CINXE.COM
Search results for: antiviral
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: antiviral</title> <meta name="description" content="Search results for: antiviral"> <meta name="keywords" content="antiviral"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="antiviral" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="antiviral"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 120</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: antiviral</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> A Novel Peptide Showing Universal Effect against Multiple Viruses in Vitro and in Vivo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanjun%20Zhao">Hanjun Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ke%20Zhang"> Ke Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bojian%20Zheng"> Bojian Zheng </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: So far, there is no universal antiviral agent which can inhibit multiple viral infections. More and more drug-resistant viral strains emerge after the antiviral drug application for treatment. Defensins are the front line of host innate immunity and have broad spectrum antibacterial and antiviral effects. However, there is limited data to show if these defensins have good antiviral activity in vivo and what the antiviral mechanism is. Subjects: To investigate a peptide with widespread antivirus activity in vitro and in vivo and illustrate the antiviral mechanism. Methods: Antiviral peptide library designed from mouse beta defensins was synthesized by the company. Recombinant beta defensin was obtained from E. coli. Antiviral activity in vitro was assayed by plaque assay, qPCR. Antiviral activity in vivo was detected by animal challenge with 2009 pandemic H1N1 influenza A virus. The antiviral mechanism was assayed by western blot, ELISA, and qPCR. Conclusions: We identify a new peptide which has widespread effects against multiple viruses (H1N1, H5N1, H7N9, MERS-CoV) in vitro and has efficient antivirus activity in vivo. This peptide inhibits viral entry into target cells and subsequently blocks viral replication. The in vivo study of the antiviral peptide against other viral infections and the investigation of its more detail antiviral mechanism are ongoing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiviral%20peptide" title="antiviral peptide">antiviral peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=defensin" title=" defensin"> defensin</a>, <a href="https://publications.waset.org/abstracts/search?q=Influenza%20A%20virus" title=" Influenza A virus"> Influenza A virus</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism" title=" mechanism"> mechanism</a> </p> <a href="https://publications.waset.org/abstracts/29172/a-novel-peptide-showing-universal-effect-against-multiple-viruses-in-vitro-and-in-vivo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Distinct Antiviral Pathway for ZFP36-Like Family Members Against Flavivirus Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ren-Jye%20Lin">Ren-Jye Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Hsiung%20Lin"> Li-Hsiung Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Bing-Cheng%20Liu"> Bing-Cheng Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Len%20Liao"> Ching-Len Liao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The human zinc finger protein 36-like protein family, containing zinc finger protein 36-like 1 (ZFP36L1) and zinc finger protein 36-like 2 (ZFP36L2), belongs to CCCH-type zinc-finger protein identified as an RNA-binding protein that participates in controlling posttranscriptional regulation via RNA decay pathways. Recently, we demonstrated that human ZFP36L1 showed potent antiviral activity against flavivirus Infection by both 5´-3´ XRN1 and 3´-5´RNA-exosome RNA decay pathways (Journal of Virology 2022 Jan 12;96(1): e0166521). However, another zinc finger protein 36-like protein member, ZFP36L2, in the host defense response against flaviviruses has yet to be addressed. Here, we also demonstrate that ZFP36L2 functions as a host innate defender against flaviviruses, including Japanese encephalitis virus (JEV) and dengue virus (DENV). Overexpression of ZFP36L2 reduced JEV and DENV infection, and ZFP36L2 knockdown significantly promoted viral replication. Distinct from the antiviral mechanism of ZFP36L1, ZFP36L2 inhibits flavivirus infection by only a 5´-3´ XRN1-mediated RNA decay pathway but not the 3´-5´RNA-exosome RNA decay pathway. Human ZFP36L1 and ZFP36L2 can restrict flavivirus replication by directly binding and destabilizing viral RNA. Thus, for the first time, human zinc finger protein 36-like family members, ZFP36L1 and ZFP36L2, are identified as host antiviral factors that can bind and degrade flavivirus viral RNA by diverse antiviral mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZFP36L1" title="ZFP36L1">ZFP36L1</a>, <a href="https://publications.waset.org/abstracts/search?q=ZFP36L2" title=" ZFP36L2"> ZFP36L2</a>, <a href="https://publications.waset.org/abstracts/search?q=5%27-3%27%20exonuclease%20XRN1" title=" 5'-3' exonuclease XRN1"> 5'-3' exonuclease XRN1</a>, <a href="https://publications.waset.org/abstracts/search?q=antiviral%20mechansim" title=" antiviral mechansim"> antiviral mechansim</a> </p> <a href="https://publications.waset.org/abstracts/166251/distinct-antiviral-pathway-for-zfp36-like-family-members-against-flavivirus-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Correlation of Structure and Antiviral Activity of Alkaloids of Polygonum L. Plants Growing in Kazakhstan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Yu.%20Korulkin">Dmitry Yu. Korulkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Raissa%20A.%20Muzychkina"> Raissa A. Muzychkina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently to treat infectious diseases bioactive substances of plant origin having fewer side effects than synthetic medicines and medicines similar to natural components of a human body by the structure and action, become very important. One of the groups of secondary metabolites of the plants - alkaloids can be related the number of the most promising sources of medicines of plant origin. Currently, the structure of more than 7500 compounds has been identified. Analyzing the scope of research in the field of chemistry, pharmacology and technology of alkaloids, we can make a conclusion about that there is no system approach during the research of relation structure-activity on different groups of these substances. It is connected not only with a complex structure of their molecules, but also with insufficient information on the nature of their effect on organs, tissues and other targets in organism. The purpose of this research was to identify pharmacophore groups in the structure of alkaloids of endemic Polygonum L. plants growing in Kazakhstan responsible for their antiviral action. To isolate alkaloids pharmacopoeian methods were used. Antiviral activity of alkaloids of Polygonum L. plants was researched in the Institute of Microbiology and Virology of the Ministry of Education and Science of the Republic of Kazakhstan. Virus-inhibiting properties of compounds were studies in experiments with ortho- and paramyxoviruses on the model of chick-embryos. Anti-viral properties were determined using ‘screening test’ method designed to neutralization of a virus at the amount of 100EID50 with set concentrations of medicines. The difference of virus titer compared to control group was deemed as the criterion of antiviral action. It has been established that Polygonum L. alkaloids has high antiviral effect to influenza and parainfluenza viruses. The analysis of correlation of the structure and antiviral activity of alkaloids allowed identifying the main pharmacophore groups, among which the most important are glycosidation, the presence of carbonyl and hydroxyl groups, molecular weight and molecular size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaloids" title="alkaloids">alkaloids</a>, <a href="https://publications.waset.org/abstracts/search?q=antiviral" title=" antiviral"> antiviral</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20substances" title=" bioactive substances"> bioactive substances</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation" title=" isolation"> isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacophore%20groups" title=" pharmacophore groups"> pharmacophore groups</a>, <a href="https://publications.waset.org/abstracts/search?q=Polygonum%20L." title=" Polygonum L."> Polygonum L.</a> </p> <a href="https://publications.waset.org/abstracts/28281/correlation-of-structure-and-antiviral-activity-of-alkaloids-of-polygonum-l-plants-growing-in-kazakhstan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Phenolic Acids of Plant Origin as Promising Compounds for Elaboration of Antiviral Drugs against Influenza</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Berezin">Vladimir Berezin</a>, <a href="https://publications.waset.org/abstracts/search?q=Aizhan%20Turmagambetova"> Aizhan Turmagambetova</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Bogoyavlenskiy"> Andrey Bogoyavlenskiy</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Alexyuk"> Pavel Alexyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Madina%20Alexyuk"> Madina Alexyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20Zaitceva"> Irina Zaitceva</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadezhda%20Sokolova"> Nadezhda Sokolova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Influenza viruses could infect approximately 5% to 10% of the global human population annually, resulting in serious social and economic damage. Vaccination and etiotropic antiviral drugs are used for the prevention and treatment of influenza. Vaccination is important; however, antiviral drugs represent the second line of defense against new emerging influenza virus strains for which vaccines may be unsuccessful. However, the significant drawback of commercial synthetic anti-flu drugs is the appearance of drug-resistant influenza virus strains. Therefore, the search and development of new anti-flu drugs efficient against drug-resistant strains is an important medical problem for today. The aim of this work was a study of four phenolic acids of plant origin (Gallic, Syringic, Vanillic, and Protocatechuic acids) as a possible tool for treatment against influenza virus. Methods: Phenolic acids; gallic, syringic, vanillic, and protocatechuic have been prepared by extraction from plant tissues and purified using high-performance liquid chromatography fractionation. Avian influenza virus, strain A/Tern/South Africa/1/1961 (H5N3) and human epidemic influenza virus, strain A/Almaty/8/98 (H3N2) resistant to commercial anti-flu drugs (Rimantadine, Oseltamivir) were used for testing antiviral activity. Viruses were grown in the allantoic cavity of 10 days old chicken embryos. The chemotherapeutic index (CTI), determined as the ratio of an average toxic concentration of the tested compound (TC₅₀) to the average effective virus-inhibition concentration (EC₅₀), has been used as a criteria of specific antiviral action. Results: The results of study have shown that the structure of phenolic acids significantly affected their ability to suppress the reproduction of tested influenza virus strains. The highest antiviral activity among tested phenolic acids was detected for gallic acid, which contains three hydroxyl groups in the molecule at C3, C4, and C5 positions. Antiviral activity of gallic acid against A/H5N3 and A/H3N2 influenza virus strains was higher than antiviral activity of Oseltamivir and Rimantadine. gallic acid inhibited almost 100% of the infection activity of both tested viruses. Protocatechuic acid, which possesses 2 hydroxyl groups (C3 and C4) have shown weaker antiviral activity in comparison with gallic acid and inhibited less than 10% of virus infection activity. Syringic acid, which contains two hydroxyl groups (C3 and C5), was able to suppress up to 12% of infection activity. Substitution of two hydroxyl groups by methoxy groups resulted in the complete loss of antiviral activity. Vanillic acid, which is different from protocatechuic acid by replacing of C3 hydroxyl group to methoxy group, was able to suppress about 30% of infection activity of tested influenza viruses. Conclusion: For pronounced antiviral activity, the molecular of phenolic acid must have at least two hydroxyl groups. Replacement of hydroxyl groups to methoxy group leads to a reduction of antiviral properties. Gallic acid demonstrated high antiviral activity against influenza viruses, including Rimantadine and Oseltamivir resistant strains, and could be used as a potential candidate for the development of antiviral drug against influenza virus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiviral%20activity" title="antiviral activity">antiviral activity</a>, <a href="https://publications.waset.org/abstracts/search?q=influenza%20virus" title=" influenza virus"> influenza virus</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20resistance" title=" drug resistance"> drug resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20acids" title=" phenolic acids"> phenolic acids</a> </p> <a href="https://publications.waset.org/abstracts/118980/phenolic-acids-of-plant-origin-as-promising-compounds-for-elaboration-of-antiviral-drugs-against-influenza" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Dual-functional Peptide With Defective Interfering Genes Protecting Mice From Avian and Seasonal Influenza Virus Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanjun%20Zhao">Hanjun Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Limited efficacy of current antivirals and antiviral-resistant mutations impair anti-influenza treatment. Here, we evaluated the in vitro and in vivo antiviral effect of three defective interfering genes (DIG-3) of influenza virus. Virus replication was significantly reduced in 293T and A549 cells transfected with DIG-3. Mice transfected with DIG-3 encoded by jetPEI-vector, as prophylaxis and therapeutics against A(H7N7) virus respectively, had significantly better survivals (80% and 50%) than control mice (0%). We further developed a dual-functional peptide TAT-P1, which delivers DIG-3 with high transfection efficiency and concomitantly exerts antiviral activity by preventing endosomal acidification. TAT-P1/DIG-3 was more effective than jetPEI/DIG-3 in treating A(H7N7) or A(H1N1)pdm09-infected mice and showed potent prophylactic protection on A(H7N7) or A(H1N1)pdm09-infected mice. The addition of P1 peptide, preventing endosomal acidification, could enhance the protection of TAT-P1/DIG-3 on A(H1N1)pdm09-infected mice. Dual-functional TAT-P1 with DIG-3 can effectively protect or treat mice infected by avian and seasonal influenza virus infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiviral%20peptide" title="antiviral peptide">antiviral peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-functional%20peptide" title=" dual-functional peptide"> dual-functional peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=defective%20interfering%20genes" title=" defective interfering genes"> defective interfering genes</a>, <a href="https://publications.waset.org/abstracts/search?q=influenza%20virus" title=" influenza virus"> influenza virus</a> </p> <a href="https://publications.waset.org/abstracts/98170/dual-functional-peptide-with-defective-interfering-genes-protecting-mice-from-avian-and-seasonal-influenza-virus-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> Nagami Kumkuat: A Source of Antiviral and Antimicrobial Bioactive Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Howaida%20I.%20Abd-Alla">Howaida I. Abd-Alla</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagwa%20M.%20M.%20Shalaby"> Nagwa M. M. Shalaby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fruit rind of Fortunella margarita (Nagami Kumkuat) was investigated for its chemical constituents. Thirteen metabolites were obtained and classified into, a sterol; β-sitosterol (1) and twelve phenolic compounds, three coumarins; xanthotoxin (2), isopimpinellin (3), umbelliferone (4), nine flavonoids of O-glycosides of flavone; apigenin-7-O-β-D-glucopyranoside (5), apigenin-7-O-rhamnoglucoside (rhoifolin) (6), C-glycosides; vitexin (7), vicenin II (8), and the methoxylated; 6-methoxyapigenin-7-methyl ether (9) and tangeretin (10) as well as flavanones class; naringenin (11), liquiritigenin (12), hesperdin (hesperetin-7-rhamnoglucoside) (13). All compounds were identified for the first time in F. margarita except compound (8). The major glycosides 5, 6, and 13 and total crude extract showed potential antiviral activity against live Newcastle disease virus vaccine strains (Komarov and LaSota) and live infectious bursitis viruses vaccine strain D78 replication in VERO cell cultures and on specific pathogen-free embryonated chicken eggs. Antiviral inhibitory concentration fifty (IC50), cytotoxic concentration fifty (CC50), and therapeutic index (TI) were calculated. In addition, the extract and compounds 7 and 13 showed marked antimicrobial activity against different strains of fungi, Gram-positive and negative bacteria, including some foodborne pathogens of animal origin, caused human disease. These results suggested that the extract of F. margarita may be considered potentially useful as a source of natural antiviral and antimicrobial agents. It can be used as an ingredient for functional food and/or pharmaceuticals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=antiviral" title=" antiviral"> antiviral</a>, <a href="https://publications.waset.org/abstracts/search?q=Fortunella%20margarita" title=" Fortunella margarita"> Fortunella margarita</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagami%20Kumkuat" title=" Nagami Kumkuat"> Nagami Kumkuat</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20secondary%20metabolites" title=" phenolic secondary metabolites"> phenolic secondary metabolites</a> </p> <a href="https://publications.waset.org/abstracts/140746/nagami-kumkuat-a-source-of-antiviral-and-antimicrobial-bioactive-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> A Small-Molecular Inhibitor of Influenza Virus via Disrupting the PA and PB1 Interaction of the Viral Polymerase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuofeng%20Yuan">Shuofeng Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bojian%20Zheng"> Bojian Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assembly of the heterotrimeric polymerase complex of influenza virus from the individual subunits PB1, PA, and PB2 is a prerequisite for viral replication, in which the interaction between the N-terminal of PB1 (PB1N) and the C terminal of PA (PAC) may be a desired target for antiviral development. In this study, we first compared the feasibility of high throughput screening by enzyme-linked immunosorbent assay (ELISA) and fluorescence polarization (FP) assay. Among the two, ELISA was demonstrated to own broader dynamic range so that it was used for screening inhibitors, which blocked PA and PB1 interaction. Several binding inhibitors of PAC-PB1N were identified and subsequently tested for the antiviral efficacy. Apparently, 3-(2-chlorophenyl)-6-ethyl-7-methyl[1,2,4]triazolo[4,3-a]pyrimidin-5-ol, designated ANA-1, was found to be a strong inhibitor of PAC-PB1N interaction and act as a potent antiviral agent against the infections of multiple subtypes of influenza A virus, including H1N1, H3N2, H5N1, H7N7, H7N9 and H9N2 subtypes, in cell cultures. Intranasal administration of ANA-1 protected mice from lethal challenge and reduced lung viral loads in H1N1 virus infected BALB/c mice. Docking analyses predicted that ANA-1 bound to an allosteric site of PAC, which would cause conformational changes thereby disrupting the PAC-PB1N interaction. Overall, our study has identified a novel compound with potential to be developed as an anti-influenza drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=influenza" title="influenza">influenza</a>, <a href="https://publications.waset.org/abstracts/search?q=antiviral" title=" antiviral"> antiviral</a>, <a href="https://publications.waset.org/abstracts/search?q=viral%20polymerase" title=" viral polymerase"> viral polymerase</a>, <a href="https://publications.waset.org/abstracts/search?q=compounds" title=" compounds"> compounds</a> </p> <a href="https://publications.waset.org/abstracts/38070/a-small-molecular-inhibitor-of-influenza-virus-via-disrupting-the-pa-and-pb1-interaction-of-the-viral-polymerase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Screening of Antiviral Compounds in Medicinal Plants: Non-Volatiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Drevinskas">Tomas Drevinskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruta%20Mickiene"> Ruta Mickiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Audrius%20Maruska"> Audrius Maruska</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicola%20Tiso"> Nicola Tiso</a>, <a href="https://publications.waset.org/abstracts/search?q=Algirdas%20Salomskas"> Algirdas Salomskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Raimundas%20Lelesius"> Raimundas Lelesius</a>, <a href="https://publications.waset.org/abstracts/search?q=Agneta%20Karpovaite"> Agneta Karpovaite</a>, <a href="https://publications.waset.org/abstracts/search?q=Ona%20Ragazinskiene"> Ona Ragazinskiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Loreta%20Kubiliene"> Loreta Kubiliene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antiviral effect of substances accumulated by plants and natural products is known to ethno-pharmacy and modern day medicine. Antiviral properties are usually assigned to volatile compounds and polyphenols. This research work is divided into several parts and the task of this part was to investigate potential plants, potential substances and potential preparation conditions that can be used for the preparation of antiviral agents. Sixteen different medicinal plants, their parts and two types of propolis were selected for screening. Firstly, extraction conditions of non-volatile compounds were investigated: 3 pre-selected plants were extracted with 5 different ethanol – water mixtures (96%, 75%, 60%, 40%, 20 %, vol.) and bidistilled water. Total phenolic content, total flavonoid content and radical scavenging activity was determined. The results indicated that optimal extrahent is 40%, vol. of ethanol – water mixture. Further investigations were performed with the extrahent of 40%, vol. ethanol – water mixture. All 16 of selected plants, their parts and two types of propolis were extracted using selected extrahent. Determined total phenolic content, total flavonoid content and radical scavenging activity indicated that extracts of Origanum Vulgare L., Mentha piperita L., Geranium macrorrhizum L., Melissa officinalis L. and Desmodium canadence L. contains highest amount of extractable phenolic compounds (7.31, 5.48, 7.88, 8.02 and 7.16 rutin equivalents (mg/ ml) respectively), flavonoid content (2.14, 2.23, 2.49, 0.79 and 1.51 rutin equivalents (mg/ml) respectively) and radical scavenging activity (11.98, 8.72, 13.47, 13.22 and 12.22 rutin equivalents (mg/ml) respectively). Composition of the extracts is analyzed using HPLC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiviral%20effect" title="antiviral effect">antiviral effect</a>, <a href="https://publications.waset.org/abstracts/search?q=plants" title=" plants"> plants</a>, <a href="https://publications.waset.org/abstracts/search?q=propolis" title=" propolis"> propolis</a>, <a href="https://publications.waset.org/abstracts/search?q=phenols" title=" phenols"> phenols</a> </p> <a href="https://publications.waset.org/abstracts/50644/screening-of-antiviral-compounds-in-medicinal-plants-non-volatiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Early Transcriptome Responses to Piscine orthoreovirus-1 in Atlantic salmon Erythrocytes Compared to Salmonid Kidney Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomais%20Tsoulia">Thomais Tsoulia</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Y.%20M.%20Sundaram"> Arvind Y. M. Sundaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Stine%20Braaen"> Stine Braaen</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%98yvind%20Haugland"> Øyvind Haugland</a>, <a href="https://publications.waset.org/abstracts/search?q=Espen%20Rimstad"> Espen Rimstad</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%98ystein%20%20Wessel"> Øystein Wessel</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20K.%20Dahle"> Maria K. Dahle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish red blood cells (RBC) are nucleated, and in addition to their function in gas exchange, they have been characterized as mediators of immune responses. Salmonid RBC are the major target cells of Piscineorthoreovirus (PRV), a virus associated with heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon. The activation of antiviral response genesin RBChas previously been described in ex vivo and in vivo PRV-infection models, but not explored in the initial virus encounter phase. In the present study, mRNA transcriptome responses were explored in erythrocytes from individual fish, kept ex vivo, and exposed to purified PRV for 24 hours. The responses were compared to responses in macrophage-like salmon head kidney (SHK-1) and endothelial-like Atlantic salmon kidney (ASK) cells, none of which support PRV replication. The comparative analysis showed that the antiviral response to PRV was strongest in the SHK-1 cells, with a set of 80 significantly induced genes (≥ 2-fold upregulation). In RBC, 46 genes were significantly upregulated, while ASK cells were not significantly responsive. In particular, the transcriptome analysis of RBC revealed that PRV significantly induced interferon regulatory factor 1 (IRF1) and interferon-induced protein with tetratricopeptide repeats 5-like (IFIT9). However, several interferon-regulated antiviral genes which have previously been reported upregulated in PRV infected RBC in vivo (myxovirus resistance (Mx), interferon-stimulated gene 15 (ISG15), toll-like receptor 3 (TLR3)), were not significantly induced after 24h of virus stimulation. In contrast to RBC, these antiviral response genes were significantly upregulated in SHK-1. These results confirm that RBC are involved in the innate immune response to viruses, but with a delayed antiviral response compared to SHK-1. A notable difference is that interferon regulatory factor 1 (IRF-1) is the most strongly induced gene in RBC, but not among the significantly induced genes in SHK-1. Putative differences in the binding, recognition, and response to PRV, and any link to effects on the ability of PRV to replicate remains to be explored. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiviral%20responses" title="antiviral responses">antiviral responses</a>, <a href="https://publications.waset.org/abstracts/search?q=atlantic%20salmon" title=" atlantic salmon"> atlantic salmon</a>, <a href="https://publications.waset.org/abstracts/search?q=piscine%20%20orthoreovirus-1" title=" piscine orthoreovirus-1"> piscine orthoreovirus-1</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20blood%20cells" title=" red blood cells"> red blood cells</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA-seq" title=" RNA-seq"> RNA-seq</a> </p> <a href="https://publications.waset.org/abstracts/144712/early-transcriptome-responses-to-piscine-orthoreovirus-1-in-atlantic-salmon-erythrocytes-compared-to-salmonid-kidney-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> CRISPR Technology: A Tool in the Potential Cure for COVID-19 Virus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chijindu%20Okpalaoka">Chijindu Okpalaoka</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Chinedu%20Onuselogu"> Charles Chinedu Onuselogu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> COVID-19, humanity's coronavirus disease caused by SARS-CoV-2, was first detected in late 2019 in Wuhan, China. COVID-19 lacked an established conventional pharmaceutical therapy, and as a result, the outbreak quickly became an epidemic affecting the entire World. Only a qPCR assay is reliable for diagnosing COVID-19. Clustered, regularly interspaced short palindromic repeats (CRISPR) technology is being researched for speedy and specific identification of COVID-19, among other therapeutic techniques. Apart from its therapeutic capabilities, the CRISPR technique is being evaluated to develop antiviral therapies; nevertheless, no CRISPR-based medication has been approved for human use to date. Prophylactic antiviral CRISPR in living being cells, a Cas 13-based approach against coronavirus, has been developed. While this method can be evolved into a treatment approach, it may face substantial obstacles in human clinical trials for licensure. This study discussed the potential applications of CRISPR-based techniques for developing a speedy and accurate feasible treatment alternative for the COVID-19 virus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title="COVID-19">COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=CRISPR%20technique" title=" CRISPR technique"> CRISPR technique</a>, <a href="https://publications.waset.org/abstracts/search?q=Cas13" title=" Cas13"> Cas13</a>, <a href="https://publications.waset.org/abstracts/search?q=SARS-CoV-2" title=" SARS-CoV-2"> SARS-CoV-2</a>, <a href="https://publications.waset.org/abstracts/search?q=prophylactic%20antiviral" title=" prophylactic antiviral"> prophylactic antiviral</a> </p> <a href="https://publications.waset.org/abstracts/155310/crispr-technology-a-tool-in-the-potential-cure-for-covid-19-virus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Preparation of Pegylated Interferon Alpha-2b with High Antiviral Activity Using Linear 20 KDa Polyethylene Glycol Derivative</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehab%20El-Dabaa">Ehab El-Dabaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Omnia%20Ali"> Omnia Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abd%20El-Hady"> Mohamed Abd El-Hady</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Osman"> Ahmed Osman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recombinant human interferon alpha 2 (rhIFN-α2) is FDA approved for treatment of some viral and malignant diseases. Approved pegylated rhIFN-α2 drugs have highly improved pharmacokinetics, pharmacodynamics and therapeutic efficiency compared to native protein. In this work, we studied the pegylation of purified properly refolded rhIFN-α2b using linear 20kDa PEG-NHS (polyethylene glycol- N-hydroxysuccinimidyl ester) to prepare pegylated rhIFN-α2b with high stability and activity. The effect of different parameters like rhIFN-α2b final concentration, pH, rhIFN-α2b/PEG molar ratios and reaction time on the efficiency of pegylation (high percentage of monopegylated rhIFN-α2b) have been studied in small scale (100µl) pegylation reaction trials. Study of the percentages of different components of these reactions (mono, di, polypegylated rhIFN-α2b and unpegylated rhIFN-α2b) indicated that 2h is optimum time to complete the reaction. The pegylation efficiency increased at pH 8 (57.9%) by reducing the protein concentration to 1mg/ml and reducing the rhIFN-α2b/PEG ratio to 1:2. Using larger scale pegylation reaction (65% pegylation efficiency), ion exchange chromatography method has been optimized to prepare and purify the monopegylated rhIFN-α2b with high purity (96%). The prepared monopegylated rhIFN-α2b had apparent Mwt of approximately 65 kDa and high in vitro antiviral activity (2.1x10⁷ ± 0.8 x10⁷ IU/mg). Although it retained approximately 8.4 % of the antiviral activity of the unpegylated rhIFN-α2b, its activity is high compared to other pegylated rhIFN-α2 developed by using similar approach or higher molecular weight branched PEG. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiviral%20activity" title="antiviral activity">antiviral activity</a>, <a href="https://publications.waset.org/abstracts/search?q=rhIFN-%CE%B12b" title=" rhIFN-α2b"> rhIFN-α2b</a>, <a href="https://publications.waset.org/abstracts/search?q=pegylation" title=" pegylation"> pegylation</a>, <a href="https://publications.waset.org/abstracts/search?q=pegylation%20efficiency" title=" pegylation efficiency"> pegylation efficiency</a> </p> <a href="https://publications.waset.org/abstracts/82826/preparation-of-pegylated-interferon-alpha-2b-with-high-antiviral-activity-using-linear-20-kda-polyethylene-glycol-derivative" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Medicinal Plants: An Antiviral Depository with Complex Mode of Action</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Todorov">Daniel Todorov</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%20Hinkov"> Anton Hinkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Petya%20Angelova"> Petya Angelova</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalina%20Shishkova"> Kalina Shishkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Venelin%20Tsvetkov"> Venelin Tsvetkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Stoyan%20Shishkov"> Stoyan Shishkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human herpes viruses (HHV) are ubiquitous pathogens with a pandemic spread across the globe. HHV type 1 is the main causative agent of cold sores and fever blisters around the mouth and on the face, whereas HHV type 2 is generally responsible for genital herpes outbreaks. The treatment of both viruses is more or less successful with antivirals from the nucleoside analogues group. Their wide application increasingly leads to the emergence of resistant mutants In the past, medicinal plants have been used to treat a number of infectious and non-infectious diseases. Their diversity and ability to produce the vast variety of secondary metabolites according to the characteristics of the environment give them the potential to help us in our warfare with viral infections. The variable chemical characteristics and complex composition is an advantage in the treatment of herpes since the emergence of resistant mutants is significantly complicated. The screening process is difficult due to the lack of standardization. That is why it is especially important to follow the mechanism of antiviral action of plants. On the one hand, it may be expected to interact with its compounds, resulting in enhanced antiviral effects, and the most appropriate environmental conditions can be chosen to maximize the amount of active secondary metabolites. During our study, we followed the activity of various plant extracts on the viral replication cycle as well as their effect on the extracellular virion. We obtained our results following the logical sequence of the experimental settings - determining the cytotoxicity of the extracts, evaluating the overall effect on viral replication and extracellular virion.During our research, we have screened a variety of plant extracts for their antiviral activity against both virus replication and the virion itself. We investigated the effect of the extracts on the individual stages of the viral replication cycle - viral adsorption, penetration and the effect on replication depending on the time of addition. If there are positive results in the later experiments, we had studied the activity over viral adsorption, penetration and the effect of replication according to the time of addition. Our results indicate that some of the extracts from the Lamium album have several targets. The first stages of the viral life cycle are most affected. Several of our active antiviral agents have shown an effect on extracellular virion and adsorption and penetration processes. Our research over the last decade has shown several curative antiviral plants - some of which are from the Lamiacea family. The rich set of active ingredients of the plants in this family makes them a good source of antiviral preparation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20herpes%20virus" title="human herpes virus">human herpes virus</a>, <a href="https://publications.waset.org/abstracts/search?q=antiviral%20activity" title=" antiviral activity"> antiviral activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamium%20album" title=" Lamium album"> Lamium album</a>, <a href="https://publications.waset.org/abstracts/search?q=Nepeta%20nuda" title=" Nepeta nuda"> Nepeta nuda</a> </p> <a href="https://publications.waset.org/abstracts/90194/medicinal-plants-an-antiviral-depository-with-complex-mode-of-action" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Artemisia Species from Iran as Valuable Resources for Medicinal Uses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Naghavi">Mohammad Reza Naghavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Alaeimoghadam"> Farzad Alaeimoghadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Ghafoori"> Hossein Ghafoori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artemisia species, which are medically beneficial, are widespread in temperate regions of both Northern and Southern hemispheres among which Iran is located. About 35 species of Artemisia are indigenous in Iran among them some are widespread in all or most provinces, yet some are restricted to some specific regions. In this review paper, initially, GC-Mass results of some experiments done in different provinces of Iran are mentioned among them some compounds are common among species, some others are mostly restricted to other species; after that, medical advantages based on some researches on species of this genus are reviewed; different qualities such as anti-leishmania, anti-bacteria, antiviral as well as anti-proliferative could be mentioned. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artemisia" title="artemisia">artemisia</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-Mass%20analysis" title=" GC-Mass analysis"> GC-Mass analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20advantage" title=" medical advantage"> medical advantage</a>, <a href="https://publications.waset.org/abstracts/search?q=antiviral" title=" antiviral "> antiviral </a> </p> <a href="https://publications.waset.org/abstracts/13738/artemisia-species-from-iran-as-valuable-resources-for-medicinal-uses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Teicoplanin Derivatives with Antiviral Activity: Synthesis and Biological Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zsolt%20Szucs">Zsolt Szucs</a>, <a href="https://publications.waset.org/abstracts/search?q=Viktor%20Kelemen"> Viktor Kelemen</a>, <a href="https://publications.waset.org/abstracts/search?q=Son%20Le%20Thai"> Son Le Thai</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdolna%20Csavas"> Magdolna Csavas</a>, <a href="https://publications.waset.org/abstracts/search?q=Erzsebet%20Roth"> Erzsebet Roth</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyula%20Batta"> Gyula Batta</a>, <a href="https://publications.waset.org/abstracts/search?q=Annelies%20Stevaert"> Annelies Stevaert</a>, <a href="https://publications.waset.org/abstracts/search?q=Evelien%20Vanderlinden"> Evelien Vanderlinden</a>, <a href="https://publications.waset.org/abstracts/search?q=Aniko%20Borbas"> Aniko Borbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Lieve%20Naesens"> Lieve Naesens</a>, <a href="https://publications.waset.org/abstracts/search?q=Pal%20Herczegh"> Pal Herczegh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The approval of modern glycopeptide antibiotics such as dalbavancin and oritavancin which have excellent activity against Gram-positive bacteria, encouraged our research group to prepare semisynthetic compounds from several members of glycopeptides by various chemical methods. Derivatives from the aglycone of ristocetin, eremomycin, vancomycin and a pseudoaglycon of teicoplanin have been synthesized in a systematic manner. Interestingly, some of the aglycoristocetin derivatives displayed noteworthy anti-influenza activity. More recently our group has been focusing on the modifications of one of the pseudoaglycons of teicoplanin. The reaction of N-ethoxycarbonyl maleimide derivatives with the primary amino function, the copper-catalysed azide-alkyne click reaction and the sulfonylation of the N-terminus were utilized to obtain systematic series of compounds. All substituents provide a more lipophilic character to the new molecules compared to the parent antibiotics, which is known to be favourable for activity against resistant bacteria. Lipoglycopeptides are also known to have antiviral properties, which has been predominantly studied on HIV by others. The structure-activity relationship study of our compounds revealed the influence of a few structural elements on biological activity. In many cases, minimal changes in lipophilicity and structure produced great differences in efficacy and cytotoxicity. In vitro experiments showed that these compounds are not only active against glycopeptide resistant Gram-positive bacteria but in several cases they prevent the infection of cell cultures by different strains of influenza viruses. This is probably related to the inhibition of the viral entry into the host cell nucleus, of which the exact mechanism is unknown. In some instances, reasonably low concentrations were sufficient to observe this effect. Several derivatives were highly cytotoxic at the same time, but some of them displayed a good selectivity index. The antiviral properties of the compounds are not restricted to influenza viruses e.g., some of them showed good activity against Human Coronavirus 229E. This work could potentially lead to the development of antiviral drugs which possess the crucial structural motifs that are needed for antiviral activity, while missing those which contribute to the antibacterial effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiviral" title="antiviral">antiviral</a>, <a href="https://publications.waset.org/abstracts/search?q=glycopeptide" title=" glycopeptide"> glycopeptide</a>, <a href="https://publications.waset.org/abstracts/search?q=semisynthetic" title=" semisynthetic"> semisynthetic</a>, <a href="https://publications.waset.org/abstracts/search?q=teicoplanin" title=" teicoplanin"> teicoplanin</a> </p> <a href="https://publications.waset.org/abstracts/97121/teicoplanin-derivatives-with-antiviral-activity-synthesis-and-biological-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Production of Hydroxy Marilone C as a Bioactive Compound from Streptomyces badius</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osama%20H.%20Elsayed">Osama H. Elsayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20M.%20S.%20Asker"> Mohsen M. S. Asker</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20A.%20Swelim"> Mahmoud A. Swelim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20H.%20Abbas"> Ibrahim H. Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Aziza%20I.%20Attwa"> Aziza I. Attwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20E.%20El%20Awady"> Mohamed E. El Awady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydroxy marilone C is a bioactive metabolite was produced from the culture broth of Streptomyces badius isolated from Egyptian soil. hydroxy marilone C was purified and fractionated by silica gel column with a gradient mobile phase dicloromethane (DCM) : Methanol then Sephadex LH-20 column using methanol as a mobile phase. It was subjected to many instruments as Infrared (IR), nuclear magnetic resonance (NMR), Mass spectroscopy (MS) and UV spectroscopy to the elucidation of its structure. It was evaluated for antioxidant, cytotoxicity against human alveolar basal epithelial cell line (A-549) and human breast adenocarcinoma cell line (MCF-7) and antiviral activities; showed that the maximum antioxidant activity was 78.8 % at 3000 µg/ml after 90 min. and the IC50 value against DPPH radical found about 1500 µg/ml after 60 min. By Using MTT assay the effect of the pure compound on the proliferation of A-549 cells and MCF-7 cells were 443 µg/ml and 147.9 µg/ml, respectively. While for detection of antiviral activity using Madin-Darby canine kidney (MDCK) cells the maximum cytotoxicity was at 27.9% and IC50 was 128.1µg/ml. The maximum concentration required for protecting 50% of the virus-infected cells against H1N1 viral cytopathogenicity (EC50) was 33.25% for 80 µg/ml. This results indicated that the hydroxy marilone C has a potential antitumor and antiviral activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydroxy%20marilone%20C" title="hydroxy marilone C">hydroxy marilone C</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compound" title=" bioactive compound"> bioactive compound</a>, <a href="https://publications.waset.org/abstracts/search?q=Streptomyces%20badius" title=" Streptomyces badius"> Streptomyces badius</a> </p> <a href="https://publications.waset.org/abstracts/33067/production-of-hydroxy-marilone-c-as-a-bioactive-compound-from-streptomyces-badius" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Inhibition of Mixed Infection Caused by Human Immunodeficiency Virus and Herpes Virus by Fullerene Compound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Nosik">Dmitry Nosik</a>, <a href="https://publications.waset.org/abstracts/search?q=Nickolay%20Nosik"> Nickolay Nosik</a>, <a href="https://publications.waset.org/abstracts/search?q=Elli%20Kaplina"> Elli Kaplina</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Lobach"> Olga Lobach</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Chataeva"> Marina Chataeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Lev%20Rasnetsov"> Lev Rasnetsov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and aims: Human Immunodeficiency Virus (HIV) infection is very often associated with Herpes Simplex Virus (HSV) infection but HIV patients are treated with a cocktail of antiretroviral drugs which are toxic. The use of an antiviral drug which will be active against both viruses like ferrovir found in our previous studies is rather actual. Earlier we had shown that Fullerene poly-amino capronic acid (FPACA) was active in case of monoinfection of HIV-1 or HSV-1. The aim of the study was to analyze the efficiency of FPACA against mixed infection of HIV and HSV. Methods: The peripheral blood lymphocytes, CEM, MT-4 cells were simultaneously infected with HIV-1 and HSV-1. FPACA was added 1 hour before infection. Cells viability was detected by MTT assay, virus antigens detected by ELISA, syncytium formation detected by microscopy. The different multiplicity of HIV-1/HSV-1 ratio was used. Results: The double viral HIV-1/HSV-1 infection was more cytopathic comparing with monoinfections. In mixed infection by the HIV-1/HSV-1 concentration of HIV-1 antigens and syncytium formations increased by 1,7 to 2,3 times in different cells in comparison with the culture infected with HIV-1 alone. The concentration of HSV-1 increased by 1,5-1,7 times, respectively. Administration of FPACA (1 microg/ml) protected cells: HIV-1/HSV-1 (1:1) – 80,1%; HIV-1/HSV-1 (1:4) – 57,2%; HIV-1/HSV-1 (1:8) – 46,3 %; HIV-1/HSV-1 (1:16) – 17,0%. Virus’s antigen levels were also reduced. Syncytium formation was totally inhibited in all cases of mixed infection. Conclusion: FPACA showed antiviral activity in case of mixed viral infection induced by Human Immunodeficiency Virus and Herpes Simplex Virus. The effect of viral inhibition increased with the multiplicity of HIV-1 in the inoculum. The mechanism of FPACA action is connected with the blocking of the virus particles adsorption to the cells and it could be suggested that it can have an antiviral activity against some other viruses too. Now FPACA could be considered as a potential drug for treatment of HIV disease complicated with opportunistic herpes viral infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiviral%20drug" title="antiviral drug">antiviral drug</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20immunodeficiency%20virus%20%28hiv%29" title=" human immunodeficiency virus (hiv)"> human immunodeficiency virus (hiv)</a>, <a href="https://publications.waset.org/abstracts/search?q=herpes%20simplex%20virus%20%28hsv%29" title=" herpes simplex virus (hsv)"> herpes simplex virus (hsv)</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20viral%20infection" title=" mixed viral infection"> mixed viral infection</a> </p> <a href="https://publications.waset.org/abstracts/29635/inhibition-of-mixed-infection-caused-by-human-immunodeficiency-virus-and-herpes-virus-by-fullerene-compound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> In vitro Evaluation of the Synergistic Antiviral Activity of Amantadine Coupled with Magnesium Lithospermate B against Enterovirus 71 Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen-Yu%20Lin">Wen-Yu Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Ching%20Chung"> Yi-Ching Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhao-Ren%20Lin"> Jhao-Ren Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzyy-Rong%20Jinn"> Tzyy-Rong Jinn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well known that enterovirus 71(EV71) causes recurring outbreaks of hand, foot and mouth disease and encephalitis leading to complications or death in young children. And, several enterovirus 71 (EV71) of hand foot and mouth disease (HFMD) with high mortalities occurred in Asia country, such as Hong Kung (1985), Malaysia (1997), Taiwan (1998) and China (2008) that EV71 results in severe neurological complications and sudden death in infants and young children. However, there are still no effective drugs and vaccines to reduce and inhibit EV71 infection. Therefore, the development of specific and effective antiviral strategies against EV71 has become an urgent issue for the protection of children from the hazards of the HFMD. As reported, amantadine is effective in prophylaxis and treatment of the EV71 infections. Thus, the aim of this study was to further evaluate the synergistic antiviral activity of amantadine coupled with magnesium lithospermate B (MLB) against enterovirus 71 infection. In a preliminary test, it is shown that the infected RD cells were treated with amantadine after virus absorption, at concentrations of 3 and 5µM of amantadine suppressed EV71-induced CPE to 13% and 23%, respectively at MOI of 3. Alternatively, at concentrations of 5µg/ml of MLB combined with 3 and 5 µM of amantadine apparently suppressed EV71-induced CPE to 45% and 63%, respectively at MOI of 3. Thus, amantadine coupled with MLB may have the potential for further study to development as the chemopreventive reagents against EV71 infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amantadine" title="amantadine">amantadine</a>, <a href="https://publications.waset.org/abstracts/search?q=Enterovirus%2071" title=" Enterovirus 71"> Enterovirus 71</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20lithospermate%20B" title=" magnesium lithospermate B"> magnesium lithospermate B</a>, <a href="https://publications.waset.org/abstracts/search?q=RD%20cells" title=" RD cells"> RD cells</a>, <a href="https://publications.waset.org/abstracts/search?q=synergistic%20effects" title=" synergistic effects"> synergistic effects</a> </p> <a href="https://publications.waset.org/abstracts/78595/in-vitro-evaluation-of-the-synergistic-antiviral-activity-of-amantadine-coupled-with-magnesium-lithospermate-b-against-enterovirus-71-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> In Silico Study of Antiviral Drugs Against Three Important Proteins of Sars-Cov-2 Using Molecular Docking Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Jalalvand">Alireza Jalalvand</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Saleh"> Maryam Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Behjat%20Khatouni"> Somayeh Behjat Khatouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Bahri%20Najafi"> Zahra Bahri Najafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Foroozan%20Fatahinia"> Foroozan Fatahinia</a>, <a href="https://publications.waset.org/abstracts/search?q=Narges%20Ismailzadeh"> Narges Ismailzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Behrokh%20Farahmand"> Behrokh Farahmand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Object: In the last two decades, the recent outbreak of Coronavirus (SARS-CoV-2) imposed a global pandemic in the world. Despite the increasing prevalence of the disease, there are no effective drugs to treat it. A suitable and rapid way to afford an effective drug and treat the global pandemic is a computational drug study. This study used molecular docking methods to examine the potential inhibition of over 50 antiviral drugs against three fundamental proteins of SARS-CoV-2. METHODS: Through a literature review, three important proteins (a key protease, RNA-dependent RNA polymerase (RdRp), and spike) were selected as drug targets. Three-dimensional (3D) structures of protease, spike, and RdRP proteins were obtained from the Protein Data Bank. Protein had minimal energy. Over 50 antiviral drugs were considered candidates for protein inhibition and their 3D structures were obtained from drug banks. The Autodock 4.2 software was used to define the molecular docking settings and run the algorithm. RESULTS: Five drugs, including indinavir, lopinavir, saquinavir, nelfinavir, and remdesivir, exhibited the highest inhibitory potency against all three proteins based on the binding energies and drug binding positions deduced from docking and hydrogen-bonding analysis. Conclusions: According to the results, among the drugs mentioned, saquinavir and lopinavir showed the highest inhibitory potency against all three proteins compared to other drugs. It may enter laboratory phase studies as a dual-drug treatment to inhibit SARS-CoV-2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=covid-19" title="covid-19">covid-19</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20repositioning" title=" drug repositioning"> drug repositioning</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a>, <a href="https://publications.waset.org/abstracts/search?q=lopinavir" title=" lopinavir"> lopinavir</a>, <a href="https://publications.waset.org/abstracts/search?q=saquinavir" title=" saquinavir"> saquinavir</a> </p> <a href="https://publications.waset.org/abstracts/165518/in-silico-study-of-antiviral-drugs-against-three-important-proteins-of-sars-cov-2-using-molecular-docking-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Influence of Cyperus Rotundus Active Principles Inhibit Viral Multiplication and Stimulate Immune System in Indian White Shrimp Fenneropenaeus Indicus against White Spot Syndrome Virus Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thavasimuthu%20Citarasu">Thavasimuthu Citarasu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariavincent%20Michaelbabu"> Mariavincent Michaelbabu</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikram%20Vakharia"> Vikram Vakharia </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rhizome of Java grass, Cyperus rotundus was extracted different organic polar and non-polar solvents and performed the in vitro antiviral and immunostimulant activities against White Spot Syndrome Virus (WSSV) and Vibrio harveyi respectively. Based on the initial screening the ethyl acetate extract of C. rotundus was strong activities and further it was purified through silica column chromatography and the fractions were screened again for antiviral and immunostimulant activity. Among the different fractions screened against the WSSV and V. harveyi, the fractions, F-III to FV had strong activities. In order to study the in vivo influence of C. rotundus, the fractions (F-III to FV) were pooled and delivered to the F. indicus through artificial feed for 30 days. After the feeding trail the experimental and control diet fed F. indicus were challenged with virulent WSSV and studied the survival, molecular diagnosis, biochemical, haematological and immunological parameters. Surprisingly, the pooled fractions (F-III to FV) incorporated diets helped to significantly (P < 0.01) suppressed viral multiplication, showed significant (P < 0.01) differences in protein and glucose levels, improved total haemocyte count (THC), coagulase activity, significantly increased (P < =0.001) prophenol oxidase and intracellular superoxide anion production compared to the control shrimps. Based on the results, C. rotundus extracts effectively suppressed WSSV multiplication and improve the immune system in F. indicus against WSSV infection and this knowledge will helps to develop novel drugs from C. rotundus against WSSV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiviral%20drugs" title="antiviral drugs">antiviral drugs</a>, <a href="https://publications.waset.org/abstracts/search?q=cyperus%20rotundus" title=" cyperus rotundus"> cyperus rotundus</a>, <a href="https://publications.waset.org/abstracts/search?q=fenneropenaeus%20indicus" title=" fenneropenaeus indicus"> fenneropenaeus indicus</a>, <a href="https://publications.waset.org/abstracts/search?q=WSSV" title=" WSSV"> WSSV</a> </p> <a href="https://publications.waset.org/abstracts/25193/influence-of-cyperus-rotundus-active-principles-inhibit-viral-multiplication-and-stimulate-immune-system-in-indian-white-shrimp-fenneropenaeus-indicus-against-white-spot-syndrome-virus-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> In-Situ Reactive Growth of Silver Nanoparticles on Cotton Textile for Antiviral and Electromagnetic Shielding Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Mohammadi%20Mofarah">Hamed Mohammadi Mofarah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mutalifu%20Abulikemu"> Mutalifu Abulikemu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghassan%20E.%20Jabbour"> Ghassan E. Jabbour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Personal protective equipment (PPE) is finding increasing interest in incorporating silver nanoparticles (NPs) for various applications including microbial disinfection and shielding against electromagnetic waves. In this venue, we present an in situ reactive coating approach where silver nanoparticles are self-assembled on the surface of cotton yarn. The impacts of a variety of experimental parameters on the average size of the synthesized silver NPs were investigated. These include vacuum conditions, the concentration of the silver salt solution and reducer, temperature, and curing time. Silver NPs with an average size ranging from 10 to 50 nanometers were self-assembled as a result of careful regulation of such reaction conditions. The disinfection efficacy against the COVID surrogate virus of the functional textile reached a rate of 99.99%. On the other hand, the silver NPs decorated textile demonstrated an electromagnetic shielding ranging from 31 dB to 45 dB were achieved for the frequency range 8.2-12.4 GHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiviral" title="antiviral">antiviral</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID" title=" COVID"> COVID</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20shielding" title=" electromagnetic shielding"> electromagnetic shielding</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20reactive%20coating" title=" in-situ reactive coating"> in-situ reactive coating</a>, <a href="https://publications.waset.org/abstracts/search?q=SARS%20CoV%202" title=" SARS CoV 2"> SARS CoV 2</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20textile" title=" smart textile"> smart textile</a> </p> <a href="https://publications.waset.org/abstracts/165650/in-situ-reactive-growth-of-silver-nanoparticles-on-cotton-textile-for-antiviral-and-electromagnetic-shielding-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Evaluation of the Synergistic Inhibition of Enterovirus 71 Infection by Interferon-α Coupled with Pleconaril in RD Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen-Yu%20Lin">Wen-Yu Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Ching%20Chung"> Yi-Ching Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzyy-Rong%20Jinn"> Tzyy-Rong Jinn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well known that enterovirus 71 (EV71) causes recurring outbreaks of hand, foot and mouth disease (HFMD) and encephalitis leading to complications or death in young children. And, several HFMD of EV71 with high mortalities occurred in Asia countries, such as Malaysia (1997), Taiwan (1998) and China (2008). Thus, more effective antiviral drugs are needed to prevent or reduce EV71-related complications. As reported, interferon-α protects mice from lethal EV71 challenge by the modulation of innate immunity and then degrade enterovirus protease 3Cᵖʳᵒ. On the other side, pleconaril by targeting enterovirus VP1 protein and then block virus entry and attachment. Thus, the aim of this study was to evaluate the synergistic antiviral activity of interferon-α and pleconaril against enterovirus 71 infection. In a preliminary study showed that pleconaril at concentrations of 50, 100 and 300 µg/mL reduced EV71-induced CPE to 52.0 ± 2.5%, 40.2 ± 3.5% and 26.5 ± 1.5%, respectively, of that of the EV71-infected RD control cells (taken as 100%). Notably, 1000 IU/mL of interferon-α in combination with pleconaril at concentrations of 50, 100 and 300µg/mL suppressed EV71-induced CPE by 30.2 ± 3.8%, 16.5 ± 1.3% and 2.8 ± 2.0%, respectively, of that of the pleconaril alone treated with the infected RD cells. These results indicated that interferon-α 1000 IU/mL combination with pleconaril (50, 100 and 300µg/mL) inhibited EV71-induced CPE more effectively than treated with pleconaril alone in the infected RD cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enterovirus%2071" title="enterovirus 71">enterovirus 71</a>, <a href="https://publications.waset.org/abstracts/search?q=interferon-%CE%B1" title=" interferon-α"> interferon-α</a>, <a href="https://publications.waset.org/abstracts/search?q=pleconaril" title=" pleconaril"> pleconaril</a>, <a href="https://publications.waset.org/abstracts/search?q=RD%20cells" title=" RD cells"> RD cells</a> </p> <a href="https://publications.waset.org/abstracts/102058/evaluation-of-the-synergistic-inhibition-of-enterovirus-71-infection-by-interferon-a-coupled-with-pleconaril-in-rd-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Evaluation of Medicinal Plants, Catunaregam spinosa, Houttuynia cordata, and Rhapis excelsa from Malaysia for Antibacterial, Antifungal and Antiviral Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yik%20Sin%20Chan">Yik Sin Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bee%20Ling%20Chuah"> Bee Ling Chuah</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Quan%20Chan"> Wei Quan Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ri%20Jin%20Cheng"> Ri Jin Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Hang%20Oon"> Yan Hang Oon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kong%20Soo%20Khoo"> Kong Soo Khoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam%20Weng%20Sit"> Nam Weng Sit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditionally, medicinal plants have been used to treat different kinds of ailments including infectious diseases. They serve as a good source of lead compounds for the development of new and safer anti-infective agents. This study aimed to investigate the antimicrobial potential of the leaves of three medicinal plants, namely Catunaregam spinosa (Rubiaceae; Mountain pomegranate), Houttuynia cordata (Saururaceae; "fishy-smell herb") and Rhapis excelsa (Arecaceae; “broadleaf lady palm”). The leaves extracts were obtained by sequential extraction using hexane, chloroform, ethyl acetate, ethanol, methanol and water. The antibacterial and antifungal activities were assessed using a colorimetric broth microdilution method against a panel of human pathogenic bacteria (Gram-positive: Bacillus cereus and Staphylococcus aureus; Gram-negative: Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) and fungi (yeasts: Candida albicans, Candida parapsilosis and Cryptococcus neoformans; Moulds: Aspergillus fumigatus and Trichophyton mentagrophytes) respectively; while antiviral activity was evaluated against the Chikungunya virus on monkey kidney epithelial (Vero) cells by neutral red uptake assay. All the plant extracts showed bacteriostatic activity, however, only 72% of the extracts (13/18) were found to have bactericidal activity. The lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were given by the hexane extract of C. spinosa against S. aureus with the values of 0.16 and 0.31 mg/mL respectively. All the extracts also possessed fungistatic activity. Only the hexane, chloroform and ethyl acetate extracts of H. cordata exerted inhibitory activity against A. fumigatus, giving the lowest fungal susceptibility index of 16.7%. In contrast, only 61% of the extracts (11/18) showed fungicidal activity. The ethanol extract of R. excelsa exhibited the strongest fungicidal activity against C. albicans, C. parapsilosis and T. mentagrophytes with minimum fungicidal concentration (MFC) values of 0.04–0.08 mg/mL, in addition to its methanol extract against T. mentagrophytes (MFC=0.02 mg/mL). For anti-Chikungunya virus activity, only chloroform and ethyl acetate extracts of R. excelsa showed significant antiviral activity with 50% effective concentrations (EC50) of 29.9 and 78.1 g/mL respectively. Extracts of R. excelsa warrant further investigations into their active principles responsible for antifungal and antiviral properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bactericidal" title="bactericidal">bactericidal</a>, <a href="https://publications.waset.org/abstracts/search?q=Chikungunya%20virus" title=" Chikungunya virus"> Chikungunya virus</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=fungicidal" title=" fungicidal"> fungicidal</a> </p> <a href="https://publications.waset.org/abstracts/12520/evaluation-of-medicinal-plants-catunaregam-spinosa-houttuynia-cordata-and-rhapis-excelsa-from-malaysia-for-antibacterial-antifungal-and-antiviral-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> In vitro Antiviral Activity of Ocimum sanctum against Animal Viruses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjana%20Goel">Anjana Goel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Kumar%20Bhatia"> Ashok Kumar Bhatia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ocimum sanctum, a well known medicinal plant is used for various alignments in Ayurvedic medicines. It was found to be effective in treating the humans suffering from different viral infections like chicken pox, small pox, measles and influenza. In addition, curative effect of the plant in malignant patients was also reported. In the present study, leaves of this plant were screened against animal viruses i.e. Bovine Herpes Virus-type-1 (BHV-1), Foot and Mouth disease virus (FMDV) and Newcastle Disease Virus (NDV). BHV-1 and FMDV were screened in MDBK and BHK cell lines respectively using cytopathic inhibition test. While NDV was propagated in chick embryo fibroblast culture and tested by haemagglutination inhibition test. Maximum non toxic dose of aqueous extract of Ocimum sanctum leaves was calculated by MTT assay in all the cell cultures and nontoxic doses were used for antiviral activity against viruses. 98.4% and 85.3% protection were recorded against NDV and BHV-1 respectively. However, Ocimum sanctum extract failed to show any inhibitory effect on the cytopathic effect caused by FMD virus. It can be concluded that Ocimum sanctum is a very effective remedy for curing viral infections in animals also. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bovine%20herpes%20virus-type-1" title="bovine herpes virus-type-1">bovine herpes virus-type-1</a>, <a href="https://publications.waset.org/abstracts/search?q=foot%20and%20mouth%20disease%20virus" title=" foot and mouth disease virus"> foot and mouth disease virus</a>, <a href="https://publications.waset.org/abstracts/search?q=newcastle%20disease%20virus" title=" newcastle disease virus"> newcastle disease virus</a>, <a href="https://publications.waset.org/abstracts/search?q=Ocimum%20sanctum" title=" Ocimum sanctum"> Ocimum sanctum</a> </p> <a href="https://publications.waset.org/abstracts/69775/in-vitro-antiviral-activity-of-ocimum-sanctum-against-animal-viruses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Assessment of Selected Marine Organisms from Malaysian Coastal Areas for Inhibitory Activity against the Chikungunya Virus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yik%20Sin%20Chan">Yik Sin Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam%20Weng%20Sit"> Nam Weng Sit</a>, <a href="https://publications.waset.org/abstracts/search?q=Fook%20Yee%20Chye"> Fook Yee Chye</a>, <a href="https://publications.waset.org/abstracts/search?q=van%20Ofwegen%20Leen"> van Ofwegen Leen</a>, <a href="https://publications.waset.org/abstracts/search?q=de%20Voogd%20Nicole"> de Voogd Nicole</a>, <a href="https://publications.waset.org/abstracts/search?q=Kong%20Soo%20Khoo"> Kong Soo Khoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chikungunya fever is an arboviral disease transmitted by the Aedes mosquitoes. It has resulted in epidemics of the disease in tropical countries in the Indian Ocean and South East Asian regions. The recent spread of this disease to the temperate countries such as France and Italy, coupled with the absence of vaccines and effective antiviral drugs make chikungunya fever a worldwide health threat. This study aims to investigate the anti-chikungunya virus activity of selected marine organism samples collected from Malaysian coastal areas, including seaweeds (Caulerpa racemosa, Caulerpa sertularioides and Kappaphycus alvarezii), a soft coral (Lobophytum microlobulatum) and a sponge (Spheciospongia vagabunda). Following lyophilization (oven drying at 40C for K. alvarezii) and grinding to powder form, each sample was subjected to sequential solvent extraction using hexane, chloroform, ethyl acetate, ethanol, methanol and distilled water in order to extract bioactive compounds. The antiviral activity was evaluated using monkey kidney epithelial (Vero) cells infected with the virus (multiplicity of infection=1). The cell viability was determined by Neutral Red uptake assay. 70% of the 30 extracts showed weak inhibitory activity with cell viability ≤30%. Seven of the extracts exhibited moderate inhibitory activity (cell viability: 31%-69%). These were the chloroform, ethyl acetate, ethanol and methanol extracts of C. racemosa; chloroform and ethyl acetate extracts of L. microlobulatum; and the chloroform extract of C. sertularioides. Only the hexane and ethanol extracts of L. microlobulatum showed strong inhibitory activity against the virus, resulting in cell viabilities (mean±SD; n=3) of 73.3±2.6% and 79.2±0.9%, respectively. The corresponding mean 50% effective concentrations (EC50) for the extracts were 14.2±0.2 and 115.3±1.2 µg/mL, respectively. The ethanol extract of the soft coral L. microlobulatum appears to hold the most promise for further characterization of active principles as it possessed greater selectivity index (SI>5.6) compared to the hexane extract (SI=2.1). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiviral" title="antiviral">antiviral</a>, <a href="https://publications.waset.org/abstracts/search?q=seaweed" title=" seaweed"> seaweed</a>, <a href="https://publications.waset.org/abstracts/search?q=sponge" title=" sponge"> sponge</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20coral" title=" soft coral"> soft coral</a>, <a href="https://publications.waset.org/abstracts/search?q=vero%20cell" title=" vero cell"> vero cell</a> </p> <a href="https://publications.waset.org/abstracts/13323/assessment-of-selected-marine-organisms-from-malaysian-coastal-areas-for-inhibitory-activity-against-the-chikungunya-virus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Estrogen Controls Hepatitis C Virus Entry and Spread through the GPR30 Pathway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laura%20Ulitzky">Laura Ulitzky</a>, <a href="https://publications.waset.org/abstracts/search?q=Dougbeh-Chris%20Nyan"> Dougbeh-Chris Nyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuel%20M.%20Lafer"> Manuel M. Lafer</a>, <a href="https://publications.waset.org/abstracts/search?q=Erica%20Silberstein"> Erica Silberstein</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicoleta%20Cehan"> Nicoleta Cehan</a>, <a href="https://publications.waset.org/abstracts/search?q=Deborah%20R.%20Taylor"> Deborah R. Taylor </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hepatitis C virus (HCV)-associated hepatocellular carcinoma, fibrosis and cirrhosis are more frequent in men and postmenopausal women than in premenopausal women and women receiving hormone replacement therapy, suggesting that β-estradiol (estrogen) plays an innate role in preventing viral infection and liver disease. Estrogen classically acts through nuclear estrogen receptors or, alternatively, through the membrane-bound G-protein-coupled estrogen receptor (GPR30 or GPER). We observed a marked decrease in detectable virus when HCV-infected human hepatoma cells were treated with estrogen. The effect was mimicked by both Tamoxifen (Tam) and G1, a GPR30-specific agonist, and was reversed by the GPR30-specific antagonist, G15. Through GPR30, estrogen-mediated the down-regulation of occludin; a tight junction protein and HCV receptor, by promoting activation of matrix metalloproteinases (MMPs). Activated MMP-9 was secreted in response to estrogen, cleaving occludin in the extracellular Domain D, the motif required for HCV entry and spread. This pathway gives new insight into a novel innate immune pathway and the disparate host-virus responses to HCV demonstrated by the two sexes. Moreover, these data suggest that hormone replacement therapy may have beneficial antiviral properties for HCV-infected postmenopausal women and show promise for new antiviral treatments for both men and women. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HCV" title="HCV">HCV</a>, <a href="https://publications.waset.org/abstracts/search?q=estrogen" title=" estrogen"> estrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=occludin" title=" occludin"> occludin</a>, <a href="https://publications.waset.org/abstracts/search?q=MMPs" title=" MMPs"> MMPs</a> </p> <a href="https://publications.waset.org/abstracts/22937/estrogen-controls-hepatitis-c-virus-entry-and-spread-through-the-gpr30-pathway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Biochemical and Antiviral Study of Peptides Isolated from Amaranthus hypochondriacus on Tomato Yellow Leaf Curl Virus Replication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Silvestre%20Mendoza%20Figueroa">José Silvestre Mendoza Figueroa</a>, <a href="https://publications.waset.org/abstracts/search?q=Anders%20Kvarnheden"> Anders Kvarnheden</a>, <a href="https://publications.waset.org/abstracts/search?q=Jes%C3%BAs%20M%C3%A9ndez%20Lozano"> Jesús Méndez Lozano</a>, <a href="https://publications.waset.org/abstracts/search?q=Edgar%20Antonio%20Rodr%C3%ADguez%20Negrete"> Edgar Antonio Rodríguez Negrete</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Soriano%20Garc%C3%ADa"> Manuel Soriano García</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agroindustrial plants such as cereals and pseudo cereals offer a substantial source of biomacromolecules, as they contain large amounts per tissue-gram of proteins, polysaccharides and lipids in comparison with other plants. In particular, Amaranthus hypochondriacus seeds have high levels of proteins in comparison with other cereal and pseudo cereal species, which makes the plant a good source of bioactive molecules such as peptides. Geminiviruses are one principal class of pathogens that causes important economic losses in crops, affecting directly the development and production of the plant. One such virus is the Tomato yellow leaf curl virus (TYLCV), which affects mainly Solanacea family plants such as tomato species. The symptoms of the disease are curling of leaves, chlorosis, dwarfing and floral abortion. The aim of this work was to get peptides derived from enzymatic hydrolysis of globulins and albumins from amaranth seeds with specific recognition of the replication origin in the TYLCV genome, and to test the antiviral activity on host plants with the idea to generate a direct control of this viral infection. Globulins and albumins from amaranth were extracted, the fraction was enzymatically digested with papain, and the aromatic peptides fraction was selected for further purification. Six peptides were tested against the replication origin (OR) using affinity assays, surface resonance plasmon and fluorescent titration, and two of these peptides showed high affinity values to the replication origin of the virus, dissociation constant values were calculated and showed specific interaction between the peptide Ampep1 and the OR. An in vitro replication test of the total TYLCV DNA was performed, in which the peptide AmPep1 was added in different concentrations to the system reaction, which resulted in a decrease of viral DNA synthesis when the peptide concentration increased. Also, we showed that the peptide can decrease the complementary DNA chain of the virus in Nicotiana benthamiana leaves, confirming that the peptide binds to the OR and that its expected mechanism of action is to decrease the replication rate of the viral genome. In an infection assay, N. benthamiana plants were agroinfected with TYLCV-Israel and TYLCV-Guasave. After confirming systemic infection, the peptide was infiltrated in new infected leaves, and the plants treated with the peptide showed a decrease of virus symptoms and viral titer. In order to confirm the antiviral activity in a commercial crop, tomato plants were infected with TYLCV. After confirming systemic infection, plants were infiltrated with peptide solution as above, and the symptom development was monitored 21 days after treatment, showing that tomato plants treated with peptides had lower symptom rates and viral titer. The peptide was also tested against other begomovirus such as Pepper huasteco yellow vein virus (PHYVV-Guasave), showing a decrease of symptoms in N. benthamiana infected plants. The model of direct biochemical control of TYLCV infection shown in this work can be extrapolated to other begomovirus infections, and the methods reported here can be used for design of antiviral agrochemicals for other plant virus infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agrochemical%20screening" title="agrochemical screening">agrochemical screening</a>, <a href="https://publications.waset.org/abstracts/search?q=antiviral" title=" antiviral"> antiviral</a>, <a href="https://publications.waset.org/abstracts/search?q=begomovirus" title=" begomovirus"> begomovirus</a>, <a href="https://publications.waset.org/abstracts/search?q=geminivirus" title=" geminivirus"> geminivirus</a>, <a href="https://publications.waset.org/abstracts/search?q=peptides" title=" peptides"> peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmon" title=" plasmon"> plasmon</a>, <a href="https://publications.waset.org/abstracts/search?q=TYLCV" title=" TYLCV"> TYLCV</a> </p> <a href="https://publications.waset.org/abstracts/73010/biochemical-and-antiviral-study-of-peptides-isolated-from-amaranthus-hypochondriacus-on-tomato-yellow-leaf-curl-virus-replication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Development of Bioactive Medical Textiles by Immobilizing Nanoparticles at Cotton Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Munir%20Ashraf">Munir Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Shagufta%20Riaz"> Shagufta Riaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Personal protective equipment (PPE) and bioactive textiles are highly important for the health care of front line hospital workers, patients, and the general population to be safe from highly infectious diseases. This was even more critical in the wake of COVID-19 outbreak. Most of the medical textiles are inactive against various viruses and bacteria, hence there is a need to wash them frequently to avoid the spread of microorganisms. According to survey conducted by the world health organization, more than 500 million people get infected from hospitals, and more than 13 million died due to these hospitals’ acquired deadly diseases. The market available PPE are though effective against the penetration of pathogens and to kill bacteria but, they are not breathable and active against different viruses. Therefore, there was a great need to develop textiles that are not only effective against bacteria, fungi, and viruses but also are comfortable to the medical personnel and patients. In the present study, waterproof breathable, and biologically active textiles were developed using antiviral and antibacterial nanomaterials. These nanomaterials like TiO₂, ZnO, Cu, and Ag were immobilized at the surface of cotton fabric by using different silane coupling agents and electroless deposition that they retained their functionality even after 30 industrial laundering cycles. Afterwards, the treated fabrics were coated with a waterproof breathable film to prevent the permeation of liquid droplets, any particle or microorganisms greater than 80 nm. The developed cotton fabric was highly active against bacteria and viruses. The good durability of nanomaterials at the cotton surface after several industrial washing cycles makes this fabric an ideal candidate for bioactive textiles used in the medical field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title="antibacterial">antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=antiviral" title=" antiviral"> antiviral</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=durable" title=" durable"> durable</a> </p> <a href="https://publications.waset.org/abstracts/145734/development-of-bioactive-medical-textiles-by-immobilizing-nanoparticles-at-cotton-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Isolation and Characterization of Actinophages Infecting Streptomyces scabies in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Zahran">D. Zahran</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20AlKhazindar"> M. AlKhazindar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khalil"> M. Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20T.%20A.%20Sayed"> E. T. A. Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Streptomyces scabies is a pathogenic actinomycete that infects potato crop causing severe production losses. Actinophages affect the composition and diversity of the bacterial population, thereby, can be used as a biological control. Samples of actinomycetes and phages were collected from different cultivated soils including farms of Faculty of Science, Faculty of Agriculture and different locations in Giza, Egypt. Actinomycetes were identified by using biochemical, morphological tests and molecular studies using 16S rRNA sequencing. Two specific phages (E1 and E2) against Streptomyces scabies and other hosts were isolated. Phages were identified using dilution end point (DEP), longevity in vitro (LIV), thermal inactivation point (TIP), host range and electron microscopy. PhageE1 was characterized by 10-8 (DEP),180 days(LIV), 95°C(TIP), narrow host range and electron microscopy showed ahead (59.9 nm) and neck (10.4nm). On the other hand phageE2 had 10-20 (DEP),180 days(LIV), 90°C(TIP), and the size of head was (67.2 nm) and tail (114nm). Antiviral activity was also studied using different chemicals (NaCL, KCL, CaCL2, BaCL2, CoCL2, AgNO3, ALCL3and HgCL2) with different concentrations and different plant extracts with different concentrations (star anise, tea, tillia, peppermint, ginger, cumin, chamomile, turmeric cinnamon, marjoram and black cumin). Both Phage E1and phage E2 were vulnerable to (cumin, ginger, chamomile, guavas leaves and star anise) but resistant to (Tillie, marjoram, fennelflower seeds, peppermint, and cinnamon). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=potato%20scab" title="potato scab">potato scab</a>, <a href="https://publications.waset.org/abstracts/search?q=actinophages" title=" actinophages"> actinophages</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title=" biological control"> biological control</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20microscopy" title=" electron microscopy"> electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=TIP" title=" TIP"> TIP</a>, <a href="https://publications.waset.org/abstracts/search?q=DEP" title=" DEP"> DEP</a>, <a href="https://publications.waset.org/abstracts/search?q=LIV" title=" LIV"> LIV</a>, <a href="https://publications.waset.org/abstracts/search?q=antiviral%20activity" title=" antiviral activity"> antiviral activity</a> </p> <a href="https://publications.waset.org/abstracts/34520/isolation-and-characterization-of-actinophages-infecting-streptomyces-scabies-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Isolation and Elimination of Latent and Productive Herpes Simplex Virus from the Sacral and Trigeminal Ganglions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bernard%20L.%20Middleton">Bernard L. Middleton</a>, <a href="https://publications.waset.org/abstracts/search?q=Susan%20P.%20Cosgrove"> Susan P. Cosgrove</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is an immediate need for alternative anti-herpetic treatment options effective for both primary infections and reoccurring reactivations of herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). Alternatives currently approved for the purposes of clinical administration includes antivirals and a reduced set of nucleoside analogues. The present article tests a treatment based on a systemic understanding of how the herpes virus affects cell inhibition and breakdown and targets different phases of the viral cycle, including the entry stage, reproductive cross mutation, and cell-to-cell infection. The treatment consisted of five immunotherapeutic core compounds (5CC), which were hypothesized to be capable of neutralizing human monoclonal antibodies. The tested 5CC were noted as being functional in the application of eliminating the DNA synthesis of herpes viral interferon (IFN) - induced cellular antiviral response. They were here found to neutralize antiviral reproduction by blocking cell-to-cell infection. The activity of the 5CC was tested on RC-37 in vitro using an assay plaque reduction and in vivo against HSV-1 and HSV-2. The 50% inhibitory concentration (IC50) of 5CC was 0.0009% for HSV-1 plaque formation and 0.0008% for HSV-2 plaque formation. Further tests were performed to evaluate the susceptibility of HSV-1 and HSV-2 to anti-herpetic drugs in Vero cells after virus entry. There were high-level markers of the 5CC virucidal activity in the viral suspension of HSV-1 and HSV-2. These concentrations of the 5CC are nontoxic and reduced plaque formation by 98.2% for HSV-1 and 93.0% for HSV-2. Virus HSV-1 and HSV-2 titers were reduced significantly by 5CC to the point of being negative, ranging 0.01–0.09 in 72%. The results concluded the 5CC as being an effective treatment option for the herpes simplex virus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synergy%20pharmaceuticals" title="synergy pharmaceuticals">synergy pharmaceuticals</a>, <a href="https://publications.waset.org/abstracts/search?q=herpes%20treatment" title=" herpes treatment"> herpes treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=herpes%20cure" title=" herpes cure"> herpes cure</a>, <a href="https://publications.waset.org/abstracts/search?q=synergy%20pharmaceuticals%20treatment" title=" synergy pharmaceuticals treatment"> synergy pharmaceuticals treatment</a> </p> <a href="https://publications.waset.org/abstracts/120424/isolation-and-elimination-of-latent-and-productive-herpes-simplex-virus-from-the-sacral-and-trigeminal-ganglions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Treatment of Feline Infectious Peritonitis in Cats with Molnupiravir: Clinical Observations and Outcomes For 54 Cases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Clark">T. M. Clark</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Coggins"> S. J. Coggins</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Malik"> R. Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20King"> J. King</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Korman"> R. Korman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: This observational study investigated the use of molnupiravir for treatment of cats with naturally occurring feline infectious peritonitis. Methods: From September 2022 to February 2024, 66 cats diagnosed with FIP across 32 veterinary practices, mainly in Australia, were enrolled. Of these, 54 cats met the inclusion criteria. Complete remission was defined by the resolution of clinical signs and normalisation of A:G ratio (to ≥0.6). Presumptive remission was defined as sustained resolution of FIP-related clinical signs for at least 100 days post cessation of antiviral therapy. Results: In Cohort 1, 18 cats were treated with molnupiravir monotherapy. Thirteen achieved complete remission and three attained presumptive remission, resulting in an overall remission rate of 89% and a provisional cure rate of 72%, with three relapses. Cohort 2 included 29 cats treated with a short induction course of GS-441524 and/or remdesivir before switching to molnupiravir; 23 attained complete remission, and two achieved presumptive remission. The overall cure rate was 86% with no relapses. Seven cats in cohort 3 were initially treated with extended courses of GS-441524, remdesivir, and/or mefloquine and experienced treatment failure or relapse. Molnupiravir was introduced as a rescue therapy; 6 achieved complete remission and 1 achieved presumed remission, resulting in a 100% cure rate with no relapses. Few adverse effects were reported, with the most notable including neutropenia, transient elevations in hepatic enzymes, and polydipsia/polyuria. Conclusion and Relevance: Molnupiravir as a monotherapy, or in combination with other antivirals, represents an accessible, effective treatment for FIP when given at a dosage of 10-15 mg/kg BID. Success occurred across various presentations of FIP, including cases with ocular and neurological involvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feline%20infectious%20peritonitis" title="feline infectious peritonitis">feline infectious peritonitis</a>, <a href="https://publications.waset.org/abstracts/search?q=FIP" title=" FIP"> FIP</a>, <a href="https://publications.waset.org/abstracts/search?q=molnupiravir" title=" molnupiravir"> molnupiravir</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleoside%20analogue" title=" nucleoside analogue"> nucleoside analogue</a>, <a href="https://publications.waset.org/abstracts/search?q=antiviral" title=" antiviral"> antiviral</a> </p> <a href="https://publications.waset.org/abstracts/192177/treatment-of-feline-infectious-peritonitis-in-cats-with-molnupiravir-clinical-observations-and-outcomes-for-54-cases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antiviral&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antiviral&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antiviral&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=antiviral&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>