CINXE.COM
Search results for: credit markets
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: credit markets</title> <meta name="description" content="Search results for: credit markets"> <meta name="keywords" content="credit markets"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="credit markets" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="credit markets"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1293</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: credit markets</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1293</span> Sensitivity of Credit Default Swaps Premium to Global Risk Factor: Evidence from Emerging Markets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oguzhan%20Cepni">Oguzhan Cepni</a>, <a href="https://publications.waset.org/abstracts/search?q=Doruk%20Kucuksarac"> Doruk Kucuksarac</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hasan%20Yilmaz"> M. Hasan Yilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Risk premium of emerging markets are moving altogether depending on the momentum and shifts in the global risk appetite. However, the magnitudes of these changes in the risk premium of emerging market economies might vary. In this paper, we focus on how global risk factor affects credit default swaps (CDS) premiums of emerging markets using principal component analysis (PCA) and rolling regressions. PCA results indicate that the first common component accounts for almost 76% of common variation in CDS premiums of emerging markets. Additionally, the explanatory power of the first factor seems to be high over sample period. However, the sensitivity to the global risk factor tends to change over time and across countries. In this regard, fixed effects panel regressions are employed to identify the macroeconomic factors driving the heterogeneity across emerging markets. There are two main macroeconomic variables that affect the sensitivity; government debt to GDP and international reserves to GDP. The countries with lower government debt and higher reserves tend to be less subject to the variations in the global risk appetite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emerging%20markets" title="emerging markets">emerging markets</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20component%20analysis" title=" principal component analysis"> principal component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=credit%20default%20swaps" title=" credit default swaps"> credit default swaps</a>, <a href="https://publications.waset.org/abstracts/search?q=sovereign%20risk" title=" sovereign risk"> sovereign risk</a> </p> <a href="https://publications.waset.org/abstracts/68845/sensitivity-of-credit-default-swaps-premium-to-global-risk-factor-evidence-from-emerging-markets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1292</span> Theoretical and ML-Driven Identification of a Mispriced Credit Risk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuri%20Katz">Yuri Katz</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun%20Liu"> Kun Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Arunram%20Atmacharan"> Arunram Atmacharan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to illiquidity, mispricing on Credit Markets is inevitable. This creates huge challenges to banks and investors as they seek to find new ways of risk valuation and portfolio management in a post-credit crisis world. Here, we analyze the difference in behavior of the spread-to-maturity in investment and high-yield categories of US corporate bonds between 2014 and 2023. Deviation from the theoretical dependency of this measure in the universe under study allows to identify multiple cases of mispriced credit risk. Remarkably, we observe mispriced bonds in both categories of credit ratings. This identification is supported by the application of the state-of-the-art machine learning model in more than 90% of cases. Noticeably, the ML-driven model-based forecasting of a category of bond’s credit ratings demonstrate an excellent out-of-sample accuracy (AUC = 98%). We believe that these results can augment conventional valuations of credit portfolios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=credit%20risk" title="credit risk">credit risk</a>, <a href="https://publications.waset.org/abstracts/search?q=credit%20ratings" title=" credit ratings"> credit ratings</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20pricing" title=" bond pricing"> bond pricing</a>, <a href="https://publications.waset.org/abstracts/search?q=spread-to-maturity" title=" spread-to-maturity"> spread-to-maturity</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/171152/theoretical-and-ml-driven-identification-of-a-mispriced-credit-risk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1291</span> The Sensitivity of Credit Defaults Swaps Premium to Global Risk Factor: Evidence from Emerging Markets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oguzhan%20Cepni">Oguzhan Cepni</a>, <a href="https://publications.waset.org/abstracts/search?q=Doruk%20Kucuksarac"> Doruk Kucuksarac</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hasan%20Yilmaz"> M. Hasan Yilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Changes in the global risk appetite cause co-movement in emerging market risk premiums. However, the sensitivity of the changes in risk premium to the global risk appetite may vary across emerging markets. In this study, how the global risk appetite affects Credit Default Swap (CDS) premiums in emerging markets are analyzed using Principal Component Analysis (PCA) and rolling regressions. The PCA results indicate that the first common component derived by the PCA accounts for almost 76 percent of the common variation in CDS premiums. Additionally, the explanatory power of the first factor seems to be high over the sample period. However, the sensitivity to the global risk factor tends to change over time and across countries. In this regard, fixed effects panel regressions are used to identify the macroeconomic factors driving the heterogeneity across emerging markets. The panel regression results point to the significance of government debt to GDP and international reserves to GDP in explaining sensitivity. Accordingly, countries with lower government debt and higher reserves tend to be less subject to the variations in the global risk appetite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=credit%20default%20swaps" title="credit default swaps">credit default swaps</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20markets" title=" emerging markets"> emerging markets</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20components%20analysis" title=" principal components analysis"> principal components analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sovereign%20risk" title=" sovereign risk"> sovereign risk</a> </p> <a href="https://publications.waset.org/abstracts/75647/the-sensitivity-of-credit-defaults-swaps-premium-to-global-risk-factor-evidence-from-emerging-markets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1290</span> The Role of Microfinance in Economic Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babak%20Salekmahdy">Babak Salekmahdy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microfinance is often seen as a means of repairing credit markets and unleashing the potential contribution of impoverished people who rely on self-employment. Since the 1990s, the microfinance industry has expanded rapidly, opening the path for additional kinds of social entrepreneurship and social investment. However, current data indicate relatively few average consumer effects, opposing pushback against microfinance. This research reconsiders microfinance statements, stressing the variety of data on impacts and the essential (but limited) role of reimbursements. The report finishes by explaining a shift in thinking: from microfinance as a strictly defined enterprise finance to microfinance as a more widely defined home finance. Microfinance, under this perspective, provides advantages by providing liquidity for various requirements rather than just by increasing income. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfinance" title="microfinance">microfinance</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20business" title=" small business"> small business</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20development" title=" economic development"> economic development</a>, <a href="https://publications.waset.org/abstracts/search?q=credit%20markets" title=" credit markets"> credit markets</a> </p> <a href="https://publications.waset.org/abstracts/152732/the-role-of-microfinance-in-economic-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1289</span> Understanding the Nature of Capital Allocation Problem in Corporate Finance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meltem%20Gurunlu">Meltem Gurunlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the central problems in corporate finance is the allocation of funds. This usually takes two forms: allocation of funds across firms in an economy or allocation of funds across projects or business units within a firm. The first one is typically related to the external markets (the bond market, the stock market, banks and finance companies) whereas the second form of the capital allocation is related to the internal capital markets in which corporate headquarters allocate capital to their business units. (within-group transfers, within-group credit markets, and within-group equity market). The main aim of this study is to investigate the nature of capital allocation dynamics by comparing the relevant studies carried out on external and internal capital markets with paying special significance to the business groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20capital%20markets" title="internal capital markets">internal capital markets</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20capital%20markets" title=" external capital markets"> external capital markets</a>, <a href="https://publications.waset.org/abstracts/search?q=capital%20structure" title=" capital structure"> capital structure</a>, <a href="https://publications.waset.org/abstracts/search?q=capital%20allocation" title=" capital allocation"> capital allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20groups" title=" business groups"> business groups</a>, <a href="https://publications.waset.org/abstracts/search?q=corporate%20finance" title=" corporate finance"> corporate finance</a> </p> <a href="https://publications.waset.org/abstracts/89423/understanding-the-nature-of-capital-allocation-problem-in-corporate-finance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1288</span> Accessibility of Institutional Credit and Its Impact on Agricultural Output: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Showkat%20Ahmad%20Bhat">Showkat Ahmad Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Bhatt"> M. S. Bhatt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study evaluates the ex-post impact of institutional credit on agricultural output. It first examines the key factors that influence the accessibility of institutional credit by farm households. For quantitative analysis both program participant and non-participant respondents were drawn and cross-sectional survey data were collected from 412 households in Pulwama District of Jammu & Kashmir (India). Propensity Score Matching Method was employed to analyze the impact of the institutional credit on agricultural output. Results show that institutional credit has a positive and significant impact on the agricultural output measured in terms of farm income and crop productivity. To estimate the accessibility of credit, an examination of both demand side and supply side factors were carried out. The demand for credit was measured with respect to respondents who applied for credit. Supply side credit allocation measured in terms of the proportion of ‘credit amount’ farmers obtained. Logit and Two-limit Tobit Regression Models were used to investigate the determinants that influence the accessibility of formal credit for Demand for and supply of credit respectively. The estimated results suggested that the demand for credit is positively and significantly affected by the factors such as: age of the household head, formal education, membership, cash crop grown, farm size and saving account. All the variables were found significantly increasing the household’s likelihood to demand for and supply of credit from banks. However, the impact of these factors varies considerably across the credit markets. Factors which were found negatively and significantly influencing the accessibility of credit were: ‘square of the age’, household assets and rate of interest. The credit constraints analysis suggested that square of the age; household assets and rate of interest were the three most important factors that increased the probability of being constrained. The study finally discusses these results in detail and draws some recommendations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=institutional%20credit" title="institutional credit">institutional credit</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=propensity%20score%20matching%20logit%20model" title=" propensity score matching logit model"> propensity score matching logit model</a>, <a href="https://publications.waset.org/abstracts/search?q=Tobit%20model" title=" Tobit model"> Tobit model</a> </p> <a href="https://publications.waset.org/abstracts/27490/accessibility-of-institutional-credit-and-its-impact-on-agricultural-output-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1287</span> E-Hailing Taxi Industry Management Mode Innovation Based on the Credit Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan-lin%20Liu">Yuan-lin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye%20Li"> Ye Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tian%20Xia"> Tian Xia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are some shortcomings in Chinese existing taxi management modes. This paper suggests to establish the third-party comprehensive information management platform and put forward an evaluation model based on credit. Four indicators are used to evaluate the drivers’ credit, they are passengers’ evaluation score, driving behavior evaluation, drivers’ average bad record number, and personal credit score. A weighted clustering method is used to achieve credit level evaluation for taxi drivers. The management of taxi industry is based on the credit level, while the grade of the drivers is accorded to their credit rating. Credit rating determines the cost, income levels, the market access, useful period of license and the level of wage and bonus, as well as violation fine. These methods can make the credit evaluation effective. In conclusion, more credit data will help to set up a more accurate and detailed classification standard library. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=credit" title="credit">credit</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20internet" title=" mobile internet"> mobile internet</a>, <a href="https://publications.waset.org/abstracts/search?q=e-hailing%20taxi" title=" e-hailing taxi"> e-hailing taxi</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20mode" title=" management mode"> management mode</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20cluster" title=" weighted cluster"> weighted cluster</a> </p> <a href="https://publications.waset.org/abstracts/60869/e-hailing-taxi-industry-management-mode-innovation-based-on-the-credit-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1286</span> Volatility Transmission among European Bank CDS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aida%20Alemany">Aida Alemany</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Ballester"> Laura Ballester</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Gonz%C3%A1lez-Urteaga"> Ana González-Urteaga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From 2007 subprime crisis to the recent Eurozone debt crisis the European banking industry has experienced a terrible financial instability situation with increasing levels of CDS spreads (used as a proxy of credit risk). This paper investigates whether volatility transmission channels in European banking markets have changed after three significant crises’ events during the period January 2006 to March 2013. The global financial crisis is characterized by a unidirectional volatility shocks spillovers effect in credit risk from inside to outside the Eurozone. By contrast, the Eurozone debt crisis is revealed to be local in nature with the euro as the key element suggesting a market fragmentation between distressed peripheral and non-distressed core Eurozone countries, whereas retaining the local currency have acted as a firewall. With these findings we are able to shed light on the impact of the different crises on the European banking credit risk dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CDS%20spreads" title="CDS spreads">CDS spreads</a>, <a href="https://publications.waset.org/abstracts/search?q=credit%20risk" title=" credit risk"> credit risk</a>, <a href="https://publications.waset.org/abstracts/search?q=volatility%20spillovers" title=" volatility spillovers"> volatility spillovers</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20crisis" title=" financial crisis"> financial crisis</a> </p> <a href="https://publications.waset.org/abstracts/21226/volatility-transmission-among-european-bank-cds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1285</span> Assessment of Mortgage Applications Using Fuzzy Logic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swathi%20Sampath">Swathi Sampath</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Kalaichelvi"> V. Kalaichelvi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The assessment of the risk posed by a borrower to a lender is one of the common problems that financial institutions have to deal with. Consumers vying for a mortgage are generally compared to each other by the use of a number called the Credit Score, which is generated by applying a mathematical algorithm to information in the applicant’s credit report. The higher the credit score, the lower the risk posed by the candidate, and the better he is to be taken on by the lender. The objective of the present work is to use fuzzy logic and linguistic rules to create a model that generates Credit Scores. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=credit%20scoring" title="credit scoring">credit scoring</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=mortgage" title=" mortgage"> mortgage</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/16553/assessment-of-mortgage-applications-using-fuzzy-logic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1284</span> Board of Directors Characteristics and Credit Union Financial Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luisa%20Unda">Luisa Unda</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Ahmed"> Kamran Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Mather"> Paul Mather</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We examine the effect of board characteristics on the performance and asset quality of credit unions in Australia, using a large sample covering the period 2004-2012. Credit unions are unique in that they are customer-owned financial institutions and directors are democratically elected by members, which is distinctly different from other financial institutions, such as commercial banks. We find that board remuneration, board expertise, and attendance at board meetings have significantly positive impacts on credit union performance and asset quality, while board members who hold multiple directorships (busy directors), have a significant negative impact on credit union performance. Financial performance also improves with larger boards and long-tenured directors in credit unions. All of these relations hold after we control for alternative measures of performance, credit union characteristics and endogeneity problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=credit%20unions" title="credit unions">credit unions</a>, <a href="https://publications.waset.org/abstracts/search?q=corporate%20governance" title=" corporate governance"> corporate governance</a>, <a href="https://publications.waset.org/abstracts/search?q=board%20of%20directors" title=" board of directors"> board of directors</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20performance" title=" financial performance"> financial performance</a>, <a href="https://publications.waset.org/abstracts/search?q=Australia" title=" Australia"> Australia</a>, <a href="https://publications.waset.org/abstracts/search?q=asset%20quality" title=" asset quality"> asset quality</a> </p> <a href="https://publications.waset.org/abstracts/26547/board-of-directors-characteristics-and-credit-union-financial-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1283</span> Literature Review on the Barriers to Access Credit for Small Agricultural Producers and Policies to Mitigate Them in Developing Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Margarita%20G%C3%A1faro">Margarita Gáfaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Karelys%20Guzm%C3%A1n"> Karelys Guzmán</a>, <a href="https://publications.waset.org/abstracts/search?q=Paola%20Poveda"> Paola Poveda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper establishes the theoretical aspects that explain the barriers to accessing credit for small agricultural producers in developing countries and identifies successful policy experiences to mitigate them. We will test two hypotheses. The first one is that information asymmetries, high transaction costs and high-risk exposure limit the supply of credit to small agricultural producers in developing countries. The second hypothesis is that low levels of financial education and productivity and high uncertainty about the returns of agricultural activity limit the demand for credit. To test these hypotheses, a review of the theoretical and empirical literature on access to rural credit in developing countries will be carried out. The first part of this review focuses on theoretical models that incorporate information asymmetries in the credit market and analyzes the interaction between these asymmetries and the characteristics of the agricultural sector in developing countries. Some of the characteristics we will focus on are the absence of collateral, the underdevelopment of the judicial systems and insurance markets, and the high dependence on climatic factors of production technologies. The second part of this review focuses on the determinants of credit demand by small agricultural producers, including the profitability of productive projects, security conditions, risk aversion or loss, financial education, and cognitive biases, among others. There are policies that focus on resolving these supply and demand constraints and managing to improve credit access. Therefore, another objective of this paper is to present a review of effective policies that have promoted access to credit for smallholders in the world. For this, information available in policy documents will be collected. This information will be complemented by interviews with officials in charge of the design and execution of these policies in a subset of selected countries. The information collected will be analyzed in light of the conceptual framework proposed in the first two parts of this section. The barriers to access to credit that each policy attempts to resolve and the factors that could explain its effectiveness will be identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20economics" title="agricultural economics">agricultural economics</a>, <a href="https://publications.waset.org/abstracts/search?q=credit%20access" title=" credit access"> credit access</a>, <a href="https://publications.waset.org/abstracts/search?q=smallholder" title=" smallholder"> smallholder</a>, <a href="https://publications.waset.org/abstracts/search?q=developing%20countries" title=" developing countries"> developing countries</a> </p> <a href="https://publications.waset.org/abstracts/176672/literature-review-on-the-barriers-to-access-credit-for-small-agricultural-producers-and-policies-to-mitigate-them-in-developing-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1282</span> Credit Risk Evaluation Using Genetic Programming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ines%20Gasmi">Ines Gasmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salima%20Smiti"> Salima Smiti</a>, <a href="https://publications.waset.org/abstracts/search?q=Makram%20Soui"> Makram Soui</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Ghedira"> Khaled Ghedira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Credit risk is considered as one of the important issues for financial institutions. It provokes great losses for banks. To this objective, numerous methods for credit risk evaluation have been proposed. Many evaluation methods are black box models that cannot adequately reveal information hidden in the data. However, several works have focused on building transparent rules-based models. For credit risk assessment, generated rules must be not only highly accurate, but also highly interpretable. In this paper, we aim to build both, an accurate and transparent credit risk evaluation model which proposes a set of classification rules. In fact, we consider the credit risk evaluation as an optimization problem which uses a genetic programming (GP) algorithm, where the goal is to maximize the accuracy of generated rules. We evaluate our proposed approach on the base of German and Australian credit datasets. We compared our finding with some existing works; the result shows that the proposed GP outperforms the other models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=credit%20risk%20assessment" title="credit risk assessment">credit risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=rule%20generation" title=" rule generation"> rule generation</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20programming" title=" genetic programming"> genetic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a> </p> <a href="https://publications.waset.org/abstracts/81801/credit-risk-evaluation-using-genetic-programming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1281</span> Advanced Machine Learning Algorithm for Credit Card Fraud Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manpreet%20Kaur">Manpreet Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When legitimate credit card users are mistakenly labelled as fraudulent in numerous financial delated applications, there are numerous ethical problems. The innovative machine learning approach we have suggested in this research outperforms the current models and shows how to model a data set for credit card fraud detection while minimizing false positives. As a result, we advise using random forests as the best machine learning method for predicting and identifying credit card transaction fraud. The majority of victims of these fraudulent transactions were discovered to be credit card users over the age of 60, with a higher percentage of fraudulent transactions taking place between the specific hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20fraud%20detection" title="automated fraud detection">automated fraud detection</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation%20forest%20method" title=" isolation forest method"> isolation forest method</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20outlier%20factor" title=" local outlier factor"> local outlier factor</a>, <a href="https://publications.waset.org/abstracts/search?q=ML%20algorithm" title=" ML algorithm"> ML algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=credit%20card" title=" credit card"> credit card</a> </p> <a href="https://publications.waset.org/abstracts/167417/advanced-machine-learning-algorithm-for-credit-card-fraud-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1280</span> Factors Affecting Households' Decision to Allocate Credit for Livestock Production: Evidence from Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaleb%20Shiferaw">Kaleb Shiferaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Berhanu%20Geberemedhin"> Berhanu Geberemedhin</a>, <a href="https://publications.waset.org/abstracts/search?q=Dereje%20Legesse"> Dereje Legesse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Access to credit is often viewed as a key to transform semi-subsistence smallholders into market oriented producers. However, only a few studies have examined factors that affect farmers’ decision to allocate credit on farm activities in general and livestock production in particular. A trivariate probit model with double selection is employed to identify factors that affect farmers’ decision to allocate credit on livestock production using data collected from smallholder farmers in Ethiopia. After controlling for two sample selection bias – taking credit for the production season and decision to allocate credit on farm activities – land ownership and access to a livestock centered extension service are found to have a significant (p<0.001) effect on farmers decision to use credit for livestock production. The result showed farmers with large land holding, and access to a livestock centered extension services are more likely to utilize credit for livestock production. However since the effect of land ownership squared is negative the effect of land ownership for those who own a large plot of land lessens. The study highlights the fact that improving access to credit does not automatically translate into more productive households. Improving farmers’ access to credit should be followed by a focused extension services. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=livestock%20production" title="livestock production">livestock production</a>, <a href="https://publications.waset.org/abstracts/search?q=credit%20access" title=" credit access"> credit access</a>, <a href="https://publications.waset.org/abstracts/search?q=credit%20allocation" title=" credit allocation"> credit allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=household%20decision" title=" household decision"> household decision</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20sample%20selection" title=" double sample selection"> double sample selection</a> </p> <a href="https://publications.waset.org/abstracts/46627/factors-affecting-households-decision-to-allocate-credit-for-livestock-production-evidence-from-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1279</span> Economic Perspectives for Agriculture and Forestry Owners in Bulgaria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Todor%20Nickolov%20Stoyanov">Todor Nickolov Stoyanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> These factors appear as a reason for difficulties in financing from programs for rural development of the European Union. Credit conditions for commercial banks are difficult to implement, and its interest rate is too high. One of the possibilities for short-term loans at preferential conditions for the small and medium-sized agricultural and forest owners is credit cooperative. After the changes, occurred in the country after 1990, the need to restore credit cooperatives raised. The purpose for the creation of credit cooperatives is to assist private agricultural and forest owners to take care for them, to assist in the expansion and strengthening of their farms, to increase the quality of life and to improve the local economy. It was found that: in Bulgaria there is a legal obstacle for credit cooperatives to expand their business in the deposit and lending sphere; private forest and agricultural owners need small loans to solve a small problem for a certain season; providing such loans is not attractive for banks, but it is extremely necessary for owners of small forests and lands; if a special law on credit cooperatives is adopted, as required by the Cooperatives Act, it will allow more local people to be members of such credit structures and receive the necessary loans. In conclusion, proposals to create conditions for the development of credit cooperatives in the country are made and positive results expected from the creation of credit cooperatives, are summarized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooperatives" title="cooperatives">cooperatives</a>, <a href="https://publications.waset.org/abstracts/search?q=credit%20cooperatives" title=" credit cooperatives"> credit cooperatives</a>, <a href="https://publications.waset.org/abstracts/search?q=forestry" title=" forestry"> forestry</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20owners" title=" forest owners"> forest owners</a> </p> <a href="https://publications.waset.org/abstracts/92393/economic-perspectives-for-agriculture-and-forestry-owners-in-bulgaria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1278</span> Predatory Pricing at Services Markets: Incentives, Mechanisms, Standards of Proving, and Remedies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mykola%20G.%20Boichuk">Mykola G. Boichuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper concerns predatory pricing incentives and mechanisms in the markets of services, as well as its anti-competitive effects. As cost estimation at services markets is more complex in comparison to markets of goods, predatory pricing is more difficult to detect in the provision of services. For instance, this is often the case for professional services, which is analyzed in the paper. The special attention is given to employment markets as de-facto main supply markets for professional services markets. Also, the paper concerns such instances as travel agents' services, where predatory pricing may have implications not only on competition but on a wider range of public interest as well. Thus, the paper develops on effective ways to apply competition law rules on predatory pricing to the provision of services. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=employment%20markets" title="employment markets">employment markets</a>, <a href="https://publications.waset.org/abstracts/search?q=predatory%20pricing" title=" predatory pricing"> predatory pricing</a>, <a href="https://publications.waset.org/abstracts/search?q=services%20markets" title=" services markets"> services markets</a>, <a href="https://publications.waset.org/abstracts/search?q=unfair%20competition" title=" unfair competition"> unfair competition</a> </p> <a href="https://publications.waset.org/abstracts/68895/predatory-pricing-at-services-markets-incentives-mechanisms-standards-of-proving-and-remedies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1277</span> Assessment of Marketing and Financial Activities of Night Markets in the Nigerian Economy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adedeji%20Tejumola%20Olugboja">Adedeji Tejumola Olugboja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Night markets are physical locations in residential neighbourhoods where market parties interact. It is a kind of market where marketing activities commence by 6pm until after midnight. The problem of the study is to assess marketing activities in the night markets. Specific objectives for this study include determining volume of business activities, numbers of market parties etc in the selected night markets. The purposive sampling technique is adopted for this study and the four night markets in the area of study are selected as sample: Aggregate of 173 retailers and an average of 2583 consumers daily operate in these night markets. The use of tables, simple percentage and descriptive statistics were employed for data analysis and presentation. Findings revealed volume of marketing activities, sales per night, profit per night and savings per day in each of these night markets. Government should erect street lights and repair damaged ones in these night markets to make night markets more lucrative. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marketing%20activities" title="marketing activities">marketing activities</a>, <a href="https://publications.waset.org/abstracts/search?q=night%20markets" title=" night markets"> night markets</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigerian%20economy" title=" Nigerian economy"> Nigerian economy</a> </p> <a href="https://publications.waset.org/abstracts/118637/assessment-of-marketing-and-financial-activities-of-night-markets-in-the-nigerian-economy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1276</span> Socio-Economic Effects of Micro-Credit on Small-Scale Poultry Farmers’ Livelihood in Ado Odo-Ota Local Government Area of Ogun State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20O.%20Fakoya">E. O. Fakoya</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20G.%20Abiona"> B. G. Abiona</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20O.%20Oyediran"> W. O. Oyediran</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Omoare"> A. M. Omoare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examined the socio-economic effects of micro-credit on small scale poultry farmers’ livelihood in Ado Odo-Ota Local Government area of Ogun State. Purposive sampling method was used to select eighty (80) small scale poultry farmers that benefited in micro credit. Interview guide was used to obtain information on the respondents’ socio-economic characteristic, sources of micro-credit and the effects of micro-credit on their livelihood. The results revealed that most of the respondents (77.50 %) were males while half (40.00%) of the respondents were between the ages of 31-40 years. A high proportion (72.50%) of the respondents had formal education. The major sources of micro credit to small scale poultry farmers were cooperative society (47.50%) and personal savings (20.00%). The findings also revealed that micro-credit had positive effect on the assets and livelihoods of small scale poultry farmers’ livelihood. Results of t-test analysis showed a significant difference between the effects before and after micro-credit on small-scale poultry farmers’ Livelihood at p < 0.05. The study recommends that formal lending institution should be given necessary support by government to enable poultry farmers have access to credit facilities in the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-credit" title="micro-credit">micro-credit</a>, <a href="https://publications.waset.org/abstracts/search?q=effects" title=" effects"> effects</a>, <a href="https://publications.waset.org/abstracts/search?q=livelihood" title=" livelihood"> livelihood</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry%20farmers" title=" poultry farmers"> poultry farmers</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-economic" title=" socio-economic"> socio-economic</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20scale" title=" small scale"> small scale</a> </p> <a href="https://publications.waset.org/abstracts/8447/socio-economic-effects-of-micro-credit-on-small-scale-poultry-farmers-livelihood-in-ado-odo-ota-local-government-area-of-ogun-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1275</span> Effect of Bank Specific and Macro Economic Factors on Credit Risk of Islamic Banks in Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mati%20Ullah">Mati Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Shams%20Ur%20Rahman"> Shams Ur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research study is to investigate the effect of macroeconomic and bank-specific factors on credit risk in Islamic banking in Pakistan. The future of financial institutions largely depends on how well they manage risks. Credit risk is an important type of risk affecting the banking sector. The current study has taken quarterly data for the period of 6 years, from 1st July 2014 to 30 Jun 2020. The data set consisted of secondary data. Data was extracted from the websites of the State Bank and World Bank and from the financial statements of the concerned banks. In this study, the Ordinary least square model was used for the analysis of the data. The results supported the hypothesis that macroeconomic factors and bank-specific factors have a significant effect on credit risk. Macroeconomic variables, Inflation and exchange rates have positive significant effects on credit risk. However, gross domestic product has a negative significant relationship with credit risk. Moreover, the corporate rate has no significant relation with credit risk. Internal variables, size, management efficiency, net profit share income and capital adequacy have been proven to influence positively and significantly the credit risk. However, loan to deposit-has a negative insignificance relationship with credit risk. The contribution of this article is that similar conclusions have been made regarding the influence of banking factors on credit risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=credit%20risk" title="credit risk">credit risk</a>, <a href="https://publications.waset.org/abstracts/search?q=Islamic%20banks" title=" Islamic banks"> Islamic banks</a>, <a href="https://publications.waset.org/abstracts/search?q=macroeconomic%20variables" title=" macroeconomic variables"> macroeconomic variables</a>, <a href="https://publications.waset.org/abstracts/search?q=banks%20specific%20variable" title=" banks specific variable"> banks specific variable</a> </p> <a href="https://publications.waset.org/abstracts/191970/effect-of-bank-specific-and-macro-economic-factors-on-credit-risk-of-islamic-banks-in-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1274</span> Determinants of Pastoral Women's Demand for Credit: Evidence from Northern Kenya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anne%20Gesare%20Timu">Anne Gesare Timu</a>, <a href="https://publications.waset.org/abstracts/search?q=Megan%20Sheahan"> Megan Sheahan</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Gache%20Mude"> Andrew Gache Mude</a>, <a href="https://publications.waset.org/abstracts/search?q=Rupsha%20Banerjee"> Rupsha Banerjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Women headed households are among the most vulnerable to negative climatic shocks and are often left poorer as a result. Credit provision has been recognized as one way of alleviating rural poverty and developing poor rural households’ resilience to shocks. Much has been documented about credit demand in small-holder agriculture settings in Kenya. However, little is known about demand for credit among pastoral women. This paper analyzes the determinants of demand for credit in the pastoral regions of Marsabit District of Northern Kenya. Using a five wave balanced panel data set of 820 households, a double hurdle model is employed to analyze if shocks, financial literacy and risk aversion affect credit demand among female and male headed households differently. The results show that borrowing goods on credit and monetary credit from informal market segments are the most common sources of credit in the study area. The impact of livestock loss and financial literacy on the decision to borrow and how much to borrow vary with gender. While the paper suggests that provision of credit is particularly valuable in the aftermath of a negative shock and more so for female-headed households, it also explores alternatives to the provision of credit where credit access is a constraint. It recommends further understanding of systems and institutions which could enhance access to credit, and particularly during times of stress, to enable households in the study area in particular and Northern Kenya in general to invest, engage in meaningful development and growth, and be resilient to persistent shocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=female%20headed%20households" title="female headed households">female headed households</a>, <a href="https://publications.waset.org/abstracts/search?q=pastoralism" title=" pastoralism"> pastoralism</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20financing" title=" rural financing"> rural financing</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20hurdle%20model" title=" double hurdle model"> double hurdle model</a> </p> <a href="https://publications.waset.org/abstracts/57831/determinants-of-pastoral-womens-demand-for-credit-evidence-from-northern-kenya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1273</span> The Need for Selective Credit Policy Implementation: Case of Croatia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Drago%20Jakovcevic">Drago Jakovcevic</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihovil%20Andelinovic"> Mihovil Andelinovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20Husak"> Igor Husak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to explore the economic circumstances in which the selective credit policy, the least used instrument of four types of instruments on disposal to central banks, should be used. The most significant example includes the use of selective credit policies in response to the emergence of the global financial crisis by the FED. Specifics of the potential use of selective credit policies as the instigator of economic growth in Croatia, a small open economy, are determined by high euroization of financial system, fixed exchange rate and long-term trend growth of external debt that is related to the need to maintain high levels of foreign reserves. In such conditions, the classic forms of selective credit policies are unsuitable for the introduction. Several alternative approaches to implement selective credit policies are examined in this paper. Also, thorough analysis of distribution of selective monetary policy loans among economic sectors in Croatia is conducted in order to minimize the risk of investing funds and maximize the return, in order to influence the GDP growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20crisis" title="global crisis">global crisis</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20credit%20policy" title=" selective credit policy"> selective credit policy</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20open%20economy" title=" small open economy"> small open economy</a>, <a href="https://publications.waset.org/abstracts/search?q=Croatia" title=" Croatia"> Croatia</a> </p> <a href="https://publications.waset.org/abstracts/10529/the-need-for-selective-credit-policy-implementation-case-of-croatia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1272</span> Relationship between Growth of Non-Performing Assets and Credit Risk Management Practices in Indian Banks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sirus%20Sharifi">Sirus Sharifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arunima%20Haldar"> Arunima Haldar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20V.%20D.%20Nageswara%20Rao"> S. V. D. Nageswara Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study attempts to analyze the impact of credit risk management practices of Indian scheduled commercial banks on their non-performing assets (NPAs). The data on credit risk practices was collected by administering a questionnaire to risk managers/executives at different banks. The data on NPAs (from 2012 to 2016) is sourced from Prowess, a database compiled by the Centre for Monitoring Indian Economy (CMIE). The model was estimated using cross-sectional regression method. As expected, the findings suggest that there is a negative relationship between credit risk management and NPA growth in Indian banks. The study has implications for Indian banks given the high level of losses, and the implementation of Basel III norms by the central bank, i.e. Reserve Bank of India (RBI). Evidence on credit risk management in Indian banks, and their relationship with non-performing assets held by them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=credit%20risk" title="credit risk">credit risk</a>, <a href="https://publications.waset.org/abstracts/search?q=identification" title=" identification"> identification</a>, <a href="https://publications.waset.org/abstracts/search?q=Indian%20Banks" title=" Indian Banks"> Indian Banks</a>, <a href="https://publications.waset.org/abstracts/search?q=NPAs" title=" NPAs"> NPAs</a>, <a href="https://publications.waset.org/abstracts/search?q=ownership" title=" ownership"> ownership</a> </p> <a href="https://publications.waset.org/abstracts/59779/relationship-between-growth-of-non-performing-assets-and-credit-risk-management-practices-in-indian-banks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1271</span> A Network Approach to Analyzing Financial Markets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Seedat">Yusuf Seedat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The necessity to understand global financial markets has increased following the unfortunate spread of the recent financial crisis around the world. Financial markets are considered to be complex systems consisting of highly volatile move-ments whose indexes fluctuate without any clear pattern. Analytic methods of stock prices have been proposed in which financial markets are modeled using common network analysis tools and methods. It has been found that two key components of social network analysis are relevant to modeling financial markets, allowing us to forecast accurate predictions of stock prices within the financial market. Financial markets have a number of interacting components, leading to complex behavioral patterns. This paper describes a social network approach to analyzing financial markets as a viable approach to studying the way complex stock markets function. We also look at how social network analysis techniques and metrics are used to gauge an understanding of the evolution of financial markets as well as how community detection can be used to qualify and quantify in-fluence within a network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=network%20analysis" title="network analysis">network analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20networks" title=" social networks"> social networks</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20markets" title=" financial markets"> financial markets</a>, <a href="https://publications.waset.org/abstracts/search?q=stocks" title=" stocks"> stocks</a>, <a href="https://publications.waset.org/abstracts/search?q=nodes" title=" nodes"> nodes</a>, <a href="https://publications.waset.org/abstracts/search?q=edges" title=" edges"> edges</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20networks" title=" complex networks"> complex networks</a> </p> <a href="https://publications.waset.org/abstracts/142621/a-network-approach-to-analyzing-financial-markets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1270</span> Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salima%20Smiti">Salima Smiti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ines%20Gasmi"> Ines Gasmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Makram%20Soui"> Makram Soui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=credit%20risk%20assessment" title="credit risk assessment">credit risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20algorithms" title=" classification algorithms"> classification algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=rule%20extraction" title=" rule extraction"> rule extraction</a> </p> <a href="https://publications.waset.org/abstracts/82645/credit-risk-assessment-using-rule-based-classifiers-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1269</span> Modelling the Dynamics of Corporate Bonds Spreads with Asymmetric GARCH Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S%C3%A9lima%20Baccar">Sélima Baccar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ephraim%20Clark"> Ephraim Clark</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper can be considered as a new perspective to analyse credit spreads. A comprehensive empirical analysis of conditional variance of credit spreads indices is performed using various GARCH models. Based on a comparison between traditional and asymmetric GARCH models with alternative functional forms of the conditional density, we intend to identify what macroeconomic and financial factors have driven daily changes in the US Dollar credit spreads in the period from January 2011 through January 2013. The results provide a strong interdependence between credit spreads and the explanatory factors related to the conditions of interest rates, the state of the stock market, the bond market liquidity and the exchange risk. The empirical findings support the use of asymmetric GARCH models. The AGARCH and GJR models outperform the traditional GARCH in credit spreads modelling. We show, also, that the leptokurtic Student-t assumption is better than the Gaussian distribution and improves the quality of the estimates, whatever the rating or maturity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corporate%20bonds" title="corporate bonds">corporate bonds</a>, <a href="https://publications.waset.org/abstracts/search?q=default%20risk" title=" default risk"> default risk</a>, <a href="https://publications.waset.org/abstracts/search?q=credit%20spreads" title=" credit spreads"> credit spreads</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20garch%20models" title=" asymmetric garch models"> asymmetric garch models</a>, <a href="https://publications.waset.org/abstracts/search?q=student-t%20distribution" title=" student-t distribution"> student-t distribution</a> </p> <a href="https://publications.waset.org/abstracts/2699/modelling-the-dynamics-of-corporate-bonds-spreads-with-asymmetric-garch-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1268</span> A Product-Specific/Unobservable Approach to Segmentation for a Value Expressive Credit Card Service</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manfred%20F.%20Maute">Manfred F. Maute</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Naumenko"> Olga Naumenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Raymond%20T.%20Kong"> Raymond T. Kong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using data from a nationally representative financial panel of Canadian households, this study develops a psychographic segmentation of the customers of a value-expressive credit card service and tests for effects on relational response differences. The variety of segments elicited by agglomerative and k means clustering and the familiar profiles of individual clusters suggest that the face validity of the psychographic segmentation was quite high. Segmentation had a significant effect on customer satisfaction and relationship depth. However, when socio-demographic characteristics like household size and income were accounted for in the psychographic segmentation, the effect on relational response differences was magnified threefold. Implications for the segmentation of financial services markets are considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=customer%20satisfaction" title="customer satisfaction">customer satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20services" title=" financial services"> financial services</a>, <a href="https://publications.waset.org/abstracts/search?q=psychographics" title=" psychographics"> psychographics</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20differences" title=" response differences"> response differences</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a> </p> <a href="https://publications.waset.org/abstracts/39282/a-product-specificunobservable-approach-to-segmentation-for-a-value-expressive-credit-card-service" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1267</span> IEP Curriculum to Include For-Credit University English Classes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheyne%20Kirkpatrick">Cheyne Kirkpatrick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an attempt to make the university intensive English program more worthwhile for students, many English language programs are redesigning curriculum to offer for-credit English for Academic Purposes classes, sometimes marketed as “bridge” courses. These programs are designed to be accredited to national language standards, provide communicative language learning, and give students the opportunity to simultaneously earn university language credit while becoming proficient in academic English. This presentation will discuss the curriculum design of one such program in the United States at a large private university that created its own for-credit “bridge” program. The planning, development, piloting, teaching, and challenges of designing this type of curriculum will be presented along with the aspects of accreditation, communicative language learning, and integration within various university programs. Attendees will learn about how such programs are created and what types of objectives and outcomes are included in American EAP classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IEP" title="IEP">IEP</a>, <a href="https://publications.waset.org/abstracts/search?q=AEP" title=" AEP"> AEP</a>, <a href="https://publications.waset.org/abstracts/search?q=Curriculum" title=" Curriculum"> Curriculum</a>, <a href="https://publications.waset.org/abstracts/search?q=CEFR" title=" CEFR"> CEFR</a>, <a href="https://publications.waset.org/abstracts/search?q=University%20Credit" title=" University Credit"> University Credit</a>, <a href="https://publications.waset.org/abstracts/search?q=Bridge" title=" Bridge"> Bridge</a> </p> <a href="https://publications.waset.org/abstracts/19555/iep-curriculum-to-include-for-credit-university-english-classes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1266</span> The Effect of Environmental, Social, and Governance (ESG) Disclosure on Firms’ Credit Rating and Capital Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heba%20Abdelmotaal">Heba Abdelmotaal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores the impact of the extent of a company's environmental, social, and governance (ESG) disclosure on credit rating and capital structure. The analysis is based on a sample of 202 firms from the 350 FTSE firms over the period of 2008-2013. ESG disclosure score is measured using Proprietary Bloomberg score based on the extent of a company's Environmental, Social, and Governance (ESG) disclosure. The credit rating is measured by The QuiScore, which is a measure of the likelihood that a company will become bankrupt in the twelve months following the date of calculation. The Capital Structure is measured by long term debt ratio. Two hypotheses are test using panel data regression. The results suggested that the higher degree of ESG disclosure leads to better credit rating. There is significant negative relationship between ESG disclosure and the long term debit percentage. The paper includes implications for the transparency which is resulting of the ESG disclosure could support the Monitoring Function. The monitoring role of disclosure is the increasing in the transparency of the credit rating agencies, also it could affect on managers’ actions. This study provides empirical evidence on the material of ESG disclosure on credit ratings changes and the firms’ capital decision making. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capital%20structure" title="capital structure">capital structure</a>, <a href="https://publications.waset.org/abstracts/search?q=credit%20rating%20agencies" title=" credit rating agencies"> credit rating agencies</a>, <a href="https://publications.waset.org/abstracts/search?q=ESG%0D%0Adisclosure" title=" ESG disclosure"> ESG disclosure</a>, <a href="https://publications.waset.org/abstracts/search?q=panel%20data%20regression" title=" panel data regression "> panel data regression </a> </p> <a href="https://publications.waset.org/abstracts/33649/the-effect-of-environmental-social-and-governance-esg-disclosure-on-firms-credit-rating-and-capital-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1265</span> The Probability of Smallholder Broiler Chicken Farmers' Participation in the Mainstream Market within Maseru District in Lesotho</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20E.%20Mphahama">L. E. Mphahama</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mushunje"> A. Mushunje</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Taruvinga"> A. Taruvinga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although broiler production does not generate any large incomes among the smallholder community, it represents the main source of livelihood and part of nutritional requirement. As a result, market for broiler meat is growing faster than that of any other meat products and is projected to continue growing in the coming decades. However, the implication is that a multitude of factors manipulates transformation of smallholder broiler farmers participating in the mainstream markets. From 217 smallholder broiler farmers, socio-economic and institutional factors in broiler farming were incorporated into Binary model to estimate the probability of broiler farmers’ participation in the mainstream markets within the Maseru district in Lesotho. Of the thirteen (13) predictor variables fitted into the model, six (6) variables (household size, number of years in broiler business, stock size, access to transport, access to extension services and access to market information) had significant coefficients while seven (7) variables (level of education, marital status, price of broilers, poultry association, access to contract, access to credit and access to storage) did not have a significant impact. It is recommended that smallholder broiler farmers organize themselves into cooperatives which will act as a vehicle through which they can access contracts and formal markets. These cooperatives will also enable easy training and workshops for broiler rearing and marketing/markets through extension visits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler%20chicken" title="broiler chicken">broiler chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=mainstream%20market" title=" mainstream market"> mainstream market</a>, <a href="https://publications.waset.org/abstracts/search?q=Maseru%20district" title=" Maseru district"> Maseru district</a>, <a href="https://publications.waset.org/abstracts/search?q=participation" title=" participation"> participation</a>, <a href="https://publications.waset.org/abstracts/search?q=smallholder%20farmers" title=" smallholder farmers"> smallholder farmers</a> </p> <a href="https://publications.waset.org/abstracts/99454/the-probability-of-smallholder-broiler-chicken-farmers-participation-in-the-mainstream-market-within-maseru-district-in-lesotho" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1264</span> Non-Performing Assets and Credit Risk Performance: An Evidence of Commercial Banks in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sirus%20Sharifi">Sirus Sharifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arunima%20Haldar"> Arunima Haldar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20V.%20D.%20Nageswara%20Rao"> S. V. D. Nageswara Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research analyzes the effect of credit risk management practices of commercial banks in India and the relationship with their non-performing assets (NPAs). Required data on credit risk performance was collected through a survey questionnaire from top risk officers of 38 Indian banks. NPA data (period from 2012 to 2016) was collected from Prowess database compiled by the Centre for Monitoring Indian Economy (CMIE). The model was assessed utilizing cross sectional regression method. As expected, the results indicate a negative significant relationship between credit risk management in India banks and their NPA growth. The research has implications for banks given the high level of losses in India and other economies as well, and the implementation of Basel III standards by the central banks. This research would be an evidence on credit risk performance and its relationship with the level of non-performing assets (NPAs) in Indian banks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title="risk management">risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20identification" title=" risk identification"> risk identification</a>, <a href="https://publications.waset.org/abstracts/search?q=banks" title=" banks"> banks</a>, <a href="https://publications.waset.org/abstracts/search?q=Non-Performing%20Assets%20%28NPAs%29" title=" Non-Performing Assets (NPAs)"> Non-Performing Assets (NPAs)</a> </p> <a href="https://publications.waset.org/abstracts/77353/non-performing-assets-and-credit-risk-performance-an-evidence-of-commercial-banks-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=credit%20markets&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=credit%20markets&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=credit%20markets&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=credit%20markets&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=credit%20markets&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=credit%20markets&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=credit%20markets&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=credit%20markets&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=credit%20markets&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=credit%20markets&page=43">43</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=credit%20markets&page=44">44</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=credit%20markets&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>