery-sparks-sub-dreams.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text">C. S. Johnson, J. T. Vaughey, M. M. Thackeray, T. E. Bofinger, and S. A. Hackney "Layered Lithium-Manganese Oxide Electrodes Derived from Rock-Salt LixMnyOz (x+y=z) Precursors" 194th Meeting of the Electrochemical Society, Boston, MA, Nov.1-6, (1998)</span> </li> <li id="cite_note-Thack03-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-Thack03_73-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThackerayKangJohnsonVaughey2007" class="citation journal cs1">Thackeray, M.; Kang, S.-H; Johnson, C.S.; Vaughey, John; Benedek, Roy; Hackney, S (2007). "Li2MnO3-Stabilized LiMO2 (M-Mn,Ni,Co)Electrodes for Lithium-Ion Batteries". <i>Journal of Materials Chemistry</i>. <b>17</b> (30): <span class="nowrap">31122–</span>3125. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2Fb702425h">10.1039/b702425h</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Materials+Chemistry&rft.atitle=Li2MnO3-Stabilized+LiMO2+%28M-Mn%2CNi%2CCo%29Electrodes+for+Lithium-Ion+Batteries&rft.volume=17&rft.issue=30&rft.pages=%3Cspan+class%3D%22nowrap%22%3E31122-%3C%2Fspan%3E3125&rft.date=2007&rft_id=info%3Adoi%2F10.1039%2Fb702425h&rft.aulast=Thackeray&rft.aufirst=M.&rft.au=Kang%2C+S.-H&rft.au=Johnson%2C+C.S.&rft.au=Vaughey%2C+John&rft.au=Benedek%2C+Roy&rft.au=Hackney%2C+S&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-Dogan04-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-Dogan04_74-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDoganCroyBalasubramanianSlater2015" class="citation journal cs1">Dogan, F.; Croy, J.; Balasubramanian, M.; Slater, M.D.; Iddir, H.; Johnson, C.S.; Vaughey, J.; Key, B. (2015). "Solid State NMR Studies of Li2MnO3 and Li-Rich Cathode Materials: Proton Insertion, Local Structure, and Voltage Fade". <i>Journal of the Electrochemical Society</i>. <b>162</b>: <span class="nowrap">A235 –</span> <span class="nowrap">A243</span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F2.1041501jes">10.1149/2.1041501jes</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Electrochemical+Society&rft.atitle=Solid+State+NMR+Studies+of+Li2MnO3+and+Li-Rich+Cathode+Materials%3A+Proton+Insertion%2C+Local+Structure%2C+and+Voltage+Fade&rft.volume=162&rft.pages=%3Cspan+class%3D%22nowrap%22%3EA235+-%3C%2Fspan%3E+%3Cspan+class%3D%22nowrap%22%3EA243%3C%2Fspan%3E&rft.date=2015&rft_id=info%3Adoi%2F10.1149%2F2.1041501jes&rft.aulast=Dogan&rft.aufirst=F.&rft.au=Croy%2C+J.&rft.au=Balasubramanian%2C+M.&rft.au=Slater%2C+M.D.&rft.au=Iddir%2C+H.&rft.au=Johnson%2C+C.S.&rft.au=Vaughey%2C+J.&rft.au=Key%2C+B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-Croy02-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-Croy02_75-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCroyBalasubramanianGallagherBurrell2015" class="citation journal cs1">Croy, J.; Balasubramanian, M.; Gallagher, K.; Burrell, A.K. (2015). "Review of the U.S. Department of Energy's "Deep Dive" Effort to Understand Voltage Fade in Li- and Mn-Rich Cathodes". <i>Accounts of Chemical Research</i>. <b>48</b> (11): <span class="nowrap">2813–</span>2821. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facs.accounts.5b00277">10.1021/acs.accounts.5b00277</a>. <a href="/wiki/OSTI_(identifier)" class="mw-redirect" title="OSTI (identifier)">OSTI</a> <a rel="nofollow" class="external text" href="https://www.osti.gov/biblio/1237845">1237845</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26451674">26451674</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Accounts+of+Chemical+Research&rft.atitle=Review+of+the+U.S.+Department+of+Energy%27s+%22Deep+Dive%22+Effort+to+Understand+Voltage+Fade+in+Li-+and+Mn-Rich+Cathodes&rft.volume=48&rft.issue=11&rft.pages=%3Cspan+class%3D%22nowrap%22%3E2813-%3C%2Fspan%3E2821&rft.date=2015&rft_id=info%3Apmid%2F26451674&rft_id=https%3A%2F%2Fwww.osti.gov%2Fbiblio%2F1237845%23id-name%3DOSTI&rft_id=info%3Adoi%2F10.1021%2Facs.accounts.5b00277&rft.aulast=Croy&rft.aufirst=J.&rft.au=Balasubramanian%2C+M.&rft.au=Gallagher%2C+K.&rft.au=Burrell%2C+A.K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.greencarcongress.com/2012/06/ext-20120612.html">A123 Systems introduces new Nanophosphate EXT Li-ion battery technology with optimized performance in extreme temperatures; OEM micro-hybrid program due next year</a>, Green Car Congress, 12 June 2012</span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.eetimes.com/document.asp?doc_id=1261917">A123's new battery tech goes to extremes</a>, <i>EE Times</i>, 12 June 2012</span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="http://www.kurzweilai.net/a-breakthrough-in-rechargeable-batteries-for-electronic-devices-and-electric-vehicles">"A 'breakthrough' in rechargeable batteries for electronic devices and electric vehicles"</a>. <i>KurzweilAI</i>. 26 February 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">6 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=KurzweilAI&rft.atitle=A+%27breakthrough%27+in+rechargeable+batteries+for+electronic+devices+and+electric+vehicles&rft.date=2015-02-26&rft_id=http%3A%2F%2Fwww.kurzweilai.net%2Fa-breakthrough-in-rechargeable-batteries-for-electronic-devices-and-electric-vehicles&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYangYangZaghibTrudeau_and2015" class="citation journal cs1">Yang, X. F.; Yang, J.-H.; Zaghib, K.; Trudeau and, M. L.; Ying, J. Y. (March 2015). "Synthesis of phase-pure Li2MnSiO4@C porous nanoboxes for high-capacity Li-ion battery cathodes". <i>Nano Energy</i>. <b>12</b>: <span class="nowrap">305–</span>313. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.nanoen.2014.12.021">10.1016/j.nanoen.2014.12.021</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nano+Energy&rft.atitle=Synthesis+of+phase-pure+Li2MnSiO4%40C+porous+nanoboxes+for+high-capacity+Li-ion+battery+cathodes&rft.volume=12&rft.pages=%3Cspan+class%3D%22nowrap%22%3E305-%3C%2Fspan%3E313&rft.date=2015-03&rft_id=info%3Adoi%2F10.1016%2Fj.nanoen.2014.12.021&rft.aulast=Yang&rft.aufirst=X.+F.&rft.au=Yang%2C+J.-H.&rft.au=Zaghib%2C+K.&rft.au=Trudeau+and%2C+M.+L.&rft.au=Ying%2C+J.+Y.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKumarKumarLeeseFellner2010" class="citation journal cs1">Kumar, B.; Kumar, J.; Leese, R.; Fellner, J. P.; Rodrigues, S. J.; Abraham, K. M. (2010). <a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1.3256129">"A Solid-State, Rechargeable, Long Cycle Life Lithium–Air Battery"</a>. <i>Journal of the Electrochemical Society</i>. <b>157</b>: A50. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1.3256129">10.1149/1.3256129</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:92403112">92403112</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Electrochemical+Society&rft.atitle=A+Solid-State%2C+Rechargeable%2C+Long+Cycle+Life+Lithium%E2%80%93Air+Battery&rft.volume=157&rft.pages=A50&rft.date=2010&rft_id=info%3Adoi%2F10.1149%2F1.3256129&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A92403112%23id-name%3DS2CID&rft.aulast=Kumar&rft.aufirst=B.&rft.au=Kumar%2C+J.&rft.au=Leese%2C+R.&rft.au=Fellner%2C+J.+P.&rft.au=Rodrigues%2C+S.+J.&rft.au=Abraham%2C+K.+M.&rft_id=https%3A%2F%2Fdoi.org%2F10.1149%252F1.3256129&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.greencarcongress.com/2009/11/kumar-20091121.html">"Researchers Develop Solid-State, Rechargeable Lithium–Air Battery; Potential to Exceed 1,000 Wh/kg"</a>. Green Car Congress. 21 November 2009<span class="reference-accessdate">. Retrieved <span class="nowrap">28 August</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Researchers+Develop+Solid-State%2C+Rechargeable+Lithium%E2%80%93Air+Battery%3B+Potential+to+Exceed+1%2C000+Wh%2Fkg&rft.pub=Green+Car+Congress&rft.date=2009-11-21&rft_id=http%3A%2F%2Fwww.greencarcongress.com%2F2009%2F11%2Fkumar-20091121.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://gigaom.com/2014/07/28/researchers-hard-at-work-to-make-the-workhorse-lithium-ion-battery-better/">Researchers hard at work to make the workhorse lithium ion battery better</a>, Gigaom, 28 July 2014, Katie Fehrenbacher</span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://techon.nikkeibp.co.jp/english/NEWS_EN/20140723/366762/">New Rechargeable Cell Has 7 Times Higher Energy Density Than Li-ion Cells</a>, Nikkei Technology, 23 July 2014, Motohiko Hamada</span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQiKoenig2016" class="citation journal cs1">Qi, Zhaoxiang; Koenig, Gary M. (16 August 2016). "High-Performance LiCoO2Sub-Micrometer Materials from Scalable Microparticle Template Processing". <i>ChemistrySelect</i>. <b>1</b> (13): <span class="nowrap">3992–</span>3999. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fslct.201600872">10.1002/slct.201600872</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2365-6549">2365-6549</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=ChemistrySelect&rft.atitle=High-Performance+LiCoO2Sub-Micrometer+Materials+from+Scalable+Microparticle+Template+Processing&rft.volume=1&rft.issue=13&rft.pages=%3Cspan+class%3D%22nowrap%22%3E3992-%3C%2Fspan%3E3999&rft.date=2016-08-16&rft_id=info%3Adoi%2F10.1002%2Fslct.201600872&rft.issn=2365-6549&rft.aulast=Qi&rft.aufirst=Zhaoxiang&rft.au=Koenig%2C+Gary+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-:0-85"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_85-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_85-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOlbrichXiaoPasta2021" class="citation journal cs1">Olbrich, Lorenz F.; Xiao, Albert W.; Pasta, Mauro (1 December 2021). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S2451910321000934">"Conversion-type fluoride cathodes: Current state of the art"</a>. <i>Current Opinion in Electrochemistry</i>. <b>30</b>: 100779. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.coelec.2021.100779">10.1016/j.coelec.2021.100779</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2451-9103">2451-9103</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Current+Opinion+in+Electrochemistry&rft.atitle=Conversion-type+fluoride+cathodes%3A+Current+state+of+the+art&rft.volume=30&rft.pages=100779&rft.date=2021-12-01&rft_id=info%3Adoi%2F10.1016%2Fj.coelec.2021.100779&rft.issn=2451-9103&rft.aulast=Olbrich&rft.aufirst=Lorenz+F.&rft.au=Xiao%2C+Albert+W.&rft.au=Pasta%2C+Mauro&rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS2451910321000934&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-:2-86"><span class="mw-cite-backlink">^ <a href="#cite_ref-:2_86-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:2_86-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:2_86-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:2_86-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:2_86-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWuYushin2017" class="citation journal cs1">Wu, Feixiang; Yushin, Gleb (15 February 2017). <a rel="nofollow" class="external text" href="https://pubs.rsc.org/en/content/articlelanding/2017/ee/c6ee02326f">"Conversion cathodes for rechargeable lithium and lithium-ion batteries"</a>. <i>Energy & Environmental Science</i>. <b>10</b> (2): <span class="nowrap">435–</span>459. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FC6EE02326F">10.1039/C6EE02326F</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1754-5706">1754-5706</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Energy+%26+Environmental+Science&rft.atitle=Conversion+cathodes+for+rechargeable+lithium+and+lithium-ion+batteries&rft.volume=10&rft.issue=2&rft.pages=%3Cspan+class%3D%22nowrap%22%3E435-%3C%2Fspan%3E459&rft.date=2017-02-15&rft_id=info%3Adoi%2F10.1039%2FC6EE02326F&rft.issn=1754-5706&rft.aulast=Wu&rft.aufirst=Feixiang&rft.au=Yushin%2C+Gleb&rft_id=https%3A%2F%2Fpubs.rsc.org%2Fen%2Fcontent%2Farticlelanding%2F2017%2Fee%2Fc6ee02326f&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiMengJin2012" class="citation journal cs1">Li, Linsen; Meng, Fei; Jin, Song (14 November 2012). <a rel="nofollow" class="external text" href="https://pubs.acs.org/doi/10.1021/nl303630p">"High-Capacity Lithium-Ion Battery Conversion Cathodes Based on Iron Fluoride Nanowires and Insights into the Conversion Mechanism"</a>. <i>Nano Letters</i>. <b>12</b> (11): <span class="nowrap">6030–</span>6037. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012NanoL..12.6030L">2012NanoL..12.6030L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fnl303630p">10.1021/nl303630p</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1530-6984">1530-6984</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23106167">23106167</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nano+Letters&rft.atitle=High-Capacity+Lithium-Ion+Battery+Conversion+Cathodes+Based+on+Iron+Fluoride+Nanowires+and+Insights+into+the+Conversion+Mechanism&rft.volume=12&rft.issue=11&rft.pages=%3Cspan+class%3D%22nowrap%22%3E6030-%3C%2Fspan%3E6037&rft.date=2012-11-14&rft_id=info%3Adoi%2F10.1021%2Fnl303630p&rft.issn=1530-6984&rft_id=info%3Apmid%2F23106167&rft_id=info%3Abibcode%2F2012NanoL..12.6030L&rft.aulast=Li&rft.aufirst=Linsen&rft.au=Meng%2C+Fei&rft.au=Jin%2C+Song&rft_id=https%3A%2F%2Fpubs.acs.org%2Fdoi%2F10.1021%2Fnl303630p&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-:4-88"><span class="mw-cite-backlink">^ <a href="#cite_ref-:4_88-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:4_88-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:4_88-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:4_88-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuangTurcheniukRenMagasinski2019" class="citation journal cs1">Huang, Qiao; Turcheniuk, Kostiantyn; Ren, Xiaolei; Magasinski, Alexandre; Song, Ah-Young; Xiao, Yiran; Kim, Doyoub; Yushin, Gleb (December 2019). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/s41563-019-0472-7">"Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites"</a>. <i>Nature Materials</i>. <b>18</b> (12): <span class="nowrap">1343–</span>1349. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019NatMa..18.1343H">2019NatMa..18.1343H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41563-019-0472-7">10.1038/s41563-019-0472-7</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-4660">1476-4660</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31501555">31501555</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:201967393">201967393</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Materials&rft.atitle=Cycle+stability+of+conversion-type+iron+fluoride+lithium+battery+cathode+at+elevated+temperatures+in+polymer+electrolyte+composites&rft.volume=18&rft.issue=12&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1343-%3C%2Fspan%3E1349&rft.date=2019-12&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A201967393%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2019NatMa..18.1343H&rft.issn=1476-4660&rft_id=info%3Adoi%2F10.1038%2Fs41563-019-0472-7&rft_id=info%3Apmid%2F31501555&rft.aulast=Huang&rft.aufirst=Qiao&rft.au=Turcheniuk%2C+Kostiantyn&rft.au=Ren%2C+Xiaolei&rft.au=Magasinski%2C+Alexandre&rft.au=Song%2C+Ah-Young&rft.au=Xiao%2C+Yiran&rft.au=Kim%2C+Doyoub&rft.au=Yushin%2C+Gleb&rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41563-019-0472-7&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-89">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuMagasinskiZdyrkoYushin2015" class="citation journal cs1">Gu, Wentian; Magasinski, Alexandre; Zdyrko, Bogdan; Yushin, Gleb (February 2015). <a rel="nofollow" class="external text" href="http://doi.wiley.com/10.1002/aenm.201500243">"Metal Fluorides Nanoconfined in Carbon Nanopores as Reversible High Capacity Cathodes for Li and Li-Ion Rechargeable Batteries: FeF 2 as an Example"</a>. <i>Advanced Energy Materials</i>. <b>5</b> (4). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Faenm.201500243">10.1002/aenm.201500243</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Advanced+Energy+Materials&rft.atitle=Metal+Fluorides+Nanoconfined+in+Carbon+Nanopores+as+Reversible+High+Capacity+Cathodes+for+Li+and+Li-Ion+Rechargeable+Batteries%3A+FeF+2+as+an+Example&rft.volume=5&rft.issue=4&rft.date=2015-02&rft_id=info%3Adoi%2F10.1002%2Faenm.201500243&rft.aulast=Gu&rft.aufirst=Wentian&rft.au=Magasinski%2C+Alexandre&rft.au=Zdyrko%2C+Bogdan&rft.au=Yushin%2C+Gleb&rft_id=http%3A%2F%2Fdoi.wiley.com%2F10.1002%2Faenm.201500243&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFanZhuLuoGao2016" class="citation journal cs1">Fan, Xiulin; Zhu, Yujie; Luo, Chao; Gao, Tao; Suo, Liumin; Liou, Sz-Chian; Xu, Kang; Wang, Chunsheng (1 March 2016). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S0378775316300040">"In situ lithiated FeF3/C nanocomposite as high energy conversion-reaction cathode for lithium-ion batteries"</a>. <i>Journal of Power Sources</i>. <b>307</b>: <span class="nowrap">435–</span>442. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016JPS...307..435F">2016JPS...307..435F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2016.01.004">10.1016/j.jpowsour.2016.01.004</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0378-7753">0378-7753</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Power+Sources&rft.atitle=In+situ+lithiated+FeF3%2FC+nanocomposite+as+high+energy+conversion-reaction+cathode+for+lithium-ion+batteries&rft.volume=307&rft.pages=%3Cspan+class%3D%22nowrap%22%3E435-%3C%2Fspan%3E442&rft.date=2016-03-01&rft.issn=0378-7753&rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2016.01.004&rft_id=info%3Abibcode%2F2016JPS...307..435F&rft.aulast=Fan&rft.aufirst=Xiulin&rft.au=Zhu%2C+Yujie&rft.au=Luo%2C+Chao&rft.au=Gao%2C+Tao&rft.au=Suo%2C+Liumin&rft.au=Liou%2C+Sz-Chian&rft.au=Xu%2C+Kang&rft.au=Wang%2C+Chunsheng&rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0378775316300040&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.extremetech.com/computing/176527-first-nonflammable-lithium-ion-battery-will-stop-your-smartphone-car-and-plane-from-exploding">First nonflammable lithium-ion battery will stop your smartphone, car, and plane from exploding</a>, Extreme Tech, 13 February 2014, Sebastian Anthony</span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.kurzweilai.net/rechargeable-batteries-with-almost-infinite-lifetimes-coming-say-mit-samsung-engineers">"Rechargeable batteries with almost infinite lifetimes coming, say MIT-Samsung engineers"</a>. <i>www.kurzweilai.net</i>. 24 August 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">10 February</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.kurzweilai.net&rft.atitle=Rechargeable+batteries+with+almost+infinite+lifetimes+coming%2C+say+MIT-Samsung+engineers&rft.date=2015-08-24&rft_id=http%3A%2F%2Fwww.kurzweilai.net%2Frechargeable-batteries-with-almost-infinite-lifetimes-coming-say-mit-samsung-engineers&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLavars2014" class="citation news cs1">Lavars, Nick (4 May 2014). <a rel="nofollow" class="external text" href="http://newatlas.com/dual-function-electrolyte-capacity-batteries/31899/">"Dual-functioning electrolyte improves capacity of long-life batteries"</a>. <i>New Atlas</i><span class="reference-accessdate">. Retrieved <span class="nowrap">6 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Atlas&rft.atitle=Dual-functioning+electrolyte+improves+capacity+of+long-life+batteries&rft.date=2014-05-04&rft.aulast=Lavars&rft.aufirst=Nick&rft_id=http%3A%2F%2Fnewatlas.com%2Fdual-function-electrolyte-capacity-batteries%2F31899%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-94">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBragaGrundishMurchisonGoodenough2017" class="citation journal cs1">Braga, M. H.; Grundish, N. S.; Murchison, A. J.; Goodenough, J. B. (2017). "Alternative strategy for a safe rechargeable battery". <i>Energy & Environmental Science</i>. <b>10</b>: <span class="nowrap">331–</span>336. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2Fc6ee02888h">10.1039/c6ee02888h</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Energy+%26+Environmental+Science&rft.atitle=Alternative+strategy+for+a+safe+rechargeable+battery&rft.volume=10&rft.pages=%3Cspan+class%3D%22nowrap%22%3E331-%3C%2Fspan%3E336&rft.date=2017&rft_id=info%3Adoi%2F10.1039%2Fc6ee02888h&rft.aulast=Braga&rft.aufirst=M.+H.&rft.au=Grundish%2C+N.+S.&rft.au=Murchison%2C+A.+J.&rft.au=Goodenough%2C+J.+B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-Hislop-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hislop_95-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHislop2017" class="citation web cs1">Hislop, Martin (1 March 2017). <a rel="nofollow" class="external text" href="http://theamericanenergynews.com/markham-on-energy/solid-state-battery-advance-goodenough">"Solid-state EV battery breakthrough from Li-ion battery inventor John Goodenough"</a>. <i>North American Energy News</i>. The American Energy News<span class="reference-accessdate">. Retrieved <span class="nowrap">15 March</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=North+American+Energy+News&rft.atitle=Solid-state+EV+battery+breakthrough+from+Li-ion+battery+inventor+John+Goodenough&rft.date=2017-03-01&rft.aulast=Hislop&rft.aufirst=Martin&rft_id=http%3A%2F%2Ftheamericanenergynews.com%2Fmarkham-on-energy%2Fsolid-state-battery-advance-goodenough&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSantanab_GiriSwayamprabha_BeheraPuru_Jena2014" class="citation journal cs1">Santanab Giri; Swayamprabha Behera; Puru Jena (14 October 2014). "Superhalogens as Building Blocks of Halogen-Free Electrolytes in Lithium-Ion Batteries". <i>Angewandte Chemie</i>. <b>126</b> (50): <span class="nowrap">14136–</span>14139. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014AngCh.12614136G">2014AngCh.12614136G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fange.201408648">10.1002/ange.201408648</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Angewandte+Chemie&rft.atitle=Superhalogens+as+Building+Blocks+of+Halogen-Free+Electrolytes+in+Lithium-Ion+Batteries&rft.volume=126&rft.issue=50&rft.pages=%3Cspan+class%3D%22nowrap%22%3E14136-%3C%2Fspan%3E14139&rft.date=2014-10-14&rft_id=info%3Adoi%2F10.1002%2Fange.201408648&rft_id=info%3Abibcode%2F2014AngCh.12614136G&rft.au=Santanab+Giri&rft.au=Swayamprabha+Behera&rft.au=Puru+Jena&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcNeill2014" class="citation news cs1">McNeill, Brian (24 October 2014). <a rel="nofollow" class="external text" href="http://www.rdmag.com/news/2014/10/physicists-find-toxic-halogens-li-ion-batteries">"Physicists find toxic halogens in Li-ion batteries"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physicists+find+toxic+halogens+in+Li-ion+batteries&rft.date=2014-10-24&rft.aulast=McNeill&rft.aufirst=Brian&rft_id=http%3A%2F%2Fwww.rdmag.com%2Fnews%2F2014%2F10%2Fphysicists-find-toxic-halogens-li-ion-batteries&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-:3-98"><span class="mw-cite-backlink">^ <a href="#cite_ref-:3_98-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:3_98-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSuoBorodinGaoOlguin2015" class="citation journal cs1">Suo, Liumin; Borodin, Oleg; Gao, Tao; Olguin, Marco; Ho, Janet; Fan, Xiulin; Luo, Chao; Wang, Chunsheng; Xu, Kang (20 November 2015). "<span class="cs1-kern-left"></span>"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries". <i>Science</i>. <b>350</b> (6263): <span class="nowrap">938–</span>943. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.aab1595">10.1126/science.aab1595</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-8075">0036-8075</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26586759">26586759</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:206637574">206637574</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=%22Water-in-salt%22+electrolyte+enables+high-voltage+aqueous+lithium-ion+chemistries&rft.volume=350&rft.issue=6263&rft.pages=%3Cspan+class%3D%22nowrap%22%3E938-%3C%2Fspan%3E943&rft.date=2015-11-20&rft.issn=0036-8075&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A206637574%23id-name%3DS2CID&rft_id=info%3Apmid%2F26586759&rft_id=info%3Adoi%2F10.1126%2Fscience.aab1595&rft.aulast=Suo&rft.aufirst=Liumin&rft.au=Borodin%2C+Oleg&rft.au=Gao%2C+Tao&rft.au=Olguin%2C+Marco&rft.au=Ho%2C+Janet&rft.au=Fan%2C+Xiulin&rft.au=Luo%2C+Chao&rft.au=Wang%2C+Chunsheng&rft.au=Xu%2C+Kang&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-99">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSuoBorodinSunFan2016" class="citation journal cs1">Suo, Liumin; Borodin, Oleg; Sun, Wei; Fan, Xiulin; Yang, Chongyin; Wang, Fei; Gao, Tao; Ma, Zhaohui; Schroeder, Marshall (13 June 2016). "Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte". <i>Angewandte Chemie International Edition</i>. <b>55</b> (25): <span class="nowrap">7136–</span>7141. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fanie.201602397">10.1002/anie.201602397</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1521-3773">1521-3773</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27120336">27120336</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Angewandte+Chemie+International+Edition&rft.atitle=Advanced+High-Voltage+Aqueous+Lithium-Ion+Battery+Enabled+by+%22Water-in-Bisalt%22+Electrolyte&rft.volume=55&rft.issue=25&rft.pages=%3Cspan+class%3D%22nowrap%22%3E7136-%3C%2Fspan%3E7141&rft.date=2016-06-13&rft.issn=1521-3773&rft_id=info%3Apmid%2F27120336&rft_id=info%3Adoi%2F10.1002%2Fanie.201602397&rft.aulast=Suo&rft.aufirst=Liumin&rft.au=Borodin%2C+Oleg&rft.au=Sun%2C+Wei&rft.au=Fan%2C+Xiulin&rft.au=Yang%2C+Chongyin&rft.au=Wang%2C+Fei&rft.au=Gao%2C+Tao&rft.au=Ma%2C+Zhaohui&rft.au=Schroeder%2C+Marshall&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmithDunn2015" class="citation journal cs1">Smith, Leland; Dunn, Bruce (20 November 2015). "Opening the window for aqueous electrolytes". <i>Science</i>. <b>350</b> (6263): 918. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.aad5575">10.1126/science.aad5575</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-8075">0036-8075</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26586752">26586752</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:206643843">206643843</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Science&rft.atitle=Opening+the+window+for+aqueous+electrolytes&rft.volume=350&rft.issue=6263&rft.pages=918&rft.date=2015-11-20&rft.issn=0036-8075&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A206643843%23id-name%3DS2CID&rft_id=info%3Apmid%2F26586752&rft_id=info%3Adoi%2F10.1126%2Fscience.aad5575&rft.aulast=Smith&rft.aufirst=Leland&rft.au=Dunn%2C+Bruce&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangLinSuoFan2016" class="citation journal cs1">Wang, Fei; Lin, Yuxiao; Suo, Liumin; Fan, Xiulin; Gao, Tao; Yang, Chongyin; Han, Fudong; Qi, Yue; Xu, Kang (29 November 2016). "Stabilizing high voltage LiCoO2 cathode in aqueous electrolyte with interphase-forming additive". <i>Energy & Environmental Science</i>. <b>9</b> (12): <span class="nowrap">3666–</span>3673. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2Fc6ee02604d">10.1039/c6ee02604d</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1754-5706">1754-5706</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Energy+%26+Environmental+Science&rft.atitle=Stabilizing+high+voltage+LiCoO2+cathode+in+aqueous+electrolyte+with+interphase-forming+additive&rft.volume=9&rft.issue=12&rft.pages=%3Cspan+class%3D%22nowrap%22%3E3666-%3C%2Fspan%3E3673&rft.date=2016-11-29&rft_id=info%3Adoi%2F10.1039%2Fc6ee02604d&rft.issn=1754-5706&rft.aulast=Wang&rft.aufirst=Fei&rft.au=Lin%2C+Yuxiao&rft.au=Suo%2C+Liumin&rft.au=Fan%2C+Xiulin&rft.au=Gao%2C+Tao&rft.au=Yang%2C+Chongyin&rft.au=Han%2C+Fudong&rft.au=Qi%2C+Yue&rft.au=Xu%2C+Kang&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWuFangKuenzelMullaliu2021" class="citation journal cs1">Wu, Fanglin; Fang, Shan; Kuenzel, Matthias; Mullaliu, Angelo; Kim, Jae-Kwang; Gao, Xinpei; Diemant, Thomas; Kim, Guk-Tae; Passerini, Stefano (18 August 2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.joule.2021.06.014">"Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries"</a>. <i>Joule</i>. <b>5</b> (8): <span class="nowrap">2177–</span>2194. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.joule.2021.06.014">10.1016/j.joule.2021.06.014</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/11573%2F1588399">11573/1588399</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2542-4785">2542-4785</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:237655120">237655120</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Joule&rft.atitle=Dual-anion+ionic+liquid+electrolyte+enables+stable+Ni-rich+cathodes+in+lithium-metal+batteries&rft.volume=5&rft.issue=8&rft.pages=%3Cspan+class%3D%22nowrap%22%3E2177-%3C%2Fspan%3E2194&rft.date=2021-08-18&rft_id=info%3Ahdl%2F11573%2F1588399&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A237655120%23id-name%3DS2CID&rft.issn=2542-4785&rft_id=info%3Adoi%2F10.1016%2Fj.joule.2021.06.014&rft.aulast=Wu&rft.aufirst=Fanglin&rft.au=Fang%2C+Shan&rft.au=Kuenzel%2C+Matthias&rft.au=Mullaliu%2C+Angelo&rft.au=Kim%2C+Jae-Kwang&rft.au=Gao%2C+Xinpei&rft.au=Diemant%2C+Thomas&rft.au=Kim%2C+Guk-Tae&rft.au=Passerini%2C+Stefano&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.joule.2021.06.014&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.pcworld.com/article/2683012/want-lithiumion-batteries-to-last-slow-charging-may-not-be-the-answer.html">Want lithium-ion batteries to last? Slow charging may not be the answer</a>, PC World</span> </li> <li id="cite_note-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-104">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.pddnet.com/news/2014/09/why-lithium-ion-batteries-go-bad">Why Lithium Ion Batteries Go Bad</a>, Product Design & Development, 15 September 2014</span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-105">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.extremetech.com/computing/188057-software-on-your-smartphone-can-speed-up-lithium-ion-battery-charging-by-up-to-6x">Software on your smartphone can speed up lithium-ion battery charging by up to 6x</a>, Extreme Tech, 14 August 2014, Sebastian Anthony</span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-106">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://news.psu.edu/story/594641/2019/10/30/research/and-out-10-minute-electrical-vehicle-recharge">"In and out with 10-minute electrical vehicle recharge | Penn State University"</a>. <i>news.psu.edu</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=news.psu.edu&rft.atitle=In+and+out+with+10-minute+electrical+vehicle+recharge+%26%23124%3B+Penn+State+University&rft_id=https%3A%2F%2Fnews.psu.edu%2Fstory%2F594641%2F2019%2F10%2F30%2Fresearch%2Fand-out-10-minute-electrical-vehicle-recharge&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-treehuggerli-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-treehuggerli_107-0">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.treehugger.com/gadgets/new-battery-management-technology-could-boost-li-ion-capacity-40-quadruple-recharging-cycles.html">New battery management technology could boost Li-ion capacity by 40%, quadruple recharging cycles</a>, TreeHugger, 5 February 2014, Derek Markham</span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.theglobeandmail.com/report-on-business/small-business/sb-growth/the-challenge/long-life-laptop-battery-the-tech-industry-doesnt-want-you-to-have/article16689343/">Long-life laptop battery the tech industry doesn't want you to have</a>, <i>The Globe and Mail</i>, 6 February 2014, Jordana Divon</span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-109">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.zmescience.com/research/technology/battery-heat-12012016/">"Stanford researchers develop heat-sensitive batteries"</a>. <i>ZME Science</i>. 12 January 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">7 February</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=ZME+Science&rft.atitle=Stanford+researchers+develop+heat-sensitive+batteries&rft.date=2016-01-12&rft_id=http%3A%2F%2Fwww.zmescience.com%2Fresearch%2Ftechnology%2Fbattery-heat-12012016%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-110">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenHsuLopezLi2016" class="citation journal cs1">Chen, Zheng; Hsu, Po-Chun; Lopez, Jeffrey; Li, Yuzhang; To, John W. F.; Liu, Nan; Wang, Chao; Andrews, Sean C.; Liu, Jia (11 January 2016). "Fast and reversible thermoresponsive polymer switching materials for safer batteries". <i>Nature Energy</i>. <b>1</b> (1): 15009. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016NatEn...115009C">2016NatEn...115009C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnenergy.2015.9">10.1038/nenergy.2015.9</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:28230945">28230945</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Energy&rft.atitle=Fast+and+reversible+thermoresponsive+polymer+switching+materials+for+safer+batteries&rft.volume=1&rft.issue=1&rft.pages=15009&rft.date=2016-01-11&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A28230945%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1038%2Fnenergy.2015.9&rft_id=info%3Abibcode%2F2016NatEn...115009C&rft.aulast=Chen&rft.aufirst=Zheng&rft.au=Hsu%2C+Po-Chun&rft.au=Lopez%2C+Jeffrey&rft.au=Li%2C+Yuzhang&rft.au=To%2C+John+W.+F.&rft.au=Liu%2C+Nan&rft.au=Wang%2C+Chao&rft.au=Andrews%2C+Sean+C.&rft.au=Liu%2C+Jia&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.extremetech.com/computing/176135-researchers-discover-the-secret-to-creating-flexible-high-power-lithium-ion-batteries-origami">Origami: The surprisingly simple secret to creating flexible, high-power lithium-ion batteries</a>, Extreme Tech, 5 February 2014, Sebastian Anthony</span> </li> <li id="cite_note-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-112">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSandhana2014" class="citation news cs1">Sandhana, Lakshmi (30 May 2014). <a rel="nofollow" class="external text" href="http://newatlas.com/weavable-li-ion-fiber-battery-yarn/32332/">"Scientists create weavable Li-ion fiber battery yarn"</a>. <i>New Atlas</i><span class="reference-accessdate">. Retrieved <span class="nowrap">7 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Atlas&rft.atitle=Scientists+create+weavable+Li-ion+fiber+battery+yarn&rft.date=2014-05-30&rft.aulast=Sandhana&rft.aufirst=Lakshmi&rft_id=http%3A%2F%2Fnewatlas.com%2Fweavable-li-ion-fiber-battery-yarn%2F32332%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-113">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLovering2014" class="citation news cs1">Lovering, Daniel (18 July 2014). <a rel="nofollow" class="external text" href="https://www.technologyreview.com/s/528996/flexible-printed-batteries-for-wearable-devices/">"Flexible, Printed Batteries for Wearable Devices"</a>. <i><a href="/wiki/Technology_Review" class="mw-redirect" title="Technology Review">Technology Review</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">7 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Technology+Review&rft.atitle=Flexible%2C+Printed+Batteries+for+Wearable+Devices&rft.date=2014-07-18&rft.aulast=Lovering&rft.aufirst=Daniel&rft_id=https%3A%2F%2Fwww.technologyreview.com%2Fs%2F528996%2Fflexible-printed-batteries-for-wearable-devices%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-114">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBorghino2014" class="citation news cs1">Borghino, Dario (2 May 2014). <a rel="nofollow" class="external text" href="http://newatlas.com/flexible-high-performance-battery/31830/">"Flexible, high-performance battery could soon find its way to your smartwatch"</a>. <i>New Atlas</i><span class="reference-accessdate">. Retrieved <span class="nowrap">7 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=New+Atlas&rft.atitle=Flexible%2C+high-performance+battery+could+soon+find+its+way+to+your+smartwatch&rft.date=2014-05-02&rft.aulast=Borghino&rft.aufirst=Dario&rft_id=http%3A%2F%2Fnewatlas.com%2Fflexible-high-performance-battery%2F31830%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-115">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.insplorion.com/en/news/cooperation-with-agm-batteries-ltd-in-full-swing/">"Cooperation with AGM Batteries Ltd in full swing"</a>. 12 October 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">7 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Cooperation+with+AGM+Batteries+Ltd+in+full+swing&rft.date=2016-10-12&rft_id=https%3A%2F%2Fwww.insplorion.com%2Fen%2Fnews%2Fcooperation-with-agm-batteries-ltd-in-full-swing%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-116">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCiezaWhitacrea2017" class="citation journal cs1">Cieza, Rebecca E.; Whitacrea, J.F. (2017). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2016.11.054">"Comparison between cylindrical and prismatic lithium-ion cell costs using a process based cost model"</a>. <i>Journal of Power Sources</i>. <b>340</b>: <span class="nowrap">273–</span>281. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017JPS...340..273C">2017JPS...340..273C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2016.11.054">10.1016/j.jpowsour.2016.11.054</a></span>. <q>economies of scale have already been reached, and future cost reductions from increased production volumes are minimal. Prismatic cells, which are able to further capitalize on the cost reduction from larger formats, can offer further reductions than those possible for cylindrical cells.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Power+Sources&rft.atitle=Comparison+between+cylindrical+and+prismatic+lithium-ion+cell+costs+using+a+process+based+cost+model&rft.volume=340&rft.pages=%3Cspan+class%3D%22nowrap%22%3E273-%3C%2Fspan%3E281&rft.date=2017&rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2016.11.054&rft_id=info%3Abibcode%2F2017JPS...340..273C&rft.aulast=Cieza&rft.aufirst=Rebecca+E.&rft.au=Whitacrea%2C+J.F.&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.jpowsour.2016.11.054&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-117"><span class="mw-cite-backlink"><b><a href="#cite_ref-117">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.lithiumion-batterypack.com/industrial/lithium-ion-battery.html">"Customized Lithium ion Battery Pack Supplier"</a>. <i>LargePower</i><span class="reference-accessdate">. Retrieved <span class="nowrap">5 March</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=LargePower&rft.atitle=Customized+Lithium+ion+Battery+Pack+Supplier&rft_id=http%3A%2F%2Fwww.lithiumion-batterypack.com%2Findustrial%2Flithium-ion-battery.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-SciDataChung2021-118"><span class="mw-cite-backlink">^ <a href="#cite_ref-SciDataChung2021_118-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-SciDataChung2021_118-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChung2021" class="citation journal cs1">Chung, H. C. (2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8253776">"Charge and discharge profiles of repurposed LiFePO<sub>4</sub> batteries based on the UL 1974 standard"</a>. <i>Scientific Data</i>. <b>8</b> (1): 165. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021NatSD...8..165C">2021NatSD...8..165C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41597-021-00954-3">10.1038/s41597-021-00954-3</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8253776">8253776</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34215731">34215731</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:235718828">235718828</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Scientific+Data&rft.atitle=Charge+and+discharge+profiles+of+repurposed+LiFePO%3Csub%3E4%3C%2Fsub%3E+batteries+based+on+the+UL+1974+standard&rft.volume=8&rft.issue=1&rft.pages=165&rft.date=2021&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8253776%23id-name%3DPMC&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A235718828%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2021NatSD...8..165C&rft_id=info%3Apmid%2F34215731&rft_id=info%3Adoi%2F10.1038%2Fs41597-021-00954-3&rft.aulast=Chung&rft.aufirst=H.+C.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8253776&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-119">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMartinez-LasernaGandiagaSarasketa-ZabalaBadeda2018" class="citation journal cs1">Martinez-Laserna, E.; Gandiaga, I.; Sarasketa-Zabala, E.; Badeda, J.; Stroe, D.-I.; Swierczynski, M.; Goikoetxea, A. (October 2018). "Battery second life: Hype, hope or reality? A critical review of the state of the art". <i>Renewable and Sustainable Energy Reviews</i>. <b>93</b>: <span class="nowrap">701–</span>718. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.rser.2018.04.035">10.1016/j.rser.2018.04.035</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:115675123">115675123</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Renewable+and+Sustainable+Energy+Reviews&rft.atitle=Battery+second+life%3A+Hype%2C+hope+or+reality%3F+A+critical+review+of+the+state+of+the+art&rft.volume=93&rft.pages=%3Cspan+class%3D%22nowrap%22%3E701-%3C%2Fspan%3E718&rft.date=2018-10&rft_id=info%3Adoi%2F10.1016%2Fj.rser.2018.04.035&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A115675123%23id-name%3DS2CID&rft.aulast=Martinez-Laserna&rft.aufirst=E.&rft.au=Gandiaga%2C+I.&rft.au=Sarasketa-Zabala%2C+E.&rft.au=Badeda%2C+J.&rft.au=Stroe%2C+D.-I.&rft.au=Swierczynski%2C+M.&rft.au=Goikoetxea%2C+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-120"><span class="mw-cite-backlink"><b><a href="#cite_ref-120">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAhmadiYipFowlerYoung2014" class="citation journal cs1">Ahmadi, Leila; Yip, Arthur; Fowler, Michael; Young, Steven B.; Fraser, Roydon A. (June 2014). "Environmental feasibility of re-use of electric vehicle batteries". <i>Sustainable Energy Technologies and Assessments</i>. <b>6</b>: <span class="nowrap">64–</span>74. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.seta.2014.01.006">10.1016/j.seta.2014.01.006</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Sustainable+Energy+Technologies+and+Assessments&rft.atitle=Environmental+feasibility+of+re-use+of+electric+vehicle+batteries&rft.volume=6&rft.pages=%3Cspan+class%3D%22nowrap%22%3E64-%3C%2Fspan%3E74&rft.date=2014-06&rft_id=info%3Adoi%2F10.1016%2Fj.seta.2014.01.006&rft.aulast=Ahmadi&rft.aufirst=Leila&rft.au=Yip%2C+Arthur&rft.au=Fowler%2C+Michael&rft.au=Young%2C+Steven+B.&rft.au=Fraser%2C+Roydon+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-121">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCasalsAmante_GarcíaCanal2019" class="citation journal cs1">Casals, Lluc Canals; Amante García, B.; Canal, Camille (February 2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jenvman.2018.11.046">"Second life batteries lifespan: Rest of useful life and environmental analysis"</a>. <i>Journal of Environmental Management</i>. <b>232</b>: <span class="nowrap">354–</span>363. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jenvman.2018.11.046">10.1016/j.jenvman.2018.11.046</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2117%2F126136">2117/126136</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30496965">30496965</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:54168385">54168385</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Environmental+Management&rft.atitle=Second+life+batteries+lifespan%3A+Rest+of+useful+life+and+environmental+analysis&rft.volume=232&rft.pages=%3Cspan+class%3D%22nowrap%22%3E354-%3C%2Fspan%3E363&rft.date=2019-02&rft_id=info%3Ahdl%2F2117%2F126136&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A54168385%23id-name%3DS2CID&rft_id=info%3Apmid%2F30496965&rft_id=info%3Adoi%2F10.1016%2Fj.jenvman.2018.11.046&rft.aulast=Casals&rft.aufirst=Lluc+Canals&rft.au=Amante+Garc%C3%ADa%2C+B.&rft.au=Canal%2C+Camille&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.jenvman.2018.11.046&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-122"><span class="mw-cite-backlink"><b><a href="#cite_ref-122">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPodiasPfrangDi_PersioKriston2018" class="citation journal cs1">Podias, Andreas; Pfrang, Andreas; Di Persio, Franco; Kriston, Akos; Bobba, Silvia; Mathieux, Fabrice; Messagie, Maarten; Boon-Brett, Lois (18 July 2018). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fwevj9020024">"Sustainability Assessment of Second Use Applications of Automotive Batteries: Ageing of Li-Ion Battery Cells in Automotive and Grid-Scale Applications"</a>. <i>World Electric Vehicle Journal</i>. <b>9</b> (2): 24. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fwevj9020024">10.3390/wevj9020024</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=World+Electric+Vehicle+Journal&rft.atitle=Sustainability+Assessment+of+Second+Use+Applications+of+Automotive+Batteries%3A+Ageing+of+Li-Ion+Battery+Cells+in+Automotive+and+Grid-Scale+Applications&rft.volume=9&rft.issue=2&rft.pages=24&rft.date=2018-07-18&rft_id=info%3Adoi%2F10.3390%2Fwevj9020024&rft.aulast=Podias&rft.aufirst=Andreas&rft.au=Pfrang%2C+Andreas&rft.au=Di+Persio%2C+Franco&rft.au=Kriston%2C+Akos&rft.au=Bobba%2C+Silvia&rft.au=Mathieux%2C+Fabrice&rft.au=Messagie%2C+Maarten&rft.au=Boon-Brett%2C+Lois&rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Fwevj9020024&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-123"><span class="mw-cite-backlink"><b><a href="#cite_ref-123">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTongFungKleinWeisbach2017" class="citation journal cs1">Tong, Shijie; Fung, Tsz; Klein, Matthew P.; Weisbach, David A.; Park, Jae Wan (June 2017). "Demonstration of reusing electric vehicle battery for solar energy storage and demand side management". <i>Journal of Energy Storage</i>. <b>11</b>: <span class="nowrap">200–</span>210. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.est.2017.03.003">10.1016/j.est.2017.03.003</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Energy+Storage&rft.atitle=Demonstration+of+reusing+electric+vehicle+battery+for+solar+energy+storage+and+demand+side+management&rft.volume=11&rft.pages=%3Cspan+class%3D%22nowrap%22%3E200-%3C%2Fspan%3E210&rft.date=2017-06&rft_id=info%3Adoi%2F10.1016%2Fj.est.2017.03.003&rft.aulast=Tong&rft.aufirst=Shijie&rft.au=Fung%2C+Tsz&rft.au=Klein%2C+Matthew+P.&rft.au=Weisbach%2C+David+A.&rft.au=Park%2C+Jae+Wan&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-124">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKamathShuklaArsenaultKim2020" class="citation journal cs1">Kamath, Dipti; Shukla, Siddharth; Arsenault, Renata; Kim, Hyung Chul; Anctil, Annick (July 2020). "Evaluating the cost and carbon footprint of second-life electric vehicle batteries in residential and utility-level applications". <i>Waste Management</i>. <b>113</b>: <span class="nowrap">497–</span>507. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020WaMan.113..497K">2020WaMan.113..497K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.wasman.2020.05.034">10.1016/j.wasman.2020.05.034</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32513441">32513441</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:219552264">219552264</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Waste+Management&rft.atitle=Evaluating+the+cost+and+carbon+footprint+of+second-life+electric+vehicle+batteries+in+residential+and+utility-level+applications&rft.volume=113&rft.pages=%3Cspan+class%3D%22nowrap%22%3E497-%3C%2Fspan%3E507&rft.date=2020-07&rft_id=info%3Adoi%2F10.1016%2Fj.wasman.2020.05.034&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A219552264%23id-name%3DS2CID&rft_id=info%3Apmid%2F32513441&rft_id=info%3Abibcode%2F2020WaMan.113..497K&rft.aulast=Kamath&rft.aufirst=Dipti&rft.au=Shukla%2C+Siddharth&rft.au=Arsenault%2C+Renata&rft.au=Kim%2C+Hyung+Chul&rft.au=Anctil%2C+Annick&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-125"><span class="mw-cite-backlink"><b><a href="#cite_ref-125">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQuinardRedondo-IglesiasPelissierVenet2019" class="citation journal cs1">Quinard, Honorat; Redondo-Iglesias, Eduardo; Pelissier, Serge; Venet, Pascal (14 March 2019). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fbatteries5010033">"Fast Electrical Characterizations of High-Energy Second Life Lithium-Ion Batteries for Embedded and Stationary Applications"</a>. <i>Batteries</i>. <b>5</b> (1): 33. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fbatteries5010033">10.3390/batteries5010033</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Batteries&rft.atitle=Fast+Electrical+Characterizations+of+High-Energy+Second+Life+Lithium-Ion+Batteries+for+Embedded+and+Stationary+Applications&rft.volume=5&rft.issue=1&rft.pages=33&rft.date=2019-03-14&rft_id=info%3Adoi%2F10.3390%2Fbatteries5010033&rft.aulast=Quinard&rft.aufirst=Honorat&rft.au=Redondo-Iglesias%2C+Eduardo&rft.au=Pelissier%2C+Serge&rft.au=Venet%2C+Pascal&rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Fbatteries5010033&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-126"><span class="mw-cite-backlink"><b><a href="#cite_ref-126">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeymansWalkerYoungFowler2014" class="citation journal cs1">Heymans, Catherine; Walker, Sean B.; Young, Steven B.; Fowler, Michael (August 2014). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.enpol.2014.04.016">"Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling"</a>. <i>Energy Policy</i>. <b>71</b>: <span class="nowrap">22–</span>30. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.enpol.2014.04.016">10.1016/j.enpol.2014.04.016</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Energy+Policy&rft.atitle=Economic+analysis+of+second+use+electric+vehicle+batteries+for+residential+energy+storage+and+load-levelling&rft.volume=71&rft.pages=%3Cspan+class%3D%22nowrap%22%3E22-%3C%2Fspan%3E30&rft.date=2014-08&rft_id=info%3Adoi%2F10.1016%2Fj.enpol.2014.04.016&rft.aulast=Heymans&rft.aufirst=Catherine&rft.au=Walker%2C+Sean+B.&rft.au=Young%2C+Steven+B.&rft.au=Fowler%2C+Michael&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.enpol.2014.04.016&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-127"><span class="mw-cite-backlink"><b><a href="#cite_ref-127">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCanals_CasalsAmante_García2017" class="citation journal cs1">Canals Casals, Lluc; Amante García, Beatriz (17 March 2017). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fbatteries3010010">"Second-Life Batteries on a Gas Turbine Power Plant to Provide Area Regulation Services"</a>. <i>Batteries</i>. <b>3</b> (4): 10. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fbatteries3010010">10.3390/batteries3010010</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2117%2F102963">2117/102963</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Batteries&rft.atitle=Second-Life+Batteries+on+a+Gas+Turbine+Power+Plant+to+Provide+Area+Regulation+Services&rft.volume=3&rft.issue=4&rft.pages=10&rft.date=2017-03-17&rft_id=info%3Ahdl%2F2117%2F102963&rft_id=info%3Adoi%2F10.3390%2Fbatteries3010010&rft.aulast=Canals+Casals&rft.aufirst=Lluc&rft.au=Amante+Garc%C3%ADa%2C+Beatriz&rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Fbatteries3010010&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-TaipowerChung2020-128"><span class="mw-cite-backlink"><b><a href="#cite_ref-TaipowerChung2020_128-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChungCheng2020" class="citation journal cs1">Chung, H. C.; Cheng, Y. C. (2020). <a rel="nofollow" class="external text" href="https://osf.io/d4n3s/">"Summary of safety standards for repurposing batteries"</a>. <i>Monthly Journal of Taipower's Engineering</i>. <b>860</b>: <span class="nowrap">35–</span>44. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.31224%2Fosf.io%2Fd4n3s">10.31224/osf.io/d4n3s</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:242911477">242911477</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Monthly+Journal+of+Taipower%27s+Engineering&rft.atitle=Summary+of+safety+standards+for+repurposing+batteries&rft.volume=860&rft.pages=%3Cspan+class%3D%22nowrap%22%3E35-%3C%2Fspan%3E44&rft.date=2020&rft_id=info%3Adoi%2F10.31224%2Fosf.io%2Fd4n3s&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A242911477%23id-name%3DS2CID&rft.aulast=Chung&rft.aufirst=H.+C.&rft.au=Cheng%2C+Y.+C.&rft_id=https%3A%2F%2Fosf.io%2Fd4n3s%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-129"><span class="mw-cite-backlink"><b><a href="#cite_ref-129">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHossainMurtaughModyFaruque2019" class="citation journal cs1">Hossain, Eklas; Murtaugh, Darren; Mody, Jaisen; Faruque, Hossain Mansur Resalat; Haque Sunny, Md. Samiul; Mohammad, Naeem (2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Faccess.2019.2917859">"A Comprehensive Review on Second-Life Batteries: Current State, Manufacturing Considerations, Applications, Impacts, Barriers & Potential Solutions, Business Strategies, and Policies"</a>. <i>IEEE Access</i>. <b>7</b>: <span class="nowrap">73215–</span>73252. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Faccess.2019.2917859">10.1109/access.2019.2917859</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:182891496">182891496</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Access&rft.atitle=A+Comprehensive+Review+on+Second-Life+Batteries%3A+Current+State%2C+Manufacturing+Considerations%2C+Applications%2C+Impacts%2C+Barriers+%26+Potential+Solutions%2C+Business+Strategies%2C+and+Policies&rft.volume=7&rft.pages=%3Cspan+class%3D%22nowrap%22%3E73215-%3C%2Fspan%3E73252&rft.date=2019&rft_id=info%3Adoi%2F10.1109%2Faccess.2019.2917859&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A182891496%23id-name%3DS2CID&rft.aulast=Hossain&rft.aufirst=Eklas&rft.au=Murtaugh%2C+Darren&rft.au=Mody%2C+Jaisen&rft.au=Faruque%2C+Hossain+Mansur+Resalat&rft.au=Haque+Sunny%2C+Md.+Samiul&rft.au=Mohammad%2C+Naeem&rft_id=https%3A%2F%2Fdoi.org%2F10.1109%252Faccess.2019.2917859&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-TaiwanEnergyChung2019-130"><span class="mw-cite-backlink"><b><a href="#cite_ref-TaiwanEnergyChung2019_130-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChungCheng2019" class="citation journal cs1">Chung, H. C.; Cheng, Y. C. (2019). <a rel="nofollow" class="external text" href="https://osf.io/nxv7f/">"Action planning and situation analysis of repurposing battery recovery and application in China"</a>. <i>Journal of Taiwan Energy</i>. <b>6</b>: <span class="nowrap">425–</span>451. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.31224%2Fosf.io%2Fnxv7f">10.31224/osf.io/nxv7f</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:241657732">241657732</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Taiwan+Energy&rft.atitle=Action+planning+and+situation+analysis+of+repurposing+battery+recovery+and+application+in+China&rft.volume=6&rft.pages=%3Cspan+class%3D%22nowrap%22%3E425-%3C%2Fspan%3E451&rft.date=2019&rft_id=info%3Adoi%2F10.31224%2Fosf.io%2Fnxv7f&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A241657732%23id-name%3DS2CID&rft.aulast=Chung&rft.aufirst=H.+C.&rft.au=Cheng%2C+Y.+C.&rft_id=https%3A%2F%2Fosf.io%2Fnxv7f%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-131"><span class="mw-cite-backlink"><b><a href="#cite_ref-131">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGurChatzikyriakouBaschetSalomon2018" class="citation journal cs1">Gur, K.; Chatzikyriakou, D.; Baschet, C.; Salomon, M. (2018). "The reuse of electrified vehicle batteries as a means of integrating renewable energy into the European electricity grid: A policy and market analysis". <i>Energy Policy</i>. <b>113</b>: <span class="nowrap">535–</span>545. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.enpol.2017.11.002">10.1016/j.enpol.2017.11.002</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Energy+Policy&rft.atitle=The+reuse+of+electrified+vehicle+batteries+as+a+means+of+integrating+renewable+energy+into+the+European+electricity+grid%3A+A+policy+and+market+analysis&rft.volume=113&rft.pages=%3Cspan+class%3D%22nowrap%22%3E535-%3C%2Fspan%3E545&rft.date=2018&rft_id=info%3Adoi%2F10.1016%2Fj.enpol.2017.11.002&rft.aulast=Gur&rft.aufirst=K.&rft.au=Chatzikyriakou%2C+D.&rft.au=Baschet%2C+C.&rft.au=Salomon%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-132"><span class="mw-cite-backlink"><b><a href="#cite_ref-132">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhuMathewsRenLi2021" class="citation journal cs1">Zhu, Juner; Mathews, Ian; Ren, Dongsheng; Li, Wei; Cogswell, Daniel; Xing, Bobin; Sedlatschek, Tobias; Kantareddy, Sai Nithin R.; Yi, Mengchao; Gao, Tao; Xia, Yong; Zhou, Qing; Wierzbicki, Tomasz; Bazant, Martin Z. (August 2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.xcrp.2021.100537">"End-of-life or second-life options for retired electric vehicle batteries"</a>. <i>Cell Reports Physical Science</i>. <b>2</b> (8): 100537. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021CRPS....200537Z">2021CRPS....200537Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.xcrp.2021.100537">10.1016/j.xcrp.2021.100537</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:238701303">238701303</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell+Reports+Physical+Science&rft.atitle=End-of-life+or+second-life+options+for+retired+electric+vehicle+batteries&rft.volume=2&rft.issue=8&rft.pages=100537&rft.date=2021-08&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A238701303%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2Fj.xcrp.2021.100537&rft_id=info%3Abibcode%2F2021CRPS....200537Z&rft.aulast=Zhu&rft.aufirst=Juner&rft.au=Mathews%2C+Ian&rft.au=Ren%2C+Dongsheng&rft.au=Li%2C+Wei&rft.au=Cogswell%2C+Daniel&rft.au=Xing%2C+Bobin&rft.au=Sedlatschek%2C+Tobias&rft.au=Kantareddy%2C+Sai+Nithin+R.&rft.au=Yi%2C+Mengchao&rft.au=Gao%2C+Tao&rft.au=Xia%2C+Yong&rft.au=Zhou%2C+Qing&rft.au=Wierzbicki%2C+Tomasz&rft.au=Bazant%2C+Martin+Z.&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.xcrp.2021.100537&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-133"><span class="mw-cite-backlink"><b><a href="#cite_ref-133">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchneiderKindleinSouzaMalfatti2009" class="citation journal cs1">Schneider, E.L.; Kindlein, W.; Souza, S.; Malfatti, C.F. (April 2009). "Assessment and reuse of secondary batteries cells". <i>Journal of Power Sources</i>. <b>189</b> (2): <span class="nowrap">1264–</span>1269. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009JPS...189.1264S">2009JPS...189.1264S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2008.12.154">10.1016/j.jpowsour.2008.12.154</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Power+Sources&rft.atitle=Assessment+and+reuse+of+secondary+batteries+cells&rft.volume=189&rft.issue=2&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1264-%3C%2Fspan%3E1269&rft.date=2009-04&rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2008.12.154&rft_id=info%3Abibcode%2F2009JPS...189.1264S&rft.aulast=Schneider&rft.aufirst=E.L.&rft.au=Kindlein%2C+W.&rft.au=Souza%2C+S.&rft.au=Malfatti%2C+C.F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-134"><span class="mw-cite-backlink"><b><a href="#cite_ref-134">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchneiderOliveiraBritoMalfatti2014" class="citation journal cs1">Schneider, E.L.; Oliveira, C.T.; Brito, R.M.; Malfatti, C.F. (September 2014). "Classification of discarded NiMH and Li-Ion batteries and reuse of the cells still in operational conditions in prototypes". <i>Journal of Power Sources</i>. <b>262</b>: <span class="nowrap">1–</span>9. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014JPS...262....1S">2014JPS...262....1S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2014.03.095">10.1016/j.jpowsour.2014.03.095</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Power+Sources&rft.atitle=Classification+of+discarded+NiMH+and+Li-Ion+batteries+and+reuse+of+the+cells+still+in+operational+conditions+in+prototypes&rft.volume=262&rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E9&rft.date=2014-09&rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2014.03.095&rft_id=info%3Abibcode%2F2014JPS...262....1S&rft.aulast=Schneider&rft.aufirst=E.L.&rft.au=Oliveira%2C+C.T.&rft.au=Brito%2C+R.M.&rft.au=Malfatti%2C+C.F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span></span> </li> <li id="cite_note-135"><span class="mw-cite-backlink"><b><a href="#cite_ref-135">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhao2017" class="citation book cs1">Zhao, Guangjin (2017). <i>Reuse and recycling of lithium-ion power batteries</i>. Singapore. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9781119321859" title="Special:BookSources/9781119321859"><bdi>9781119321859</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Reuse+and+recycling+of+lithium-ion+power+batteries&rft.place=Singapore&rft.date=2017&rft.isbn=9781119321859&rft.aulast=Zhao&rft.aufirst=Guangjin&rfr_id=info%3Asid%2Fen.wikipedia.org%3AResearch+in+lithium-ion+batteries" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></span> </li> </ol></div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Emerging_technologies167" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style="text-align: center;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Emerging_technologies" title="Template:Emerging technologies"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Emerging_technologies" title="Template talk:Emerging technologies"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Emerging_technologies" title="Special:EditPage/Template:Emerging technologies"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Emerging_technologies167" style="font-size:114%;margin:0 4em"><a href="/wiki/Emerging_technologies" title="Emerging technologies">Emerging technologies</a></div></th></tr><tr><th scope="row" class="navbox-group" style="text-align: center;;width:1%">Fields</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Energy</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Production</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Airborne_wind_turbine" title="Airborne wind turbine">Airborne wind turbine</a></li> <li><a href="/wiki/Artificial_photosynthesis" title="Artificial photosynthesis">Artificial photosynthesis</a></li> <li><a href="/wiki/Biofuel" title="Biofuel">Biofuels</a></li> <li><a href="/wiki/Carbon-neutral_fuel" title="Carbon-neutral fuel">Carbon-neutral fuel</a></li> <li><a href="/wiki/Concentrated_solar_power" title="Concentrated solar power">Concentrated solar power</a></li> <li><a href="/wiki/Fusion_power" title="Fusion power">Fusion power</a></li> <li><a href="/wiki/Home_fuel_cell" title="Home fuel cell">Home fuel cell</a></li> <li><a href="/wiki/Hydrogen_economy" title="Hydrogen economy">Hydrogen economy</a></li> <li><a href="/wiki/Methanol_economy" title="Methanol economy">Methanol economy</a></li> <li><a href="/wiki/Molten_salt_reactor" class="mw-redirect" title="Molten salt reactor">Molten salt reactor</a></li> <li><a href="/wiki/Optical_rectenna" title="Optical rectenna">Nantenna</a></li> <li><a href="/wiki/Photovoltaic_pavement" class="mw-redirect" title="Photovoltaic pavement">Photovoltaic pavement</a></li> <li><a href="/wiki/Space-based_solar_power" title="Space-based solar power">Space-based solar power</a></li> <li><a href="/wiki/Vortex_engine" title="Vortex engine">Vortex engine</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;"><a href="/wiki/Energy_storage" title="Energy storage">Storage</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Compressed-air_energy_storage" title="Compressed-air energy storage">Compressed-air energy storage</a></li> <li><a href="/wiki/Flywheel_energy_storage" title="Flywheel energy storage">Flywheel energy storage</a></li> <li><a href="/wiki/Grid_energy_storage" title="Grid energy storage">Grid energy storage</a></li> <li><a href="/wiki/Lithium%E2%80%93air_battery" title="Lithium–air battery">Lithium–air battery</a></li> <li><a href="/wiki/Lithium_iron_phosphate_battery" title="Lithium iron phosphate battery">Lithium iron phosphate battery</a></li> <li><a href="/wiki/Molten-salt_battery" title="Molten-salt battery">Molten-salt battery</a></li> <li><a href="/wiki/Nanowire_battery" title="Nanowire battery">Nanowire battery</a></li> <li><a class="mw-selflink selflink">Research in lithium-ion batteries</a></li> <li><a href="/wiki/Silicon%E2%80%93air_battery" title="Silicon–air battery">Silicon–air battery</a></li> <li><a href="/wiki/Thermal_energy_storage" title="Thermal energy storage">Thermal energy storage</a></li> <li><a href="/wiki/Supercapacitor" title="Supercapacitor">Ultracapacitor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Other</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alternative_fuel_vehicle" title="Alternative fuel vehicle">Alternative fuel vehicle</a></li> <li><a href="/wiki/Battery_electric_vehicle" title="Battery electric vehicle">Battery electric vehicle</a></li> <li><a href="/wiki/Hybrid_electric_vehicle" title="Hybrid electric vehicle">Hybrid electric vehicle</a></li> <li><a href="/wiki/Smart_grid" title="Smart grid">Smart grid</a></li> <li><a href="/wiki/Wireless_power_transfer" title="Wireless power transfer">Wireless power</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td class="navbox-abovebelow" colspan="2" style="text-align: center;"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="List-Class article"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <b><a href="/wiki/List_of_emerging_technologies" title="List of emerging technologies">List</a></b></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐6458bccbb8‐cczcz Cached time: 20250210051215 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.120 seconds Real time usage: 1.237 seconds Preprocessor visited node count: 9299/1000000 Post‐expand include size: 375574/2097152 bytes Template argument size: 11541/2097152 bytes Highest expansion depth: 18/100 Expensive parser function count: 12/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 490085/5000000 bytes Lua time usage: 0.759/10.000 seconds Lua memory usage: 6356157/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1090.565 1 -total 69.87% 762.004 1 Template:Reflist 52.58% 573.431 89 Template:Cite_journal 8.06% 87.849 3 Template:Navbox 7.78% 84.809 1 Template:Emerging_technologies 5.89% 64.219 1 Template:Short_description 5.69% 62.070 1 Template:Multiple_issues 5.37% 58.581 18 Template:Cite_web 3.57% 38.954 2 Template:Pagetype 3.48% 37.918 9 Template:Cite_news --> <!-- Saved in parser cache with key enwiki:pcache:42601555:|#|:idhash:canonical and timestamp 20250210051215 and revision id 1258452275. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&type=1x1&usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Research_in_lithium-ion_batteries&oldid=1258452275">https://en.wikipedia.org/w/index.php?title=Research_in_lithium-ion_batteries&oldid=1258452275</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Category</a>: <ul><li><a href="/wiki/Category:Lithium-ion_batteries" title="Category:Lithium-ion batteries">Lithium-ion batteries</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">CS1 maint: location missing publisher</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Articles_that_may_contain_original_research_from_January_2020" title="Category:Articles that may contain original research from January 2020">Articles that may contain original research from January 2020</a></li><li><a href="/wiki/Category:All_articles_that_may_contain_original_research" title="Category:All articles that may contain original research">All articles that may contain original research</a></li><li><a href="/wiki/Category:Articles_with_multiple_maintenance_issues" title="Category:Articles with multiple maintenance issues">Articles with multiple maintenance issues</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_December_2016" title="Category:Use dmy dates from December 2016">Use dmy dates from December 2016</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 19 November 2024, at 20:32<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Research_in_lithium-ion_batteries&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Research in lithium-ion batteries</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>Add languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-56d8db5f6f-r5m7f","wgBackendResponseTime":151,"wgPageParseReport":{"limitreport":{"cputime":"1.120","walltime":"1.237","ppvisitednodes":{"value":9299,"limit":1000000},"postexpandincludesize":{"value":375574,"limit":2097152},"templateargumentsize":{"value":11541,"limit":2097152},"expansiondepth":{"value":18,"limit":100},"expensivefunctioncount":{"value":12,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":490085,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1090.565 1 -total"," 69.87% 762.004 1 Template:Reflist"," 52.58% 573.431 89 Template:Cite_journal"," 8.06% 87.849 3 Template:Navbox"," 7.78% 84.809 1 Template:Emerging_technologies"," 5.89% 64.219 1 Template:Short_description"," 5.69% 62.070 1 Template:Multiple_issues"," 5.37% 58.581 18 Template:Cite_web"," 3.57% 38.954 2 Template:Pagetype"," 3.48% 37.918 9 Template:Cite_news"]},"scribunto":{"limitreport-timeusage":{"value":"0.759","limit":"10.000"},"limitreport-memusage":{"value":6356157,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-6458bccbb8-cczcz","timestamp":"20250210051215","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Research in lithium-ion batteries","url":"https:\/\/en.wikipedia.org\/wiki\/Research_in_lithium-ion_batteries","sameAs":"http:\/\/www.wikidata.org\/entity\/Q18394089","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q18394089","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2014-04-27T18:58:52Z","dateModified":"2024-11-19T20:32:45Z","headline":"overview of the research in lithium-ion batteries"}</script> </body> </html>