CINXE.COM
semi-metal in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> semi-metal in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> semi-metal </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/14015/#Item_9" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="solid_state_physics">Solid state physics</h4> <div class="hide"><div> <ul> <li> <p>basics</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Slater+determinant">Slater determinant</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/degeneracy+pressure">degeneracy pressure</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/crystal">crystal</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/crystallographic+group">crystallographic group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Bravais+lattice">Bravais lattice</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Bloch+theory">Bloch theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/electronic+band+structure">electronic band structure</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/valence+bundle">valence bundle</a>, <a class="existingWikiWord" href="/nlab/show/conduction+bundle">conduction bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/valence+band">valence band</a>, <a class="existingWikiWord" href="/nlab/show/conduction+band">conduction band</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Berry+connection">Berry connection</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Berry+phase">Berry phase</a>, <a class="existingWikiWord" href="/nlab/show/Zak+phase">Zak phase</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/phase+of+matter">phase of matter</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/insulator">insulator</a>, <a class="existingWikiWord" href="/nlab/show/topological+insulator">topological insulator</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/metal">metal</a>/<a class="existingWikiWord" href="/nlab/show/conductor">conductor</a>, <a class="existingWikiWord" href="/nlab/show/semi-conductor">semi-conductor</a>, <a class="existingWikiWord" href="/nlab/show/semi-metal">semi-metal</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/superconductor">superconductor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/strange+metal">strange metal</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+phase+of+matter">topological phase of matter</a>, <a class="existingWikiWord" href="/nlab/show/topological+state+of+matter">topological state of matter</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetry+protected+topological+phase">symmetry protected topological phase</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K-theory+classification+of+topological+phases+of+matter">K-theory classification of topological phases of matter</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+order">topological order</a></p> <p><a class="existingWikiWord" href="/nlab/show/anyons">anyons</a></p> </li> <li> <p>Examples</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/graphene">graphene</a>, <a class="existingWikiWord" href="/nlab/show/Haldane+model">Haldane model</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+Hall+effect">quantum Hall effect</a>)</p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/AdS-CFT+in+condensed+matter+physics">AdS-CFT in condensed matter physics</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/tensor+network+state">tensor network state</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Levin-Wen+model">Levin-Wen model</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Josephson+effect">Josephson effect</a></p> </li> </ul> </div></div> <h4 id="topological_physics">Topological physics</h4> <div class="hide"><div> <p><strong>Topological Physics</strong> – Phenomena in <a class="existingWikiWord" href="/nlab/show/physics">physics</a> controlled by the <a class="existingWikiWord" href="/nlab/show/topology">topology</a> (often: the <a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a>) of the <a class="existingWikiWord" href="/nlab/show/physical+system">physical system</a>.</p> <p>General theory:</p> <ul> <li> <p>(<a class="existingWikiWord" href="/nlab/show/extended+topological+field+theory">extended</a>) <a class="existingWikiWord" href="/nlab/show/topological+field+theory">topological field theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Simons+theory">Chern-Simons theory</a></p> </li> </ul> <p>In <a class="existingWikiWord" href="/nlab/show/solid+state+physics">solid state physics</a>:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+state+of+matter">topological state of matter</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+material">quantum material</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/gapped+Hamiltonian">gapped Hamiltonian</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+order">topological order</a>, <a class="existingWikiWord" href="/nlab/show/symmetry+protected+trivial+order">symmetry protected trivial order</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+insulator">topological insulator</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+Hall+effect">quantum Hall effect</a>, <a class="existingWikiWord" href="/nlab/show/quantum+spin+Hall+effect">quantum spin Hall effect</a></p> <p><a class="existingWikiWord" href="/nlab/show/anyons">anyons</a>, <a class="existingWikiWord" href="/nlab/show/braid+group+statistics">braid group statistics</a></p> </li> </ul> </li> </ul> <p>In <a class="existingWikiWord" href="/nlab/show/metamaterials">metamaterials</a>:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+photonics">topological photonics</a> (<a class="existingWikiWord" href="/nlab/show/light+waves">light waves</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+phononics">topological phononics</a> (<a class="existingWikiWord" href="/nlab/show/sound+waves">sound waves</a>)</p> </li> </ul> <p>For <a class="existingWikiWord" href="/nlab/show/quantum+computation">quantum computation</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/topological+quantum+computation">topological quantum computation</a></li> </ul> <p>In <a class="existingWikiWord" href="/nlab/show/quantum+hadrodynamics">quantum hadrodynamics</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Skyrmion">Skyrmion</a></li> </ul> <p>In <a class="existingWikiWord" href="/nlab/show/quantum+chromodynamics">quantum chromodynamics</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/instanton">instanton</a></li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#MassTerms'>Phase decay via mass terms</a></li> </ul> <li><a href='#examples'>Examples</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> <ul> <li><a href='#general'>General</a></li> <li><a href='#holographic_description'>Holographic description</a></li> <li><a href='#ReferencesAnyonicBraidingInMomentumSpace'>Anyons in momentum-space</a></li> </ul> </ul> </div> <h2 id="idea">Idea</h2> <p>In <a class="existingWikiWord" href="/nlab/show/condensed+matter+physics">condensed matter physics</a>, a <em>semi-metal</em> is a <a class="existingWikiWord" href="/nlab/show/crystal">crystalline</a> material whose <a class="existingWikiWord" href="/nlab/show/electronic+band+structure">electronic band structure</a> is such that there is a sizeable gap between the <a class="existingWikiWord" href="/nlab/show/valence+band">valence band</a> and the <a class="existingWikiWord" href="/nlab/show/conduction+band">conduction band</a> (as for an <a class="existingWikiWord" href="/nlab/show/insulator">insulator</a>) <em>except</em> over a <a class="existingWikiWord" href="/nlab/show/submanifold">submanifold</a> of “nodal loci” inside the <a class="existingWikiWord" href="/nlab/show/Brillouin+torus">Brillouin torus</a> which is of <a class="existingWikiWord" href="/nlab/show/positive+number">positive</a> <a class="existingWikiWord" href="/nlab/show/codimension">codimension</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>≥</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">\geq 2</annotation></semantics></math>.</p> <p>This terminology, which was established in the early 2000s, is meant to follow the older terminology <em><a class="existingWikiWord" href="/nlab/show/semiconductor">semiconductor</a></em>, which refers to the case where there is globally a gap between valence and conduction band, but just a small one. Notice that a global and large gap corresponds to an <a class="existingWikiWord" href="/nlab/show/insulator">insulator</a>, while the absence of a gap, hence the broad overlap of valence and conductions band, corresponds to a <a class="existingWikiWord" href="/nlab/show/metal">metal</a>. Therefore a semi-metal behaves like an <a class="existingWikiWord" href="/nlab/show/insulator">insulator</a> for the bulk of its excitation modes, like a <a class="existingWikiWord" href="/nlab/show/semiconductor">semiconductor</a> for excitations close to the nodal loci, and almost like a <a class="existingWikiWord" href="/nlab/show/metal">metal</a> for excitations right at the nodal loci; whence the terminology.</p> <center> <img src="https://ncatlab.org/nlab/files/SemiMetalBandStructure-20220405.jpg" width="400" /> (graphics from <a class="existingWikiWord" href="/schreiber/show/Topological+Quantum+Computation+in+TED-K">SS 22</a>) </center> <p>If the gap closure happens over an isolated point, one speaks of a <em>nodal point</em> proper, or more specifically of a <em>Dirac point</em> or <em>Weyl point</em>, indicating the “degeneracy” (multiplicity) of the <a class="existingWikiWord" href="/nlab/show/energy">energy</a> <a class="existingWikiWord" href="/nlab/show/eigenstates">eigenstates</a> at the point (2 for Weyl, 4 for Dirac, see <a href="#MassTerms">below</a>). If the gap closes over a 1-dimensional manifold (a <a class="existingWikiWord" href="/nlab/show/curve">curve</a> or a <a class="existingWikiWord" href="/nlab/show/circle">circle</a>) one speaks of a <em>nodal line</em>.</p> <p>Due to the gap on (a <a class="existingWikiWord" href="/nlab/show/neighbourhood+retract">neighbourhood retract</a> of) the <a class="existingWikiWord" href="/nlab/show/complement">complement</a> of the nodal points/lines inside the <a class="existingWikiWord" href="/nlab/show/Brillouin+torus">Brillouin torus</a>, the <a class="existingWikiWord" href="/nlab/show/Berry+connection">Berry connection</a> is well-defined away from the nodal loci, and it tends to be <a class="existingWikiWord" href="/nlab/show/flat+connection">flat</a> in suitable hyperplanes there. It’s <a class="existingWikiWord" href="/nlab/show/holonomy">holonomy</a> around <a class="existingWikiWord" href="/nlab/show/codimension">codimension</a>=2 nodal loci (ie. around nodal lines in 3d materials and nodal points in effectively 2d materials such as <a class="existingWikiWord" href="/nlab/show/graphene">graphene</a>, see also at <em><a class="existingWikiWord" href="/nlab/show/defect+brane">defect brane</a></em>) – known as a <em><a class="existingWikiWord" href="/nlab/show/Berry+phase">Berry phase</a></em> – is then a property of the nodal locus alone, and to be interpreted as a measure for the “topological protection” of the gap over the nodal loci (e.g. <a href="#FWDF16">FWDF 16, II.B</a>, <a href="#Vanderbilt18">Vanderbilt 18, 5.5.2</a>): Under <a class="existingWikiWord" href="/nlab/show/quantum+adiabatic+theorem">adiabatic</a> deformations of the material that do not excite modes above the gap, these nodal points may move and merge or split, but their total topological charge cannot change.</p> <p>Therefore semi-metals with such non-trivial Berry phases are examples of <a class="existingWikiWord" href="/nlab/show/topological+phases+of+matter">topological phases of matter</a>, and are sometimes called <em>topological semi-metals</em>, for emphasis. In fact, if the topological charges of the nodal loci in a semi-metal do happen to be trivial, then it is (in the deformation class of) a fully gapped <a class="existingWikiWord" href="/nlab/show/insulator">insulator</a> and may then be a <em><a class="existingWikiWord" href="/nlab/show/topological+insulator">topological insulator</a></em> (if the <a class="existingWikiWord" href="/nlab/show/twisted+equivariant+K-theory">twisted equivariant</a> <a class="existingWikiWord" href="/nlab/show/topological+K-theory">topological K-theory</a> class of its <a class="existingWikiWord" href="/nlab/show/valence+bundle">valence bundle</a> is non-trivial).</p> <h2 id="properties">Properties</h2> <h3 id="MassTerms">Phase decay via mass terms</h3> <p>Near nodal points in the Brillouin torus of a semi-metal, the <a class="existingWikiWord" href="/nlab/show/dispersion+relation">dispersion relation</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi><mo>↦</mo><mi>E</mi><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">k \mapsto E( k)</annotation></semantics></math> exhibited by the <a class="existingWikiWord" href="/nlab/show/energy+bands">energy bands</a> is thought to be approximated by that of a massless <a class="existingWikiWord" href="/nlab/show/Dirac+equation">Dirac equation</a>/<a class="existingWikiWord" href="/nlab/show/Weyl+spinor">Weyl equation</a>, whence the terminology <em>Dirac point</em> or <em>Weyl point</em>.</p> <p>When the material’s parameters can be and are <a class="existingWikiWord" href="/nlab/show/quantum+adiabatic+theorem">adiabatically</a> tuned such that this <a class="existingWikiWord" href="/nlab/show/dispersion+relation">dispersion relation</a> turns into a <em>massive</em> <a class="existingWikiWord" href="/nlab/show/Dirac+equation">Dirac equation</a>, then the band gap at the former nodal crossing will “open up” in proportion to the <a class="existingWikiWord" href="/nlab/show/coefficient">coefficient</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math> of the effective <em><a class="existingWikiWord" href="/nlab/show/mass+term">mass term</a></em> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><msub><mi>γ</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">m \gamma_0</annotation></semantics></math> in the Dirac equation. If this happens to all nodal points (while keeping the band gap open everywhere else), one expects that the topological semi-metal phase decays into a <a class="existingWikiWord" href="/nlab/show/topological+insulator">topological insulator</a>-phase.</p> <p>A necessary condition for such a <em><a class="existingWikiWord" href="/nlab/show/mass+term">mass term</a></em> to exist at all is that a further <a class="existingWikiWord" href="/nlab/show/Clifford+algebra">Clifford generator</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>γ</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">\gamma_0</annotation></semantics></math> is represented on the Bloch-Hilbert space of electrons such that it skew-commutes with all <a class="existingWikiWord" href="/nlab/show/Feynman+slash+notation">Clifford momenta</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi><mspace width="negativethinmathspace"></mspace><mspace width="negativethinmathspace"></mspace><mspace width="negativethinmathspace"></mspace><mo stretchy="false">/</mo></mrow><annotation encoding="application/x-tex">k\!\!\!/</annotation></semantics></math> (e.g. <a href="#Schnyder18">Schnyder 18, Sec. II.A</a>, <a href="#Schnyder20">Schnyder 20, Sec. 2.1</a>, see also <a href="#FreedHopkins21">Freed & Hopkins 21, around Lem. 9.55</a>).</p> <div style="margin: -20px 0px 20px 10px"> <figure style="margin: 0 0 0 0"> <img src="/nlab/files/MassTermsForSemiMetalNodalPoints-220517.jpg" width="600px" /> <figcaption style="text-align: center">(graphics from <a href="#SS22">SS22</a>)</figcaption> </figure> </div> <p>By <a class="existingWikiWord" href="/nlab/show/Karoubi+K-theory">Karoubi/Atiyah-Singer-type theorems</a>, such gap-opening mass terms are expected to again be classified by topological K-theory groups (<a href="#ChiuSchnyder14">Chiu & Schnyder 14, Sec. A.2</a>, reviewed in <a href="#Schnyder18">Schnyder 18, Sec. II.A</a>, <a href="#Schnyder20">Schnyder 20, Sec. 2.1</a>, following <a href="#MorimotoFurusaki13">Morimoto & Furusaki 13, Sec. V</a>, <a href="#CTSR15">CTSR 15, Sec. III.C</a>).</p> <p>Beware:</p> <ol> <li> <p>This means that the topological <em>semi-metal</em>-phase must be classified in a group <em>modulo</em> the group of <a class="existingWikiWord" href="/nlab/show/mass+terms">mass terms</a> (cf. <a href="#FreedHopkins21">Freed & Hopkins 21, Thm. 9.63</a>). The K-group of mass terms itself at best classifies aspects of the <a class="existingWikiWord" href="/nlab/show/topological+insulator">topological insulator</a>-phase that the semi-metal phase may decay to.</p> </li> <li> <p>The argument about single <a class="existingWikiWord" href="/nlab/show/mass+terms">mass terms</a> in a K-theory group of a point ignores the global topology of the valence bundle.</p> <p>This is manifest already in the canonical example of the <a class="existingWikiWord" href="/nlab/show/Haldane+model">Haldane model</a>, where for <em>constant</em> mass terms (as usually understood) the total topological charge of all nodal points combined is constrained to vanish.</p> </li> </ol> <h2 id="examples">Examples</h2> <p>The archetypical and original example of a semi-metal is <em><a class="existingWikiWord" href="/nlab/show/graphene">graphene</a></em>, where the gap closes over two <a class="existingWikiWord" href="/nlab/show/Dirac+points">Dirac points</a>. (Or almost: a tiny <a class="existingWikiWord" href="/nlab/show/spin-orbit+coupling">spin-orbit coupling</a> in graphene actually produces a tiny gap even at the would-be Dirac points, which however tends to be too small to be visible in practice. But if one will or would analyze graphene with an accuracy that does resolve this tiny gap-opening, then graphene will or would appear as a <a class="existingWikiWord" href="/nlab/show/topological+insulator">topological insulator</a> instead of a semi-metal.)</p> <p>After the synthesis of graphene, which is an effectively 2-dimensional material (an atomic mono-layer) much attention has shifted to the synthesis and understanding of 3-dimensional semi-metals.</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+insulator">topological insulator</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/photonic+semimetal">photonic semimetal</a>, <a class="existingWikiWord" href="/nlab/show/phononic+semimetal">phononic semimetal</a></p> </li> </ul> <h2 id="references">References</h2> <h3 id="general">General</h3> <p>Review:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Anton+A.+Burkov">Anton A. Burkov</a>, <em>Topological semimetals</em>, Nature Materials <strong>15</strong> (2016) 1145–1148 [<a href="https://doi.org/10.1038/nmat4788">doi:10.1038/nmat4788</a>, <a href="https://arxiv.org/abs/1610.07866">arXiv:1610.07866</a>]</p> </li> <li> <p>Jinyu Zou, Zhuoran He, Gang Xu: <em>The study of magnetic topological semimetals by first principles calculations</em>, npj Computational Materials <strong>5</strong> 96 (2019) [<a href="https://doi.org/10.1038/s41524-019-0237-5">doi:10.1038/s41524-019-0237-5</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Guo+Chuan+Thiang">Guo Chuan Thiang</a>: <em>Topological Semimetals</em>, <a class="existingWikiWord" href="/nlab/show/Encyclopedia+of+Mathematical+Physics+2nd+ed">Encyclopedia of Mathematical Physics 2nd ed</a> (2024) [<a href="https://arxiv.org/abs/2407.12692">arXiv:2407.12692</a>]</p> </li> </ul> <p>General monographs:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Tom%C3%A1%C5%A1+Bzdu%C5%A1ek">Tomáš Bzdušek</a>, <em>Symmetry and topology of nodal semimetals</em>, ETH (2017) [<a href="https://doi.org/10.3929/ethz-b-000216959">doi:10.3929/ethz-b-000216959</a>]</p> </li> <li id="Vanderbilt18"> <p><a class="existingWikiWord" href="/nlab/show/David+Vanderbilt">David Vanderbilt</a>, Section 5 of: <em>Berry Phases in Electronic Structure Theory – Electric Polarization, Orbital Magnetization and Topological Insulators</em>, Cambridge University Press (2018) (<a href="https://doi.org/10.1017/9781316662205">doi:10.1017/9781316662205</a>)</p> </li> </ul> <p>Review with emphasis on <a href="#MassTerms">mass terms</a>:</p> <ul> <li id="Schnyder18"> <p><a class="existingWikiWord" href="/nlab/show/Andreas+P.+Schnyder">Andreas P. Schnyder</a>, <em>Accidental and symmetry-enforced band crossings in topological semimetals</em>, lecture notes (2018) [<a href="https://www.fkf.mpg.de/6431357/topo_lecture_notes_schnyder_TMS18.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/Schnyder-Semimetals-2018.pdf" title="pdf">pdf</a>]</p> </li> <li id="Schnyder20"> <p><a class="existingWikiWord" href="/nlab/show/Andreas+P.+Schnyder">Andreas P. Schnyder</a>, <em>Topological semimetals</em>, lecture notes (2020) [<a href="https://www.fkf.mpg.de/7143520/topological_semimetals.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/Schnyder-Semimetals-2020.pdf" title="pdf">pdf</a>]</p> </li> </ul> <p>For references on <em><a class="existingWikiWord" href="/nlab/show/graphene">graphene</a></em> see also there.</p> <p>Discussion focusing on 3-dimensional semi-metals with nodal lines:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Anton+A.+Burkov">Anton A. Burkov</a>, M. D. Hook, Leon Balents, <em>Topological nodal semimetals</em>, Phys. Rev. B <strong>84</strong> (2011) 235126 [<a href="https://arxiv.org/abs/1110.1089">arXiv:1110.1089</a>, <a href="https://doi.org/10.1103/PhysRevB.84.235126">doi:10.1103/PhysRevB.84.235126</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Ari+M.+Turner">Ari M. Turner</a>, <a class="existingWikiWord" href="/nlab/show/Ashvin+Vishwanath">Ashvin Vishwanath</a>, Part I of: <em>Beyond Band Insulators: Topology of Semi-metals and Interacting Phases</em>, in: <em>Topological Insulators</em>, Contemporary Concepts of Condensed Matter Science <strong>6</strong> (2013) 293-324 <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo></mrow><annotation encoding="application/x-tex">[</annotation></semantics></math><a href="https://arxiv.org/abs/1301.0330">arXiv:1301.0330</a>, <a href="https://www.sciencedirect.com/bookseries/contemporary-concepts-of-condensed-matter-science/vol/6/suppl/C">ISBN:978-0-444-63314-9</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">]</annotation></semantics></math></p> </li> <li> <p>Bohm-Jung Yang, Naoto Nagaosa, <em>Classification of stable three-dimensional Dirac semimetals with nontrivial topology</em>, Nature Communications <strong>5</strong> (2014) 4898 (<a href="https://doi.org/10.1038/ncomms5898">doi:10.1038/ncomms5898</a>)</p> </li> <li> <p>N. P. Armitage, <a class="existingWikiWord" href="/nlab/show/Eugene+Mele">Eugene Mele</a>, <a class="existingWikiWord" href="/nlab/show/Ashvin+Vishwanath">Ashvin Vishwanath</a>, <em>Weyl and Dirac semimetals in three-dimensional solids</em>, Rev. Mod. Phys. <strong>90</strong> 015001 (2018) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo></mrow><annotation encoding="application/x-tex">[</annotation></semantics></math><a href="https://doi.org/10.1103/RevModPhys.90.015001">doi:10.1103/RevModPhys.90.015001</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">]</annotation></semantics></math></p> </li> <li> <p>Jiaheng Li, Zetao Zhang, Chong Wang, Huaqing Huang, Bing-Lin Gu, Wenhui Duan, <em>Topological semimetals from the perspective of first-principles calculations</em>, Journal of Applied Physics 128, 191101 (2020) (<a href="https://doi.org/10.1063/5.0025396">doi:10.1063/5.0025396</a>)</p> </li> <li> <p>Faruk Abdulla, Ganpathy Murthy, Ankur Das, <em>Stable nodal line semimetals in the chiral classes in three dimensions</em> [<a href="https://arxiv.org/abs/2401.02966">arXiv:2401.02966</a>]</p> </li> </ul> <p>Discussion of the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℤ</mi><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">\mathbb{Z}/2</annotation></semantics></math>-valued <a class="existingWikiWord" href="/nlab/show/Berry+phases">Berry phases</a> around <a class="existingWikiWord" href="/nlab/show/codimension">codimension</a>=2 nodal loci in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mi>I</mi></mrow><annotation encoding="application/x-tex">P I</annotation></semantics></math>-symmetric (time-reversal + inversion invariant) semi-metals:</p> <ul> <li> <p>Dan-Wei Zhang, Y. X. Zhao, Rui-Bin Liu, Zheng-Yuan Xue, Shi-Liang Zhu, Z. D. Wang, <em>Quantum simulation of exotic PT-invariant topological nodal loop bands with ultracold atoms in an optical lattice</em>, Phys. Rev. A <strong>93</strong> (2016) 043617 (<a href="https://arxiv.org/abs/1601.00371">arXiv:1601.00371</a>, <a href="https://doi.org/10.1103/PhysRevA.93.043617">doi:10.1103/PhysRevA.93.043617</a>)</p> <blockquote> <p>(see sec II.A, these authors stand out as mentioning the relevant <a class="existingWikiWord" href="/nlab/show/KO-theory">KO-theory</a>)</p> </blockquote> </li> <li id="FWDF16"> <p>Chen Fang, Hongming Weng, Xi Dai, Zhong Fang, <em>Topological nodal line semimetals</em>, Chinese Phys. B <strong>25</strong> (2016) 117106 (<a href="https://arxiv.org/abs/1609.05414">arXiv:1609.05414</a>, <a href="https://doi.org/10.1088/1674-1056/25/11/117106">doi:10.1088/1674-1056/25/11/117106</a>)</p> <blockquote> <p>(see sec II.B)</p> </blockquote> </li> <li> <p><a href="#Vanderbilt18">Vanderbilt 18, 5.5.2</a></p> </li> </ul> <p>More mathematical discussion of the case of <a class="existingWikiWord" href="/nlab/show/Chern+semi-metals">Chern semi-metals</a>:</p> <ul> <li id="MathaiThiang17a"> <p><a class="existingWikiWord" href="/nlab/show/Varghese+Mathai">Varghese Mathai</a>, <a class="existingWikiWord" href="/nlab/show/Guo+Chuan+Thiang">Guo Chuan Thiang</a>, <em>Global topology of Weyl semimetals and Fermi arcs</em>, J. Phys. A: Math. Theor. <strong>50</strong> (2017) 11LT01 [<a href="https://arxiv.org/abs/1607.02242">arXiv:1607.02242</a>, <a href="https://doi.org/10.1088/1751-8121/aa59b2">doi:10.1088/1751-8121/aa59b2</a>]</p> </li> <li id="MathaiThiang17b"> <p><a class="existingWikiWord" href="/nlab/show/Varghese+Mathai">Varghese Mathai</a>, <a class="existingWikiWord" href="/nlab/show/Guo+Chuan+Thiang">Guo Chuan Thiang</a>, <em>Differential Topology of Semimetals</em>, Commun. Math. Phys. <strong>355</strong> (2017) 561–602 [<a href="https://arxiv.org/abs/1611.08961">arXiv:1611.08961</a>, <a href="https://doi.org/10.1007/s00220-017-2965-z">doi:10.1007/s00220-017-2965-z</a>]</p> </li> </ul> <p>Discussion of (classification of) Dirac/Weyl mass terms:</p> <ul> <li id="ChiuSchnyder14"><a class="existingWikiWord" href="/nlab/show/Ching-Kai+Chiu">Ching-Kai Chiu</a>, <a class="existingWikiWord" href="/nlab/show/Andreas+P.+Schnyder">Andreas P. Schnyder</a>, Section A.2 of: <em>Classification of reflection-symmetry-protected topological semimetals and nodal superconductors</em>, Phys. Rev. B <strong>90</strong> 205136 (2014) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo></mrow><annotation encoding="application/x-tex">[</annotation></semantics></math><a href="https://doi.org/10.1103/PhysRevB.90.205136">doi:10.1103/PhysRevB.90.205136</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">]</annotation></semantics></math></li> </ul> <p>following:</p> <ul> <li id="MorimotoFurusaki13"> <p>Takahiro Morimoto and Akira Furusaki, Sec. V of: <em>Topological classification with additional symmetries from Clifford algebras</em>, Phys. Rev. B <strong>88</strong> (2013) 125129 (<a href="https://arxiv.org/abs/1306.2505">arXiv:1306.2505</a>, <a href="https://doi.org/10.1103/PhysRevB.88.125129">doi:10.1103/PhysRevB.88.125129</a>)</p> </li> <li id="CTSR15"> <p><a class="existingWikiWord" href="/nlab/show/Ching-Kai+Chiu">Ching-Kai Chiu</a>, <a class="existingWikiWord" href="/nlab/show/Jeffrey+C.Y.+Teo">Jeffrey C.Y. Teo</a>, <a class="existingWikiWord" href="/nlab/show/Andreas+P.+Schnyder">Andreas P. Schnyder</a>, <a class="existingWikiWord" href="/nlab/show/Shinsei+Ryu">Shinsei Ryu</a>, Section III.C of <em>Classification of topological quantum matter with symmetries</em>, Rev. Mod. Phys. <strong>88</strong> (2016) 035005 (<a href="https://arxiv.org/abs/1505.03535">arXiv:1505.03535</a>, <a href="https://doi.org/10.1103/RevModPhys.88.035005">doi:10.1103/RevModPhys.88.035005</a>)</p> </li> </ul> <p>Pedagogical example:</p> <ul> <li id="DelftTopologyCourse">Delft Topology Course team, <em><a href="https://topocondmat.org/w4_haldane/haldane_model.html#first-try">Haldane model, Berry curvature, and Chern number</a></em> - <a href="https://topocondmat.org/w4_haldane/haldane_model.html#first-try">First try</a>, <a href="https://topocondmat.org/w4_haldane/haldane_model.html#second-try">Second try</a></li> </ul> <p>Related discussion of Dirac mass terms is in:</p> <ul> <li id="FreedHopkins21"><a class="existingWikiWord" href="/nlab/show/Daniel+S.+Freed">Daniel S. Freed</a>, <a class="existingWikiWord" href="/nlab/show/Michael+J.+Hopkins">Michael J. Hopkins</a>, <em>Reflection positivity and invertible topological phases</em>, Geom. Topol. <strong>25</strong> (2021) 1165-1330 [<a href="https://arxiv.org/abs/1604.06527">arXiv:1604.06527</a>, <a href="https://doi.org/10.2140/gt.2021.25.1165">doi:10.2140/gt.2021.25.1165</a>]</li> </ul> <p>Lists of actual semi-metals:</p> <ul> <li>Md. Rakibul Karim Akand. <em>Catalog of magnetic topological semimetals</em>, AIP Advances <strong>10</strong> 095222 (2020) [<a href="https://doi.org/10.1063/5.0020096">doi:10.1063/5.0020096</a>]</li> </ul> <p>Simulation of Dirac semimetals with <a class="existingWikiWord" href="/nlab/show/lattice+field+theory">lattice field theory</a>:</p> <ul> <li><em>Lattice field theory simulations of Dirac semimetals</em>, Annals of Physics <strong>391</strong> (2018) 278-292 [<a href="https://doi.org/10.1016/j.aop.2018.02.016">doi:10.1016/j.aop.2018.02.016</a>]</li> </ul> <p>and other numerical calculuations:</p> <ul> <li> <p><em>The study of magnetic topological semimetals by first principles calculations</em>, npj Computational Materials <strong>5</strong> 96 (2019) [<a href="https://doi.org/10.1038/s41524-019-0237-5">doi:10.1038/s41524-019-0237-5</a>]</p> </li> <li> <p><em>Topological semimetals from the perspective of first-principles calculations</em>, Journal of Applied Physics <strong>128</strong> (2020) 191101 [<a href="https://doi.org/10.1063/5.0025396">doi:10.1063/5.0025396</a>]</p> </li> </ul> <p id="ReferencesStronglyCoupled"> On strongly-coupled topological semimetals:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Koji+Hashimoto">Koji Hashimoto</a>, Shunichiro Kinoshita, Keiju Murata, <a class="existingWikiWord" href="/nlab/show/Takashi+Oka">Takashi Oka</a>, <em>Holographic Floquet states: (I) A strongly coupled Weyl semimetal</em>, J. High Energ. Phys. <strong>2017</strong> 127 (2017) [<a href="https://arxiv.org/abs/1611.03702">arXiv:1611.03702</a>, <a href="https://doi.org/10.1007/JHEP05(2017)127">doi:10.1007/JHEP05(2017)127</a>]</p> </li> <li> <p>Diana M Kirschbaum, Monika Lužnik, Gwenvredig Le Roy, Silke Paschen, <em>How to identify and characterize strongly correlated topological semimetals</em>, J. Phys. Mater. <strong>7</strong> (2024) 012003 [<a href="https://iopscience.iop.org/article/10.1088/2515-7639/ad0f30">doi:10.1088/2515-7639/ad0f30a</a>, <a href="https://arxiv.org/abs/2308.11318">arXiv:2308.11318</a>]</p> </li> <li> <p>Yongjun Ahn, Matteo Baggioli, Yan Liu, Xin-Meng Wu, <em>Chiral magnetic waves in strongly coupled Weyl semimetals</em>, J. High Energ. Phys. <strong>2024</strong> 124 (2024) [<a href="https://arxiv.org/abs/2401.07772">arXiv:2401.07772</a>, <a href="https://doi.org/10.1007/JHEP03(2024)124">doi:10.1007/JHEP03(2024)124</a>]</p> </li> </ul> <p>and relation to <a class="existingWikiWord" href="/nlab/show/topological+order">topological order</a>:</p> <ul> <li> <p>Chong Wang, Lei Gioia, <a class="existingWikiWord" href="/nlab/show/Anton+A.+Burkov">Anton A. Burkov</a>, <em>Fractional Quantum Hall Effect in Weyl Semimetals</em>, Phys. Rev. Lett. <strong>124</strong> 096603 (2020) [<a href="https://doi.org/10.1103/PhysRevLett.124.096603">doi:10.1103/PhysRevLett.124.096603</a>]</p> </li> <li> <p>Manisha Thakurathi, <a class="existingWikiWord" href="/nlab/show/Anton+A.+Burkov">Anton A. Burkov</a>, <em>Theory of the fractional quantum Hall effect in Weyl semimetals</em>, Phys. Rev. B <strong>101</strong> 235168 (2020) [<a href="https://doi.org/10.1103/PhysRevB.101.235168">doi:10.1103/PhysRevB.101.235168</a>, <a href="https://arxiv.org/abs/2005.13545">arXiv:2005.13545</a>, <a href="https://arxiv.org/abs/2005.13545">arXiv:2005.13545</a>]</p> <blockquote> <p>“while we focused on fully gapped states […] it also makes sense to consider gapless strongly correlated states with the same property. Such states may be accessed easily within the formalism, presented above</p> </blockquote> </li> <li> <p>Dan Sehayek, Manisha Thakurathi, <a class="existingWikiWord" href="/nlab/show/Anton+A.+Burkov">Anton A. Burkov</a>, <em>Charge density waves in Weyl semimetals</em>, Phys. Rev. B <strong>102</strong> 115159 (2020) [<a href="https://doi.org/10.1103/PhysRevB.102.115159">doi:10.1103/PhysRevB.102.115159</a>]</p> </li> <li> <p>Jinmin Yi, Xuzhe Ying, Lei Gioia, <a class="existingWikiWord" href="/nlab/show/Anton+A.+Burkov">Anton A. Burkov</a>, <em>Topological order in interacting semimetals</em>, Phys. Rev. B <strong>107</strong> 115147 (2023) [<a href="https://arxiv.org/abs/2301.03628">arXi:2301.03628</a>, <a href="https://doi.org/10.1103/PhysRevB.107.115147">doi:10.1103/PhysRevB.107.115147</a>]</p> </li> <li> <p>Hongshuang Liu, Jiashuo Liang, Taiyu Sun, Liying Wang: <em>Recent progress in topological semimetal and its realization in Heusler compounds</em>, Materials Today Physics <strong>41</strong> (2024) 101343 [<a href="https://doi.org/10.1016/j.mtphys.2024.101343">doi:10.1016/j.mtphys.2024.101343</a>]</p> </li> </ul> <p>On Weyl-Kondo semimetals:</p> <ul> <li> <p>Hsin-Hua Lai, Sarah E. Grefe, Silke Paschen, Qimiao Si, <em>Weyl–Kondo semimetal in heavy-fermion systems</em>, PNAS <strong>115</strong> 1 (2017) 93-97 [<a href="https://doi.org/10.1073/pnas.1715851115">doi:10.1073/pnas.1715851115</a>]</p> </li> <li> <p>Lei Chen, C. Setty, H. Hu et al.: <em>Topological Semimetal driven by Strong Correlations and Crystalline Symmetry</em>,<br />Nat. Phys. <strong>18</strong> 1341–1346 (2022) [<a href="https://arxiv.org/abs/2107.10837">arXiv:2107.10837</a>, <a href="https://doi.org/10.1038/s41567-022-01743-4">doi:10.1038/s41567-022-01743-4</a>&rbrack</p> </li> </ul> <p>and background on “heavy fermions”:</p> <ul> <li>Norbert Grewe, Frank Steglich, <em>Heavy fermions</em>, Chapter 97 in: <em>Handbook on the Physics and Chemistry of Rare Earths</em> <strong>14</strong> (1991) 343-474 [<a href="https://doi.org/10.1016/S0168-1273(05)80103-5">doi:10.1016/S0168-1273(05)80103-5</a>]</li> </ul> <h3 id="holographic_description">Holographic description</h3> <p>On holographic descriptions of <a class="existingWikiWord" href="/nlab/show/topological+semimetals">topological semimetals</a> via the <a class="existingWikiWord" href="/nlab/show/AdS-CMT+correspondence">AdS-CMT correspondence</a>:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Karl+Landsteiner">Karl Landsteiner</a>, <a class="existingWikiWord" href="/nlab/show/Yan+Liu">Yan Liu</a>, <em>The holographic Weyl semi-metal</em>, Physics Letters B <strong>753</strong> (2016) 453-457 [<a href="https://arxiv.org/abs/1505.04772">arXiv:1505.04772</a>, <a href="https://doi.org/10.1016/j.physletb.2015.12.052">doi:10.1016/j.physletb.2015.12.052</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Karl+Landsteiner">Karl Landsteiner</a>, <a class="existingWikiWord" href="/nlab/show/Yan+Liu">Yan Liu</a>, <a class="existingWikiWord" href="/nlab/show/Ya-Wen+Sun">Ya-Wen Sun</a>, <em>Quantum phase transition between a topological and a trivial semimetal from holography</em>, Phys. Rev. Lett. <strong>116</strong> 081602 (2016) [<a href="https://arxiv.org/abs/1511.05505">arXiv:1511.05505</a>, <a href="https://doi.org/10.1103/PhysRevLett.116.081602">doi:10.1103/PhysRevLett.116.081602</a>]</p> </li> <li> <p>Ling-Long Gao, <a class="existingWikiWord" href="/nlab/show/Yan+Liu">Yan Liu</a>, Hong-Da Lyu, <em>Black hole interiors in holographic topological semimetals</em> [<a href="https://arxiv.org/abs/2301.01468">arXiv:2301.01468</a>]</p> </li> <li> <p>Masataka Matsumoto, Mirmani Mirjalali, Ali Vahedi, <em>Non-Linear Dynamics and Critical Phenomena in the Holographic Landscape of Weyl Semimetals</em> [<a href="https://arxiv.org/abs/2405.06484">arXiv:2405.06484</a>]</p> </li> <li> <p>Nishal Rai, Karl Landsteiner: <em>Hydrodynamic Modes of Holographic Weyl Semimetals</em> [<a href="https://arxiv.org/abs/2408.06192">arXiv:2408.06192</a>]</p> </li> </ul> <p>Review:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Karl+Landsteiner">Karl Landsteiner</a>, <a class="existingWikiWord" href="/nlab/show/Yan+Liu">Yan Liu</a>, <a class="existingWikiWord" href="/nlab/show/Ya-Wen+Sun">Ya-Wen Sun</a>, <em>Holographic Topological Semimetals</em>, Sci. China Phys. Mech. Astron. <strong>63</strong> 250001 (2020) [<a href="https://arxiv.org/abs/1911.07978">arXiv:1911.07978</a>, <a href="https://doi.org/10.1007/s11433-019-1477-7">doi:10.1007/s11433-019-1477-7</a>]</li> </ul> <p>Some of the above material is taken from</p> <ul> <li id="SS22"><a class="existingWikiWord" href="/nlab/show/Hisham+Sati">Hisham Sati</a>, <a class="existingWikiWord" href="/nlab/show/Urs+Schreiber">Urs Schreiber</a>: <em><a class="existingWikiWord" href="/schreiber/show/Topological+Quantum+Computation+in+TED-K">Topological Quantum Computation in TED-K</a></em>, <a href="https://icfp22.sigplan.org/home/planqc-2022">PlanQC <strong>2022</strong></a> <a href="https://planqc2022.hotcrp.com/paper/33"><strong>33</strong></a>, (15 Sep 2022) [<a href="https://arxiv.org/abs/2209.08331">arXiv:2209.08331</a>, slides: <a href="/schreiber/files/TQCinTEDK-PlanQC-220905b.pdf">pdf</a>, video: <a href="https://www.youtube.com/watch?v=hDwXQVcloB8&feature=emb_logo">YT</a>]</li> </ul> <div> <h3 id="ReferencesAnyonicBraidingInMomentumSpace">Anyons in momentum-space</h3> <p>On non-trivial <a class="existingWikiWord" href="/nlab/show/braid+group+statistics">braiding</a> of nodal points in the <a class="existingWikiWord" href="/nlab/show/Brillouin+torus">Brillouin torus</a> of <a class="existingWikiWord" href="/nlab/show/topological+semi-metals">topological semi-metals</a> (“braiding in momentum space”):</p> <ul> <li id="AhnParkYang19"> <p>Junyeong Ahn, Sungjoon Park, Bohm-Jung Yang, <em>Failure of Nielsen-Ninomiya theorem and fragile topology in two-dimensional systems with space-time inversion symmetry: application to twisted bilayer graphene at magic angle</em>, Phys. Rev. X <strong>9</strong> (2019) 021013 [<a href="https://doi.org/10.1103/PhysRevX.9.021013">doi:10.1103/PhysRevX.9.021013</a>, <a href="https://arxiv.org/abs/1808.05375">arXiv:1808.05375</a>]</p> <blockquote> <p>“here are band crossing points, henceforth called <a class="existingWikiWord" href="/nlab/show/vortices">vortices</a>”</p> </blockquote> </li> <li> <p>QuanSheng Wu, Alexey A. Soluyanov, <a class="existingWikiWord" href="/nlab/show/Tom%C3%A1%C5%A1+Bzdu%C5%A1ek">Tomáš Bzdušek</a>, <em>Non-Abelian band topology in noninteracting metals</em>, Science <strong>365</strong> (2019) 1273-1277 [<a href="https://doi.org/10.1126/science.aau8740">doi:10.1126/science.aau8740</a>, <a href="https://arxiv.org/abs/1808.07469">arXiv:1808.07469</a>]</p> <blockquote> <p>“<a class="existingWikiWord" href="/nlab/show/fundamental+group">fundamental group</a> of <em><a class="existingWikiWord" href="/nlab/show/complement">complement</a></em> of nodal points/lines considered above (3)”</p> </blockquote> </li> <li id="TiwariBzdusek20"> <p>Apoorv Tiwari, <a class="existingWikiWord" href="/nlab/show/Tom%C3%A1%C5%A1+Bzdu%C5%A1ek">Tomáš Bzdušek</a>, <em>Non-Abelian topology of nodal-line rings in PT-symmetric systems</em>, Phys. Rev. B <strong>101</strong> (2020) 195130 [<a href="https://doi.org/10.1103/PhysRevB.101.195130">doi:10.1103/PhysRevB.101.195130</a>]</p> <blockquote> <p>“a new type non-Abelian ‘braiding’ of nodal-line rings inside the momentum space”</p> </blockquote> </li> <li id="BWSWYB20"> <p><a class="existingWikiWord" href="/nlab/show/Adrien+Bouhon">Adrien Bouhon</a>, QuanSheng Wu, <a class="existingWikiWord" href="/nlab/show/Robert-Jan+Slager">Robert-Jan Slager</a>, Hongming Weng, Oleg V. Yazyev, <a class="existingWikiWord" href="/nlab/show/Tom%C3%A1%C5%A1+Bzdu%C5%A1ek">Tomáš Bzdušek</a>, <em>Non-Abelian reciprocal braiding of Weyl points and its manifestation in ZrTe</em>, Nature Physics <strong>16</strong> (2020) 1137-1143 [<a href="https://doi.org/10.1038/s41567-020-0967-9">doi:10.1038/s41567-020-0967-9</a>, <a href="https://arxiv.org/abs/1907.10611">arXiv:1907.10611</a>]</p> <blockquote> <p>“Here we report that Weyl points in three-dimensional (3D) systems with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>𝒞</mi> <mn>2</mn></msub><mi>𝒯</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}_2\mathcal{T}</annotation></semantics></math> symmetry carry non-Abelian topological charges. These charges are transformed via non-trivial phase factors that arise upon braiding the nodes inside the reciprocal momentum space.”</p> </blockquote> </li> </ul> <p id="InTwistedBilayerGraphene"> Braiding of Dirac points in twisted bilayer <a class="existingWikiWord" href="/nlab/show/graphene">graphene</a>:</p> <ul> <li> <p>Jian Kang, Oskar Vafek: <em>Non-Abelian Dirac node braiding and near-degeneracy of correlated phases at odd integer filling in magic angle twisted bilayer graphene</em>, Phys. Rev. B <strong>102</strong> (2020) 035161 [<a href="https://doi.org/10.1103/PhysRevB.102.035161">doi:10.1103/PhysRevB.102.035161</a>, <a href="https://arxiv.org/abs/2002.10360">arXiv:2002.10360</a>]</p> </li> <li id="JBLZHLSJ21"> <p>Bin Jiang, <a class="existingWikiWord" href="/nlab/show/Adrien+Bouhon">Adrien Bouhon</a>, Zhi-Kang Lin, Xiaoxi Zhou, Bo Hou, Feng Li, <a class="existingWikiWord" href="/nlab/show/Robert-Jan+Slager">Robert-Jan Slager</a>, Jian-Hua Jiang: <em>Experimental observation of non-Abelian topological acoustic semimetals and their phase transitions</em>, Nature Physics <strong>17</strong> (2021) 1239-1246 [<a href="https://doi.org/10.1038/s41567-021-01340-x">doi:10.1038/s41567-021-01340-x</a>, <a href="https://arxiv.org/abs/2104.13397">arXiv:2104.13397</a>]</p> <p>(analog realization in <a class="existingWikiWord" href="/nlab/show/phononic+crystals">phononic crystals</a>)</p> <blockquote> <p>Here, we consider an exotic type of topological phases beyond the above paradigms that, instead, depend on topological charge conversion processes when band nodes are braided with respect to each other in momentum space or recombined over the Brillouin zone. The braiding of band nodes is in some sense the reciprocal space analog of the non-Abelian braiding of particles in real space. […] we experimentally observe non-Abelian topological semimetals and their evolutions using acoustic Bloch bands in kagome acoustic metamaterials. By tuning the geometry of the metamaterials, we experimentally confirm the creation, annihilation, moving, merging and splitting of the topological band nodes in multiple bandgaps and the associated non-Abelian topological phase transitions</p> </blockquote> </li> <li id="ParkWongZhangOh21"> <p>Haedong Park, Stephan Wong, Xiao Zhang, and Sang Soon Oh, <em>Non-Abelian Charged Nodal Links in a Dielectric Photonic Crystal</em>, ACS Photonics <strong>8</strong> (2021) 2746–2754 &lbrack;<a href="https://doi.org/10.1021/acsphotonics.1c00876">doi:10.1021/acsphotonics.1c00876</a>&rbrack;</p> </li> <li id="CBSM22"> <p>Siyu Chen, <a class="existingWikiWord" href="/nlab/show/Adrien+Bouhon">Adrien Bouhon</a>, <a class="existingWikiWord" href="/nlab/show/Robert-Jan+Slager">Robert-Jan Slager</a>, <a class="existingWikiWord" href="/nlab/show/Bartomeu+Monserrat">Bartomeu Monserrat</a>, <em>Non-Abelian braiding of Weyl nodes via symmetry-constrained phase transitions</em> (formerly: <em>Manipulation and braiding of Weyl nodes using symmetry-constrained phase transitions</em>), Phys. Rev. B <strong>105</strong> (2022) L081117 [<a href="https://doi.org/10.1103/PhysRevB.105.L081117">doi:10.1103/PhysRevB.105.L081117</a>, <a href="https://arxiv.org/abs/2108.10330">arXiv:2108.10330</a>]</p> <blockquote> <p>“Our work opens up routes to readily manipulate Weyl nodes using only slight external parameter changes, paving the way for the practical realization of reciprocal space braiding.”</p> </blockquote> </li> <li id="PBSM22"> <p><a class="existingWikiWord" href="/nlab/show/Bo+Peng">Bo Peng</a>, <a class="existingWikiWord" href="/nlab/show/Adrien+Bouhon">Adrien Bouhon</a>, <a class="existingWikiWord" href="/nlab/show/Robert-Jan+Slager">Robert-Jan Slager</a>, <a class="existingWikiWord" href="/nlab/show/Bartomeu+Monserrat">Bartomeu Monserrat</a>, <em>Multi-gap topology and non-Abelian braiding of phonons from first principles</em>, Phys. Rev. B <strong>105</strong> (2022) 085115 [<a href="https://arxiv.org/abs/2111.05872">arXiv:2111.05872</a>, <a href="https://doi.org/10.1103/PhysRevB.105.085115">doi:10.1103/PhysRevB.105.085115</a>]</p> <p>(analog realization in <a class="existingWikiWord" href="/nlab/show/phononic+crystals">phononic crystals</a>)</p> <blockquote> <p>new opportunities for exploring non-Abelian braiding of band crossing points (nodes) in reciprocal space, providing an alternative to the real space braiding exploited by other strategies.</p> <p>Real space braiding is practically constrained to boundary states, which has made experimental observation and manipulation difficult; instead, reciprocal space braiding occurs in the bulk states of the band structures and we demonstrate in this work that this provides a straightforward platform for non-Abelian braiding.</p> </blockquote> </li> <li id="PBMS22"> <p><a class="existingWikiWord" href="/nlab/show/Bo+Peng">Bo Peng</a>, <a class="existingWikiWord" href="/nlab/show/Adrien+Bouhon">Adrien Bouhon</a>, <a class="existingWikiWord" href="/nlab/show/Bartomeu+Monserrat">Bartomeu Monserrat</a>, <a class="existingWikiWord" href="/nlab/show/Robert-Jan+Slager">Robert-Jan Slager</a>, <em>Phonons as a platform for non-Abelian braiding and its manifestation in layered silicates</em>, Nature Communications <strong>13</strong> 423 (2022) [<a href="https://doi.org/10.1038/s41467-022-28046-9">doi:10.1038/s41467-022-28046-9</a>]</p> <p>(analog realization in <a class="existingWikiWord" href="/nlab/show/phononic+crystals">phononic crystals</a>)</p> <blockquote> <p>it is possible to controllably braid Kagome band nodes in monolayer <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi mathvariant="normal">Si</mi> <mn>2</mn></msub><msub><mi mathvariant="normal">O</mi> <mn>3</mn></msub></mrow><annotation encoding="application/x-tex">\mathrm{Si}_2 \mathrm{O}_3</annotation></semantics></math> using strain and/or an external electric field.</p> </blockquote> </li> <li id="ParkGaoZhangOh22"> <p>Haedong Park, Wenlong Gao, Xiao Zhang, Sang Soon Oh, <em>Nodal lines in momentum space: topological invariants and recent realizations in photonic and other systems</em>, Nanophotonics <strong>11</strong> 11 (2022) 2779–2801 [<a href="https://doi.org/10.1515/nanoph-2021-0692">doi:10.1515/nanoph-2021-0692</a>]</p> <p>(analog realization in <a class="existingWikiWord" href="/nlab/show/photonic+crystals">photonic crystals</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Adrien+Bouhon">Adrien Bouhon</a>, <a class="existingWikiWord" href="/nlab/show/Robert-Jan+Slager">Robert-Jan Slager</a>, <em>Multi-gap topological conversion of Euler class via band-node braiding: minimal models, PT-linked nodal rings, and chiral heirs</em> [<a href="https://arxiv.org/abs/2203.16741">arXiv:2203.16741</a>]</p> </li> </ul> <p>See also:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Robert-Jan+Slager">Robert-Jan Slager</a>, <a class="existingWikiWord" href="/nlab/show/Adrien+Bouhon">Adrien Bouhon</a>, <a class="existingWikiWord" href="/nlab/show/Fatma+Nur+%C3%9Cnal">Fatma Nur Ünal</a>, <em>Floquet multi-gap topology: Non-Abelian braiding and anomalous Dirac string phase</em>, Nature Communications <strong>15</strong> 1144 (2024) [<a href="https://arxiv.org/abs/2208.12824">arXiv:2208.12824</a>, <a href="https://doi.org/10.1038/s41467-024-45302-2">doi:10.1038/s41467-024-45302-2</a>]</p> </li> <li> <p>Huahui Qiu et al., <em>Minimal non-abelian nodal braiding in ideal metamaterials</em>, Nature Communications <strong>14</strong> 1261 (2023) [<a href="https://doi.org/10.1038/s41467-023-36952-9">doi:10.1038/s41467-023-36952-9</a>]</p> </li> <li> <p>Wojciech J. Jankowski, Mohammedreza Noormandipour, <a class="existingWikiWord" href="/nlab/show/Adrien+Bouhon">Adrien Bouhon</a>, <a class="existingWikiWord" href="/nlab/show/Robert-Jan+Slager">Robert-Jan Slager</a>, <em>Disorder-induced topological quantum phase transitions in Euler semimetals</em> [<a href="https://arxiv.org/abs/2306.13084">arXiv:2306.13084</a>]</p> </li> <li> <p>Seung Hun Lee, Yuting Qian, Bohm-Jung Yang, <em>Euler band topology in spin-orbit coupled magnetic systems</em> [<a href="https://arxiv.org/abs/2404.16383">arXiv:2404.16383</a>]</p> <blockquote> <p>“Based on first-principles calculations, we report that such nodal point braiding in 2D electronic bands can be realized in a MSWI candidate, the bilayer <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ZrTe</mi> <mn>5</mn></msub></mrow><annotation encoding="application/x-tex">ZrTe_5</annotation></semantics></math> with in-plane ferromagnetism under pressure. […] one can expect that the braiding of nodes can be achieved in 2D bilayer <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ZrTe</mi> <mn>5</mn></msub></mrow><annotation encoding="application/x-tex">ZrTe_5</annotation></semantics></math> under the influence of an external in-plane Zeeman field.”</p> </blockquote> </li> </ul> <p><br /></p> <p>Incidentally, references indicating that the required toroidal (or yet higher genus) geometry for anyonic topological order in position space is dubious (as opposed to the evident toroidal geometry of the momentum-space <a class="existingWikiWord" href="/nlab/show/Brillouin+torus">Brillouin torus</a>): <a href="Laughlin+state#Lan19">Lan 19, p. 1</a>, ….</p> <p><strong>Knotted nodal lines in 3d semimetals</strong></p> <p>Beware that various authors consider <a class="existingWikiWord" href="/nlab/show/braids">braids</a>/<a class="existingWikiWord" href="/nlab/show/knots">knots</a> formed by nodal <em>lines</em> in <em>3d</em> semimetals, i.e. knotted nodal lines in 3 spatial dimensions, as opposed to <a class="existingWikiWord" href="/nlab/show/worldlines">worldlines</a> (in 2+1 spacetime dimensions) of nodal points in effectively 2d semimetals needed for the <a class="existingWikiWord" href="/nlab/show/anyon">anyon</a>-<a class="existingWikiWord" href="/nlab/show/braiding">braiding</a> considered above.</p> <p>An argument that these nodal lines in 3d space, nevertheless, may be controlled by <a class="existingWikiWord" href="/nlab/show/Chern-Simons+theory">Chern-Simons theory</a>:</p> <ul> <li id="LianVafaVafaZhang17"><a class="existingWikiWord" href="/nlab/show/Biao+Lian">Biao Lian</a>, <a class="existingWikiWord" href="/nlab/show/Cumrun+Vafa">Cumrun Vafa</a>, <a class="existingWikiWord" href="/nlab/show/Farzan+Vafa">Farzan Vafa</a>, <a class="existingWikiWord" href="/nlab/show/Shou-Cheng+Zhang">Shou-Cheng Zhang</a>, <em>Chern-Simons theory and Wilson loops in the Brillouin zone</em>, Phys. Rev. B <strong>95</strong> (2017) 094512 [<a href="https://doi.org/10.1103/PhysRevB.95.094512">doi:10.1103/PhysRevB.95.094512</a>]</li> </ul> </div></body></html> </div> <div class="revisedby"> <p> Last revised on December 10, 2024 at 11:11:42. See the <a href="/nlab/history/semi-metal" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/semi-metal" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/14015/#Item_9">Discuss</a><span class="backintime"><a href="/nlab/revision/semi-metal/30" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/semi-metal" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/semi-metal" accesskey="S" class="navlink" id="history" rel="nofollow">History (30 revisions)</a> <a href="/nlab/show/semi-metal/cite" style="color: black">Cite</a> <a href="/nlab/print/semi-metal" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/semi-metal" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>