CINXE.COM
Search results for: Jaroslaw Dziadek
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Jaroslaw Dziadek</title> <meta name="description" content="Search results for: Jaroslaw Dziadek"> <meta name="keywords" content="Jaroslaw Dziadek"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Jaroslaw Dziadek" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Jaroslaw Dziadek"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Jaroslaw Dziadek</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> The Role of Cholesterol Oxidase of Mycobacterium tuberculosis in the Down-Regulation of TLR2-Signaling Pathway in Human Macrophages during Infection Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michal%20Kielbik">Michal Kielbik</a>, <a href="https://publications.waset.org/abstracts/search?q=Izabela%20Szulc-Kielbik"> Izabela Szulc-Kielbik</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Brzostek"> Anna Brzostek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslaw%20Dziadek"> Jaroslaw Dziadek</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Klink"> Magdalena Klink</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of many research groups in the world is to find new components that are important for survival of mycobacteria in the host cells. Mycobacterium tuberculosis (Mtb) possesses a number of enzymes degrading cholesterol that are considered to be an important factor for its survival and persistence in host macrophages. One of them - cholesterol oxidase (ChoD), although not being essential for cholesterol degradation, is discussed as a virulence compound, however its involvement in macrophages’ response to Mtb is still not sufficiently determined. The recognition of tubercle bacilli antigens by pathogen recognition receptors is crucial for the initiation of the host innate immune response. An important receptor that has been implicated in the recognition and/or uptake of Mtb is Toll-like receptor type 2 (TLR2). Engagement of TLR2 results in the activation and phosphorylation of intracellular signaling proteins including IRAK-1 and -4, TRAF-6, which in turn leads to the activation of target kinases and transcription factors responsible for bactericidal and pro-inflammatory response of macrophages. The aim of these studies was a detailed clarification of the role of Mtb cholesterol oxidase as a virulence factor affecting the TLR2 signaling pathway in human macrophages. As human macrophages the THP-1 differentiated cells were applied. The virulent wild-type Mtb strain (H37Rv), its mutant lacking a functional copy of gene encoding cholesterol oxidase (∆choD), as well as complimented strain (∆choD–choD) were used. We tested the impact of Mtb strains on the expression of TLR2-depended signaling proteins (mRNA level, cytosolic level and phosphorylation status). The cytokine and bactericidal response of THP-1 derived macrophages infected with Mtb strains in relation to TLR2 signaling pathway dependence was also determined. We found that during the 24-hours of infection process the wild-type and complemented Mtb significantly reduced the cytosolic level and phosphorylation status of IRAK-4 and TRAF-6 proteins in macrophages, that was not observed in the case of ΔchoD mutant. Decreasement of TLR2-dependent signaling proteins, induced by wild-type Mtb, was not dependent on the activity of proteasome. Blocking of TLR2 expression, before infection, effectively prevented the induced by wild-type strain reduction of cytosolic level and phosphorylation of IRAK-4. None of the strains affected the surface expression of TLR2. The mRNA level of IRAK-4 and TRAF-6 genes were significantly increased in macrophages 24 hours post-infection with either of tested strains. However, the impact of wild-type Mtb strain on both examined genes was significantly stronger than its ΔchoD mutant. We also found that wild-type strain stimulated macrophages to release high amount of immunosuppressive IL-10, accompanied by low amount of pro-inflammatory IL-8 and bactericidal nitric oxide in comparison to mutant lacking cholesterol oxidase. The influence of wild-type Mtb on this type of macrophages' response strongly dependent on fully active IRAK-1 and IRAK-4 signaling proteins. In conclusion, Mtb using cholesterol oxidase causes the over-activation of TLR2 signaling proteins leading to the reduction of their cytosolic level and activity resulting in the modulation of macrophages response to allow its intracellular survival. Supported by grant: 2014/15/B/NZ6/01565, National Science Center, Poland <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mycobacterium%20tuberculosis" title="Mycobacterium tuberculosis">Mycobacterium tuberculosis</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol%20oxidase" title=" cholesterol oxidase"> cholesterol oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=macrophages" title=" macrophages"> macrophages</a>, <a href="https://publications.waset.org/abstracts/search?q=TLR2-dependent%20signaling%20pathway" title=" TLR2-dependent signaling pathway"> TLR2-dependent signaling pathway</a> </p> <a href="https://publications.waset.org/abstracts/80872/the-role-of-cholesterol-oxidase-of-mycobacterium-tuberculosis-in-the-down-regulation-of-tlr2-signaling-pathway-in-human-macrophages-during-infection-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Engineering Method to Measure the Impact Sound Improvement with Floor Coverings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Baruch">Katarzyna Baruch</a>, <a href="https://publications.waset.org/abstracts/search?q=Agata%20Szelag"> Agata Szelag</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslaw%20Rubacha"> Jaroslaw Rubacha</a>, <a href="https://publications.waset.org/abstracts/search?q=Bartlomiej%20Chojnacki"> Bartlomiej Chojnacki</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadeusz%20Kamisinski"> Tadeusz Kamisinski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methodology used to measure the reduction of transmitted impact sound by floor coverings situated on a massive floor is described in ISO 10140-3: 2010. To carry out such tests, the standardised reverberation room separated by a standard floor from the second measuring room are required. The need to have a special laboratory results in high cost and low accessibility of this measurement. The authors propose their own engineering method to measure the impact sound improvement with floor coverings. This method does not require standard rooms and floor. This paper describes the measurement procedure of proposed engineering method. Further, verification tests were performed. Validation of the proposed method was based on the analytical model, Statistical Energy Analysis (SEA) model and empirical measurements. The received results were related to corresponding ones obtained from ISO 10140-3:2010 measurements. The study confirmed the usefulness of the engineering method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20acoustic" title="building acoustic">building acoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20noise" title=" impact noise"> impact noise</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20sound%20insulation" title=" impact sound insulation"> impact sound insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20sound%20transmission" title=" impact sound transmission"> impact sound transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction%20of%20impact%20sound" title=" reduction of impact sound"> reduction of impact sound</a> </p> <a href="https://publications.waset.org/abstracts/78691/engineering-method-to-measure-the-impact-sound-improvement-with-floor-coverings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Microstructure of Ti – AlN Composite Produced by Selective Laser Melting </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaroslaw%20Mizera">Jaroslaw Mizera</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Wisniewski"> Pawel Wisniewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryszard%20Sitek"> Ryszard Sitek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selective Laser Melting (SLM) is an advanced additive manufacturing technique used for producing parts made of wide range of materials such as: austenitic steel, titanium, nickel etc. In the our experiment we produced a Ti-AlN composite from a mixture of titanium and aluminum nitride respectively 70% at. and 30% at. using SLM technique. In order to define the size of powder particles, laser diffraction tests were performed on HORIBA LA-950 device. The microstructure and chemical composition of the composite was examined by Scanning Electron Microscopy (SEM). The chemical composition in micro areas of the obtained samples was determined by of EDS. The phase composition was analyzed by X-ray phase analysis (XRD). Microhardness Vickers tests were performed using Zwick/Roell microhardness machine under the load of 0.2kG (HV0.2). Hardness measurements were made along the building (xy) and along the plane of the lateral side of the cuboid (xz). The powder used for manufacturing of the samples had a mean particle size of 41μm. It was homogenous with a spherical shape. The specimens were built chiefly from Ti, TiN and AlN. The dendritic microstructure was porous and fine-grained. Some of the aluminum nitride remained unmelted but no porosity was observed in the interface. The formed material was characterized by high hardness exceeding 700 HV0.2 over the entire cross-section. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selective%20Laser%20Melting" title="Selective Laser Melting">Selective Laser Melting</a>, <a href="https://publications.waset.org/abstracts/search?q=Composite" title=" Composite"> Composite</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=microhardness" title=" microhardness"> microhardness</a> </p> <a href="https://publications.waset.org/abstracts/122336/microstructure-of-ti-aln-composite-produced-by-selective-laser-melting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Support for Planning of Mobile Personnel Tasks by Solving Time-Dependent Routing Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wlodzimierz%20Ogryczak">Wlodzimierz Ogryczak</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Sliwinski"> Tomasz Sliwinski</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslaw%20Hurkala"> Jaroslaw Hurkala</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariusz%20Kaleta"> Mariusz Kaleta</a>, <a href="https://publications.waset.org/abstracts/search?q=Bartosz%20Kozlowski"> Bartosz Kozlowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Palka"> Piotr Palka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Implementation concepts of a decision support system for planning and management of mobile personnel tasks (sales representatives and others) are discussed. Large-scale periodic time-dependent vehicle routing and scheduling problems with complex constraints are solved for this purpose. Complex nonuniform constraints with respect to frequency, time windows, working time, etc. are taken into account with additional fast adaptive procedures for operational rescheduling of plans in the presence of various disturbances. Five individual solution quality indicators with respect to a single personnel person are considered. This paper deals with modeling issues corresponding to the problem and general solution concepts. The research was supported by the European Union through the European Regional Development Fund under the Operational Programme ‘Innovative Economy’ for the years 2007-2013; Priority 1 Research and development of modern technologies under the project POIG.01.03.01-14-076/12: 'Decision Support System for Large-Scale Periodic Vehicle Routing and Scheduling Problems with Complex Constraints.' <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20personnel%20management" title="mobile personnel management">mobile personnel management</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20criteria" title=" multiple criteria"> multiple criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20dependent" title=" time dependent"> time dependent</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20windows" title=" time windows"> time windows</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20routing%20and%20scheduling" title=" vehicle routing and scheduling"> vehicle routing and scheduling</a> </p> <a href="https://publications.waset.org/abstracts/58310/support-for-planning-of-mobile-personnel-tasks-by-solving-time-dependent-routing-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Determining the Extent and Direction of Relief Transformations Caused by Ski Run Construction Using LIDAR Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Fidelus-Orzechowska">Joanna Fidelus-Orzechowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominika%20Wronska-Walach"> Dominika Wronska-Walach</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslaw%20Cebulski"> Jaroslaw Cebulski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mountain areas are very often exposed to numerous transformations connected with the development of tourist infrastructure. In mountain areas in Poland ski tourism is very popular, so agricultural areas are often transformed into tourist areas. The construction of new ski runs can change the direction and rate of slope development. The main aim of this research was to determine geomorphological and hydrological changes within slopes caused by ski run constructions. The study was conducted in the Remiaszów catchment in the Inner Polish Carpathians (southern Poland). The mean elevation of the catchment is 859 m a.s.l. and the maximum is 946 m a.s.l. The surface area of the catchment is 1.16 km2, of which 16.8% is the area of the two studied ski runs. The studied ski runs were constructed in 2014 and 2015. In order to determine the relief transformations connected with new ski run construction high resolution LIDAR data was analyzed. The general relief changes in the studied catchment were determined on the basis of ALS (Airborne Laser Scanning ) data obtained before (2013) and after (2016) ski run construction. Based on the two sets of ALS data a digital elevation models of differences (DoDs) was created, which made it possible to determine the quantitative relief changes in the entire studied catchment. Additionally, cross and longitudinal profiles were calculated within slopes where new ski runs were built. Detailed data on relief changes within selected test surfaces was obtained based on TLS (Terrestrial Laser Scanning). Hydrological changes within the analyzed catchment were determined based on the convergence and divergence index. The study shows that the construction of the new ski runs caused significant geomorphological and hydrological changes in the entire studied catchment. However, the most important changes were identified within the ski slopes. After the construction of ski runs the entire catchment area lowered about 0.02 m. Hydrological changes in the studied catchment mainly led to the interruption of surface runoff pathways and changes in runoff direction and geometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrological%20changes" title="hydrological changes">hydrological changes</a>, <a href="https://publications.waset.org/abstracts/search?q=mountain%20areas" title=" mountain areas"> mountain areas</a>, <a href="https://publications.waset.org/abstracts/search?q=relief%20transformations" title=" relief transformations"> relief transformations</a>, <a href="https://publications.waset.org/abstracts/search?q=ski%20run%20construction" title=" ski run construction"> ski run construction</a> </p> <a href="https://publications.waset.org/abstracts/95843/determining-the-extent-and-direction-of-relief-transformations-caused-by-ski-run-construction-using-lidar-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Effects of Caprine Arthritis-Encephalitis Virus (CAEV) Infection on the Expression of Cathelicidin Genes in Goat Blood Leukocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daria%20Reczynska">Daria Reczynska</a>, <a href="https://publications.waset.org/abstracts/search?q=Justyna%20Jarczak"> Justyna Jarczak</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Czopowicz"> Michal Czopowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Danuta%20Sloniewska"> Danuta Sloniewska</a>, <a href="https://publications.waset.org/abstracts/search?q=Karina%20Horbanczuk"> Karina Horbanczuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Wieslaw%20Jarmuz"> Wieslaw Jarmuz</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslaw%20Kaba"> Jaroslaw Kaba</a>, <a href="https://publications.waset.org/abstracts/search?q=Emilia%20Bagnicka"> Emilia Bagnicka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since people, animals and plants are constantly exposed to pathogens they have developed very complex systems of defense. Among ca. 1000 antimicrobial peptides from different families so far identified, approximately 30 belonging to cathelicidin family can be found in mammals. Cathelicidins probably constitute the first line of defense because they can act at a physiological salt concentration which is present in healthy tissues. Moreover, the low salt concentration which is present in infected tissues inhibits their activity. In goat bactenecin 7.5 (BAC7.5), bactenecin 5 (BAC5), myeloid antimicrobial peptide 28 (MAP28), myeloid antimicrobial peptide 34 (MAP34 A and B), goat bactenecin3.4 (ChBac3.4) were identified. Caprine arthritis-encephalitis (CAE) caused by small ruminant lentivirus (SRLV) is economic problem. The main CAE symptoms are weight loss, arthritis, pneumonia and mastitis (significant elevation of the somatic cell count and deterioration of some technological parameters). The study was conducted on 24 dairy goats. The animals were divided into two groups: experimental (SRLV-infected) and control (non-infected). The blood samples were collected five times: on the 1st, 7th, 30th, 90th and 150thday of lactation. The levels of transcripts of BAC7.5, BAC5, MAP28 and MAP34 genes in blood leucocytes were measured using qPCR method. There were no differences in mRNA levels of studied genes between stages of lactation. The differences were observed in expressions of BAC5, MAP28 and MAP34 genes with lower levels in the experimental group. There was no difference in BAC7.5 expression between groups. The decreased levels of transcripts of cathelicidin genes in blood leucocytes of SRLV-infected goats may indicate the disturbances of homeostasis in organisms. It can be concluded that SRLV infection seems to inhibit expression of cathelicidin genes. The study was financed by a grant from the National Scientific Center No. UMO-2013/09/B/NZ/03514. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=goat" title="goat">goat</a>, <a href="https://publications.waset.org/abstracts/search?q=CAEV" title=" CAEV"> CAEV</a>, <a href="https://publications.waset.org/abstracts/search?q=cathelicidins" title=" cathelicidins"> cathelicidins</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20leukocytes" title=" blood leukocytes"> blood leukocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a> </p> <a href="https://publications.waset.org/abstracts/58148/effects-of-caprine-arthritis-encephalitis-virus-caev-infection-on-the-expression-of-cathelicidin-genes-in-goat-blood-leukocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Impact of Boundary Conditions on the Behavior of Thin-Walled Laminated Column with L-Profile under Uniform Shortening</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaroslaw%20Gawryluk">Jaroslaw Gawryluk</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Teter"> Andrzej Teter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simply supported angle columns subjected to uniform shortening are tested. The experimental studies are conducted on a testing machine using additional Aramis and the acoustic emission system. The laminate samples are subjected to axial uniform shortening. The tested columns are loaded with the force values from zero to the maximal load destroying the L-shaped column, which allowed one to observe the column post-buckling behavior until its collapse. Laboratory tests are performed at a constant velocity of the cross-bar equal to 1 mm/min. In order to eliminate stress concentrations between sample and support, flexible pads are used. Analyzed samples are made with carbon-epoxy laminate using the autoclave method. The configurations of laminate layers are: [60,0₂,-60₂,60₃,-60₂,0₃,-60₂,0,60₂]T, where direction 0 is along the length of the profile. Material parameters of laminate are: Young’s modulus along the fiber direction - 170GPa, Young’s modulus along the fiber transverse direction - 7.6GPa, shear modulus in-plane - 3.52GPa, Poisson’s ratio in-plane - 0.36. The dimensions of all columns are: length-300 mm, thickness-0.81mm, width of the flanges-40mm. Next, two numerical models of the column with and without flexible pads are developed using the finite element method in Abaqus software. The L-profile laminate column is modeled using the S8R shell elements. The layup-ply technique is used to define the sequence of the laminate layers. However, the model of grips is made of the R3D4 discrete rigid elements. The flexible pad is consists of the C3D20R type solid elements. In order to estimate the moment of the first laminate layer damage, the following initiation criteria were applied: maximum stress criterion, Tsai-Hill, Tsai-Wu, Azzi-Tsai-Hill, and Hashin criteria. The best compliance of results was observed for the Hashin criterion. It was found that the use of the pad in the numerical model significantly influences the damage mechanism. The model without pads characterized a much more stiffness, as evidenced by a greater bifurcation load and damage initiation load in all analyzed criteria, lower shortening, and less deflection of the column in its center than the model with flexible pads. Acknowledgment: The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angle%20column" title="angle column">angle column</a>, <a href="https://publications.waset.org/abstracts/search?q=compression" title=" compression"> compression</a>, <a href="https://publications.waset.org/abstracts/search?q=experiment" title=" experiment"> experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a> </p> <a href="https://publications.waset.org/abstracts/136079/impact-of-boundary-conditions-on-the-behavior-of-thin-walled-laminated-column-with-l-profile-under-uniform-shortening" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Hardware Implementation on Field Programmable Gate Array of Two-Stage Algorithm for Rough Set Reduct Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Grzes">Tomasz Grzes</a>, <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Kopczynski"> Maciej Kopczynski</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslaw%20Stepaniuk"> Jaroslaw Stepaniuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rough sets theory developed by Prof. Z. Pawlak is one of the tools that can be used in the intelligent systems for data analysis and processing. Banking, medicine, image recognition and security are among the possible fields of utilization. In all these fields, the amount of the collected data is increasing quickly, but with the increase of the data, the computation speed becomes the critical factor. Data reduction is one of the solutions to this problem. Removing the redundancy in the rough sets can be achieved with the reduct. A lot of algorithms of generating the reduct were developed, but most of them are only software implementations, therefore have many limitations. Microprocessor uses the fixed word length, consumes a lot of time for either fetching as well as processing of the instruction and data; consequently, the software based implementations are relatively slow. Hardware systems don’t have these limitations and can process the data faster than a software. Reduct is the subset of the decision attributes that provides the discernibility of the objects. For the given decision table there can be more than one reduct. Core is the set of all indispensable condition attributes. None of its elements can be removed without affecting the classification power of all condition attributes. Moreover, every reduct consists of all the attributes from the core. In this paper, the hardware implementation of the two-stage greedy algorithm to find the one reduct is presented. The decision table is used as an input. Output of the algorithm is the superreduct which is the reduct with some additional removable attributes. First stage of the algorithm is calculating the core using the discernibility matrix. Second stage is generating the superreduct by enriching the core with the most common attributes, i.e., attributes that are more frequent in the decision table. Described above algorithm has two disadvantages: i) generating the superreduct instead of reduct, ii) additional first stage may be unnecessary if the core is empty. But for the systems focused on the fast computation of the reduct the first disadvantage is not the key problem. The core calculation can be achieved with a combinational logic block, and thus add respectively little time to the whole process. Algorithm presented in this paper was implemented in Field Programmable Gate Array (FPGA) as a digital device consisting of blocks that process the data in a single step. Calculating the core is done by the comparators connected to the block called 'singleton detector', which detects if the input word contains only single 'one'. Calculating the number of occurrences of the attribute is performed in the combinational block made up of the cascade of the adders. The superreduct generation process is iterative and thus needs the sequential circuit for controlling the calculations. For the research purpose, the algorithm was also implemented in C language and run on a PC. The times of execution of the reduct calculation in a hardware and software were considered. Results show increase in the speed of data processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20reduction" title="data reduction">data reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20systems%20design" title=" digital systems design"> digital systems design</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20programmable%20gate%20array%20%28FPGA%29" title=" field programmable gate array (FPGA)"> field programmable gate array (FPGA)</a>, <a href="https://publications.waset.org/abstracts/search?q=reduct" title=" reduct"> reduct</a>, <a href="https://publications.waset.org/abstracts/search?q=rough%20set" title=" rough set"> rough set</a> </p> <a href="https://publications.waset.org/abstracts/81856/hardware-implementation-on-field-programmable-gate-array-of-two-stage-algorithm-for-rough-set-reduct-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Characterization of Aluminosilicates and Verification of Their Impact on Quality of Ceramic Proppants Intended for Shale Gas Output </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Szymanska">Joanna Szymanska</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulina%20Wawulska-Marek"> Paulina Wawulska-Marek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslaw%20Mizera"> Jaroslaw Mizera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the rapid growth of global energy consumption and uncontrolled depletion of natural resources become a serious problem. Shale rocks are the largest and potential global basins containing hydrocarbons, trapped in closed pores of the shale matrix. Regardless of the shales origin, mining conditions are extremely unfavourable due to high reservoir pressure, great depths, increased clay minerals content and limited permeability (nanoDarcy) of the rocks. Taking into consideration such geomechanical barriers, effective extraction of natural gas from shales with plastic zones demands effective operations. Actually, hydraulic fracturing is the most developed technique based on the injection of pressurized fluid into a wellbore, to initiate fractures propagation. However, a rapid drop of pressure after fluid suction to the ground induces a fracture closure and conductivity reduction. In order to minimize this risk, proppants should be applied. They are solid granules transported with hydraulic fluids to locate inside the rock. Proppants act as a prop for the closing fracture, thus gas migration to a borehole is effective. Quartz sands are commonly applied proppants only at shallow deposits (USA). Whereas, ceramic proppants are designed to meet rigorous downhole conditions to intensify output. Ceramic granules predominate with higher mechanical strength, stability in strong acidic environment, spherical shape and homogeneity as well. Quality of ceramic proppants is conditioned by raw materials selection. Aim of this study was to obtain the proppants from aluminosilicates (the kaolinite subgroup) and mix of minerals with a high alumina content. These loamy minerals contain a tubular and platy morphology that improves mechanical properties and reduces their specific weight. Moreover, they are distinguished by well-developed surface area, high porosity, fine particle size, superb dispersion and nontoxic properties - very crucial for particles consolidation into spherical and crush-resistant granules in mechanical granulation process. The aluminosilicates were mixed with water and natural organic binder to improve liquid-bridges and pores formation between particles. Afterward, the green proppants were subjected to sintering at high temperatures. Evaluation of the minerals utility was based on their particle size distribution (laser diffraction study) and thermal stability (thermogravimetry). Scanning Electron Microscopy was useful for morphology and shape identification combined with specific surface area measurement (BET). Chemical composition was verified by Energy Dispersive Spectroscopy and X-ray Fluorescence. Moreover, bulk density and specific weight were measured. Such comprehensive characterization of loamy materials confirmed their favourable impact on the proppants granulation. The sintered granules were analyzed by SEM to verify the surface topography and phase transitions after sintering. Pores distribution was identified by X-Ray Tomography. This method enabled also the simulation of proppants settlement in a fracture, while measurement of bulk density was essential to predict their amount to fill a well. Roundness coefficient was also evaluated, whereas impact on mining environment was identified by turbidity and solubility in acid - to indicate risk of the material decay in a well. The obtained outcomes confirmed a positive influence of the loamy minerals on ceramic proppants properties with respect to the strict norms. This research is perspective for higher quality proppants production with costs reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminosilicates" title="aluminosilicates">aluminosilicates</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20proppants" title=" ceramic proppants"> ceramic proppants</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20granulation" title=" mechanical granulation"> mechanical granulation</a>, <a href="https://publications.waset.org/abstracts/search?q=shale%20gas" title=" shale gas"> shale gas</a> </p> <a href="https://publications.waset.org/abstracts/93337/characterization-of-aluminosilicates-and-verification-of-their-impact-on-quality-of-ceramic-proppants-intended-for-shale-gas-output" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>