CINXE.COM

Search results for: atenolol

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: atenolol</title> <meta name="description" content="Search results for: atenolol"> <meta name="keywords" content="atenolol"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="atenolol" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="atenolol"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: atenolol</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Spectrophotometric Methods for Simultaneous Determination of Binary Mixture of Amlodipine Besylate and Atenolol Based on Dual Wavelength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nesrine%20T.%20Lamie">Nesrine T. Lamie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Four, accurate, precise, and sensitive spectrophotometric methods are developed for the simultaneous determination of a binary mixture containing amlodipine besylate (AM) and atenolol (AT) where AM is determined at its λmax 360 nm (0D), while atenolol can be determined by different methods. Method (A) is absorpotion factor (AFM). Method (B) is the new Ratio Difference method(RD) which measures the difference in amplitudes between 210 and 226 nm of ratio spectrum., Method (C) is novel constant center spectrophotometric method (CC) Method (D) is mean centering of the ratio spectra (MCR) at 284 nm. The calibration curve is linear over the concentration range of 10–80 and 4–40 μg/ml for AM and AT, respectively. These methods are tested by analyzing synthetic mixtures of the cited drugs and they are applied to their commercial pharmaceutical preparation. The validity of results was assessed by applying standard addition technique. The results obtained were found to agree statistically with those obtained by a reported method, showing no significant difference with respect to accuracy and precision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amlodipine" title="amlodipine">amlodipine</a>, <a href="https://publications.waset.org/abstracts/search?q=atenolol" title=" atenolol"> atenolol</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption%20factor" title=" absorption factor"> absorption factor</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20center" title=" constant center"> constant center</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20centering" title=" mean centering"> mean centering</a>, <a href="https://publications.waset.org/abstracts/search?q=ratio%20difference" title=" ratio difference"> ratio difference</a> </p> <a href="https://publications.waset.org/abstracts/24767/spectrophotometric-methods-for-simultaneous-determination-of-binary-mixture-of-amlodipine-besylate-and-atenolol-based-on-dual-wavelength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Formulation, Evaluation and Statistical Optimization of Transdermal Niosomal Gel of Atenolol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakshmi%20Sirisha%20Kotikalapudi">Lakshmi Sirisha Kotikalapudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atenolol, the widely used antihypertensive drug is ionisable and degrades in the acidic environment of the GIT lessening the bioavailability. Transdermal route may be selected as an alternative to enhance the bioavailability. Half-life of the drug is 6-7 hours suggesting the requirement of prolonged release of the drug. The present work of transdermal niosomal gel aims to extend release of the drug and increase the bioavailability. Ethanol injection method was used for the preparation of niosomes using span-60 and cholesterol at different molar ratios following central composite design. The prepared niosomes were characterized for size, zeta-potential, entrapment efficiency, drug content and in-vitro drug release. Optimized formulation was selected by statistically analyzing the results obtained using the software Stat-Ease Design Expert. The optimized formulation also showed high drug retention inside the vesicles over a period of three months at a temperature of 4 °C indicating stability. Niosomes separated as a pellet were dried and incorporated into the hydrogel prepared using chitosan a natural polymer as a gelling agent. The effect of various chemical permeation enhancers was also studied over the gel formulations. The prepared formulations were characterized for viscosity, pH, drug release using Franz diffusion cells, and skin irritation test as well as in-vivo pharmacological activities. Atenolol niosomal gel preparations showed the prolonged release of the drug and pronounced antihypertensive activity indicating the suitability of niosomal gel for topical and systemic delivery of atenolol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atenolol" title="atenolol">atenolol</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=niosomes" title=" niosomes"> niosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=transdermal" title=" transdermal"> transdermal</a> </p> <a href="https://publications.waset.org/abstracts/59549/formulation-evaluation-and-statistical-optimization-of-transdermal-niosomal-gel-of-atenolol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Design and Development of Buccal Delivery System for Atenolol Tablets by Using Different Bioadhesive Polymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Venkatalakshmi%20Ranganathan">Venkatalakshmi Ranganathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ong%20Hsin%20Ju"> Ong Hsin Ju</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Yinn%20Ming"> Tan Yinn Ming</a>, <a href="https://publications.waset.org/abstracts/search?q=Lim%20Kien%20Sin"> Lim Kien Sin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wong%20Man%20Ting"> Wong Man Ting</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkata%20Srikanth%20Meka"> Venkata Srikanth Meka </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mucoadhesive buccal tablet is an oral drug delivery system which attached to the buccal surface for direct drug absorption into the systemic circulation and the unidirectional drug release is ensured by formulating a hydrophobic backing layer. The objective of present study was to formulate mucoadhesive atenolol bilayer buccal tablets by using sodium alginate, hydroxyethyl cellulose, and xanthan gum as mucoadhesive polymer and the technique applied was direct compression method. Ethyl cellulose was used as backing layer of the tablet. FTIR and DSC analysis were carried out to identify the drug polymer interactions. The prepared tablets were evaluated for physicochemical parameters, ex vivo mucoadhesion time and in-vitro drug release. The formulated tablets showed the average surface pH 6-7 which is favourable for oral mucosa. The formulation containing sodium alginate showed more than 90 % of drug release at the end of the 7 hours in vitro dissolution studies. The formulation containing xanthan gum showed more than 8 hours of mucoadhesion time and all formulation exhibited non fickian release kinetics. The present study indicates enormous potential of erodible mucoadhesive buccal tablet containing atenolol for systemic delivery with an added advantage of circumventing the hepatic first pass metabolism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atenolol" title="atenolol">atenolol</a>, <a href="https://publications.waset.org/abstracts/search?q=mucoadhesion" title=" mucoadhesion"> mucoadhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20drug%20release" title=" in vitro drug release"> in vitro drug release</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20compression" title=" direct compression"> direct compression</a>, <a href="https://publications.waset.org/abstracts/search?q=ethyl%20cellulose" title=" ethyl cellulose"> ethyl cellulose</a> </p> <a href="https://publications.waset.org/abstracts/21532/design-and-development-of-buccal-delivery-system-for-atenolol-tablets-by-using-different-bioadhesive-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">619</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Optimization of Gastro-Retentive Matrix Formulation and Its Gamma Scintigraphic Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swapnila%20V.%20Shinde">Swapnila V. Shinde</a>, <a href="https://publications.waset.org/abstracts/search?q=Hemant%20P.%20Joshi"> Hemant P. Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumit%20R.%20Dhas"> Sumit R. Dhas</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhananjaysingh%20B.%20Rajput"> Dhananjaysingh B. Rajput</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the present study is to develop hydro-dynamically balanced system for atenolol, β-blocker as a single unit floating tablet. Atenolol shows pH dependent solubility resulting into a bioavailability of 36%. Thus, site specific oral controlled release floating drug delivery system was developed. Formulation includes novice use of rate controlling polymer such as locust bean gum (LBG) in combination of HPMC K4M and gas generating agent sodium bicarbonate. Tablet was prepared by direct compression method and evaluated for physico-mechanical properties. The statistical method was utilized to optimize the effect of independent variables, namely amount of HPMC K4M, LBG and three dependent responses such as cumulative drug release, floating lag time, floating time. Graphical and mathematical analysis of the results allowed the identification and quantification of the formulation variables influencing the selected responses. To study the gastrointestinal transit of the optimized gastro-retentive formulation, in vivo gamma scintigraphy was carried out in six healthy rabbits, after radio labeling the formulation with 99mTc. The transit profiles demonstrated that the dosage form was retained in the stomach for more than 5 hrs. The study signifies the potential of the developed system for stomach targeted delivery of atenolol with improved bioavailability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floating%20tablet" title="floating tablet">floating tablet</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design" title=" factorial design"> factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20scintigraphy" title=" gamma scintigraphy"> gamma scintigraphy</a>, <a href="https://publications.waset.org/abstracts/search?q=antihypertensive%20model%20drug" title=" antihypertensive model drug"> antihypertensive model drug</a>, <a href="https://publications.waset.org/abstracts/search?q=HPMC" title=" HPMC"> HPMC</a>, <a href="https://publications.waset.org/abstracts/search?q=locust%20bean%20gum" title=" locust bean gum"> locust bean gum</a> </p> <a href="https://publications.waset.org/abstracts/8593/optimization-of-gastro-retentive-matrix-formulation-and-its-gamma-scintigraphic-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> The Exact Specification for Consumption of Blood-Pressure Regulating Drugs with a Numerical Model of Pulsatile Micropolar Fluid Flow in Elastic Vessel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soroush%20Maddah">Soroush Maddah</a>, <a href="https://publications.waset.org/abstracts/search?q=Houra%20Asgarian"> Houra Asgarian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Navidbakhsh"> Mahdi Navidbakhsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present paper, the problem of pulsatile micropolar blood flow through an elastic artery has been studied. An arbitrary Lagrangian-Eulerian (ALE) formulation for the governing equations has been produced to model the fully-coupled fluid-structure interaction (FSI) and has been solved numerically using finite difference scheme by exploiting a mesh generation technique which leads to a uniformly spaced grid in the computational plane. Effect of the variations of cardiac output and wall artery module of elasticity on blood pressure with blood-pressure regulating drugs like Atenolol has been determined. Also, a numerical model has been produced to define precisely the effects of various dosages of a drug on blood flow in arteries without the numerous experiments that have many mistakes and expenses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arbitrary%20Lagrangian-Eulerian" title="arbitrary Lagrangian-Eulerian">arbitrary Lagrangian-Eulerian</a>, <a href="https://publications.waset.org/abstracts/search?q=Atenolol" title=" Atenolol"> Atenolol</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20structure%20interaction" title=" fluid structure interaction"> fluid structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=micropolar%20fluid" title=" micropolar fluid"> micropolar fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsatile%20blood%20flow" title=" pulsatile blood flow"> pulsatile blood flow</a> </p> <a href="https://publications.waset.org/abstracts/12914/the-exact-specification-for-consumption-of-blood-pressure-regulating-drugs-with-a-numerical-model-of-pulsatile-micropolar-fluid-flow-in-elastic-vessel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Occurrence of Pharmaceutical Compounds in an Urban Lake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20D.%20Villanueva">J. D. Villanueva</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Peyraube"> N. Peyraube</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Allan"> I. Allan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20D.%20Salvosa"> G. D. Salvosa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Reid"> M. Reid</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Harman"> C. Harman</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20D.%20Salvosa"> K. D. Salvosa</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20V.%20Castro"> J. M. V. Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20O.%20Espaldon"> M. V. O. Espaldon</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20B.%20Sevilla-Nastor"> J. B. Sevilla-Nastor</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Le%20Coustumer"> P. Le Coustumer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objectives of this research are to (1) assess the occurrence of the pharmaceutical compounds and (2) present the environmental challenges posed by the existence of these pharmaceutical compounds in the surface water. These pharmaceuticals were measured in Napindan Lake, Philippines. This lake is not only a major tributary of the Pasig River (an estuary) and Laguna Lake (freshwater). It also joins these two important surface waters of the National Capital Region. Pharmaceutical compounds such as Atenolol, Carbamazepine, and two other over the counter medicines: Cetirizine, and Ibuprofen were measured in Napindan Lake. Atenolol is a beta blocker that helps in lowering hypertensions. Carbamazepine is an anticonvulsant used as treatment for epilepsy and neuropathic pain. Cetirizine is an antihistamine that can relieve allergies. Ibuprofen is a non-steroidal anti-inflammatory drug normally used to relieve pains. Three different climatological conditions with corresponding hydro physico chemical characteristics were considered. First, was during a dry season with a simultaneous dredging. Second was during a transition period from dry to wet season. Finally, the third was during a continuous wet event. Based from the results of the study, most of these pharmaceuticals can be found in Napindan Lake. This is a proof that these pharmaceutical compounds are being released to a natural surface water. Even though climatological conditions were different, concentrations of these pharmaceuticals can still be detected. This implies that there is an incessant supply of these pharmaceutical compounds in Napindan Lake. Chronic exposure to these compounds even at low concentrations can lead to possible environmental and health risks. Given this information and since consistent occurrence of these compounds can be expected, the main challenge, at present, is on how to control the sources of these pharmaceutical compounds. Primarily, there is a need to manage the disposal of the pharmaceutical compounds. Yet, the main question is how to? This study would like to present the challenges and institutional roles in helping manage the pharmaceutical disposals in a developing country like the Philippines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atenolol" title="atenolol">atenolol</a>, <a href="https://publications.waset.org/abstracts/search?q=carbamazepine" title=" carbamazepine"> carbamazepine</a>, <a href="https://publications.waset.org/abstracts/search?q=cetirizine" title=" cetirizine"> cetirizine</a>, <a href="https://publications.waset.org/abstracts/search?q=ibuprofen" title=" ibuprofen"> ibuprofen</a>, <a href="https://publications.waset.org/abstracts/search?q=institutional%20roles" title=" institutional roles"> institutional roles</a>, <a href="https://publications.waset.org/abstracts/search?q=Napindan%20lake" title=" Napindan lake"> Napindan lake</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20compound%20disposal%20management" title=" pharmaceutical compound disposal management"> pharmaceutical compound disposal management</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20water" title=" surface water"> surface water</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20lake" title=" urban lake"> urban lake</a> </p> <a href="https://publications.waset.org/abstracts/122704/occurrence-of-pharmaceutical-compounds-in-an-urban-lake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Influence of a Cationic Membrane in a Double Compartment Filter-Press Reactor on the Atenolol Electro-Oxidation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alan%20N.%20A.%20Heberle">Alan N. A. Heberle</a>, <a href="https://publications.waset.org/abstracts/search?q=Salatiel%20W.%20Da%20Silva"> Salatiel W. Da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentin%20Perez-Herranz"> Valentin Perez-Herranz</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20M.%20Bernardes"> Andrea M. Bernardes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contaminants of emerging concern are substances widely used, such as pharmaceutical products. These compounds represent risk for both wild and human life since they are not completely removed from wastewater by conventional wastewater treatment plants. In the environment, they can be harm even in low concentration (µ or ng/L), causing bacterial resistance, endocrine disruption, cancer, among other harmful effects. One of the most common taken medicine to treat cardiocirculatory diseases is the Atenolol (ATL), a β-Blocker, which is toxic to aquatic life. In this way, it is necessary to implement a methodology, which is capable to promote the degradation of the ATL, to avoid the environmental detriment. A very promising technology is the advanced electrochemical oxidation (AEO), which mechanisms are based on the electrogeneration of reactive radicals (mediated oxidation) and/or on the direct substance discharge by electron transfer from contaminant to electrode surface (direct oxidation). The hydroxyl (HO•) and sulfate (SO₄•⁻) radicals can be generated, depending on the reactional medium. Besides that, at some condition, the peroxydisulfate (S₂O₈²⁻) ion is also generated from the SO₄• reaction in pairs. Both radicals, ion, and the direct contaminant discharge can break down the molecule, resulting in the degradation and/or mineralization. However, ATL molecule and byproducts can still remain in the treated solution. On this wise, some efforts can be done to implement the AEO process, being one of them the use of a cationic membrane to separate the cathodic (reduction) from the anodic (oxidation) reactor compartment. The aim of this study is investigate the influence of the implementation of a cationic membrane (Nafion®-117) to separate both cathodic and anodic, AEO reactor compartments. The studied reactor was a filter-press, with bath recirculation mode, flow 60 L/h. The anode was an Nb/BDD2500 and the cathode a stainless steel, both bidimensional, geometric surface area 100 cm². The solution feeding the anodic compartment was prepared with ATL 100 mg/L using Na₂SO₄ 4 g/L as support electrolyte. In the cathodic compartment, it was used a solution containing Na₂SO₄ 71 g/L. Between both solutions was placed the membrane. The applied currents densities (iₐₚₚ) of 5, 20 and 40 mA/cm² were studied over 240 minutes treatment time. Besides that, the ATL decay was analyzed by ultraviolet spectroscopy (UV/Vis). The mineralization was determined performing total organic carbon (TOC) in TOC-L CPH Shimadzu. In the cases without membrane, the iₐₚₚ 5, 20 and 40 mA/cm² resulted in 55, 87 and 98 % ATL degradation at the end of treatment time, respectively. However, with membrane, the degradation, for the same iₐₚₚ, was 90, 100 and 100 %, spending 240, 120, 40 min for the maximum degradation, respectively. The mineralization, without membrane, for the same studied iₐₚₚ, was 40, 55 and 72 %, respectively at 240 min, but with membrane, all tested iₐₚₚ reached 80 % of mineralization, differing only in the time spent, 240, 150 and 120 min, for the maximum mineralization, respectively. The membrane increased the ATL oxidation, probably due to avoid oxidant ions (S₂O₈²⁻) reduction on the cathode surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contaminants%20of%20emerging%20concern" title="contaminants of emerging concern">contaminants of emerging concern</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20electrochemical%20oxidation" title=" advanced electrochemical oxidation"> advanced electrochemical oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=atenolol" title=" atenolol"> atenolol</a>, <a href="https://publications.waset.org/abstracts/search?q=cationic%20membrane" title=" cationic membrane"> cationic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20compartment%20reactor" title=" double compartment reactor"> double compartment reactor</a> </p> <a href="https://publications.waset.org/abstracts/108048/influence-of-a-cationic-membrane-in-a-double-compartment-filter-press-reactor-on-the-atenolol-electro-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Transfer Rate of Organic Water Contaminants through a Passive Sampler Membrane of Polyethersulfone (PES) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Sharifan">Hamidreza Sharifan</a>, <a href="https://publications.waset.org/abstracts/search?q=Audra%20Morse"> Audra Morse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate assessments of contaminant concentrations based on traditional grab sampling methods are not always possible. Passive samplers offer an attractive alternative to traditional sampling methods that overcomes these limitations. The POCIS approach has been used as a screening tool for determining the presence/absence, possible sources and relative amounts of organic compounds at field sites. The objective for the present research is on mass transfer of five water contaminants (atrazine, caffeine, bentazon, ibuprofen, atenolol) through the Water Boundary Layer (WBL) and membrane. More specific objectives followed by establishing a relationship between the sampling rate and water solubility of the compounds, as well as comparing the molecular weight of the compounds and concentration of the compounds at the time of equilibrium. To determine whether water boundary layer effects transport rate through the membrane is another main objective in this paper. After GC mass analysis of compounds, regarding the WBL effect in this experiment, Sherwood number for the experimental tank developed. A close relationship between feed concentration of compound and sampling rate has been observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passive%20sampler" title="passive sampler">passive sampler</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20contaminants" title=" water contaminants"> water contaminants</a>, <a href="https://publications.waset.org/abstracts/search?q=PES-transfer%20rate" title=" PES-transfer rate"> PES-transfer rate</a>, <a href="https://publications.waset.org/abstracts/search?q=contaminant%20concentrations" title=" contaminant concentrations"> contaminant concentrations</a> </p> <a href="https://publications.waset.org/abstracts/43320/transfer-rate-of-organic-water-contaminants-through-a-passive-sampler-membrane-of-polyethersulfone-pes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Potentially Inappropriate Prescribing in Elderly Population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajit%20Kumar%20Sah">Ajit Kumar Sah</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar%20Jha"> Rajesh Kumar Jha</a>, <a href="https://publications.waset.org/abstracts/search?q=Phoolgen%20Sah"> Phoolgen Sah</a>, <a href="https://publications.waset.org/abstracts/search?q=Dev%20Kumar%20Shah"> Dev Kumar Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Older individuals often suffer from multiple systemic diseases and are particularly more vulnerable to potentially inappropriate medicine prescribing. Inappropriate medication can cause serious medical problem for the elderly. The purpose of this study was to determine the prevalence of potentially inappropriate medicine (PIM) prescribing in older Nepalese patients in a medicine outpatient department. Beers’ criteria are the most widely used tools to assess PIM to elderly patients. Prospective observational analysis of drugs prescribed in medicine out-patient department (OPD) of a hospital of Bharatpur, Chitwan, Nepal during November 2011 to October 2012 to 869 older adults aged 65 years and above. The use of potentially inappropriate medications (PIM) in elderly patients was analyzed using Beers Criteria updated to 2013. In the 869 patients included the average number of drugs prescribed per prescription was 5.56. The most commonly used drugs were atenolol (24.3%), amlodipine (23.16%), paracetamol (17.6%), salbutamol (15.72%) and vitamin B complex (13.26%). The total number of medications prescribed was 4833. At least one instance of PIM was experienced by approximately 26.3% of patients when evaluated using the Beers criteria. Potentially inappropriate medications are highly prevalent among older patients attending medical OPD and are associated with a number of medications prescribed. Further research is warranted to study the impact of PIMs towards health-related outcomes in these elderly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beers%20criteria" title="Beers criteria">Beers criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly" title=" elderly"> elderly</a>, <a href="https://publications.waset.org/abstracts/search?q=polypharmacy" title=" polypharmacy"> polypharmacy</a>, <a href="https://publications.waset.org/abstracts/search?q=potentially%20inappropriate%20medicines" title=" potentially inappropriate medicines "> potentially inappropriate medicines </a> </p> <a href="https://publications.waset.org/abstracts/11502/potentially-inappropriate-prescribing-in-elderly-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">566</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Application of Deep Learning and Ensemble Methods for Biomarker Discovery in Diabetic Nephropathy through Fibrosis and Propionate Metabolism Pathways</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluwafunmibi%20Omotayo%20Fasanya">Oluwafunmibi Omotayo Fasanya</a>, <a href="https://publications.waset.org/abstracts/search?q=Augustine%20Kena%20Adjei"> Augustine Kena Adjei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetic nephropathy (DN) is a major complication of diabetes, with fibrosis and propionate metabolism playing critical roles in its progression. Identifying biomarkers linked to these pathways may provide novel insights into DN diagnosis and treatment. This study aims to identify biomarkers associated with fibrosis and propionate metabolism in DN. Analyze the biological pathways and regulatory mechanisms of these biomarkers. Develop a machine learning model to predict DN-related biomarkers and validate their functional roles. Publicly available transcriptome datasets related to DN (GSE96804 and GSE104948) were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds), and 924 propionate metabolism-related genes (PMRGs) and 656 fibrosis-related genes (FRGs) were identified. The analysis began with the extraction of DN-differentially expressed genes (DN-DEGs) and propionate metabolism-related DEGs (PM-DEGs), followed by the intersection of these with fibrosis-related genes to identify key intersected genes. Instead of relying on traditional models, we employed a combination of deep neural networks (DNNs) and ensemble methods such as Gradient Boosting Machines (GBM) and XGBoost to enhance feature selection and biomarker discovery. Recursive feature elimination (RFE) was coupled with these advanced algorithms to refine the selection of the most critical biomarkers. Functional validation was conducted using convolutional neural networks (CNN) for gene set enrichment and immunoinfiltration analysis, revealing seven significant biomarkers—SLC37A4, ACOX2, GPD1, ACE2, SLC9A3, AGT, and PLG. These biomarkers are involved in critical biological processes such as fatty acid metabolism and glomerular development, providing a mechanistic link to DN progression. Furthermore, a TF–miRNA–mRNA regulatory network was constructed using natural language processing models to identify 8 transcription factors and 60 miRNAs that regulate these biomarkers, while a drug–gene interaction network revealed potential therapeutic targets such as UROKINASE–PLG and ATENOLOL–AGT. This integrative approach, leveraging deep learning and ensemble models, not only enhances the accuracy of biomarker discovery but also offers new perspectives on DN diagnosis and treatment, specifically targeting fibrosis and propionate metabolism pathways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetic%20nephropathy" title="diabetic nephropathy">diabetic nephropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20neural%20networks" title=" deep neural networks"> deep neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=gradient%20boosting%20machines%20%28GBM%29" title=" gradient boosting machines (GBM)"> gradient boosting machines (GBM)</a>, <a href="https://publications.waset.org/abstracts/search?q=XGBoost" title=" XGBoost"> XGBoost</a> </p> <a href="https://publications.waset.org/abstracts/194139/application-of-deep-learning-and-ensemble-methods-for-biomarker-discovery-in-diabetic-nephropathy-through-fibrosis-and-propionate-metabolism-pathways" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">9</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10