CINXE.COM

companion pair in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> companion pair in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> companion pair </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/14686/#Item_8" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Companion pairs</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="2category_theory">2-Category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/2-category+theory">2-category theory</a></strong></p> <p><strong>Definitions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-category">2-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/strict+2-category">strict 2-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bicategory">bicategory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+bicategory">enriched bicategory</a></p> </li> </ul> <p><strong>Transfors between 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-functor">2-functor</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudofunctor">pseudofunctor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/lax+functor">lax functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equivalence+of+2-categories">equivalence of 2-categories</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-natural+transformation">2-natural transformation</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/lax+natural+transformation">lax natural transformation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/icon">icon</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/modification">modification</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma+for+bicategories">Yoneda lemma for bicategories</a></p> </li> </ul> <p><strong>Morphisms in 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fully+faithful+morphism">fully faithful morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/faithful+morphism">faithful morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/conservative+morphism">conservative morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudomonic+morphism">pseudomonic morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/discrete+morphism">discrete morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/eso+morphism">eso morphism</a></p> </li> </ul> <p><strong>Structures in 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/adjunction">adjunction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mate">mate</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monad">monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cartesian+object">cartesian object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fibration+in+a+2-category">fibration in a 2-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/codiscrete+cofibration">codiscrete cofibration</a></p> </li> </ul> <p><strong>Limits in 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-limit">2-limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-pullback">2-pullback</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/comma+object">comma object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inserter">inserter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inverter">inverter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equifier">equifier</a></p> </li> </ul> <p><strong>Structures on 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-monad">2-monad</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/lax-idempotent+2-monad">lax-idempotent 2-monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudomonad">pseudomonad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudoalgebra+for+a+2-monad">pseudoalgebra for a 2-monad</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+2-category">monoidal 2-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/cartesian+bicategory">cartesian bicategory</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gray+tensor+product">Gray tensor product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/proarrow+equipment">proarrow equipment</a></p> </li> </ul> </div></div> <h4 id="higher_category_theory">Higher category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a></strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></li> <li><a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a></li> </ul> <h2 id="basic_concepts">Basic concepts</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/k-morphism">k-morphism</a>, <a class="existingWikiWord" href="/nlab/show/coherence">coherence</a></li> <li><a class="existingWikiWord" href="/nlab/show/looping+and+delooping">looping and delooping</a></li> <li><a class="existingWikiWord" href="/nlab/show/stabilization">looping and suspension</a></li> </ul> <h2 id="basic_theorems">Basic theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+hypothesis">homotopy hypothesis</a>-theorem</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/delooping+hypothesis">delooping hypothesis</a>-theorem</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/periodic+table">periodic table</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/stabilization+hypothesis">stabilization hypothesis</a>-theorem</p> </li> <li> <p><a class="existingWikiWord" href="/michaelshulman/show/exactness+hypothesis">exactness hypothesis</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/holographic+principle+of+higher+category+theory">holographic principle</a></p> </li> </ul> <h2 id="applications">Applications</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/applications+of+%28higher%29+category+theory">applications of (higher) category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+category+theory+and+physics">higher category theory and physics</a></p> </li> </ul> <h2 id="models">Models</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/%28n%2Cr%29-category">(n,r)-category</a> <ul> <li><a class="existingWikiWord" href="/nlab/show/Theta-space">Theta-space</a></li> <li><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-category">∞-category</a>/<a class="existingWikiWord" href="/nlab/show/%E2%88%9E-category">∞-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2Cn%29-category">(∞,n)-category</a> <ul> <li><a class="existingWikiWord" href="/nlab/show/n-fold+complete+Segal+space">n-fold complete Segal space</a></li> </ul> </li> <li><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C2%29-category">(∞,2)-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a> <ul> <li><a class="existingWikiWord" href="/nlab/show/quasi-category">quasi-category</a> <ul> <li><a class="existingWikiWord" href="/nlab/show/algebraic+quasi-category">algebraic quasi-category</a></li> </ul> </li> <li><a class="existingWikiWord" href="/nlab/show/simplicially+enriched+category">simplicially enriched category</a></li> <li><a class="existingWikiWord" href="/nlab/show/complete+Segal+space">complete Segal space</a></li> <li><a class="existingWikiWord" href="/nlab/show/model+category">model category</a></li> </ul> </li> <li><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C0%29-category">(∞,0)-category</a>/<a class="existingWikiWord" href="/nlab/show/%E2%88%9E-groupoid">∞-groupoid</a> <ul> <li><a class="existingWikiWord" href="/nlab/show/Kan+complex">Kan complex</a> <ul> <li><a class="existingWikiWord" href="/nlab/show/algebraic+Kan+complex">algebraic Kan complex</a></li> <li><a class="existingWikiWord" href="/nlab/show/simplicial+T-complex">simplicial T-complex</a></li> </ul> </li> </ul> </li> <li><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2CZ%29-category">(∞,Z)-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/n-category">n-category</a> = (n,n)-category <ul> <li><a class="existingWikiWord" href="/nlab/show/2-category">2-category</a>, <a class="existingWikiWord" href="/nlab/show/%282%2C1%29-category">(2,1)-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/1-category">1-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/0-category">0-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/%28-1%29-category">(-1)-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/%28-2%29-category">(-2)-category</a></li> </ul> </li> <li><a class="existingWikiWord" href="/nlab/show/n-poset">n-poset</a> = <a class="existingWikiWord" href="/nlab/show/n-poset">(n-1,n)-category</a> <ul> <li><a class="existingWikiWord" href="/nlab/show/poset">poset</a> = <a class="existingWikiWord" href="/nlab/show/%280%2C1%29-category">(0,1)-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/2-poset">2-poset</a> = <a class="existingWikiWord" href="/nlab/show/%281%2C2%29-category">(1,2)-category</a></li> </ul> </li> <li><a class="existingWikiWord" href="/nlab/show/n-groupoid">n-groupoid</a> = (n,0)-category <ul> <li><a class="existingWikiWord" href="/nlab/show/2-groupoid">2-groupoid</a>, <a class="existingWikiWord" href="/nlab/show/3-groupoid">3-groupoid</a></li> </ul> </li> </ul> </li> <li><a class="existingWikiWord" href="/nlab/show/categorification">categorification</a>/<a class="existingWikiWord" href="/nlab/show/decategorification">decategorification</a></li> <li><a class="existingWikiWord" href="/nlab/show/geometric+definition+of+higher+category">geometric definition of higher category</a> <ul> <li><a class="existingWikiWord" href="/nlab/show/Kan+complex">Kan complex</a></li> <li><a class="existingWikiWord" href="/nlab/show/quasi-category">quasi-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/simplicial+model+for+weak+%E2%88%9E-categories">simplicial model for weak ∞-categories</a> <ul> <li><a class="existingWikiWord" href="/nlab/show/complicial+set">complicial set</a></li> <li><a class="existingWikiWord" href="/nlab/show/weak+complicial+set">weak complicial set</a></li> </ul> </li> </ul> </li> <li><a class="existingWikiWord" href="/nlab/show/algebraic+definition+of+higher+category">algebraic definition of higher category</a> <ul> <li><a class="existingWikiWord" href="/nlab/show/bicategory">bicategory</a></li> <li><a class="existingWikiWord" href="/nlab/show/bigroupoid">bigroupoid</a></li> <li><a class="existingWikiWord" href="/nlab/show/tricategory">tricategory</a></li> <li><a class="existingWikiWord" href="/nlab/show/tetracategory">tetracategory</a></li> <li><a class="existingWikiWord" href="/nlab/show/strict+%E2%88%9E-category">strict ∞-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/Batanin+%E2%88%9E-category">Batanin ∞-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/Trimble+n-category">Trimble ∞-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/Grothendieck-Maltsiniotis+%E2%88%9E-categories">Grothendieck-Maltsiniotis ∞-categories</a></li> </ul> </li> <li><a class="existingWikiWord" href="/nlab/show/stable+homotopy+theory">stable homotopy theory</a> <ul> <li><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+category">symmetric monoidal category</a></li> <li><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+%28%E2%88%9E%2C1%29-category">symmetric monoidal (∞,1)-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category">stable (∞,1)-category</a> <ul> <li><a class="existingWikiWord" href="/nlab/show/dg-category">dg-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+category">A-∞ category</a></li> <li><a class="existingWikiWord" href="/nlab/show/triangulated+category">triangulated category</a></li> </ul> </li> </ul> </li> </ul> <h2 id="morphisms">Morphisms</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/k-morphism">k-morphism</a> <ul> <li><a class="existingWikiWord" href="/nlab/show/2-morphism">2-morphism</a></li> </ul> </li> <li><a class="existingWikiWord" href="/nlab/show/transfor">transfor</a> <ul> <li><a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a></li> <li><a class="existingWikiWord" href="/nlab/show/modification">modification</a></li> </ul> </li> </ul> <h2 id="functors">Functors</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/functor">functor</a></li> <li><a class="existingWikiWord" href="/nlab/show/2-functor">2-functor</a> <ul> <li><a class="existingWikiWord" href="/nlab/show/pseudofunctor">pseudofunctor</a></li> <li><a class="existingWikiWord" href="/nlab/show/lax+functor">lax functor</a></li> </ul> </li> <li><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-functor">(∞,1)-functor</a></li> </ul> <h2 id="universal_constructions">Universal constructions</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/2-limit">2-limit</a></li> <li><a class="existingWikiWord" href="/nlab/show/adjoint+%28%E2%88%9E%2C1%29-functor">(∞,1)-adjunction</a></li> <li><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-Kan+extension">(∞,1)-Kan extension</a> <ul> <li><a class="existingWikiWord" href="/nlab/show/limit+in+a+quasi-category">(∞,1)-limit</a></li> </ul> </li> <li><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-Grothendieck+construction">(∞,1)-Grothendieck construction</a></li> </ul> <h2 id="extra_properties_and_structure">Extra properties and structure</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/cosmic+cube">cosmic cube</a> <ul> <li><a class="existingWikiWord" href="/nlab/show/k-tuply+monoidal+n-category">k-tuply monoidal n-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/strict+%E2%88%9E-category">strict ∞-category</a>, <a class="existingWikiWord" href="/nlab/show/strict+%E2%88%9E-groupoid">strict ∞-groupoid</a></li> </ul> </li> <li><a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category">stable (∞,1)-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a></li> </ul> <h2 id="1categorical_presentations">1-categorical presentations</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/homotopical+category">homotopical category</a></li> <li><a class="existingWikiWord" href="/nlab/show/model+category">model category theory</a></li> <li><a class="existingWikiWord" href="/nlab/show/enriched+category+theory">enriched category theory</a></li> </ul> </div></div> </div> </div> <h1 id="companion_pairs">Companion pairs</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <li><a href='#examples'>Examples</a></li> <li><a href='#properties'>Properties</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>A <strong>companion pair</strong> in a <a class="existingWikiWord" href="/nlab/show/double+category">double category</a> is a way of saying that a <a class="existingWikiWord" href="/nlab/show/loose+arrow">loose arrow</a> and a <a class="existingWikiWord" href="/nlab/show/tight+morphism">tight morphism</a> are “<a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphic</a>”, even though they do not live in the same <a class="existingWikiWord" href="/nlab/show/1-category">1-category</a>/<a class="existingWikiWord" href="/nlab/show/2-category">2-category</a>.</p> <p>A <strong>connection pair</strong> in a <a class="existingWikiWord" href="/nlab/show/double+category">double category</a> is a <a class="existingWikiWord" href="/nlab/show/strict+2-functor">strictly 2-functorial</a> choice of companion pairs for every tight morphism.</p> <h2 id="definition">Definition</h2> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo lspace="verythinmathspace">:</mo><mi>A</mi><mo>→</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">f\colon A\to B</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/tight+morphism">tight morphism</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>g</mi><mo lspace="verythinmathspace">:</mo><mi>A</mi><mo>↛</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">g\colon A \nrightarrow B</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/loose+arrow">loose arrow</a> in a <a class="existingWikiWord" href="/nlab/show/double+category">double category</a>. These are said to be a <strong>companion pair</strong> if they come equipped with <a class="existingWikiWord" href="/nlab/show/2-morphisms">2-morphisms</a> of the form: <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="322.809pt" height="89.211pt" viewBox="0 0 322.809 89.211" version="1.2"> <defs> <g> <symbol overflow="visible" id="ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph0-1"> <path style="stroke:none;" d="M 2.515625 -1.640625 C 2 -0.765625 1.5 -0.46875 0.78125 -0.421875 C 0.625 -0.421875 0.5 -0.421875 0.5 -0.140625 C 0.5 -0.0625 0.578125 0 0.6875 0 C 0.953125 0 1.609375 -0.03125 1.875 -0.03125 C 2.3125 -0.03125 2.78125 0 3.203125 0 C 3.28125 0 3.46875 0 3.46875 -0.28125 C 3.46875 -0.421875 3.34375 -0.421875 3.265625 -0.421875 C 2.921875 -0.453125 2.640625 -0.578125 2.640625 -0.9375 C 2.640625 -1.140625 2.71875 -1.296875 2.921875 -1.625 L 4.046875 -3.5 L 7.828125 -3.5 C 7.828125 -3.359375 7.828125 -3.25 7.84375 -3.109375 C 7.890625 -2.71875 8.078125 -1.1875 8.078125 -0.90625 C 8.078125 -0.453125 7.3125 -0.421875 7.078125 -0.421875 C 6.921875 -0.421875 6.75 -0.421875 6.75 -0.15625 C 6.75 0 6.890625 0 6.984375 0 C 7.234375 0 7.53125 -0.03125 7.78125 -0.03125 L 8.625 -0.03125 C 9.53125 -0.03125 10.171875 0 10.1875 0 C 10.296875 0 10.453125 0 10.453125 -0.28125 C 10.453125 -0.421875 10.328125 -0.421875 10.109375 -0.421875 C 9.28125 -0.421875 9.265625 -0.5625 9.234375 -1 L 8.328125 -10.25 C 8.296875 -10.546875 8.234375 -10.578125 8.078125 -10.578125 C 7.921875 -10.578125 7.828125 -10.546875 7.703125 -10.328125 Z M 4.296875 -3.921875 L 7.265625 -8.90625 L 7.78125 -3.921875 Z M 4.296875 -3.921875 "></path> </symbol> <symbol overflow="visible" id="ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph0-2"> <path style="stroke:none;" d="M 5.421875 -9.109375 C 5.546875 -9.65625 5.609375 -9.6875 6.1875 -9.6875 L 8.125 -9.6875 C 9.796875 -9.6875 9.796875 -8.265625 9.796875 -8.125 C 9.796875 -6.9375 8.59375 -5.40625 6.640625 -5.40625 L 4.5 -5.40625 Z M 7.921875 -5.28125 C 9.546875 -5.578125 11 -6.703125 11 -8.078125 C 11 -9.234375 9.984375 -10.109375 8.3125 -10.109375 L 3.5625 -10.109375 C 3.28125 -10.109375 3.140625 -10.109375 3.140625 -9.828125 C 3.140625 -9.6875 3.28125 -9.6875 3.5 -9.6875 C 4.40625 -9.6875 4.40625 -9.5625 4.40625 -9.40625 C 4.40625 -9.375 4.40625 -9.28125 4.34375 -9.0625 L 2.34375 -1.09375 C 2.203125 -0.578125 2.171875 -0.421875 1.140625 -0.421875 C 0.859375 -0.421875 0.71875 -0.421875 0.71875 -0.15625 C 0.71875 0 0.796875 0 1.09375 0 L 6.171875 0 C 8.4375 0 10.1875 -1.71875 10.1875 -3.21875 C 10.1875 -4.421875 9.125 -5.171875 7.921875 -5.28125 Z M 5.828125 -0.421875 L 3.828125 -0.421875 C 3.609375 -0.421875 3.578125 -0.421875 3.5 -0.4375 C 3.328125 -0.453125 3.3125 -0.484375 3.3125 -0.609375 C 3.3125 -0.71875 3.34375 -0.796875 3.375 -0.9375 L 4.421875 -5.109375 L 7.203125 -5.109375 C 8.953125 -5.109375 8.953125 -3.484375 8.953125 -3.359375 C 8.953125 -1.9375 7.65625 -0.421875 5.828125 -0.421875 Z M 5.828125 -0.421875 "></path> </symbol> <symbol overflow="visible" id="ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph1-1"> <path style="stroke:none;" d="M 1.9375 -5.859375 C 1.9375 -6.125 1.9375 -6.390625 1.640625 -6.390625 C 1.34375 -6.390625 1.34375 -6.109375 1.34375 -5.84375 L 1.34375 -0.1875 C 1.34375 0.0625 1.34375 0.328125 1.640625 0.328125 C 1.9375 0.328125 1.9375 0.0625 1.9375 -0.1875 Z M 1.9375 -5.859375 "></path> </symbol> <symbol overflow="visible" id="ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph2-1"> <path style="stroke:none;" d="M 3.78125 -3.9375 L 4.703125 -3.9375 C 4.890625 -3.9375 5.015625 -3.9375 5.015625 -4.125 C 5.015625 -4.25 4.890625 -4.25 4.71875 -4.25 L 3.84375 -4.25 C 4 -5.140625 4.09375 -5.703125 4.203125 -6.15625 C 4.234375 -6.3125 4.265625 -6.421875 4.421875 -6.546875 C 4.546875 -6.65625 4.625 -6.671875 4.734375 -6.671875 C 4.875 -6.671875 5.03125 -6.640625 5.171875 -6.5625 C 5.109375 -6.546875 5.0625 -6.515625 5 -6.484375 C 4.84375 -6.40625 4.71875 -6.21875 4.71875 -6.03125 C 4.71875 -5.796875 4.890625 -5.65625 5.109375 -5.65625 C 5.40625 -5.65625 5.671875 -5.90625 5.671875 -6.25 C 5.671875 -6.71875 5.1875 -6.953125 4.71875 -6.953125 C 4.390625 -6.953125 3.765625 -6.796875 3.453125 -5.890625 C 3.359375 -5.65625 3.359375 -5.640625 3.09375 -4.25 L 2.34375 -4.25 C 2.15625 -4.25 2.03125 -4.25 2.03125 -4.0625 C 2.03125 -3.9375 2.15625 -3.9375 2.328125 -3.9375 L 3.03125 -3.9375 L 2.328125 -0.09375 C 2.140625 0.90625 1.984375 1.734375 1.46875 1.734375 C 1.4375 1.734375 1.21875 1.734375 1.03125 1.625 C 1.484375 1.515625 1.484375 1.09375 1.484375 1.09375 C 1.484375 0.859375 1.3125 0.71875 1.09375 0.71875 C 0.828125 0.71875 0.546875 0.953125 0.546875 1.328125 C 0.546875 1.734375 0.96875 2.015625 1.46875 2.015625 C 2.0625 2.015625 2.484375 1.375 2.609375 1.140625 C 2.96875 0.484375 3.1875 -0.75 3.203125 -0.84375 Z M 3.78125 -3.9375 "></path> </symbol> <symbol overflow="visible" id="ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph2-2"> <path style="stroke:none;" d="M 4.890625 -3.640625 C 4.9375 -3.796875 4.9375 -3.84375 4.9375 -3.859375 C 4.9375 -4.09375 4.75 -4.171875 4.625 -4.171875 C 4.390625 -4.171875 4.21875 -3.984375 4.171875 -3.78125 C 4.09375 -3.9375 3.796875 -4.359375 3.203125 -4.359375 C 2.03125 -4.359375 0.75 -3.046875 0.75 -1.59375 C 0.75 -0.53125 1.453125 0 2.1875 0 C 2.640625 0 3.046875 -0.25 3.375 -0.53125 L 3.15625 0.359375 C 3.046875 0.765625 2.96875 1.0625 2.59375 1.375 C 2.171875 1.734375 1.796875 1.734375 1.546875 1.734375 C 1.296875 1.734375 1.0625 1.734375 0.828125 1.671875 C 1.046875 1.5625 1.140625 1.359375 1.140625 1.1875 C 1.140625 0.953125 0.96875 0.8125 0.765625 0.8125 C 0.515625 0.8125 0.203125 1.015625 0.203125 1.40625 C 0.203125 1.96875 0.984375 2.015625 1.5625 2.015625 C 2.96875 2.015625 3.671875 1.265625 3.828125 0.65625 Z M 3.5625 -1.296875 C 3.5 -1.03125 3.28125 -0.828125 3.078125 -0.640625 C 2.984375 -0.578125 2.609375 -0.28125 2.203125 -0.28125 C 1.8125 -0.28125 1.515625 -0.609375 1.515625 -1.1875 C 1.515625 -1.609375 1.765625 -2.6875 2.03125 -3.1875 C 2.34375 -3.75 2.8125 -4.078125 3.203125 -4.078125 C 3.875 -4.078125 4.046875 -3.34375 4.046875 -3.265625 L 4.015625 -3.125 Z M 3.5625 -1.296875 "></path> </symbol> <symbol overflow="visible" id="ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph2-3"> <path style="stroke:none;" d="M 5.015625 -6.53125 C 5.0625 -6.671875 5.0625 -6.6875 5.0625 -6.71875 C 5.0625 -6.828125 4.984375 -6.859375 4.90625 -6.859375 C 4.78125 -6.859375 4.765625 -6.8125 4.734375 -6.640625 L 3.125 -0.203125 C 2.421875 -0.28125 1.9375 -0.578125 1.9375 -1.28125 C 1.9375 -1.46875 1.9375 -1.734375 2.453125 -3.046875 C 2.5625 -3.3125 2.5625 -3.390625 2.5625 -3.515625 C 2.5625 -4.046875 2.140625 -4.359375 1.671875 -4.359375 C 0.703125 -4.359375 0.296875 -2.96875 0.296875 -2.84375 C 0.296875 -2.75 0.359375 -2.71875 0.4375 -2.71875 C 0.578125 -2.71875 0.578125 -2.78125 0.609375 -2.875 C 0.875 -3.734375 1.296875 -4.078125 1.65625 -4.078125 C 1.796875 -4.078125 1.890625 -3.984375 1.890625 -3.75 C 1.890625 -3.53125 1.796875 -3.28125 1.703125 -3.078125 C 1.203125 -1.765625 1.203125 -1.5625 1.203125 -1.359375 C 1.203125 -0.421875 2.015625 0.015625 3.046875 0.078125 L 2.59375 1.890625 C 2.59375 1.96875 2.671875 2.015625 2.75 2.015625 C 2.875 2.015625 2.890625 1.96875 2.9375 1.765625 C 2.984375 1.546875 2.953125 1.6875 3.359375 0.09375 C 3.765625 0.09375 4.515625 0.09375 5.484375 -0.8125 C 5.890625 -1.1875 6.109375 -1.59375 6.1875 -1.734375 C 6.515625 -2.375 6.65625 -3.234375 6.65625 -3.59375 C 6.65625 -4.359375 6.21875 -4.359375 6.171875 -4.359375 C 5.9375 -4.359375 5.65625 -4.109375 5.65625 -3.84375 C 5.65625 -3.6875 5.75 -3.609375 5.796875 -3.578125 C 5.890625 -3.484375 6.1875 -3.234375 6.1875 -2.75 C 6.1875 -1.9375 5.078125 -0.171875 3.421875 -0.171875 Z M 5.015625 -6.53125 "></path> </symbol> <symbol overflow="visible" id="ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph2-4"> <path style="stroke:none;" d="M 4.5625 -6.71875 C 4.5625 -6.84375 4.453125 -6.859375 4.40625 -6.859375 C 4.28125 -6.859375 4.265625 -6.796875 4.21875 -6.640625 L 3.65625 -4.375 C 1.921875 -4.296875 0.5 -2.984375 0.5 -1.703125 C 0.5 -0.71875 1.359375 0.0625 2.53125 0.109375 C 2.453125 0.421875 2.390625 0.734375 2.3125 1.03125 C 2.1875 1.5 2.109375 1.859375 2.109375 1.890625 C 2.109375 1.90625 2.109375 2.015625 2.25 2.015625 C 2.375 2.015625 2.390625 1.96875 2.4375 1.78125 L 2.859375 0.125 C 4.609375 0.03125 6 -1.265625 6 -2.546875 C 6 -3.6875 5 -4.328125 3.984375 -4.359375 Z M 3.90625 -4.09375 C 4.640625 -4.03125 5.296875 -3.640625 5.296875 -2.71875 C 5.296875 -1.78125 4.625 -0.328125 2.921875 -0.171875 Z M 2.609375 -0.15625 C 2.296875 -0.171875 1.21875 -0.328125 1.21875 -1.53125 C 1.21875 -2.59375 2 -3.9375 3.578125 -4.09375 Z M 2.609375 -0.15625 "></path> </symbol> </g> <clipPath id="ER_3NZxidwtDiDKqHkEKchdJXVE=-clip1"> <path d="M 13 0 L 93 0 L 93 88.429688 L 13 88.429688 Z M 13 0 "></path> </clipPath> <clipPath id="ER_3NZxidwtDiDKqHkEKchdJXVE=-clip2"> <path d="M 27 0 L 79 0 L 79 88.429688 L 27 88.429688 Z M 27 0 "></path> </clipPath> <clipPath id="ER_3NZxidwtDiDKqHkEKchdJXVE=-clip3"> <path d="M 229 0 L 309 0 L 309 88.429688 L 229 88.429688 Z M 229 0 "></path> </clipPath> <clipPath id="ER_3NZxidwtDiDKqHkEKchdJXVE=-clip4"> <path d="M 242 0 L 295 0 L 295 88.429688 L 242 88.429688 Z M 242 0 "></path> </clipPath> </defs> <g id="ER_3NZxidwtDiDKqHkEKchdJXVE=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph0-1" x="7.697912" y="16.549632"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph0-1" x="87.469397" y="16.549632"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph0-1" x="223.383347" y="16.549632"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph0-2" x="303.154832" y="16.549632"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph0-1" x="7.697912" y="79.285781"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph0-2" x="87.022351" y="79.285781"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph0-2" x="222.937292" y="79.285781"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph0-2" x="303.154832" y="79.285781"></use> </g> <path style="fill:none;stroke-width:2.79451;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -137.317849 30.274716 L -81.177245 30.274716 " transform="matrix(0.991233,0,0,-0.991233,161.309342,42.856964)"></path> <path style="fill:none;stroke-width:1.83812;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M -137.317849 30.274716 L -81.177245 30.274716 " transform="matrix(0.991233,0,0,-0.991233,161.309342,42.856964)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph1-1" x="51.374626" y="16.549632"></use> </g> <path style="fill:none;stroke-width:2.79451;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -149.487032 20.820743 L -149.487032 -20.821666 " transform="matrix(0.991233,0,0,-0.991233,161.309342,42.856964)"></path> <path style="fill:none;stroke-width:1.83812;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M -149.487032 20.820743 L -149.487032 -20.821666 " transform="matrix(0.991233,0,0,-0.991233,161.309342,42.856964)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -69.008062 20.820743 L -69.008062 -20.344829 " transform="matrix(0.991233,0,0,-0.991233,161.309342,42.856964)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.488286 2.870218 C -2.031153 1.14809 -1.018368 0.336286 -0.0016427 0.00131772 C -1.018368 -0.33365 -2.031153 -1.149395 -2.488286 -2.867583 " transform="matrix(0,0.991233,0.991233,0,92.904944,63.259441)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph2-1" x="96.391488" y="45.325135"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 80.277235 30.274716 L 135.941002 30.274716 " transform="matrix(0.991233,0,0,-0.991233,161.309342,42.856964)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.488394 2.867357 C -2.031261 1.149169 -1.018476 0.333424 -0.00175054 -0.0015435 C -1.018476 -0.336511 -2.031261 -1.148316 -2.488394 -2.870444 " transform="matrix(0.991233,0,0,-0.991233,296.294704,12.846126)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph2-2" x="266.032152" y="7.441189"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph1-1" x="267.060061" y="16.549632"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 68.108051 20.820743 L 68.108051 -20.344829 " transform="matrix(0.991233,0,0,-0.991233,161.309342,42.856964)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.488286 2.868402 C -2.031153 1.146274 -1.018368 0.334469 -0.0016427 -0.000498515 C -1.018368 -0.335466 -2.031153 -1.147271 -2.488286 -2.869399 " transform="matrix(0,0.991233,0.991233,0,228.820807,63.259441)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph2-1" x="219.206289" y="45.325135"></use> </g> <path style="fill:none;stroke-width:2.79451;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 149.036272 20.820743 L 149.036272 -20.821666 " transform="matrix(0.991233,0,0,-0.991233,161.309342,42.856964)"></path> <path style="fill:none;stroke-width:1.83812;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M 149.036272 20.820743 L 149.036272 -20.821666 " transform="matrix(0.991233,0,0,-0.991233,161.309342,42.856964)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -137.317849 -33.014494 L -82.107274 -33.014494 " transform="matrix(0.991233,0,0,-0.991233,161.309342,42.856964)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.486298 2.870407 C -2.033107 1.148278 -1.020322 0.336474 0.000344958 0.00150609 C -1.020322 -0.333462 -2.033107 -1.149207 -2.486298 -2.867395 " transform="matrix(0.991233,0,0,-0.991233,80.159814,75.583524)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph2-2" x="50.12369" y="83.3201"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph1-1" x="51.150608" y="79.285781"></use> </g> <path style="fill:none;stroke-width:2.79451;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 80.726486 -33.014494 L 136.417838 -33.014494 " transform="matrix(0.991233,0,0,-0.991233,161.309342,42.856964)"></path> <path style="fill:none;stroke-width:1.83812;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M 80.726486 -33.014494 L 136.417838 -33.014494 " transform="matrix(0.991233,0,0,-0.991233,161.309342,42.856964)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph1-1" x="267.283089" y="79.285781"></use> </g> <g clip-path="url(#ER_3NZxidwtDiDKqHkEKchdJXVE=-clip1)" clip-rule="nonzero"> <path style="fill:none;stroke-width:2.79451;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -109.267251 25.368423 L -109.448528 -25.48363 " transform="matrix(0.991233,0,0,-0.991233,161.309342,42.856964)"></path> </g> <g clip-path="url(#ER_3NZxidwtDiDKqHkEKchdJXVE=-clip2)" clip-rule="nonzero"> <path style="fill:none;stroke-width:1.83812;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M -109.267251 25.368423 L -109.448528 -25.48363 " transform="matrix(0.991233,0,0,-0.991233,161.309342,42.856964)"></path> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.553022 3.0709 C -0.798448 1.445955 1.228223 0.0580587 2.387085 -0.000871476 C 1.22863 -0.0562287 -0.799973 -1.44674 -1.550868 -3.069162 " transform="matrix(-0.00352879,0.991184,0.991184,0.00352879,52.821787,68.118338)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph2-3" x="56.393241" y="46.683125"></use> </g> <g clip-path="url(#ER_3NZxidwtDiDKqHkEKchdJXVE=-clip3)" clip-rule="nonzero"> <path style="fill:none;stroke-width:2.79451;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 108.3633 25.368423 L 108.544576 -25.48363 " transform="matrix(0.991233,0,0,-0.991233,161.309342,42.856964)"></path> </g> <g clip-path="url(#ER_3NZxidwtDiDKqHkEKchdJXVE=-clip4)" clip-rule="nonzero"> <path style="fill:none;stroke-width:1.83812;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M 108.3633 25.368423 L 108.544576 -25.48363 " transform="matrix(0.991233,0,0,-0.991233,161.309342,42.856964)"></path> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.550863 3.070341 C -0.799969 1.447919 1.228634 0.057408 2.387076 -0.00189022 C 1.228227 -0.0568794 -0.798458 -1.448717 -1.553018 -3.069721 " transform="matrix(0.00352879,0.991184,0.991184,-0.00352879,268.903606,68.118338)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ER_3NZxidwtDiDKqHkEKchdJXVE=-glyph2-4" x="272.302694" y="46.683125"></use> </g> </g> </svg> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi><msub><mo>∘</mo> <mi>τ</mi></msub><mi>ψ</mi><mo>=</mo><msub><mi>id</mi> <mi>g</mi></msub></mrow><annotation encoding="application/x-tex">\phi \circ_\tau \psi = id_{g}</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi><msub><mo>∘</mo> <mi>λ</mi></msub><mi>ψ</mi><mo>=</mo><msub><mi>id</mi> <mi>f</mi></msub></mrow><annotation encoding="application/x-tex">\phi \circ_\lambda \psi = id_{f}</annotation></semantics></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo>∘</mo> <mi>τ</mi></msub></mrow><annotation encoding="application/x-tex">\circ_\tau</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo>∘</mo> <mi>λ</mi></msub></mrow><annotation encoding="application/x-tex">\circ_\lambda</annotation></semantics></math> denote, respectively, loose and tight composition of 2-cells.</p> <p>Given such a companion pair, we say that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>g</mi></mrow><annotation encoding="application/x-tex">g</annotation></semantics></math> are <strong>companions</strong> of each other. A double category for which every tight morphism admits a companion may be called <strong>companionable</strong>.</p> <h2 id="examples">Examples</h2> <p> <div class='num_remark'> <h6>Example</h6> <p>In the double category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>Sq</mi></mstyle><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbf{Sq}(K)</annotation></semantics></math> of squares (<a class="existingWikiWord" href="/nlab/show/quintets">quintets</a>) in any <a class="existingWikiWord" href="/nlab/show/2-category">2-category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math>, a companion pair is simply an invertible 2-cell between two parallel 1-morphisms of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math>.</p> </div> </p> <p> <div class='num_remark'> <h6>Example</h6> <p>In the <a class="existingWikiWord" href="/nlab/show/double+category+of+algebras"> double category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <mi>T</mi> </mrow> <annotation encoding="application/x-tex">T</annotation> </semantics> </math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <mstyle mathvariant="bold"> <mi>Alg</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">\mathbf{Alg}</annotation> </semantics> </math> of algebras, lax morphisms, and colax morphisms</a> for a <a class="existingWikiWord" href="/nlab/show/2-monad">2-monad</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>, an arrow (of either sort) has a companion precisely when it is a <em>strong</em> (= pseudo) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-morphism. This is important in the theory of <a class="existingWikiWord" href="/nlab/show/doctrinal+adjunction">doctrinal adjunction</a>.</p> </div> </p> <h2 id="properties">Properties</h2> <ul> <li> <p>The loose (or tight) dual of a companion pair is a <a class="existingWikiWord" href="/nlab/show/conjunction">conjunction</a>.</p> </li> <li> <p>Companion pairs (and conjunctions) have a <a class="existingWikiWord" href="/nlab/show/mate">mate</a> correspondence generalizing the calculus of mates in 2-categories.</p> </li> <li> <p>If every tight arrow in some double category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> has a companion, then the functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>↦</mo><mi>g</mi></mrow><annotation encoding="application/x-tex">f\mapsto g</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/pseudofunctor">pseudofunctor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi><mi>D</mi><mo>→</mo><mi>L</mi><mi>D</mi></mrow><annotation encoding="application/x-tex">T D \to L D</annotation></semantics></math> from the tight 2-category to the loose one, which is the identity on objects, and <a class="existingWikiWord" href="/nlab/show/locally+fully+faithful+2-functor">locally fully faithful</a> by the mate correspondence. A choice of companions that make this a strict 2-functor is called a <a class="existingWikiWord" href="/nlab/show/connection+on+a+double+category">connection</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> (an arbitrary choice of companions may be called a “pseudo-connection”). A double category with a connection is thereby equivalent to an <a class="existingWikiWord" href="/nlab/show/F-category">F-category</a>. If every tight arrow also has a <a class="existingWikiWord" href="/nlab/show/conjoint">conjoint</a>, then this makes <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> into a <a class="existingWikiWord" href="/nlab/show/proarrow+equipment">proarrow equipment</a>, or equivalently a <a class="existingWikiWord" href="/nlab/show/framed+bicategory">framed bicategory</a>.</p> </li> <li> <p>Companion pairs and mate-pairs of 2-cells between them in any double category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> form a 2-category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Comp</mi><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Comp(D)</annotation></semantics></math>. The functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Comp</mi><mo lspace="verythinmathspace">:</mo><mi>DblCat</mi><mo>→</mo><mn>2</mn><mi>Cat</mi></mrow><annotation encoding="application/x-tex">Comp\colon DblCat \to 2Cat</annotation></semantics></math> is right adjoint to the functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Sq</mi><mo lspace="verythinmathspace">:</mo><mn>2</mn><mi>Cat</mi><mo>→</mo><mi>DblCat</mi></mrow><annotation encoding="application/x-tex">Sq\colon 2Cat \to DblCat</annotation></semantics></math> sending a 2-category to its double category of <a class="existingWikiWord" href="/nlab/show/quintet+construction">squares</a>.</p> </li> <li> <p>A double category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℂ</mi></mrow><annotation encoding="application/x-tex">\mathbb{C}</annotation></semantics></math>, carried by the span of categories <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>C</mi> <mn>0</mn></msub><mover><mo>←</mo><mi>s</mi></mover><msub><mi>C</mi> <mn>1</mn></msub><mover><mo>→</mo><mi>t</mi></mover><msub><mi>C</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">C_0 \xleftarrow{s} C_1 \xrightarrow{t} C_0</annotation></semantics></math> has all companions iff such span is a <a class="existingWikiWord" href="/nlab/show/two-sided+fibration">two-sided fibration</a> in the sense of Street. Indeed, consider a <a class="existingWikiWord" href="/nlab/show/tight+map">tight map</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>h</mi><mo>:</mo><mi>A</mi><mo>→</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">h:A \to B</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℂ</mi></mrow><annotation encoding="application/x-tex">\mathbb{C}</annotation></semantics></math>, thus a morphism in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>C</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">C_0</annotation></semantics></math>, and the unit <a class="existingWikiWord" href="/nlab/show/loose+arrow">loose arrow</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>U</mi> <mi>A</mi></msub></mrow><annotation encoding="application/x-tex">U_A</annotation></semantics></math> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>: since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>s</mi></mrow><annotation encoding="application/x-tex">s</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/opfibration">opfibration</a>, we obtain a square <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>η</mi><mo>:</mo><mo>=</mo><msub><mi mathvariant="normal">cocart</mi> <mi>h</mi></msub><mo>:</mo><msub><mi>U</mi> <mi>A</mi></msub><mo>⇒</mo><msub><mi>h</mi> <mo>*</mo></msub><msub><mi>U</mi> <mi>A</mi></msub></mrow><annotation encoding="application/x-tex">\eta:=\mathrm{cocart}_h: U_A \Rightarrow h_* U_A</annotation></semantics></math>, with source (top boundary) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>h</mi></mrow><annotation encoding="application/x-tex">h</annotation></semantics></math> and target (bottom boundary) necessarily <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mn>1</mn> <mi>B</mi></msub></mrow><annotation encoding="application/x-tex">1_B</annotation></semantics></math> since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>s</mi></mrow><annotation encoding="application/x-tex">s</annotation></semantics></math>-cartesian maps are <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>t</mi></mrow><annotation encoding="application/x-tex">t</annotation></semantics></math>-vertical in a two-sided fibration. Dually, we get a cartesian square <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ε</mi><mo>:</mo><mo>=</mo><msub><mi mathvariant="normal">cart</mi> <mi>h</mi></msub><mo>:</mo><msup><mi>h</mi> <mo>*</mo></msup><msub><mi>U</mi> <mi>B</mi></msub><mo>⇒</mo><msub><mi>U</mi> <mi>B</mi></msub></mrow><annotation encoding="application/x-tex">\varepsilon:=\mathrm{cart}_h : h^*U_B \Rightarrow U_B </annotation></semantics></math>. We claim <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi mathvariant="normal">cocart</mi> <mi>h</mi></msub></mrow><annotation encoding="application/x-tex">\mathrm{cocart}_h</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi mathvariant="normal">cart</mi> <mi>h</mi></msub></mrow><annotation encoding="application/x-tex">\mathrm{cart}_h</annotation></semantics></math> are, respectively, the unit and counit of a companionship between <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>h</mi></mrow><annotation encoding="application/x-tex">h</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>h</mi><mo>′</mo><mo>:</mo><mo>=</mo><msup><mi>h</mi> <mo>*</mo></msup><msub><mi>U</mi> <mi>B</mi></msub><mo>=</mo><msub><mi>h</mi> <mo>*</mo></msub><msub><mi>U</mi> <mi>A</mi></msub></mrow><annotation encoding="application/x-tex">h':=h^*U_B = h_*U_A</annotation></semantics></math>. First, observe this latter equation holds since the identiy square of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>h</mi></mrow><annotation encoding="application/x-tex">h</annotation></semantics></math> factors as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ε</mi><mi>η</mi></mrow><annotation encoding="application/x-tex">\varepsilon \eta</annotation></semantics></math>, using either universal property. This proves also the first companionship equation. As for the fact <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>η</mi><mo>⊙</mo><mi>ε</mi><mo>=</mo><msub><mn>1</mn> <mrow><mi>h</mi><mo>′</mo></mrow></msub></mrow><annotation encoding="application/x-tex">\eta \odot \varepsilon = 1_{h'}</annotation></semantics></math>, it follows again from the aforementioned factorization: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>η</mi><mo>⊙</mo><mi>ε</mi></mrow><annotation encoding="application/x-tex">\eta \odot \varepsilon</annotation></semantics></math> is an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(s,t)</annotation></semantics></math>-vertical morphism which is thus isomorphic to the identity of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>h</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">h'</annotation></semantics></math> by uniqueness of the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>s</mi></mrow><annotation encoding="application/x-tex">s</annotation></semantics></math>-vertical, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(s,t)</annotation></semantics></math>-vertical, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>t</mi></mrow><annotation encoding="application/x-tex">t</annotation></semantics></math>-vertical factorization of a morphism in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">C_1</annotation></semantics></math>. <em>Vice versa</em>, companions can be used to construct the above co/cartesian lifts, as shown in (<a href="#Shulman08">Shulman ‘08</a>).</p> </li> </ul> <h2 id="related_concepts">Related concepts</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/retrocell">retrocell</a></li> <li><a class="existingWikiWord" href="/nlab/show/conjunction">conjunction</a></li> </ul> <h2 id="references">References</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Marco+Grandis">Marco Grandis</a> and <a class="existingWikiWord" href="/nlab/show/Robert+Pare">Robert Pare</a>, <em>Adjoints for double categories</em>, <a href="http://www.numdam.org/item/CTGDC_2004__45_3_193_0.pdf">NUMDAM</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Robert+Dawson">Robert Dawson</a> and <a class="existingWikiWord" href="/nlab/show/Robert+Pare">Robert Pare</a> and <a class="existingWikiWord" href="/nlab/show/Dorette+Pronk">Dorette Pronk</a>, <em>The Span construction</em>, <a href="http://www.tac.mta.ca/tac/volumes/24/13/24-13abs.html">TAC</a>.</p> </li> <li id="Shulman08"> <p><a class="existingWikiWord" href="/nlab/show/Michael+Shulman">Michael Shulman</a>, <em>Framed bicategories and monoidal fibrations</em>, <a href="http://www.tac.mta.ca/tac/volumes/20/18/20-18abs.html">TAC</a></p> </li> </ul> <p>This latter reference explains the relationship between companions to connection pairs and <strong>foldings</strong>:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Ronnie+Brown">Ronnie Brown</a> and C.B. Spencer, <a href="http://www.numdam.org/item/CTGDC_1976__17_4_343_0">Double groupoids and crossed modules</a>, <em>Cahiers de Topologie et Géométrie Différentielle Catégoriques</em> <strong>17</strong> (1976), 343–362.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Ronald+Brown">Ronald Brown</a> and Ghafar H. Mosa, <em>Double categories, 2-categories, thin structures and connections</em>, Theory and Application of Categories 5.7 (1999): 163-1757.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Thomas+M.+Fiore">Thomas M. Fiore</a>, <em>Pseudo Algebras and Pseudo Double Categories</em>, <em>Journal of Homotopy and Related Structures</em>, Volume 2, Number 2, pages 119-170, 2007. 51 pages.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Robert+Pare">Robert Pare</a>, <em>Seeing double</em>, Talk given at FMCS 2018, (<a href="https://www.mscs.dal.ca/~pare/FMCS2.pdf">pdf</a>)</p> </li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on October 30, 2024 at 11:55:25. See the <a href="/nlab/history/companion+pair" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/companion+pair" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/14686/#Item_8">Discuss</a><span class="backintime"><a href="/nlab/revision/companion+pair/15" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/companion+pair" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/companion+pair" accesskey="S" class="navlink" id="history" rel="nofollow">History (15 revisions)</a> <a href="/nlab/show/companion+pair/cite" style="color: black">Cite</a> <a href="/nlab/print/companion+pair" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/companion+pair" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10