CINXE.COM

Search results for: rock bream

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: rock bream</title> <meta name="description" content="Search results for: rock bream"> <meta name="keywords" content="rock bream"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="rock bream" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="rock bream"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 661</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: rock bream</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">661</span> A Galectin from Rock Bream Oplegnathus fasciatus: Molecular Characterization and Immunological Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20S.%20Thulasitha">W. S. Thulasitha</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Umasuthan"> N. Umasuthan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20I.%20Godahewa"> G. I. Godahewa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jehee%20Lee"> Jehee Lee </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In fish, innate immune defense is the first immune response against microbial pathogens which consists of several antimicrobial components. Galectins are one of the carbohydrate binding lectins that have the ability to identify pathogen by recognition of pathogen associated molecular patterns. Galectins play a vital role in the regulation of innate and adaptive immune responses. Rock bream Oplegnathus fasciatus is one of the most important cultured species in Korea and Japan. Considering the losses due to microbial pathogens, present study was carried out to understand the molecular and functional characteristics of a galectin in normal and pathogenic conditions, which could help to establish an understanding about immunological components of rock bream. Complete cDNA of rock bream galectin like protein B (rbGal like B) was identified from the cDNA library, and the in silico analysis was carried out using bioinformatic tools. Genomic structure was derived from the BAC library by sequencing a specific clone and using Spidey. Full length of rbGal like B (contig14775) cDNA containing 517 nucleotides was identified from the cDNA library which comprised of 435 bp in the open reading frame encoding a deduced protein composed of 145 amino acids. The molecular mass of putative protein was predicted as 16.14 kDa with an isoelectric point of 8.55. A characteristic conserved galactose binding domain was located from 12 to 145 amino acids. Genomic structure of rbGal like B consisted of 4 exons and 3 introns. Moreover, pairwise alignment showed that rock bream rbGal like B shares highest similarity (95.9 %) and identity (91 %) with Takifugu rubripes galectin related protein B like and lowest similarity (55.5 %) and identity (32.4 %) with Homo sapiens. Multiple sequence alignment demonstrated that the galectin related protein B was conserved among vertebrates. A phylogenetic analysis revealed that rbGal like B protein clustered together with other fish homologs in fish clade. It showed closer evolutionary link with Takifugu rubripes. Tissue distribution and expression patterns of rbGal like B upon immune challenges were performed using qRT-PCR assays. Among all tested tissues, level of rbGal like B expression was significantly high in gill tissue followed by kidney, intestine, heart and spleen. Upon immune challenges, it showed an up-regulated pattern of expression with Edwardsiella tarda, rock bream irido virus and poly I:C up to 6 h post injection and up to 24 h with LPS. However, In the presence of Streptococcus iniae rbGal like B showed an up and down pattern of expression with the peak at 6 - 12 h. Results from the present study revealed the phylogenetic position and role of rbGal like B in response to microbial infection in rock bream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=galectin%20like%20protein%20B" title="galectin like protein B">galectin like protein B</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20response" title=" immune response"> immune response</a>, <a href="https://publications.waset.org/abstracts/search?q=Oplegnathus%20fasciatus" title=" Oplegnathus fasciatus"> Oplegnathus fasciatus</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20characterization" title=" molecular characterization"> molecular characterization</a> </p> <a href="https://publications.waset.org/abstracts/8580/a-galectin-from-rock-bream-oplegnathus-fasciatus-molecular-characterization-and-immunological-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">660</span> A Kunitz-Type Serine Protease Inhibitor from Rock Bream, Oplegnathus fasciatus Involved in Immune Responses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20N.%20K.%20Bathige">S. D. N. K. Bathige</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20I.%20Godahewa"> G. I. Godahewa</a>, <a href="https://publications.waset.org/abstracts/search?q=Navaneethaiyer%20Umasuthan"> Navaneethaiyer Umasuthan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jehee%20Lee"> Jehee Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kunitz-type serine protease inhibitors (KTIs) are identified in various organisms including animals, plants and microbes. These proteins shared single or multiple Kunitz inhibitory domains link together or associated with other types of domains. Characteristic Kunitz type domain composed of around 60 amino acid residues with six conserved cysteine residues to stabilize by three disulfide bridges. KTIs are involved in various physiological processes, such as ion channel blocking, blood coagulation, fibrinolysis and inflammation. In this study, two Kunitz-type domain containing protein was identified from rock bream database and designated as RbKunitz. The coding sequence of RbKunitz encoded for 507 amino acids with 56.2 kDa theoretical molecular mass and 5.7 isoelectric point (pI). There are several functional domains including MANEC superfamily domain, PKD superfamily domain, and LDLa domain were predicted in addition to the two characteristic Kunitz domain. Moreover, trypsin interaction sites were also identified in Kunitz domain. Homology analysis revealed that RbKunitz shared highest identity (77.6%) with Takifugu rubripes. Completely conserved 28 cysteine residues were recognized, when comparison of RbKunitz with other orthologs from different taxonomical groups. These structural evidences indicate the rigidity of RbKunitz folding structure to achieve the proper function. The phylogenetic tree was constructed using neighbor-joining method and exhibited that the KTIs from fish and non-fish has been evolved in separately. Rock bream was clustered with Takifugu rubripes. The SYBR Green qPCR was performed to quantify the RbKunitz transcripts in different tissues and challenged tissues. The mRNA transcripts of RbKunitz were detected in all tissues (muscle, spleen, head kidney, blood, heart, skin, liver, intestine, kidney and gills) analyzed and highest transcripts level was detected in gill tissues. Temporal transcription profile of RbKunitz in rock bream blood tissues was analyzed upon LPS (lipopolysaccharide), Poly I:C (Polyinosinic:polycytidylic acid) and Edwardsiella tarda challenge to understand the immune responses of this gene. Compare to the unchallenged control RbKunitz exhibited strong up-regulation at 24 h post injection (p.i.) after LPS and E. tarda injection. Comparatively robust expression of RbKunits was observed at 3 h p.i. upon Poly I:C challenge. Taken together all these data indicate that RbKunitz may involve into to immune responses upon pathogenic stress, in order to protect the rock bream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kunitz-type" title="Kunitz-type">Kunitz-type</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20bream" title=" rock bream"> rock bream</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20response" title=" immune response"> immune response</a>, <a href="https://publications.waset.org/abstracts/search?q=serine%20protease%20inhibitor" title=" serine protease inhibitor"> serine protease inhibitor</a> </p> <a href="https://publications.waset.org/abstracts/8605/a-kunitz-type-serine-protease-inhibitor-from-rock-bream-oplegnathus-fasciatus-involved-in-immune-responses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">659</span> Meat Yield and Proximate Composition Relations of Seabream (Sparus aurata) and Seabass (Dicentrarchus labrax) in Different Sizes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Celik">Mehmet Celik</a>, <a href="https://publications.waset.org/abstracts/search?q=Celal%20Erbas"> Celal Erbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehtap%20Baykal"> Mehtap Baykal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayg%C3%BCl%20Kucukgulmez"> Aygül Kucukgulmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmut%20Ali%20Gokce"> Mahmut Ali Gokce</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilge%20Kaan%20Tekelioglu"> Bilge Kaan Tekelioglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, determination of differences in fresh meat yield and proximate compositions of different weight groups of sea bream and sea bass grown in cages in Izmir region of the Aegean Sea were aimed. For this purpose, the length and weight of five different weight groups of sea bass (I: 175.8±5.2, II: 227.3±10.2, III: 293.3±21.3, IV: 404±9.9, V: 508.7±46 g) and sea bream (I: 146.6±13.6, II: 239.8±21.7, III: 279.2±20.8, IV: 400.9±10.5, V: 546.8±0.8 g) were measured and the amount of edible and non-edible parts were determined. Besides this, protein, lipid, dry matter, ash, condition factor, HSI and VSI values were compared according to different weight groups for each species. According to the results of analysis, while the absolute meat yields of sea bream was between 69-294 g, it was between 71-252 g for the sea bass and the highest meat yields were found in fifth (V) weight groups of fish for both species. The relative meat yield (%) was determined in weight group II for sea bass and in the IV. group in sea bream with 51.9%. However, the amount of muscle tissue lipids in I. and V. weight groups of sea bream ranged between 3.6 to 11.9 % and ranged between 6.2 to 9.0 % for sea bass respectively. Protein, fillet and ash content increased in direct proportion to the weight. As a result, it can be speculated that when the meat yield and lipid rates were considered, IV. group in sea bream and II. group in sea bass are the most advantageous groups for the consumers. Acknowledgement: This work was supported by the Scientific Research Project Unit of the University of Cukurova, Turkey under grant no FBA-2015-3830. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sea%20bream" title="sea bream">sea bream</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20bass" title=" sea bass"> sea bass</a>, <a href="https://publications.waset.org/abstracts/search?q=meat%20yield" title=" meat yield"> meat yield</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate%20composition" title=" proximate composition"> proximate composition</a>, <a href="https://publications.waset.org/abstracts/search?q=different%20weight" title=" different weight"> different weight</a> </p> <a href="https://publications.waset.org/abstracts/67846/meat-yield-and-proximate-composition-relations-of-seabream-sparus-aurata-and-seabass-dicentrarchus-labrax-in-different-sizes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">658</span> Non-Mammalian Pattern Recognition Receptor from Rock Bream (Oplegnathus fasciatus): Genomic Characterization and Transcriptional Profile upon Bacterial and Viral Inductions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thanthrige%20Thiunuwan%20Priyathilaka">Thanthrige Thiunuwan Priyathilaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Don%20Anushka%20Sandaruwan%20Elvitigala"> Don Anushka Sandaruwan Elvitigala</a>, <a href="https://publications.waset.org/abstracts/search?q=Bong-Soo%20Lim"> Bong-Soo Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung-Bok%20Jeong"> Hyung-Bok Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jehee%20Lee"> Jehee Lee </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Toll like receptors (TLRs) are a phylogeneticaly conserved family of pattern recognition receptors, which participates in the host immune responses against various pathogens and pathogen derived mitogen. TLR21, a non-mammalian type, is almost restricted to the fish species even though those can be identified rarely in avians and amphibians. Herein, this study was carried out to identify and characterize TLR21 from rock bream (Oplegnathus fasciatus) designated as RbTLR21, at transcriptional and genomic level. In this study, the full length cDNA and genomic sequence of RbTLR21 was identified using previously constructed cDNA sequence database and BAC library, respectively. Identified RbTLR21 sequence was characterized using several bioinformatics tools. The quantitative real time PCR (qPCR) experiment was conducted to determine tissue specific expressional distribution of RbTLR21. Further, transcriptional modulation of RbTLR21 upon the stimulation with Streptococcus iniae (S. iniae), rock bream iridovirus (RBIV) and Edwardsiella tarda (E. tarda) was analyzed in spleen tissues. The complete coding sequence of RbTLR21 was 2919 bp in length which can encode a protein consisting of 973 amino acid residues with molecular mass of 112 kDa and theoretical isoelectric point of 8.6. The anticipated protein sequence resembled a typical TLR domain architecture including C-terminal ectodomain with 16 leucine rich repeats, a transmembrane domain, cytoplasmic TIR domain and signal peptide with 23 amino acid residues. Moreover, protein folding pattern prediction of RbTLR21 exhibited well-structured and folded ectodomain, transmembrane domain and cytoplasmc TIR domain. According to the pair wise sequence analysis data, RbTLR21 showed closest homology with orange-spotted grouper (Epinephelus coioides) TLR21with 76.9% amino acid identity. Furthermore, our phylogenetic analysis revealed that RbTLR21 shows a close evolutionary relationship with its ortholog from Danio rerio. Genomic structure of RbTLR21 consisted of single exon similar to its ortholog of zebra fish. Sevaral putative transcription factor binding sites were also identified in 5ʹ flanking region of RbTLR21. The RBTLR 21 was ubiquitously expressed in all the tissues we tested. Relatively, high expression levels were found in spleen, liver and blood tissues. Upon induction with rock bream iridovirus, RbTLR21 expression was upregulated at the early phase of post induction period even though RbTLR21 expression level was fluctuated at the latter phase of post induction period. Post Edwardsiella tarda injection, RbTLR transcripts were upregulated throughout the experiment. Similarly, Streptococcus iniae induction exhibited significant upregulations of RbTLR21 mRNA expression in the spleen tissues. Collectively, our findings suggest that RbTLR21 is indeed a homolog of TLR21 family members and RbTLR21 may be involved in host immune responses against bacterial and DNA viral infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rock%20bream" title="rock bream">rock bream</a>, <a href="https://publications.waset.org/abstracts/search?q=toll%20like%20receptor%2021%20%28TLR21%29" title=" toll like receptor 21 (TLR21)"> toll like receptor 21 (TLR21)</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition%20receptor" title=" pattern recognition receptor"> pattern recognition receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=genomic%20characterization" title=" genomic characterization"> genomic characterization</a> </p> <a href="https://publications.waset.org/abstracts/8470/non-mammalian-pattern-recognition-receptor-from-rock-bream-oplegnathus-fasciatus-genomic-characterization-and-transcriptional-profile-upon-bacterial-and-viral-inductions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">657</span> Dietary Effect of Probiotic Bacteria, Bacillus amyloliquefaciens JFP-2 Isolate from Jeju Island`s Traditional Fermented Food, on Innate Immune Response of Oplegnathus fasciatus Challenged with Vibrio anguillarum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong%20Hwi%20Kim">Dong Hwi Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dharaneedharan%20Subramanian"> Dharaneedharan Subramanian</a>, <a href="https://publications.waset.org/abstracts/search?q=So%20Hyun%20Park"> So Hyun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Ha-Ri%20Choi"> Ha-Ri Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Hyung%20Kim"> Ji-Hyung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Hoon%20Lee"> Dong-Hoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Moon%20Soo%20Heo"> Moon Soo Heo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was performed to evaluate the use of Bacillus amyloliquefaciens JFP-2 isolated from a traditional fermented sea food, as probiotic bacteria in the diets for Rock-bream, Oplegnathus faciatus. A total of 180 fish (187.4 ± 2.7 g) were divided into two groups, control (C) and probiotic (P) group (90 fish per group) in triplicate. C group was fed with basal diet without probiotic, while P group was fed with B. amyloliquefaciens spores at concentration of 1.4 x 106 colony forming units per gram (CFU/g) of feed. After two months of feeding experiments, P group fish showed significant improvements in body weight (BW), weight gain (WG), specific growth rate (SGR) and food conversion ratio (FCR) compared with C group. Also, bi-weekly assessment of serum protein, glucose, fatty acid profile showed a significant increase in probiotic fed fish than that of control fish group. Similar increase in serum antioxidant and lysozyme activity was found in probiotic fed fish group. Twenty days challenge experiment shows decrease mortality in probiotic fed fish group when compared with that of control group. Hence, these results indicate that the use of B. amyloliquefaciens JFP-2 as a feed supplement, is beneficial to improve the health status of Oplegnathus fasciatus challenged with Vibrio anguillarum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20amyloliquefaciens" title="Bacillus amyloliquefaciens">Bacillus amyloliquefaciens</a>, <a href="https://publications.waset.org/abstracts/search?q=Oplegnathus%20fasciatus" title=" Oplegnathus fasciatus"> Oplegnathus fasciatus</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic%20feed" title=" probiotic feed"> probiotic feed</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20bream" title=" rock bream"> rock bream</a> </p> <a href="https://publications.waset.org/abstracts/55873/dietary-effect-of-probiotic-bacteria-bacillus-amyloliquefaciens-jfp-2-isolate-from-jeju-islands-traditional-fermented-food-on-innate-immune-response-of-oplegnathus-fasciatus-challenged-with-vibrio-anguillarum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">656</span> Proximate Compositions and Fatty Acid Profiles of Farmed and Wild Striped Sea Bream (Lithognathus mormyrus)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmut%20Ali%20G%C3%B6k%C3%A7e">Mahmut Ali Gökçe</a>, <a href="https://publications.waset.org/abstracts/search?q=Oguz%20Tasbozan"> Oguz Tasbozan</a>, <a href="https://publications.waset.org/abstracts/search?q=Celal%20Erbas"> Celal Erbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Zafer%20Akpinar"> Zafer Akpinar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Surhan%20Tabakoglu"> S. Surhan Tabakoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Celik"> Mehmet Celik</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilge%20Kaan%20Tekelioglu"> Bilge Kaan Tekelioglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to investigate proximate compositions and fatty acid profiles of marketable size striped sea bream of obtained from fish cages of aquaculture companies and fishermen. Ten fish samples were used for both groups. The average total weight of farmed and wild samples was 252,75 ± 36,78 g and 193,0 ± 32 g respectively. While the protein level of farmed samples was (23,49±0,15) higher than that of wild fish (21,80±0,18), lipid level was less (1,55±0,08) in farmed group than wild fish samples (2,52±0,07). Amount of Σ SFA was significantly higher in wild group (44,09±0,9) than the farmed (32,79±1,13) group. Total MUFA were 36,38±29,91 in wild and 29,91±1,52 in farmed fish. However, Σ PUFA (27,89±1,53) and EPA+DHA values (15,73±1,63) of farmed samples were significantly higher than the wild (14,06 ±3,67 and 9,7±0,86) counterparts. Σώ3/ώ6 rate was better in farmed group with 2,54±0,84 in comparison with (1,59±0,06) the other group. As a result, it can be speculated that the farmed striped sea bream can be preferred by the consumers. Acknowledgement: This work was supported by the Scientific Research Project Unit of the University of Cukurova, Turkey under grant no FBA-2016-5073. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=striped%20sea%20bream" title="striped sea bream">striped sea bream</a>, <a href="https://publications.waset.org/abstracts/search?q=Litognathus%20mormyrus" title=" Litognathus mormyrus"> Litognathus mormyrus</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate%20composition" title=" proximate composition"> proximate composition</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20profile" title=" fatty acid profile"> fatty acid profile</a> </p> <a href="https://publications.waset.org/abstracts/67837/proximate-compositions-and-fatty-acid-profiles-of-farmed-and-wild-striped-sea-bream-lithognathus-mormyrus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">655</span> Rituals in Rock Art: Case Study of Bronze Age Rock Art of Gobustan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahman%20Abdullayev">Rahman Abdullayev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rituals took place during the rock art production or in the rock art sites can be found reflection in contemporary culture. But the form of rituals was conducted in association with rock art production still uncertain. The main purpose of this research is to define the form of ritual activities that took place in the rock art sites, by the example of Bronze Age rock art of Gobustan. For ritual activity location of the rocks which were selected for making petroglyphs has important significance. Thus, not all the rocks which were suitable for rock art were used for this purpose. If in Upper Paleolithic, Mesolithic, Neolithic periods Gobustan inhabitants executed petroglyphs on the wall of rock shelters, but in Bronze Age they made it on rocks which are in front of the large, open spaces. A recent study of the location of Bronze Age rock art of Gobustan and involving ethnographic information to the interpretation of drawings allows defining the form of rituals which took place in Gobustan at Bronze Age. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bronze%20Age" title="Bronze Age">Bronze Age</a>, <a href="https://publications.waset.org/abstracts/search?q=Gobustan" title=" Gobustan"> Gobustan</a>, <a href="https://publications.waset.org/abstracts/search?q=ritual" title=" ritual"> ritual</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20art" title=" rock art"> rock art</a> </p> <a href="https://publications.waset.org/abstracts/53410/rituals-in-rock-art-case-study-of-bronze-age-rock-art-of-gobustan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">654</span> Prediction of in situ Permeability for Limestone Rock Using Rock Quality Designation Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20T.%20Farid">Ahmed T. Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20Rizwan"> Muhammed Rizwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geotechnical study for evaluating soil or rock permeability is a highly important parameter. Permeability values for rock formations are more difficult for determination than soil formation as it is an effect of the rock quality and its fracture values. In this research, the prediction of in situ permeability of limestone rock formations was predicted. The limestone rock permeability was evaluated using Lugeon tests (in-situ packer permeability). Different sites which spread all over the Riyadh region of Saudi Arabia were chosen to conduct our study of predicting the in-situ permeability of limestone rock. Correlations were deducted between the values of in-situ permeability of the limestone rock with the value of the rock quality designation (RQD) calculated during the execution of the boreholes of the study areas. The study was performed for different ranges of RQD values measured during drilling of the sites boreholes. The developed correlations are recommended for the onsite determination of the in-situ permeability of limestone rock only. For the other sedimentary formations of rock, more studies are needed for predicting the actual correlations related to each type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=In%20situ" title="In situ">In situ</a>, <a href="https://publications.waset.org/abstracts/search?q=packer" title=" packer"> packer</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=rock" title=" rock"> rock</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/64850/prediction-of-in-situ-permeability-for-limestone-rock-using-rock-quality-designation-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">653</span> Transcriptional Evidence for the Involvement of MyD88 in Flagellin Recognition: Genomic Identification of Rock Bream MyD88 and Comparative Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Umasuthan">N. Umasuthan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20N.%20K.%20Bathige"> S. D. N. K. Bathige</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20S.%20Thulasitha"> W. S. Thulasitha</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Whang"> I. Whang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Lee"> J. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The MyD88 is an evolutionarily conserved host-expressed adaptor protein that is essential for proper TLR/ IL1R immune-response signaling. A previously identified complete cDNA (1626 bp) of OfMyD88 comprised an ORF of 867 bp encoding a protein of 288 amino acids (32.9 kDa). The gDNA (3761 bp) of OfMyD88 revealed a quinquepartite genome organization composed of 5 exons (with the sizes of 310, 132, 178, 92 and 155 bp) separated by 4 introns. All the introns displayed splice signals consistent with the consensus GT/AG rule. A bipartite domain structure with two domains namely death domain (24-103) coded by 1st exon, and TIR domain (151-288) coded by last 3 exons were identified through in silico analysis. Moreover, homology modeling of these two domains revealed a similar quaternary folding nature between human and rock bream homologs. A comprehensive comparison of vertebrate MyD88 genes showed that they possess a 5-exonic structure. In this structure, the last three exons were strongly conserved, and this suggests that a rigid structure has been maintained during vertebrate evolution. A cluster of TATA box-like sequences were found 0.25 kb upstream of cDNA starting position. In addition, putative 5'-flanking region of OfMyD88 was predicted to have TFBS implicated with TLR signaling, including copies of NFB1, APRF/ STAT3, Sp1, IRF1 and 2 and Stat1/2. Using qPCR technique, a ubiquitous mRNA expression was detected in liver and blood. Furthermore, a significantly up-regulated transcriptional expression of OfMyD88 was detected in head kidney (12-24 h; >2-fold), spleen (6 h; 1.5-fold), liver (3 h; 1.9-fold) and intestine (24 h; ~2-fold) post-Fla challenge. These data suggest a crucial role for MyD88 in antibacterial immunity of teleosts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MyD88" title="MyD88">MyD88</a>, <a href="https://publications.waset.org/abstracts/search?q=innate%20immunity" title=" innate immunity"> innate immunity</a>, <a href="https://publications.waset.org/abstracts/search?q=flagellin" title=" flagellin"> flagellin</a>, <a href="https://publications.waset.org/abstracts/search?q=genomic%20analysis" title=" genomic analysis"> genomic analysis</a> </p> <a href="https://publications.waset.org/abstracts/8606/transcriptional-evidence-for-the-involvement-of-myd88-in-flagellin-recognition-genomic-identification-of-rock-bream-myd88-and-comparative-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">652</span> An Approach for Determination of Shotcrete Thickness in Underground Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mohammadi">Mohammad Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Askari"> Mojtaba Askari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Farouq%20Hossaini"> Mohammad Farouq Hossaini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An intrinsic property of rock mass known as rock bolt supporting factor (RSF) or rock bolting capability of rock mass was developed and used for explanation of the mechanism of rock bolting practice. Based on the theory of RSF, numeral values can be assigned to each given rock mass to show the capability of that rock mass to be reinforced by rock bolting. For determination of shotcrete thickness, both safety and cost must be taken into account. The present paper introduces a scientific approach for determination of the necessary shotcrete thickness in underground structures for support purposes using the concept of rock bolt supporting factor (RSF). The proposed approach makes the outcome of shotcrete design one step more accurate than before. The actual dataset of 500 meters of Alborz Tunnel length is used as an example of the application of the approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rock%20bolt%20supporting%20factor%20%28RSF%29" title="rock bolt supporting factor (RSF)">rock bolt supporting factor (RSF)</a>, <a href="https://publications.waset.org/abstracts/search?q=shotcrete%20design" title=" shotcrete design"> shotcrete design</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20excavation" title=" underground excavation"> underground excavation</a>, <a href="https://publications.waset.org/abstracts/search?q=Alborz%20Tunnel" title=" Alborz Tunnel"> Alborz Tunnel</a> </p> <a href="https://publications.waset.org/abstracts/74897/an-approach-for-determination-of-shotcrete-thickness-in-underground-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">651</span> Valorization and Conservation of Rock Painting and Engravings of Kabylia Region (Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samia%20Ait%20Ali%20Yahia">Samia Ait Ali Yahia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Algeria, the most impressive and most known prehistoric art is the painted or engraved rock art which is present with abundance in several regions. The existence of rock art in Great Kabylia region has been known for over sixty years. The main purpose of this research is to show the dangers facing these rock paintings and engravings and what are the arrangements for their protection and recovery. As every vestige destroyed is a part of the world's memory which disappears, some steps have to be taken in order to protect these historical and archaeological heritages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rock%20paintings%20and%20engravings" title="rock paintings and engravings">rock paintings and engravings</a>, <a href="https://publications.waset.org/abstracts/search?q=preservation" title=" preservation"> preservation</a>, <a href="https://publications.waset.org/abstracts/search?q=valorization" title=" valorization"> valorization</a>, <a href="https://publications.waset.org/abstracts/search?q=Kabylia" title=" Kabylia"> Kabylia</a> </p> <a href="https://publications.waset.org/abstracts/35537/valorization-and-conservation-of-rock-painting-and-engravings-of-kabylia-region-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">650</span> Using Photogrammetry to Survey the Côa Valley Iron Age Rock Art Motifs: Vermelhosa Panel 3 Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nat%C3%A1lia%20Botica">Natália Botica</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADs%20Lu%C3%ADs"> Luís Luís</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Bernardes"> Paulo Bernardes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Côa Valley, listed World Heritage since 1998, presents more than 1300 open-air engraved rock panels. The Archaeological Park of the Côa Valley recorded the rock art motifs, testing various techniques based on direct tracing processes on the rock, using natural and artificial lighting. In this work, integrated in the "Open Access Rock Art Repository" (RARAA) project, we present the methodology adopted for the vectorial drawing of the rock art motifs based on orthophotos taken from the photogrammetric survey and 3D models of the rocks. We also present the information system designed to integrate the vector drawing and the characterization data of the motifs, as well as the open access sharing, in order to promote their reuse in multiple areas. The 3D models themselves constitute a very detailed record, ensuring the digital preservation of the rock and iconography. Thus, even if a rock or motif disappears, it can continue to be studied and even recreated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rock%20art" title="rock art">rock art</a>, <a href="https://publications.waset.org/abstracts/search?q=archaeology" title=" archaeology"> archaeology</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20age" title=" iron age"> iron age</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20models" title=" 3D models"> 3D models</a> </p> <a href="https://publications.waset.org/abstracts/164190/using-photogrammetry-to-survey-the-coa-valley-iron-age-rock-art-motifs-vermelhosa-panel-3-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">649</span> Comparison of Fatty Acids Composition of Three Commercial Fish Species Farmed in the Adriatic Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jelka%20Pleadin">Jelka Pleadin</a>, <a href="https://publications.waset.org/abstracts/search?q=Greta%20Kre%C5%A1i%C4%87"> Greta Krešić</a>, <a href="https://publications.waset.org/abstracts/search?q=Tina%20Le%C5%A1i%C4%87"> Tina Lešić</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Vuli%C4%87"> Ana Vulić</a>, <a href="https://publications.waset.org/abstracts/search?q=Renata%20Bari%C4%87"> Renata Barić</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanja%20Bogdanovi%C4%87"> Tanja Bogdanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Dra%C5%BEen%20Orai%C4%87"> Dražen Oraić</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Legac"> Ana Legac</a>, <a href="https://publications.waset.org/abstracts/search?q=Snje%C5%BEana%20Zrn%C4%8Di%C4%87"> Snježana Zrnčić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish has been acknowledged as an integral component of a well-balanced diet, providing a healthy source of energy, high-quality proteins, vitamins, essential minerals and, especially, n-3 long-chain polyunsaturated fatty acids (n-3 LC PUFA), mainly eicosapentaenoic acid (20:5 n-3 EPA), and docosahexaenoicacid, (22:6 n-3 DHA), whose pleiotropic effects in terms of health promotion and disease prevention have been increasingly recognised. In this study, the fatty acids composition of three commercially important farmed fish species: sea bream (Sparus aurata), sea bass (Dicentrarchus labrax) and dentex (Dentex dentex) was investigated. In total, 60 fish samples were retrieved during 2015 (n = 30) and 2016 (n = 30) from different locations in the Adriatic Sea. Methyl esters of fatty acids were analysed using gas chromatography (GC) with flame ionization detection (FID). The results show that the most represented fatty acid in all three analysed species is oleic acid (C18:1n-9, OA), followed by linoleic acid (C18:2n-6, LA) and palmitic acid (C16:0, PA). Dentex was shown to have two to four times higher eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid content as compared to sea bream and sea bass. The recommended n-6/n-3 ratio was determined in all fish species but obtained results pointed to statistically significant differences (p < 0.05) in fatty acid composition among the analysed fish species and their potential as a dietary source of valuable fatty acids. Sea bass and sea bream had a significantly higher proportion of n-6 fatty acids, while dentex had a significantly higher proportion of n-3 (C18:4n-3, C20:4n-3, EPA, DHA) fatty acids. A higher hypocholesterolaemic and hypercholesterolaemic fatty acids (HH) ratio was determined for sea bass and sea bream, which comes as the consequence of a lower share of SFA determined in these two species in comparison to dentex. Since the analysed fish species vary in their fatty acids composition consumption of diverse fish species would be advisable. Based on the established lipid quality indicators, dentex, a fish species underutilised by the aquaculture, seems to be a highly recommendable and important source of fatty acids recommended to be included into the human diet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dentex" title="dentex">dentex</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=farmed%20fish" title=" farmed fish"> farmed fish</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20bass" title=" sea bass"> sea bass</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20bream" title=" sea bream"> sea bream</a> </p> <a href="https://publications.waset.org/abstracts/64067/comparison-of-fatty-acids-composition-of-three-commercial-fish-species-farmed-in-the-adriatic-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">648</span> Relation between Energy Absorption and Box Dimension of Rock Fragments under Impact Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Hung-Hui">Li Hung-Hui</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Chi-Chieh"> Chen Chi-Chieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zon-Yee"> Yang Zon-Yee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to explore the impact energy absorption in the fragmented processes of rock samples during the split-Hopkinson-pressure-bar tests. Three kinds of rock samples including granite, marble and sandstone were tested. The impact energy absorptions were calculated according to the incident, reflected and transmitted strain wave histories measured by a oscilloscope. The degree of fragment rocks after tests was quantified by the box dimension of the fractal theory. The box dimension of rock fragments was obtained from the particle size distribution curve by the sieve analysis. The results can be concluded that: (1) the degree of rock fragments after tests can be well described by the value of box dimension; (2) with the impact energy absorption increasing, the degrees of rock fragments are varied from the very large fragments to very small fragments, and the corresponding box dimension varies from 2.9 to 1.2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SHPB%20test" title="SHPB test">SHPB test</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption" title=" energy absorption"> energy absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20fragments" title=" rock fragments"> rock fragments</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20loading" title=" impact loading"> impact loading</a>, <a href="https://publications.waset.org/abstracts/search?q=box%20dimension" title=" box dimension"> box dimension</a> </p> <a href="https://publications.waset.org/abstracts/59074/relation-between-energy-absorption-and-box-dimension-of-rock-fragments-under-impact-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">647</span> Description of Geotechnical Properties of Jabal Omar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Abdel%20Gadir%20Malik">Ibrahim Abdel Gadir Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Dafalla%20Siddig%20Dafalla"> Dafalla Siddig Dafalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20Abdelgadir%20El-Bushra"> Osama Abdelgadir El-Bushra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geological and engineering characteristics of intact rock and the discontinuity surfaces was used to describe and classify rock mass into zones based on mechanical and physical properties. Many conditions terms that affect the rock mas; such as Rock strength, Rock Quality Designation (RQD) value, joint spacing, and condition of joint, water condition with block size, joint roughness, separation, joint hardness, friction angle and weathering were used to classify the rock mass into: Good quality (class II) (RMR values range between 75% and 56%), Good to fair quality (class II to III) (RMR values range between 70% and 55%), Fair quality (class III) (RMR values range between 60% and 50%) and Fair to poor quality (Class III to IV) (RMR values, range between (50% and 35%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rock%20strength" title="rock strength">rock strength</a>, <a href="https://publications.waset.org/abstracts/search?q=RQD" title=" RQD"> RQD</a>, <a href="https://publications.waset.org/abstracts/search?q=joints" title=" joints"> joints</a>, <a href="https://publications.waset.org/abstracts/search?q=weathering" title=" weathering"> weathering</a> </p> <a href="https://publications.waset.org/abstracts/46804/description-of-geotechnical-properties-of-jabal-omar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">646</span> Mechanistic Studies of Compacted and Sintered Rock Salt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Claudia%20H.%20Swanson">Claudia H. Swanson</a>, <a href="https://publications.waset.org/abstracts/search?q=Jens%20G%C3%BCnster"> Jens Günster</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research addresses the densification via compaction and sintering of naturally occurring rock salt which was motivated by the fact that in a saline environment rock salt is thermodynamically stable and does show a mechanical behavior compatible to the surrounding host material. The sintering of rock salt powder compacts was systematically investigated using temperature and pressure as variables for the sinter process. The behavior of rock salt showed segregations of anhydrite, CaSO4 - the major impurity found in rock salt, to the grain boundaries between individual sodium chloride crystals. Powder compacts treated with lower pressures lost those anhydrite segregates over time while high pressure treated compacts remained with anhydrite segregates. The density reached in this study is 2.008 g cm-3 corresponding to a density of 92.5 % of the theoretical value. This high density is making the sintering a promising technique for rock salt as applications in underground appropriate environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rock%20salt" title="rock salt">rock salt</a>, <a href="https://publications.waset.org/abstracts/search?q=sinter" title=" sinter"> sinter</a>, <a href="https://publications.waset.org/abstracts/search?q=anhydrite" title=" anhydrite"> anhydrite</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20safety" title=" nuclear safety"> nuclear safety</a> </p> <a href="https://publications.waset.org/abstracts/25847/mechanistic-studies-of-compacted-and-sintered-rock-salt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">645</span> Product Quality and Profitability of Sea Bream Fish Farms in Greece</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Nathanailides">C. Nathanailides</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Anastasiou"> S. Anastasiou</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Logothetis"> P. Logothetis</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Kanlis"> G. Kanlis </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production parameters of gilt head sea bream fish farm such as feeding regimes, mortalities, fish densities were used to calculate the economic efficiency of six different aquaculture sites from West Greece. Samples of farmed sea bream were collected and lipid content, microbial load and filleting yield of the samples were used as quality criteria. The results indicate that Lipid content, filleting yield and microbial load of fish originating from different fish farms varied significantly with improved quality exhibited in fish farms which exhibited improved Feed conversion rates and lower mortalities. Changes in feeding management practices such as feed quality and feeding regimes have a significant impact on the financial performance of sea bass farms. Fish farms which exhibited improved feeding conversion rates also exhibited increased profitability. Improvements in the FCR explained about 13.4 % of the difference in profitability of the different aquaculture sites. Lower mortality and higher growth rates were also exhibited by the fish farms which exhibited improved FCR. It is concluded that best feeding management practices resulted in improved product quality and profitability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquaculture%20economics" title="aquaculture economics">aquaculture economics</a>, <a href="https://publications.waset.org/abstracts/search?q=gilt%20head%20sea" title=" gilt head sea"> gilt head sea</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20fish" title=" production fish"> production fish</a>, <a href="https://publications.waset.org/abstracts/search?q=feeding%20management" title=" feeding management"> feeding management</a> </p> <a href="https://publications.waset.org/abstracts/27218/product-quality-and-profitability-of-sea-bream-fish-farms-in-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">644</span> Evolution Mechanism of the Formation of Rock Heap under Seismic Action and Analysis on Engineering Geological Structure </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian-Xiu%20Wan">Jian-Xiu Wan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yao%20Yin"> Yao Yin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In complex terrain and poor geological conditions areas, Railway, highway and other transportation constructions are still strongly developing. However, various geological disasters happened such as landslide, rock heap and so on. According to the results of geological investigation, the form of skirt (trapezoidal), semicircle and triangle rock heaps are mainly due to complex internal force and external force, in a certain extent, which is related to the terrain, the nature of the rock mass, the supply area and the surface shape of rock heap. Combined with the above factors, discrete element numerical simulation of rock mass is established under different terrain conditions based on 3DEC, and accelerated formation process of rock heap under seismic action is simulated. The fragmentation structure supply area is calculated, in which the most dangerous area is located. At the same time, the formation mechanism and development process are studied in different terrain conditions, and the structure of rock heap is judged by section, which can provide a strong theoretical and technical support for the prevention and control of geological disasters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3DEC" title="3DEC">3DEC</a>, <a href="https://publications.waset.org/abstracts/search?q=fragmentation%20structure" title=" fragmentation structure"> fragmentation structure</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20heap" title=" rock heap"> rock heap</a>, <a href="https://publications.waset.org/abstracts/search?q=slope" title=" slope"> slope</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20action" title=" seismic action"> seismic action</a> </p> <a href="https://publications.waset.org/abstracts/40697/evolution-mechanism-of-the-formation-of-rock-heap-under-seismic-action-and-analysis-on-engineering-geological-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">643</span> Rock Paintings with Libyan Inscriptions of Grande Kabylia, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samia%20Ait%20Ali%20Yahia">Samia Ait Ali Yahia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rock paintings of Grande Kabylia contain a good number of Libyan inscriptions. Of the 54 sites discovered, 23 have inscriptions painted in red ocher. We find them in rock shelters, on blocks of sandstone in the northern part of Kabylia. Our job is to collect as many cave paintings as possible with Libyan inscriptions. Then we will make an analysis on the epigraphic level, the different forms of the characters and their frequencies. The other purpose of this research is to bring out the different characters used in these paintings and compare them with those of the Libyan steles of Grande Kabylia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grande%20Kabylia" title="Grande Kabylia">Grande Kabylia</a>, <a href="https://publications.waset.org/abstracts/search?q=Libyan%20inscriptions" title=" Libyan inscriptions"> Libyan inscriptions</a>, <a href="https://publications.waset.org/abstracts/search?q=Libyan%20stele" title=" Libyan stele"> Libyan stele</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20paintings" title=" rock paintings"> rock paintings</a> </p> <a href="https://publications.waset.org/abstracts/123113/rock-paintings-with-libyan-inscriptions-of-grande-kabylia-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">642</span> Elasto-Plastic Behavior of Rock during Temperature Drop</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Reppas">N. Reppas</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Gui"> Y. L. Gui</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Wetenhall"> B. Wetenhall</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20T.%20Davie"> C. T. Davie</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Ma"> J. Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A theoretical constitutive model describing the stress-strain behavior of rock subjected to different confining pressures is presented. A bounding surface plastic model with hardening effects is proposed which includes the effect of temperature drop. The bounding surface is based on a mapping rule and the temperature effect on rock is controlled by Poisson&rsquo;s ratio. Validation of the results against available experimental data is also presented. The relation of deviatoric stress and axial strain is illustrated at different temperatures to analyze the effect of temperature decrease in terms of stiffness of the material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bounding%20surface" title="bounding surface">bounding surface</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20of%20rock" title=" cooling of rock"> cooling of rock</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20model" title=" plasticity model"> plasticity model</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20deformation" title=" rock deformation"> rock deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=elasto-plastic%20behavior" title=" elasto-plastic behavior"> elasto-plastic behavior</a> </p> <a href="https://publications.waset.org/abstracts/128121/elasto-plastic-behavior-of-rock-during-temperature-drop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">641</span> A Robust Theoretical Elastoplastic Continuum Damage T-H-M Model for Rock Surrounding a Wellbore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolaos%20Reppas">Nikolaos Reppas</a>, <a href="https://publications.waset.org/abstracts/search?q=Yilin%20Gui"> Yilin Gui</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Wetenhall"> Ben Wetenhall</a>, <a href="https://publications.waset.org/abstracts/search?q=Colin%20Davie"> Colin Davie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Injection of CO2 inside wellbore can induce different kind of loadings that can lead to thermal, hydraulic, and mechanical changes on the surrounding rock. A dual-porosity theoretical constitutive model will be presented for the stability analysis of the wellbore during CO2 injection. An elastoplastic damage response will be considered. A bounding yield surface will be presented considering damage effects on sandstone. The main target of the research paper is to present a theoretical constitutive model that can help industries to safely store CO2 in geological rock formations and forecast any changes on the surrounding rock of the wellbore. The fully coupled elasto-plastic damage Thermo-Hydraulic-Mechanical theoretical model will be validated from existing experimental data for sandstone after simulating some scenarios by using FEM on MATLAB software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20capture%20and%20storage" title="carbon capture and storage">carbon capture and storage</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20mechanics" title=" rock mechanics"> rock mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=THM%20effects%20on%20rock" title=" THM effects on rock"> THM effects on rock</a>, <a href="https://publications.waset.org/abstracts/search?q=constitutive%20model" title=" constitutive model"> constitutive model</a> </p> <a href="https://publications.waset.org/abstracts/126796/a-robust-theoretical-elastoplastic-continuum-damage-t-h-m-model-for-rock-surrounding-a-wellbore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">640</span> Assessment of Rock Masses Performance as a Support of Lined Rock Cavern for Isothermal Compressed Air Energy Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vathna%20Suy">Vathna Suy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-Il%20Song"> Ki-Il Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to store highly pressurized gas such as an isothermal compressed air energy storage, Lined Rock Caverns (LRC) are constructed underground and supported by layers of concrete, steel and rock masses. This study aims to numerically investigate the performance of rock masses which serve as a support of Lined Rock Cavern subjected to high cyclic pressure loadings. FLAC3D finite different software is used for the simulation since the software can effectively model the behavior of concrete lining and steel plate with its built-in structural elements. Cyclic pressure loadings are applied onto the inner surface of the cavern which then transmitted to concrete, steel and eventually to the surrounding rock masses. Changes of stress and strain are constantly monitored throughout all the process of loading operations. The results at various monitoring locations are then extracted and analyzed to assess the response of the rock masses, specifically on its ability to absorb energy during loadings induced by the changes of cyclic pressure loadings inside the cavern. By analyzing the obtained data of stress-strain relation and taking into account the behavior of materials under the effect of strain-dependency, conclusions on the performance of rock masses subjected to high cyclic loading conditions are drawn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title="cyclic loading">cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=FLAC3D" title=" FLAC3D"> FLAC3D</a>, <a href="https://publications.waset.org/abstracts/search?q=lined%20rock%20cavern%20%28LRC%29" title=" lined rock cavern (LRC)"> lined rock cavern (LRC)</a>, <a href="https://publications.waset.org/abstracts/search?q=strain-dependency" title=" strain-dependency"> strain-dependency</a> </p> <a href="https://publications.waset.org/abstracts/53147/assessment-of-rock-masses-performance-as-a-support-of-lined-rock-cavern-for-isothermal-compressed-air-energy-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">639</span> A Preliminary Study of Economic Dimension of Underground Rock Caverns for Water Storage at Singapore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junlong%20Shang">Junlong Shang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhengxian%20Chua"> Zhengxian Chua</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoongping%20Peh"> Hoongping Peh</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiye%20Zhao"> Zhiye Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to scarce land resources in Singapore, it is imperative to increase water storage capacities to meet the increasing demand of water to secure a sustainable development, which can be achieved in the underground by rock caverns. In this paper, a preliminary study on the effects of cavern span, height and radius on the cavern stability is presented to provide a guidance on the cavern construction in the context of Singapore. It is found that the radius of caverns should be around half of the span width (i.e., B/R=2) to reduce vertical displacement at the crown of cavern. The smaller the rock cover, the smaller displacement. The minimum rock thickness should be at least the same as the cavern span to eliminate excessive yielded element. Finally, rock support system is introduced to maintain the profile of caverns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavern%20dimension" title="cavern dimension">cavern dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modelling" title=" numerical modelling"> numerical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20rock%20cavern" title=" underground rock cavern"> underground rock cavern</a> </p> <a href="https://publications.waset.org/abstracts/90863/a-preliminary-study-of-economic-dimension-of-underground-rock-caverns-for-water-storage-at-singapore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">638</span> Physical and Mechanical Phenomena Associated with Rock Failure in Brazilian Disc Specimens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Reza%20Nejati">Hamid Reza Nejati</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Nazerigivi"> Amin Nazerigivi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Reza%20Sayadi"> Ahmad Reza Sayadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Failure mechanism of rocks is one of the fundamental aspects to study rock engineering stability. Rock is a material that contains flaws, initial damage, micro-cracks, etc. Failure of rock structure is largely due to tensile stress and was influenced by various parameters. In the present study, the effect of brittleness and loading rate on the physical and mechanical phenomena produced in rock during loading sequences is considered. For this purpose, Acoustic Emission (AE) technique is used to monitor fracturing process of three rock types (onyx marble, sandstone and soft limestone) with different brittleness and sandstone samples under different loading rate. The results of experimental tests revealed that brittleness and loading rate have a significant effect on the mode and number of induced fracture in rocks. An increase in rock brittleness increases the frequency of induced cracks, and the number of tensile fracture decreases when loading rate increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brittleness" title="brittleness">brittleness</a>, <a href="https://publications.waset.org/abstracts/search?q=loading%20rate" title=" loading rate"> loading rate</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emission" title=" acoustic emission"> acoustic emission</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20fracture" title=" tensile fracture"> tensile fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20fracture" title=" shear fracture"> shear fracture</a> </p> <a href="https://publications.waset.org/abstracts/74760/physical-and-mechanical-phenomena-associated-with-rock-failure-in-brazilian-disc-specimens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">637</span> Rock Thickness Measurement by Using Self-Excited Acoustical System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janusz%20Kwa%C5%9Bniewski">Janusz Kwaśniewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Ireneusz%20Dominik"> Ireneusz Dominik</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Lalik"> Krzysztof Lalik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The knowledge about rock layers thickness, especially above drilled mining pavements are crucial for workers safety. The measuring systems used nowadays are generally imperfect and there is a strong demand for improvement. The application of a new type of a measurement system called Self-Excited Acoustical System is presented in the paper. The system was applied until now to monitor stress changes in metal and concrete constructions. The change in measurement methodology resulted in possibility of measuring the thickness of the rocks above the tunnels as well as thickness of a singular rock layer. The idea is to find two resonance frequencies of the self-exited system, which consists of a vibration exciter and vibration receiver placed at a distance, which are coupled with a proper power amplifier, and which operate in a closed loop with a positive feedback. The resonance with the higher amplitude determines thickness of the whole rock, whereas the lower amplitude resonance indicates thickness of a singular layer. The results of the laboratory tests conducted on a group of different rock materials are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auto-oscillator" title="auto-oscillator">auto-oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing" title=" non-destructive testing"> non-destructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20thickness%20measurement" title=" rock thickness measurement"> rock thickness measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnic" title=" geotechnic"> geotechnic</a> </p> <a href="https://publications.waset.org/abstracts/2627/rock-thickness-measurement-by-using-self-excited-acoustical-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">636</span> Q Slope Rock Mass Classification and Slope Stability Assessment Methodology Application in Steep Interbedded Sedimentary Rock Slopes for a Motorway Constructed North of Auckland, New Zealand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azariah%20Sosa">Azariah Sosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Renedo%20Sanchez"> Carlos Renedo Sanchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of a new motorway north of Auckland (New Zealand) includes steep rock cuts, from 63 up to 85 degrees, in an interbedded sandstone and siltstone rock mass of the geological unit Waitemata Group (Pakiri Formation), which shows sub-horizontal bedding planes, various sub-vertical joint sets, and a diverse weathering profile. In this kind of rock mass -that can be classified as a weak rock- the definition of the stable maximum geometry is not only governed by discontinuities and defects evident in the rock but is important to also consider the global stability of the rock slope, including (in the analysis) the rock mass characterisation, influence of the groundwater, the geological evolution, and the weathering processes. Depending on the weakness of the rock and the processes suffered, the global stability could, in fact, be a more restricting element than the potential instability of individual blocks through discontinuities. This paper discusses those elements that govern the stability of the rock slopes constructed in a rock formation with favourable bedding and distribution of discontinuities (horizontal and vertical) but with a weak behaviour in terms of global rock mass characterisation. In this context, classifications as Q-Slope and slope stability assessment methodology (SSAM) have been demonstrated as important tools which complement the assessment of the global stability together with the analytical tools related to the wedge-type failures and limit equilibrium methods. The paper focuses on the applicability of these two new empirical classifications to evaluate the slope stability in 18 already excavated rock slopes in the Pakiri formation through comparison between the predicted and observed stability issues and by reviewing the outcome of analytical methods (Rocscience slope stability software suite) compared against the expected stability determined from these rock classifications. This exercise will help validate such findings and correlations arising from the two empirical methods in order to adjust the methods to the nature of this specific kind of rock mass and provide a better understanding of the long-term stability of the slopes studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pakiri%20formation" title="Pakiri formation">Pakiri formation</a>, <a href="https://publications.waset.org/abstracts/search?q=Q-slope" title=" Q-slope"> Q-slope</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20slope%20stability" title=" rock slope stability"> rock slope stability</a>, <a href="https://publications.waset.org/abstracts/search?q=SSAM" title=" SSAM"> SSAM</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20rock" title=" weak rock"> weak rock</a> </p> <a href="https://publications.waset.org/abstracts/139773/q-slope-rock-mass-classification-and-slope-stability-assessment-methodology-application-in-steep-interbedded-sedimentary-rock-slopes-for-a-motorway-constructed-north-of-auckland-new-zealand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">635</span> Rock Property Calculation for Determine Hydrocarbon Zone Based on Petrophysical Principal and Sequence Stratigraphic Correlation in Blok M</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tarmidzi">Muhammad Tarmidzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20M.%20G.%20Gani"> Reza M. G. Gani</a>, <a href="https://publications.waset.org/abstracts/search?q=Andri%20Luthfi"> Andri Luthfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to identify rock zone containing hydrocarbons with calculating rock property includes volume shale, total porosity, effective porosity and water saturation. Identification method rock property based on GR log, resistivity log, neutron log and density rock. Zoning is based on sequence stratigraphic markers that are sequence boundary (SB), transgressive surface (TS) and flooding surface (FS) which correlating ten well log in blok “M”. The results of sequence stratigraphic correlation consist of eight zone that are two LST zone, three TST zone and three HST zone. The result of rock property calculation in each zone is showing two LST zone containing hydrocarbons. LST-1 zone has average volume shale (Vsh) 25%, average total porosity (PHIT) 14%, average effective porosity (PHIE) 11% and average water saturation 0,83. LST-2 zone has average volume shale (Vsh) 19%, average total porosity (PHIT) 21%, average effective porosity (PHIE) 17% and average water saturation 0,82. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrocarbons%20zone" title="hydrocarbons zone">hydrocarbons zone</a>, <a href="https://publications.waset.org/abstracts/search?q=petrophysic" title=" petrophysic"> petrophysic</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20property" title=" rock property"> rock property</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence%20stratigraphic" title=" sequence stratigraphic"> sequence stratigraphic</a> </p> <a href="https://publications.waset.org/abstracts/60898/rock-property-calculation-for-determine-hydrocarbon-zone-based-on-petrophysical-principal-and-sequence-stratigraphic-correlation-in-blok-m" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">634</span> Analysis of Slope in an Excavated Gneiss Rock Using Geological Strength Index (GSI) in Ilorin, Kwara State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Agbalajobi">S. A. Agbalajobi</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20Bello"> W. A. Bello</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study carried out analysis on slope stability in an excavated gneiss rock using geological strength index (GSI) in Ilorin, Kwara State, Nigeria. A kinematic analysis of planar discontinuity sets in a gneiss deposit was carried out to ascertain the degree of slope stability. Discontinuity orientations in the rock mass were mapped using compass clinometers. The average result of physical and mechanical properties such as specific gravity, unit weight, uniaxial compressive strength, point load index, and Schmidt rebound value are 2.64 g/m3, 25.95 kN/m3, 156 MPa, 6.5 MPa, and 53.12 respectively. Also, a statistical model equation relating the rock strength was developed. The analyses states that the rock face is susceptible to wedge failures having all the geometrical conditions associated with the occurrence of such failures were noticeable. It can be concluded that analyses of discontinuity orientation in relation to cut face direction in rock excavation is essential for mine planning to forestall mine accidents. Assessment of excavated slope methods was evident that one excavation method (blasting and/or use of hydraulic hammer) is applicable for the given rock strength, the ease of excavation decreases as the rock mass quality increases, thus blasting most suitable for such operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title="slope stability">slope stability</a>, <a href="https://publications.waset.org/abstracts/search?q=wedge%20failure" title=" wedge failure"> wedge failure</a>, <a href="https://publications.waset.org/abstracts/search?q=geological%20strength%20index%20%28GSI%29" title=" geological strength index (GSI)"> geological strength index (GSI)</a>, <a href="https://publications.waset.org/abstracts/search?q=discontinuities%20and%20excavated%20slope" title=" discontinuities and excavated slope"> discontinuities and excavated slope</a> </p> <a href="https://publications.waset.org/abstracts/15096/analysis-of-slope-in-an-excavated-gneiss-rock-using-geological-strength-index-gsi-in-ilorin-kwara-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">633</span> Modeling of the Effect of Explosives, Geological and Geotechnical Parameters on the Stability of Rock Masses Case of Marrakech: Agadir Highway, Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taoufik%20Benchelha">Taoufik Benchelha</a>, <a href="https://publications.waset.org/abstracts/search?q=Toufik%20Remmal"> Toufik Remmal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20El%20Hamdouni"> Rachid El Hamdouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamou%20Mansouri"> Hamou Mansouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Houssein%20Ejjaouani"> Houssein Ejjaouani</a>, <a href="https://publications.waset.org/abstracts/search?q=Halima%20Jounaid"> Halima Jounaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Benchelha"> Said Benchelha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the earthworks for the construction of Marrakech-Agadir highway in southern Morocco, which crosses mountainous areas of the High Western Atlas, the main problem faced is the stability of the slopes. Indeed, the use of explosives as a means of excavation associated with the geological structure of the terrain encountered can trigger major ruptures and cause damage which depends on the intrinsic characteristics of the rock mass. The study consists of a geological and geotechnical analysis of several unstable zones located along the route, mobilizing millions of cubic meters of rock, with deduction of the parameters influencing slope stability. From this analysis, a predictive model for rock mass stability is carried out, based on a statistic method of logistic regression, in order to predict the geomechanical behavior of the rock slopes constrained by earthworks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=explosive" title="explosive">explosive</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title=" logistic regression"> logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20mass" title=" rock mass"> rock mass</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a> </p> <a href="https://publications.waset.org/abstracts/71665/modeling-of-the-effect-of-explosives-geological-and-geotechnical-parameters-on-the-stability-of-rock-masses-case-of-marrakech-agadir-highway-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">632</span> Evaluation of Drilling Performance through Bit-Rock Interaction Using Passive Vibration Assisted Rotation Drilling (PVARD) Tool </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Shaheen%20Shah">Md. Shaheen Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelsalam%20Abugharara"> Abdelsalam Abugharara</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipesh%20Maharjan"> Dipesh Maharjan</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Imtiaz"> Syed Imtiaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Butt"> Stephen Butt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drilling performance is an essential goal in petroleum and mining industry. Drilling rate of penetration (ROP), which is inversely proportional to the mechanical specific energy (MSE) is influenced by numerous factors among which are the applied parameter: torque (T), weight on bit (WOB), fluid flow rate, revolution per minute (rpm), rock related parameters: rock type, rock homogeneousness, rock anisotropy orientation, and mechanical parameters: bit type, configuration of the bottom hole assembly (BHA). This paper is focused on studying the drilling performance by implementing a passive vibration assisted rotary drilling tool (pVARD) as part of the BHA through using different bit types: coring bit, roller cone bit, and PDC bit and various rock types: rock-like material, granite, sandstone, etc. The results of this study aim to produce a pVARD index for optimal drilling performance considering the recommendations of the pVARD’s spring compression tests and stress-strain analysis of rock samples conducted prior to drilling experiments, analyzing the cutting size distribution, and evaluating the applied drilling parameters as a function of WOB. These results are compared with those obtained from drilling without pVARD, which represents the typical rigid BHA of the conventional drilling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BHA" title="BHA">BHA</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling%20performance" title=" drilling performance"> drilling performance</a>, <a href="https://publications.waset.org/abstracts/search?q=MSE" title=" MSE"> MSE</a>, <a href="https://publications.waset.org/abstracts/search?q=pVARD" title=" pVARD"> pVARD</a>, <a href="https://publications.waset.org/abstracts/search?q=rate%20of%20penetration" title=" rate of penetration"> rate of penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=ROP" title=" ROP"> ROP</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20and%20shear%20fractures" title=" tensile and shear fractures"> tensile and shear fractures</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compressive%20strength" title=" unconfined compressive strength"> unconfined compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/125086/evaluation-of-drilling-performance-through-bit-rock-interaction-using-passive-vibration-assisted-rotation-drilling-pvard-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rock%20bream&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rock%20bream&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rock%20bream&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rock%20bream&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rock%20bream&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rock%20bream&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rock%20bream&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rock%20bream&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rock%20bream&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rock%20bream&amp;page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rock%20bream&amp;page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rock%20bream&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10