CINXE.COM
Search results for: calcium alkali orthophosphate
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: calcium alkali orthophosphate</title> <meta name="description" content="Search results for: calcium alkali orthophosphate"> <meta name="keywords" content="calcium alkali orthophosphate"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="calcium alkali orthophosphate" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="calcium alkali orthophosphate"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 936</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: calcium alkali orthophosphate</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">936</span> Effect of Varying Scaffold Architecture and Porosity of Calcium Alkali Orthophosphate Based-Scaffolds for Bone Tissue Engineering </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Adel">D. Adel</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Giacomini"> F. Giacomini</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Gildenhaar"> R. Gildenhaar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Berger"> G. Berger</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Gomes"> C. Gomes</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Linow"> U. Linow</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hardt"> M. Hardt</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Peleskae"> B. Peleskae</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20G%C3%BCnster"> J. Günster</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Houshmand"> A. Houshmand</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Stiller"> M. Stiller</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rack"> A. Rack</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ghaffar"> K. Ghaffar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gamal"> A. Gamal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20El%20Mofty"> M. El Mofty</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Knabe"> C. Knabe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this study was to develop 3D scaffolds from a silica containing calcium alkali orthophosphate utilizing two different fabrication processes, first a replica technique namely the Schwartzwalder Somers method (SSM), and second 3D printing, i.e. Rapid prototyping (RP). First, the mechanical and physical properties of the scaffolds (porosity, compressive strength, and solubility) was assessed and second their potential to facilitate homogenous colonization with osteogenic cells and extracellular bone matrix formation throughout the porous scaffold architecture. To this end murine and rat calavarie osteoblastic cells were dynamically seeded on both scaffold types under perfusion with concentrations of 3 million cells. The amount of cells and extracellular matrix as well as osteogenic marker expression was evaluated using hard tissue histology, immunohistochemistry, and histomorphometric analysis. Total porosities of both scaffolds were 86.9 % and 50% for SSM and RP respectively, Compressive strength values were 0.46 ± 0.2 MPa for SSM and 6.6± 0.8 MPa for RP. Regarding the cellular behavior, RP scaffolds displayed a higher cell and matrix percentage of 24.45%. Immunoscoring yielded strong osteocalcin expression of cells and matrix in RP scaffolds and a moderate expression in SSM scaffolds. 3D printed RP scaffolds displayed superior mechanical and biological properties compared to SSM. 3D printed scaffolds represent excellent candidates for bone tissue engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20alkali%20orthophosphate" title="calcium alkali orthophosphate">calcium alkali orthophosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20matrix%20mineralization" title=" extracellular matrix mineralization"> extracellular matrix mineralization</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoblast%20differentiation" title=" osteoblast differentiation"> osteoblast differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20prototyping" title=" rapid prototyping"> rapid prototyping</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffold" title=" scaffold"> scaffold</a> </p> <a href="https://publications.waset.org/abstracts/46386/effect-of-varying-scaffold-architecture-and-porosity-of-calcium-alkali-orthophosphate-based-scaffolds-for-bone-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">935</span> Plackett-Burman Design to Evaluate the Influence of Operating Parameters on Anaerobic Orthophosphate Release from Enhanced Biological Phosphorus Removal Sludge </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Salehi">Reza Salehi</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20L.%20Dold"> Peter L. Dold</a>, <a href="https://publications.waset.org/abstracts/search?q=Yves%20Comeau"> Yves Comeau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present study was to investigate the effect of a total of 6 operating parameters including pH (X1), temperature (X2), stirring speed (X3), chemical oxygen demand (COD) (X4), volatile suspended solids (VSS) (X5) and time (X6) on anaerobic orthophosphate release from enhanced biological phosphorus removal (EBPR) sludge. An 8-run Plackett Burman design was applied and the statistical analysis of the experimental data was performed using Minitab16.2.4 software package. The Analysis of variance (ANOVA) results revealed that temperature, COD, VSS and time had a significant effect with p-values of less than 0.05 whereas pH and stirring speed were identified as non-significant parameters, but influenced orthophosphate release from the EBPR sludge. The mathematic expression obtained by the first-order multiple linear regression model between orthophosphate release from the EBPR sludge (Y) and the operating parameters (X1-X6) was Y=18.59+1.16X1-3.11X2-0.81X3+3.79X4+9.89X5+4.01X6. The model p-value and coefficient of determination (R2) value were 0.026 and of 99.87%, respectively, which indicates the model is significant and the predicted values of orthophosphate release from the EBPR sludge have been excellently correlated with the observed values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic" title="anaerobic">anaerobic</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20parameters" title=" operating parameters"> operating parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=orthophosphate%20release" title=" orthophosphate release"> orthophosphate release</a>, <a href="https://publications.waset.org/abstracts/search?q=Plackett-Burman%20design" title=" Plackett-Burman design"> Plackett-Burman design</a> </p> <a href="https://publications.waset.org/abstracts/70479/plackett-burman-design-to-evaluate-the-influence-of-operating-parameters-on-anaerobic-orthophosphate-release-from-enhanced-biological-phosphorus-removal-sludge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">934</span> An Evaluation of the Feasibility of Several Industrial Wastes and Natural Materials as Precursors for the Production of Alkali Activated Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Alelweet">O. Alelweet</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pavia"> S. Pavia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to face current compelling environmental problems affecting the planet, the construction industry needs to adapt. It is widely acknowledged that there is a need for durable, high-performance, low-greenhouse gas emission binders that can be used as an alternative to Portland cement (PC) to lower the environmental impact of construction. Alkali activated materials (AAMs) are considered a more sustainable alternative to PC materials. The binders of AAMs result from the reaction of an alkali metal source and a silicate powder or precursor which can be a calcium silicate or an aluminosilicate-rich material. This paper evaluates the particle size, specific surface area, chemical and mineral composition and amorphousness of silicate materials (most industrial waste locally produced in Ireland and Saudi Arabia) to develop alkali-activated binders that can replace PC resources in specific applications. These include recycled ceramic brick, bauxite, illitic clay, fly ash and metallurgical slag. According to the results, the wastes are reactive and comply with building standards requirements. The study also evidenced that the reactivity of the Saudi bauxite (with significant kaolinite) can be enhanced on thermal activation; and high calcium in the slag will promote reaction; which should be possible with low alkalinity activators. The wastes evidenced variable water demands that will be taken into account for mixing with the activators. Finally, further research is proposed to further determine the reactive fraction of the clay-based precursors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20activated%20materials" title="alkali activated materials">alkali activated materials</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali-activated%20binders" title=" alkali-activated binders"> alkali-activated binders</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20building%20materials" title=" sustainable building materials"> sustainable building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20ceramic%20brick" title=" recycled ceramic brick"> recycled ceramic brick</a>, <a href="https://publications.waset.org/abstracts/search?q=bauxite" title=" bauxite"> bauxite</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20mud" title=" red mud"> red mud</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20slags" title=" metallurgical slags"> metallurgical slags</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title=" particle size"> particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20and%20mineral%20composition%20and%20amorphousness" title=" chemical and mineral composition and amorphousness"> chemical and mineral composition and amorphousness</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20demand" title=" water demand"> water demand</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20density" title=" particle density"> particle density</a> </p> <a href="https://publications.waset.org/abstracts/113869/an-evaluation-of-the-feasibility-of-several-industrial-wastes-and-natural-materials-as-precursors-for-the-production-of-alkali-activated-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">933</span> Structural and Optical Properties of Ce3+ Doped YPO4: Nanophosphors Synthesis by Sol Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Kahouadji">B. Kahouadji</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Guerbous"> L. Guerbous</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Lamiri"> L. Lamiri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mendoud"> A. Mendoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, nanomaterials are developed in the form of nano-films, nano-crystals and nano-pores. Lanthanide phosphates as a material find extensive application as laser, ceramic, sensor, phosphor, and also in optoelectronics, medical and biological labels, solar cells and light sources. Among the different kinds of rare-earth orthophosphates, yttrium orthophosphate has been shown to be an efficient host lattice for rare earth activator ions, which have become a research focus because of their important role in the field of light display systems, lasers, and optoelectronic devices. It is in this context that the 4fn- « 4fn-1 5d transitions of rare earth in insulating materials, lying in the UV and VUV, are the aim of large number of studies .Though there has been a few reports on Eu3+, Nd3+, Pr3+,Er3+, Ce3+, Tm3+ doped YPO4. The 4fn- « 4fn-1 5d transitions of the rare earth dependent to the host-matrix, several matrices ions were used to study these transitions, in this work we are suggesting to study on a very specific class of inorganic material that are orthophosphate doped with rare earth ions. This study focused on the effect of Ce3+ concentration on the structural and optical properties of Ce3+ doped YPO4 yttrium orthophosphate with powder form prepared by the Sol Gel method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=YPO4" title="YPO4">YPO4</a>, <a href="https://publications.waset.org/abstracts/search?q=Ce3%2B" title=" Ce3+"> Ce3+</a>, <a href="https://publications.waset.org/abstracts/search?q=4fn-%20%3C-%3E4fn-1%205d%20transitions" title=" 4fn- <->4fn-1 5d transitions"> 4fn- <->4fn-1 5d transitions</a>, <a href="https://publications.waset.org/abstracts/search?q=scintillator" title=" scintillator"> scintillator</a> </p> <a href="https://publications.waset.org/abstracts/6700/structural-and-optical-properties-of-ce3-doped-ypo4-nanophosphors-synthesis-by-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">932</span> Comparison of the Hydration Products of Commercial and Experimental Calcium Silicate Cement: The Preliminary Observational Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok%20Woo%20Chang">Seok Woo Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: The objective of this study was to compare and evaluate the hydration products of commercial and experimental calcium silicate cement. Materials and Methods: The commercial calcium silicate cement (ProRoot MTA, Dentsply) and experimental calcium silicate cement (n=10) were mixed with distilled water (water/powder ratio = 20 w/w) and stirred at room temperature for 10 hours. These mixtures were dispersed on wafer and dried for 12 hours at room temperature. Thereafter, the dried specimens were examined with Scanning Electron Microscope (SEM). Electron Dispersive Spectrometry (EDS) was also carried out. Results: The commercial calcium silicate cement (ProRoot MTA) and experimental calcium silicate cement both showed precipitation of rod-like and globule-like crystals. Based on EDS analysis, these precipitates were supposed to be calcium hydroxide or calcium silicate hydrates. The degree of formation of these precipitates was higher in commercial MTA. Conclusions: Based on the results, both commercial and experimental calcium silicate cement had ability to produce calcium hydroxide or calcium silicate hydrate precipitates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20silicate%20cement" title="calcium silicate cement">calcium silicate cement</a>, <a href="https://publications.waset.org/abstracts/search?q=ProRoot%20MTA" title=" ProRoot MTA"> ProRoot MTA</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20hydroxide" title=" calcium hydroxide"> calcium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20silicate%20hydrate" title=" calcium silicate hydrate"> calcium silicate hydrate</a> </p> <a href="https://publications.waset.org/abstracts/8741/comparison-of-the-hydration-products-of-commercial-and-experimental-calcium-silicate-cement-the-preliminary-observational-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">931</span> Can Bone Resorption Reduce with Nanocalcium Particles in Astronauts?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Teja%20Mandapaka">Ravi Teja Mandapaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasanna%20Kumar%20Kukkamalla"> Prasanna Kumar Kukkamalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poor absorption of calcium, elevated levels in serum and loss of bone are major problems of astronauts during space travel. Supplementation of calcium could not reveal this problem. In normal condition only 33% of calcium is absorbed from dietary sources. In this paper effect of space environment on calcium metabolism was discussed. Many surprising study findings were found during literature survey. Clinical trials on ovariectomized mice showed that reduction of calcium particles to nano level make them more absorbable and bioavailable. Control of bone loss in astronauts in critical important In Fortification of milk with nana calcium particles showed reduces urinary pyridinoline, deoxypyridinoline levels. Dietary calcium and supplementation do not show much retention of calcium in zero gravity environment where absorption is limited. So, the fortification of foods with nano calcium particles seemed beneficial for astronauts during and after space travel in their speedy recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20calcium" title="nano calcium">nano calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=astronauts" title=" astronauts"> astronauts</a>, <a href="https://publications.waset.org/abstracts/search?q=fortification" title=" fortification"> fortification</a>, <a href="https://publications.waset.org/abstracts/search?q=supplementation" title=" supplementation"> supplementation</a> </p> <a href="https://publications.waset.org/abstracts/30899/can-bone-resorption-reduce-with-nanocalcium-particles-in-astronauts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">930</span> Numerical Model to Study Calcium and Inositol 1,4,5-Trisphosphate Dynamics in a Myocyte Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Singh">Nisha Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeru%20Adlakha"> Neeru Adlakha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calcium signalling is one of the most important intracellular signalling mechanisms. A lot of approaches and investigators have been made in the study of calcium signalling in various cells to understand its mechanisms over recent decades. However, most of existing investigators have mainly focussed on the study of calcium signalling in various cells without paying attention to the dependence of calcium signalling on other chemical ions like inositol-1; 4; 5 triphosphate ions, etc. Some models for the independent study of calcium signalling and inositol-1; 4; 5 triphosphate signalling in various cells are present but very little attention has been paid by the researchers to study the interdependence of these two signalling processes in a cell. In this paper, we propose a coupled mathematical model to understand the interdependence of inositol-1; 4; 5 triphosphate dynamics and calcium dynamics in a myocyte cell. Such studies will provide the deeper understanding of various factors involved in calcium signalling in myocytes, which may be of great use to biomedical scientists for various medical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20signalling" title="calcium signalling">calcium signalling</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling" title=" coupling"> coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title=" finite difference method"> finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=inositol%201" title=" inositol 1"> inositol 1</a>, <a href="https://publications.waset.org/abstracts/search?q=4" title=" 4"> 4</a>, <a href="https://publications.waset.org/abstracts/search?q=5-triphosphate" title=" 5-triphosphate"> 5-triphosphate</a> </p> <a href="https://publications.waset.org/abstracts/68214/numerical-model-to-study-calcium-and-inositol-145-trisphosphate-dynamics-in-a-myocyte-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">929</span> Bulk Electrical Resistivity of Geopolymer Mortars: The Effect of Binder Composition and Alkali Concentration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Babaee">Mahdi Babaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnaud%20Castel"> Arnaud Castel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main hurdles for commercial adaptation of geopolymer concrete (GPC) as a low-embodied-carbon alternative for Portland cement concrete (PCC) is the durability aspects and its long-term performance in aggressive/corrosive environments. GPC is comparatively a new engineering material and in the absence of a track record of successful durability performance, proper experimental studies to investigate different durability-related characteristics of GPC seem inevitable. In this context, this paper aims to study the bulk electrical resistivity of geopolymer mortars fabricated of blends of low-calcium fly ash (FA) and ground granulated blast-furnace slag (GGBS). Bulk electrical resistivity is recognized as one of the most important parameters influencing the rate of corrosion of reinforcing bars during the propagation phase of corrosion. To investigate the effect of alkali concentration on the resistivity of the samples, 100x200 mm mortar cylinders were cast at different alkali concentration levels, whereas the modulus ratio (the molar ratio of SiO2/Na2O) was fixed for the mixes, and the bulk electrical resistivity was then measured. Also, the effect of the binder composition was assessed with respect to the ratio of FA to GGBS used. Results show a superior performance of samples with higher GGBS content. Lower concentration of the solution has increased the resistivity by reducing the amount of mobile alkali ions in the pore solution. Moreover, GGBS-based samples showed a much sharper increase in the electrical resistivity with decreasing the moisture content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bulk%20resistivity" title="bulk resistivity">bulk resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer%20concrete" title=" geopolymer concrete"> geopolymer concrete</a> </p> <a href="https://publications.waset.org/abstracts/74311/bulk-electrical-resistivity-of-geopolymer-mortars-the-effect-of-binder-composition-and-alkali-concentration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">928</span> Determination of Alkali Treatment Conditions Effects That Influence the Variability of Kenaf Fiber Mean Cross-Sectional Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Yussni%20Hashim">Mohd Yussni Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Nazrul%20Roslan"> Mohd Nazrul Roslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahruddin%20Mahzan%20Mohd%20Zin"> Shahruddin Mahzan Mohd Zin</a>, <a href="https://publications.waset.org/abstracts/search?q=Saparudin%20Ariffin"> Saparudin Ariffin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber cross-sectional area value is a crucial factor in determining the strength properties of natural fiber. Furthermore, unlike synthetic fiber, a diameter and cross-sectional area of natural fiber has a large variation along and between the fibers. This study aims to determine the main and interaction effects of alkali treatment conditions that influence kenaf bast fiber mean cross-sectional area. Three alkali treatment conditions at two different levels were selected. The conditions setting were alkali concentrations at two and ten w/v %; fiber immersed temperature at room temperature and 1000C; and fiber immersed duration for 30 and 480 minute. Untreated kenaf fiber was used as a control unit. Kenaf bast fiber bundle mounting tab was prepared according to ASTM C1557-03. The cross-sectional area was measured using a Leica video analyzer. The study result showed that kenaf fiber bundle mean cross-sectional area was reduced 6.77% to 29.88% after alkali treatment. From the analysis of variance, it shows that the interaction of alkali concentration and immersed time has a higher magnitude at 0.1619 compared to alkali concentration and immersed temperature interaction that was 0.0896. For the main effect, alkali concentration factor contributes to the higher magnitude at 0.1372 which indicated the decrease pattern of variability when the level changed from lower to the higher level. Then, it was followed by immersed temperature at 0.1261 and immersed time at 0.0696 magnitudes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20fiber" title="natural fiber">natural fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=kenaf%20bast%20fiber%20bundles" title=" kenaf bast fiber bundles"> kenaf bast fiber bundles</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20treatment" title=" alkali treatment"> alkali treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-sectional%20area" title=" cross-sectional area"> cross-sectional area</a> </p> <a href="https://publications.waset.org/abstracts/2033/determination-of-alkali-treatment-conditions-effects-that-influence-the-variability-of-kenaf-fiber-mean-cross-sectional-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">927</span> Effect of Flux Salts on the Recovery Extent and Quality of Metal Values from Spent Rechargeable Lead Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20A%20Rabah">Mahmoud A Rabah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabah%20M.%20Abelbasir"> Sabah M. Abelbasir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead-calcium alloy containing up to 0.10% calcium was recovered from spent rechargeable sealed acid lead batteries. Two techniques were investigated to explore the effect of flux salts on the extent and quality of the recovered alloy, pyro-metallurgical and electrochemical methods. About 10 kg of the spent batteries were collected for testing. The sample was washed with hot water and dried. The plastic cases of the batteries were mechanically cut, and the contents were dismantled manually, the plastic containers were shredded for recycling. The electrode plates were freed from the loose powder and placed in SiC crucible and covered with alkali chloride salts. The loaded crucible was heated in an electronically controlled chamber furnace type Nabertherm C3 at temperatures up to 800 °C. The obtained metals were analyzed. The effect of temperature, rate of heating, atmospheric conditions, composition of the flux salts on the extent and quality of the recovered products were studied. Results revealed that the spent rechargeable batteries contain 6 blocks of 6 plates of Pb-Ca alloy each. Direct heating of these plates in a silicon carbide crucible under ambient conditions produces lead metal poor in calcium content ( < 0.07%) due to partial oxidation of the alloying calcium element. Rate of temperature increase has a considerable effect on the yield of the lead alloy extraction. Flux salts composition benefits the recovery process. Sodium salts are more powerful as compared to potassium salts. Lead calcium alloy meeting the standard specification was successfully recovered from the spent rechargeable acid lead batteries with a very competitive cost to the same alloy prepared from primary resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rechargeable%20lead%20batteries" title="rechargeable lead batteries">rechargeable lead batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=lead-calcium%20alloy" title=" lead-calcium alloy"> lead-calcium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20recovery" title=" waste recovery"> waste recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20salts" title=" flux salts"> flux salts</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20recovery" title=" thermal recovery"> thermal recovery</a> </p> <a href="https://publications.waset.org/abstracts/78511/effect-of-flux-salts-on-the-recovery-extent-and-quality-of-metal-values-from-spent-rechargeable-lead-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">926</span> Combinatory Nutrition Supplementation: A Case of Synergy for Increasing Calcium Bioavailability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20C.%20S.%20Lim">Daniel C. S. Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Y.%20M.%20Yeo"> Eric Y. M. Yeo</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Y.%20Tan"> W. Y. Tan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an overview of how calcium interacts with the various essential nutrients within an environment of cellular and hormonal interactions for the purpose of increasing bioavailability to the human body. One example of such interactions can be illustrated with calcium homeostasis. This paper gives an in-depth discussion on the possible interactive permutations with various nutrients and factors leading to the promotion of calcium bioavailability to the body. The review hopes to provide further insights into how calcium supplement formulations can be improved to better influence its bioavailability in the human body. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioavailability" title="bioavailability">bioavailability</a>, <a href="https://publications.waset.org/abstracts/search?q=environment%20of%20cellular%20and%20hormonal%20interactions" title=" environment of cellular and hormonal interactions"> environment of cellular and hormonal interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20combinations" title=" nutritional combinations"> nutritional combinations</a>, <a href="https://publications.waset.org/abstracts/search?q=synergistic" title=" synergistic"> synergistic</a> </p> <a href="https://publications.waset.org/abstracts/61759/combinatory-nutrition-supplementation-a-case-of-synergy-for-increasing-calcium-bioavailability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">925</span> Effect of Particle Size on Alkali-Activation of Slag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Petrakis">E. Petrakis</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Karmali"> V. Karmali</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Komnitsas"> K. Komnitsas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study grinding experiments were performed in a laboratory ball mill using Polish ferronickel slag in order to study the effect of the particle size on alkali activation and the properties of the produced alkali activated materials (AAMs). In this regard, the particle size distribution and the specific surface area of the grinding products in relation to grinding time were assessed. The experimental results show that products with high compressive strength, e.g. higher than 60 MPa, can be produced when the slag median size decreased from 39.9 μm to 11.9 μm. Also, finer fractions are characterized by higher reactivity and result in the production of AAMs with lower porosity and better mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20activation" title="alkali activation">alkali activation</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding%20time" title=" grinding time"> grinding time</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20integrity" title=" structural integrity"> structural integrity</a> </p> <a href="https://publications.waset.org/abstracts/103046/effect-of-particle-size-on-alkali-activation-of-slag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">924</span> Laboratory Investigation of Alkali-Surfactant-Alternate Gas (ASAG) Injection – a Novel EOR Process for a Light Oil Sandstone Reservoir</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vidit%20Mohan">Vidit Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashwin%20P.%20Ramesh"> Ashwin P. Ramesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Anirudh%20Toshniwal"> Anirudh Toshniwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alkali-Surfactant-Alternate-Gas(ASAG) injection, a novel EOR process has the potential to improve displacement efficiency over Surfactant-Alternate-Gas(SAG) by addressing the problem of surfactant adsorption by clay minerals in rock matrix. A detailed laboratory investigation on ASAG injection process was carried out with encouraging results. To further enhance recovery over WAG injection process, SAG injection was investigated at laboratory scale. SAG injection yielded marginal incremental displacement efficiency over WAG process. On investigation, it was found that, clay minerals in rock matrix adsorbed the surfactants and were detrimental for SAG process. Hence, ASAG injection was conceptualized using alkali as a clay stabilizer. The experiment of ASAG injection with surfactant concentration of 5000 ppm and alkali concentration of 0.5 weight% yields incremental displacement efficiency of 5.42% over WAG process. The ASAG injection is a new process and has potential to enhance efficiency of WAG/SAG injection process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20surfactant%20alternate%20gas%20%28ASAG%29" title="alkali surfactant alternate gas (ASAG)">alkali surfactant alternate gas (ASAG)</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant%20alternate%20gas%20%28SAG%29" title=" surfactant alternate gas (SAG)"> surfactant alternate gas (SAG)</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20investigation" title=" laboratory investigation"> laboratory investigation</a>, <a href="https://publications.waset.org/abstracts/search?q=EOR%20process" title=" EOR process"> EOR process</a> </p> <a href="https://publications.waset.org/abstracts/21646/laboratory-investigation-of-alkali-surfactant-alternate-gas-asag-injection-a-novel-eor-process-for-a-light-oil-sandstone-reservoir" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">923</span> Repurposing of Crystalline Solar PV For Sodium Silicate Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lawal%20Alkasim">Lawal Alkasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Clement%20M.%20Gonah"> Clement M. Gonah</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainab%20S.%20Aliyu"> Zainab S. Aliyu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is focus on recovering silicon form photovoltaic cells and repurposing it toward the use in glass, ceramics or glass ceramics as it is made up of silicon material. Silicon is the main back-bone and responsible for the thermodynamic properties of glass, ceramics and glass ceramics materials. Antireflection silicon is soluble in hot alkali. Successfully the recovered material composed of silicon and silicon nitride of the A.R, with a small amount of silver, Aluminuim, lead & copper in the sunshine of crystalline/non-crystalline silicon solar cell. Aquaregia is used to remove the silver, Aluminium, lead & copper. The recovered material treated with hot alkali highly concentrated to produce sodium silicate, which is an alkali silicate glass (water glass). This type of glass is produced through chemical process, unlike other glasses that are produced through physical process of melting and non-crystalline solidification. It has showed a property of being alkali silicate glass from its solubility in water and insoluble in alcohol. The XRF analysis shows the presence of sodium silicate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unrecyclable%20solar%20PV" title="unrecyclable solar PV">unrecyclable solar PV</a>, <a href="https://publications.waset.org/abstracts/search?q=crystalline%20silicon" title=" crystalline silicon"> crystalline silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20conc.%20%20alkali" title=" hot conc. alkali"> hot conc. alkali</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20silicate" title=" sodium silicate"> sodium silicate</a> </p> <a href="https://publications.waset.org/abstracts/168585/repurposing-of-crystalline-solar-pv-for-sodium-silicate-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">922</span> Effectiveness of Natural Zeolite in Mitigating Alkali Silica Reaction Expansions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esma%20Gizem%20Daskiran">Esma Gizem Daskiran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Mustafa%20Daskiran"> Mehmet Mustafa Daskiran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the effectiveness of two natural zeolites in reducing expansion of concrete due to alkali-silica reaction. These natural zeolites have different reactive silica content. Three aggregates; two natural sand and one crushed stone aggregate were used while preparing mortar bars in accordance with accelerated mortar bar test method, ASTM C1260. Performance of natural zeolites are compared by examining the expansions due to alkali silica reaction. Natural zeolites added to the mixtures at %10 and %20 replacement levels by weight of cement. Natural zeolite with high reactive silica content had better performance on reducing expansions due to ASR. In this research, using high reactive zeolite at %20 replacement level was effective in mitigating expansions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20silica%20reaction" title="alkali silica reaction">alkali silica reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20zeolite" title=" natural zeolite"> natural zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=expansion" title=" expansion"> expansion</a> </p> <a href="https://publications.waset.org/abstracts/32640/effectiveness-of-natural-zeolite-in-mitigating-alkali-silica-reaction-expansions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">921</span> Reuse of Municipal Solid Waste Incinerator Fly Ash for the Synthesis of Zeolite: Effects of Different Operation Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyh-Cherng%20Chen">Jyh-Cherng Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Jie%20Lin"> Yi-Jie Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study tries to reuse the fly ash of municipal solid waste incinerator (MSWI) for the synthesis of zeolites. The fly ashes were treated with NaOH alkali fusion at different temperatures for 40 mins and then synthesized the zeolites with hydrothermal method at 105oC for different operation times. The effects of different operation conditions and the optimum synthesis parameters were explored. The specific surface area, surface morphology, species identification, adsorption capacity, and the reuse potentials of the synthesized zeolites were analyzed and evaluated. Experimental results showed that the optimum operation conditions for the synthesis of zeolite from the mixed fly ash were Si/Al=20, alkali/ash=1.5, alkali fusion reaction with NaOH at 800oC for 40 mins, hydrolysis with L/S=200 at 105oC for 24 hr, and hydrothermal synthesis at 105oC for 48 hr. The largest specific surface area of synthesized zeolite could be increased to 943.05m2/g. The influence of different operation parameters on the synthesis of zeolite from mixed fly ash followed the sequence of Si/Al > hydrolysis L/S> hydrothermal time > alkali fusion temperature > alkali/ash ratio. The XRD patterns of synthesized zeolites were identified to be similar with the ZSM-23 zeolite. The adsorption capacities of synthesized zeolite for pollutants were increased as rising the specific surface area of synthesized zeolite. In summary, MSWI fly ash can be treated and reused to synthesize the zeolite with high specific surface area by the alkali fusion and hydrothermal method. The zeolite can be reuse for the adsorption of various pollutants. They have great potential for development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20fusion" title="alkali fusion">alkali fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal" title=" hydrothermal"> hydrothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/95849/reuse-of-municipal-solid-waste-incinerator-fly-ash-for-the-synthesis-of-zeolite-effects-of-different-operation-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">920</span> Sulfate Attack on Pastes Made with Different C3A and C4AF Contents and Stored at 5°C</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Sotiriadis">Konstantinos Sotiriadis</a>, <a href="https://publications.waset.org/abstracts/search?q=Rados%C5%82aw%20Mr%C3%B3z"> Radosław Mróz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work the internal sulfate attack on pastes made from pure clinker phases was studied. Two binders were produced: (a) a binder with 2% C3A and 18% C4AF content; (b) a binder with 10% C3A and C4AF content each. Gypsum was used as the sulfate bearing compound, while calcium carbonate added to differentiate the binders produced. The phases formed were identified by XRD analysis. The results showed that ettringite was the deterioration phase detected in the case of the low C3A content binder. Carbonation occurred in the specimen without calcium carbonate addition, while portlandite was observed in the one containing calcium carbonate. In the case of the high C3A content binder, traces of thaumasite were detected when calcium carbonate was not incorporated in the binder. A solid solution of thaumasite and ettringite was found when calcium carbonate was added. The amount of C3A had not fully reacted with sulfates, since its corresponding peaks were detected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tricalcium%20aluminate" title="tricalcium aluminate">tricalcium aluminate</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20aluminate%20ferrite" title=" calcium aluminate ferrite"> calcium aluminate ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfate%20attack" title=" sulfate attack"> sulfate attack</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbonate" title=" calcium carbonate"> calcium carbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20temperature" title=" low temperature"> low temperature</a> </p> <a href="https://publications.waset.org/abstracts/12814/sulfate-attack-on-pastes-made-with-different-c3a-and-c4af-contents-and-stored-at-5c" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">919</span> Role of Sodium Concentration, Waiting Time and Constituents’ Temperature on the Rheological Behavior of Alkali Activated Slag Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammet%20M.%20Erdem">Muhammet M. Erdem</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdo%C4%9Fan%20%C3%96zbay"> Erdoğan Özbay</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20H.%20Durmu%C5%9F"> Ibrahim H. Durmuş</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Erdemir"> Mustafa Erdemir</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Bik%C3%A7e"> Murat Bikçe</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%BCzeyyen%20Bal%C3%A7%C4%B1kanl%C4%B1"> Müzeyyen Balçıkanlı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, rheological behavior of alkali activated slag concretes were investigated depending on the sodium concentration (SC), waiting time (WT) after production, and constituents’ temperature (CT) parameters. For this purpose, an experimental program was conducted with four different SCs of 1.85, 3.0, 4.15, and 5.30%, three different WT of 0 (just after production), 15, and 30 minutes and three different CT of 18, 30, and 40 °C. Solid precursors are activated by water glass and sodium hydroxide solutions with silicate modulus (Ms = SiO<sub>2</sub>/Na<sub>2</sub>O) of 1. Slag content and (water + activator solution)/slag ratio were kept constant in all mixtures. Yield stress and plastic viscosity values were defined for each mixture by using the ICAR rheometer. Test results were demonstrated that all of the three studied parameters have tremendous effect on the yield stress and plastic viscosity values of the alkali activated slag concretes. Increasing the SC, WT, and CT drastically augmented the rheological parameters. At the 15 and 30 minutes WT after production, most of the alkali activated slag concretes were set instantaneously, and rheological measurements were not performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20activation" title="alkali activation">alkali activation</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20stress" title=" yield stress"> yield stress</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20viscosity" title=" plastic viscosity"> plastic viscosity</a> </p> <a href="https://publications.waset.org/abstracts/54616/role-of-sodium-concentration-waiting-time-and-constituents-temperature-on-the-rheological-behavior-of-alkali-activated-slag-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">918</span> Surprising Behaviour of Kaolinitic Soils under Alkaline Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Hari%20Prasad%20Reddy">P. Hari Prasad Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Shimna%20Paulose"> Shimna Paulose</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sai%20Kumar"> V. Sai Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Rama%20Vara%20Prasad"> C. H. Rama Vara Prasad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil environment gets contaminated due to rapid industrialisation, agricultural-chemical application and improper disposal of waste generated by the society. Unexpected volume changes can occur in soil in the presence of certain contaminants usually after the long duration of interaction. Alkali is one of the major soil contaminant that has a considerable effect on behaviour of soils and capable of inducing swelling potential in soil. Chemical heaving of clayey soils occurs when they are wetted by aqueous solutions of alkalis. Mineralogical composition of the soil is one of the main factors influencing soil- alkali interaction. In the present work, studies are carried out to understand the swell potential of soils due to soil-alkali interaction with different concentrations of NaOH solution. Locally available soil, namely, red earth containing kaolinite which is of non-swelling nature is selected for the study. In addition to this, two commercially available clayey soils, namely ball clay and china clay containing mainly of kaolinite are selected to understand the effect of alkali interaction in various kaolinitic soils. Non-swelling red earth shows maximum swell at lower concentrations of alkali solution (0.1N) and a slightly decreasing trend of swelling with further increase in concentration (1N, 4N, and 8N). Marginal decrease in swell potential with increase in concentration indicates that the increased concentration of alkali solution exists as free solution in case of red earth. China clay and ball clay both falling under kaolinite group of clay minerals, show swelling with alkaline solution. At lower concentrations of alkali solution both the soils shows similar swell behaviour, but at higher concentration of alkali solution ball clay shows high swell potential compared to china clay which may be due to lack of well ordered crystallinity in ball clay compared to china clay. The variations in the results obtained were corroborated by carrying XRD and SEM studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali" title="alkali">alkali</a>, <a href="https://publications.waset.org/abstracts/search?q=kaolinite" title=" kaolinite"> kaolinite</a>, <a href="https://publications.waset.org/abstracts/search?q=swell%20potential" title=" swell potential"> swell potential</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/23569/surprising-behaviour-of-kaolinitic-soils-under-alkaline-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">917</span> Stochastic Modeling of Secretion Dynamics in Inner Hair Cells of the Auditory Pathway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jessica%20A.%20Soto-Bear">Jessica A. Soto-Bear</a>, <a href="https://publications.waset.org/abstracts/search?q=Virginia%20Gonz%C3%A1lez-V%C3%A9lez"> Virginia González-Vélez</a>, <a href="https://publications.waset.org/abstracts/search?q=Norma%20Casta%C3%B1eda-Villa"> Norma Castañeda-Villa</a>, <a href="https://publications.waset.org/abstracts/search?q=Amparo%20Gil"> Amparo Gil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glutamate release of the cochlear inner hair cell (IHC) ribbon synapse is a fundamental step in transferring sound information in the auditory pathway. Otoferlin is the calcium sensor in the IHC and its activity has been related to many auditory disorders. In order to simulate secretion dynamics occurring in the IHC in a few milliseconds timescale and with high spatial resolution, we proposed an active-zone model solved with Monte Carlo algorithms. We included models for calcium buffered diffusion, calcium-binding schemes for vesicle fusion, and L-type voltage-gated calcium channels. Our results indicate that calcium influx and calcium binding is managing IHC secretion as a function of voltage depolarization, which in turn mean that IHC response depends on sound intensity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inner%20hair%20cells" title="inner hair cells">inner hair cells</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20algorithm" title=" Monte Carlo algorithm"> Monte Carlo algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Otoferlin" title=" Otoferlin"> Otoferlin</a>, <a href="https://publications.waset.org/abstracts/search?q=secretion" title=" secretion"> secretion</a> </p> <a href="https://publications.waset.org/abstracts/96568/stochastic-modeling-of-secretion-dynamics-in-inner-hair-cells-of-the-auditory-pathway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">916</span> The Optimum Operating Conditions for the Synthesis of Zeolite from Waste Incineration Fly Ash by Alkali Fusion and Hydrothermal Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Jie%20Lin">Yi-Jie Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyh-Cherng%20Chen"> Jyh-Cherng Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fly ash of waste incineration processes is usually hazardous and the disposal or reuse of waste incineration fly ash is difficult. In this study, the waste incineration fly ash was converted to useful zeolites by the alkali fusion and hydrothermal synthesis method. The influence of different operating conditions (the ratio of Si/Al, the ratio of hydrolysis liquid to solid, and hydrothermal time) was investigated to seek the optimum operating conditions for the synthesis of zeolite from waste incineration fly ash. The results showed that concentrations of heavy metals in the leachate of Toxicity Characteristic Leaching Procedure (TCLP) were all lower than the regulatory limits except lead. The optimum operating conditions for the synthesis of zeolite from waste incineration fly ash by the alkali fusion and hydrothermal synthesis method were Si/Al=40, NaOH/ash=1.5, alkali fusion at 400 <sup>o</sup>C for 40 min, hydrolysis with Liquid to Solid ratio (L/S)= 200 at 105 <sup>o</sup>C for 24 h, and hydrothermal synthesis at 105 <sup>o</sup>C for 24 h. The specific surface area of fly ash could be significantly increased from 8.59 m<sup>2</sup>/g to 651.51 m<sup>2</sup>/g (synthesized zeolite). The influence of different operating conditions on the synthesis of zeolite from waste incineration fly ash followed the sequence of Si/Al ratio > hydrothermal time > hydrolysis L/S ratio. The synthesized zeolites can be reused as good adsorbents to control the air or wastewater pollutants. The purpose of fly ash detoxification, reduction and waste recycling/reuse is achieved successfully. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20fusion" title="alkali fusion">alkali fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal" title=" hydrothermal"> hydrothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/94021/the-optimum-operating-conditions-for-the-synthesis-of-zeolite-from-waste-incineration-fly-ash-by-alkali-fusion-and-hydrothermal-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">915</span> Compressive Strength and Microstructure of Hybrid Alkaline Cements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Abdollahnejad">Z. Abdollahnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Torgal"> P. Torgal</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Barroso%20Aguiar"> J. Barroso Aguiar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Publications on the field of alkali-activated binders, state that this new material is likely to have high potential to become an alternative to Portland cement. Classical alkali-activated cements could be made more eco-efficient if the use of sodium silicate is avoided. Besides, most alkali-activated cements suffer from severe efflorescence originated by the fact that alkaline and/or soluble silicates that are added during processing cannot be totally consumed. This paper presents experimental results on hybrid alkaline cements. Compressive strength results and efflorescence’s observations show that the new mixes already analyzed are promising. SEM results show that no traditional porous ITZ was detected in these binders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20alkaline%20cements" title="hybrid alkaline cements">hybrid alkaline cements</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=efflorescence" title=" efflorescence"> efflorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=ITZ" title=" ITZ"> ITZ</a> </p> <a href="https://publications.waset.org/abstracts/5468/compressive-strength-and-microstructure-of-hybrid-alkaline-cements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">914</span> Two Dimensional Finite Element Model to Study Calcium Dynamics in Fibroblast Cell with Excess Buffer Approximation Involving ER Flux and SERCA Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansha%20Kotwani">Mansha Kotwani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The specific spatio-temporal calcium concentration patterns are required by the fibroblasts to maintain its structure and functions. Thus, calcium concentration is regulated in cell at different levels in various activities of the cell. The variations in cytosolic calcium concentration largely depend on the buffers present in cytosol and influx of calcium into cytosol from ER through IP3Rs or Raynodine receptors followed by reuptake of calcium into ER through sarcoplasmic/endoplasmic reticulum ATPs (SERCA) pump. In order to understand the mechanisms of wound repair, tissue remodeling and growth performed by fibroblasts, it is of crucial importance to understand the mechanisms of calcium concentration regulation in fibroblasts. In this paper, a model has been developed to study calcium distribution in NRK fibroblast in the presence of buffers and ER flux with SERCA pump. The model has been developed for two dimensional unsteady state case. Appropriate initial and boundary conditions have been framed along with physiology of the cell. Finite element technique has been employed to obtain the solution. The numerical results have been used to study the effect of buffers, ER flux and source amplitude on calcium distribution in fibroblast cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buffers" title="buffers">buffers</a>, <a href="https://publications.waset.org/abstracts/search?q=IP3R" title=" IP3R"> IP3R</a>, <a href="https://publications.waset.org/abstracts/search?q=ER%20flux" title=" ER flux"> ER flux</a>, <a href="https://publications.waset.org/abstracts/search?q=SERCA%20pump" title=" SERCA pump"> SERCA pump</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20amplitude" title=" source amplitude"> source amplitude</a> </p> <a href="https://publications.waset.org/abstracts/19236/two-dimensional-finite-element-model-to-study-calcium-dynamics-in-fibroblast-cell-with-excess-buffer-approximation-involving-er-flux-and-serca-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">913</span> Kinetic Studies of Bioethanol Production from Salt-Pretreated Sugarcane Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preshanthan%20Moodley">Preshanthan Moodley</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20B.%20Gueguim%20Kana"> E. B. Gueguim Kana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the kinetics of S. cerevisiae BY4743 growth and bioethanol production from sugarcane leaf waste (SLW), utilizing two different optimized pretreatment regimes; under two fermentation modes: steam salt-alkali filtered enzymatic hydrolysate (SSA-F), steam salt-alkali unfiltered (SSA-U), microwave salt-alkali filtered (MSA-F) and microwave salt-alkali unfiltered (MSA-U). The kinetic coefficients were determined by fitting the Monod, modified Gompertz, and logistic models to the experimental data with high coefficients of determination R² > 0.97. A maximum specific growth rate (µₘₐₓ) of 0.153 h⁻¹ was obtained under SSA-F and SSA-U whereas, 0.150 h⁻¹ was observed with MSA-F and MSA-U. SSA-U gave a potential maximum bioethanol concentration (Pₘ) of 31.06 g/L compared to 30.49, 23.26 and 21.79g/L for SSA-F, MSA-F and MSA-U respectively. An insignificant difference was observed in the μmax and Pm for the filtered and unfiltered enzymatic hydrolysate for both SSA and MSA pretreatments, thus potentially reducing a unit operation. These findings provide significant insights for process scale up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20bioethanol" title="lignocellulosic bioethanol">lignocellulosic bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20pretreatment" title=" microwave pretreatment"> microwave pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane%20leaves" title=" sugarcane leaves"> sugarcane leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a> </p> <a href="https://publications.waset.org/abstracts/110833/kinetic-studies-of-bioethanol-production-from-salt-pretreated-sugarcane-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">912</span> Modification of Toothpaste Formula Using Pineapple Cobs and Eggshell Waste as a Way to Decrease Dental Caries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Achmad%20Buhori">Achmad Buhori</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Imam%20Pratama"> Reza Imam Pratama</a>, <a href="https://publications.waset.org/abstracts/search?q=Tissa%20Wiraatmaja"> Tissa Wiraatmaja</a>, <a href="https://publications.waset.org/abstracts/search?q=Wanti%20Megawati"> Wanti Megawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data from many countries indicates that there is a marked increase of dental caries. The increases in caries appear to occur in lower socioeconomic groups. It is possible that the benefits of prevention of dental caries are not reaching these groups. However, there is a way to decrease dental caries by adding 5% of bromelain and calcium as an active agent in toothpaste. Bromelain can break glutamine-alanine bond and arginine-alanine bond which is a constituent of amino acid that causes dental plague which is one of the factors of dental caries. Calcium help rebuilds the teeth by strengthening and repairing enamel. Bromelain can be found from the extraction of pineapple (Ananas comosus) cobs (88.86-94.22 % of bromelain recovery during extraction based on the enzyme unit) and calcium can be taken from eggshell (95% of dry eggshell consist of calcium). The aim of this experiment is to make a toothpaste which contains bromelain and calcium as an effective, cheap, and healthy way to decrease dental caries around the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bromelain" title="bromelain">bromelain</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium" title=" calcium"> calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20caries" title=" dental caries"> dental caries</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20plague" title=" dental plague"> dental plague</a>, <a href="https://publications.waset.org/abstracts/search?q=toothpaste" title=" toothpaste"> toothpaste</a> </p> <a href="https://publications.waset.org/abstracts/54683/modification-of-toothpaste-formula-using-pineapple-cobs-and-eggshell-waste-as-a-way-to-decrease-dental-caries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">911</span> Comparison of Different Activators Impact on the Alkali-Activated Aluminium-Silicate Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laura%20Dembovska">Laura Dembovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Ina%20Pundiene"> Ina Pundiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Bajare"> Diana Bajare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alkali-activated aluminium-silicate composites (AASC) can be used in the production of innovative materials with a wide range of properties and applications. AASC are associated with low CO₂ emissions; in the production process, it is possible to use industrial by-products and waste, thereby minimizing the use of a non-renewable natural resource. This study deals with the preparation of heat-resistant porous AASC based on chamotte for high-temperature applications up to 1200°C. Different fillers, aluminium scrap recycling waste as pores forming agent and alkali activation with 6M sodium hydroxide (NaOH) and potassium hydroxide (KOH) solution were used. Sodium hydroxide (NaOH) is widely used for the synthesis of AASC compared to potassium hydroxide (KOH), but comparison of using different activator for geopolymer synthesis is not well established. Changes in chemical composition of AASC during heating were identified and quantitatively analyzed by using DTA, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of AASC was determined by XRD. Lightweight porous AASC activated with NaOH have been obtained with density in range from 600 to 880 kg/m³ and compressive strength from 0.8 to 2.7 MPa, but for AAM activated with KOH density was in range from 750 to 850 kg/m³ and compressive strength from 0.7 to 2.1 MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20activation" title="alkali activation">alkali activation</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20activated%20materials" title=" alkali activated materials"> alkali activated materials</a>, <a href="https://publications.waset.org/abstracts/search?q=elevated%20temperature%20application" title=" elevated temperature application"> elevated temperature application</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20resistance" title=" heat resistance"> heat resistance</a> </p> <a href="https://publications.waset.org/abstracts/82266/comparison-of-different-activators-impact-on-the-alkali-activated-aluminium-silicate-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">910</span> Evaluation of Re-mineralization Ability of Nanohydroxyapatite and Coral Calcium with Different Concentrations on Initial Enamel Carious Lesions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Abdelnabi">Ali Abdelnabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nermeen%20Hamza"> Nermeen Hamza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coral calcium is a boasting natural product and dietary supplement which is considered a source of alkaline calcium carbonate, this study is a comparative study, comparing the remineralization effect of the new product of coral calcium with that of nano-hydroxyapatite. Methodology: a total of 35 extracted molars were collected, examined and sectioned to obtain 70 sound enamel discs, all discs were numbered and examined by scanning electron microscope coupled with Energy Dispersive Analysis of X-rays(EDAX) for mineral content, subjected to artificial caries, and mineral content was re-measured, discs were divided into seven groups according to the remineralizing agent used, where groups 1 to 3 used 10%, 20%, 30% nanohydroxyapatite gel respectively, groups 4 to 6 used 10%, 20%, 30% coral calcium gel and group 7 with no remineralizing agent (control group). All groups were re-examined by EDAX after remineralization; data were calculated and tabulated. Results: All groups showed a statistically significant drop in calcium level after artificial caries; all groups showed a statistically significant rise in calcium content after remineralization except for the control group; groups 1 and 5 showed the highest increase in calcium level after remineralization. Conclusion: coral calcium can be considered a comparative product to nano-hydroxyapatite regarding the remineralization of enamel initial carious lesions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20caries" title="artificial caries">artificial caries</a>, <a href="https://publications.waset.org/abstracts/search?q=coral%20calcium" title=" coral calcium"> coral calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=nanohydroxyapatite" title=" nanohydroxyapatite"> nanohydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=re-mineralization" title=" re-mineralization"> re-mineralization</a> </p> <a href="https://publications.waset.org/abstracts/116242/evaluation-of-re-mineralization-ability-of-nanohydroxyapatite-and-coral-calcium-with-different-concentrations-on-initial-enamel-carious-lesions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">909</span> Structural Changes and Formation of Calcium Complexes in Corn Starch Processed by Nixtamalization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ar%C3%A1mbula-Villa%20Ger%C3%B3nimo">Arámbula-Villa Gerónimo</a>, <a href="https://publications.waset.org/abstracts/search?q=Garc%C3%ADa-Lara%20Kenia%20Y."> García-Lara Kenia Y.</a>, <a href="https://publications.waset.org/abstracts/search?q=Figueroa-C%C3%A1rdenas%20J.%20D."> Figueroa-Cárdenas J. D.</a>, <a href="https://publications.waset.org/abstracts/search?q=P%C3%A9rez-Robles%20J.%20F."> Pérez-Robles J. F.</a>, <a href="https://publications.waset.org/abstracts/search?q=Jim%C3%A9nez-Sandoval%20S."> Jiménez-Sandoval S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Salazar-L%C3%B3pez%20R."> Salazar-López R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Herrera-Corredor%20J.%20A."> Herrera-Corredor J. A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nixtamalization process (thermal-alkaline method) improves the nutritional part of the corn grain. In this process, the using of Ca(OH)₂ is basic, although the chemical mechanisms between this alkali and the carbohydrates (starch), proteins, lipids, and fiber have not been fully identified. In this study, the native corn starch was taken as a model, and it was subjected to cooking with different concentrations of lime (nixtamalization process) and specific studies of FTIR and XRD were carried out to identify the formation of chemical compounds, and the physical, physicochemical, rheological (paste) and structural properties of material obtained were determined. The FTIR spectra showed the formation of calcium-starch complexes. The treatments with Ca(OH)₂ showed a band shift towards 1675 cm⁻¹ and a band in 1436 cm⁻¹ (COO⁻), indicating the oxidation of starch. Three bands were identified (1575, 1550, and 1540 cm⁻¹) characteristics of carboxylic acid salts for three types of coordinated structures: monodentate, pseudo-bridged, and bidentate. The XRD spectra of starch treated with Ca(OH)₂ showed a peak corresponding to CaCO₃ (29.40°). The oxidation of starch was favored with low concentrations of Ca(OH)₂, producing carboxyl and carbonyl groups and increasing the residual CaCO₃. The increased concentration of Ca(OH)₂ showed the formation of calcium carboxylates, with a decrease in relative crystallinity and residual CaCO₃. Samples with low concentrations of Ca(OH)₂ slowed the onset of gelatinization and increased the swelling of the granules and the peak viscosity. The higher concentrations of Ca(OH)₂ difficulted the water absorption and decreased the viscosity rate and peak viscosity. These results can be used to improve the quality characteristics of the dough and tortillas and to get better acceptance by consumers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maize%20starch" title="maize starch">maize starch</a>, <a href="https://publications.waset.org/abstracts/search?q=nixtamalization" title=" nixtamalization"> nixtamalization</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatinization" title=" gelatinization"> gelatinization</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20carboxylates" title=" calcium carboxylates"> calcium carboxylates</a> </p> <a href="https://publications.waset.org/abstracts/161702/structural-changes-and-formation-of-calcium-complexes-in-corn-starch-processed-by-nixtamalization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">908</span> Enhancing Protein Incorporation in Calcium Phosphate Coating on Titanium by Rapid Biomimetic Co-Precipitation Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Suwanprateeb">J. Suwanprateeb</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Thammarakcharoen"> F. Thammarakcharoen </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calcium phosphate coating (CaP) has been employed for protein delivery, but the typical direct protein adsorption on the coating led to low incorporation content and fast release of the protein from the coating. By using bovine serum albumin (BSA) as a model protein, rapid biomimetic co-precipitation between calcium phosphate and BSA was employed to control the distribution of BSA within calcium phosphate coating during biomimetic formation on titanium surface for only 6 h at 50 oC in an accelerated calcium phosphate solution. As a result, the amount of BSA incorporation and release duration could be increased by using a rapid biomimetic co-precipitation technique. Up to 43 fold increases in the BSA incorporation content and the increase from 6 h to more than 360 h in release duration compared to typical direct adsorption technique were observed depending on the initial BSA concentration used during co-precipitation (1, 10, and 100 microgram/ml). From X-ray diffraction and Fourier transform infrared spectroscopy studies, the coating composition was not altered with the incorporation of BSA by this rapid biomimetic co-precipitation and mainly comprised octacalcium phosphate and hydroxyapatite. However, the microstructure of calcium phosphate crystals changed from straight, plate-like units to curved, plate-like units with increasing BSA content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomimetic" title="biomimetic">biomimetic</a>, <a href="https://publications.waset.org/abstracts/search?q=Calcium%20Phosphate%20Coating" title=" Calcium Phosphate Coating"> Calcium Phosphate Coating</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a> </p> <a href="https://publications.waset.org/abstracts/13016/enhancing-protein-incorporation-in-calcium-phosphate-coating-on-titanium-by-rapid-biomimetic-co-precipitation-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">907</span> The Impact of Foliar Application of the Calcium-Containing Compounds in Increasing Resistance to Blue Mold on Apples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Baghalian">Masoud Baghalian</a>, <a href="https://publications.waset.org/abstracts/search?q=Musa%20Arshad"> Musa Arshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to investigate the effect of foliar application of calcium chloride on the resistance of fruits such as Red and Golden Lebanese apple varieties to blue mold, a split plot experiment in time and space, based on accidental blocks, with three replications under foliar application were done (Control, one in a thousand, two in thousands) and the results of the variance analysis showed that there is a significant difference between the levels of foliar and variety at 5% level and between time, there is significant difference in interaction of variety × time and three way interaction of foliar×variety×time, at 1% level. The highest resistance to the blue mold disease in foliar application was observed at two in thousands calcium (calcium chloride) level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apple" title="apple">apple</a>, <a href="https://publications.waset.org/abstracts/search?q=blue%20mold" title=" blue mold"> blue mold</a>, <a href="https://publications.waset.org/abstracts/search?q=foliar%20calcium" title=" foliar calcium"> foliar calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/45553/the-impact-of-foliar-application-of-the-calcium-containing-compounds-in-increasing-resistance-to-blue-mold-on-apples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20alkali%20orthophosphate&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20alkali%20orthophosphate&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20alkali%20orthophosphate&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20alkali%20orthophosphate&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20alkali%20orthophosphate&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20alkali%20orthophosphate&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20alkali%20orthophosphate&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20alkali%20orthophosphate&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20alkali%20orthophosphate&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20alkali%20orthophosphate&page=31">31</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20alkali%20orthophosphate&page=32">32</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=calcium%20alkali%20orthophosphate&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>