CINXE.COM
Search results for: Prunier Florent
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Prunier Florent</title> <meta name="description" content="Search results for: Prunier Florent"> <meta name="keywords" content="Prunier Florent"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Prunier Florent" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Prunier Florent"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Prunier Florent</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Analysis and Prediction of the Behavior of the Landslide at Ain El Hammam, Algeria Based on the Second Order Work Criterion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zerarka%20Hizia">Zerarka Hizia</a>, <a href="https://publications.waset.org/abstracts/search?q=Akchiche%20Mustapha"> Akchiche Mustapha</a>, <a href="https://publications.waset.org/abstracts/search?q=Prunier%20Florent"> Prunier Florent</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The landslide of Ain El Hammam (AEH) is characterized by a complex geology and a high hydrogeology hazard. AEH's perpetual reactivation compels us to look closely at its triggers and to better understand the mechanisms of its evolution in mass and in depth. This study builds a numerical model to simulate the influencing factors such as precipitation, non-saturation, and pore pressure fluctuations, using Plaxis software. For a finer analysis of instabilities, we use Hill's criterion, based on the sign of the second order work, which is the most appropriate material stability criterion for non-associated elastoplastic materials. The results of this type of calculation allow us, in theory, to predict the shape and position of the slip surface(s) which are liable to ground movements of the slope, before reaching the rupture given by the plastic limit of Mohr Coulomb. To validate the numerical model, an analysis of inclinometer measures is performed to confirm the direction of movement and kinematic of the sliding mechanism of AEH’s slope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landslide" title="landslide">landslide</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20order%20work" title=" second order work"> second order work</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=inclinometers" title=" inclinometers"> inclinometers</a> </p> <a href="https://publications.waset.org/abstracts/84706/analysis-and-prediction-of-the-behavior-of-the-landslide-at-ain-el-hammam-algeria-based-on-the-second-order-work-criterion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Study of Landslide Behavior with Topographic Monitoring and Numerical Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZerarkaHizia">ZerarkaHizia</a>, <a href="https://publications.waset.org/abstracts/search?q=Akchiche%20Mustapha"> Akchiche Mustapha</a>, <a href="https://publications.waset.org/abstracts/search?q=Prunier%20Florent"> Prunier Florent</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Landslide of Ain El Hammam (AEH) has been an old slip since 1969; it was reactivated after an intense rainfall period in 2008 where it presents a complex shape and affects broad areas. The schist of AEH is more or less altered; the alteration is facilitated by the fracturing of the rock in its upper part, the presence of flowing water as well as physical and chemical mechanisms of desegregation in joint of altered schist. The factors following these instabilities are mostly related to the geological formation, the hydro-climatic conditions and the topography of the region. The city of AEH is located on the top of a steep slope at 50 km from the city of TiziOuzou (Algeria). AEH’s topographic monitoring of unstable slope allows analyzing the structure and the different deformation mechanism and the gradual change in the geometry, the direction of change of slip. It also allows us to delimit the area affected by the movement. This work aims to study the behavior of AEH landslide with topographic monitoring and to validate the results with numerical modeling of the slip site, when the hydraulic factors are identified as the most important factors for the reactivation of this landslide. With the help of the numerical code PLAXIS 2D and PlaxFlow, the precipitations and the steady state flow are modeled. To identify the mechanism of deformation and to predict the spread of the AEH landslide numerically, we used the equivalent deviatory strain, and these results were visualized by MATLAB software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equivalent%20deviatory%20strain" title="equivalent deviatory strain">equivalent deviatory strain</a>, <a href="https://publications.waset.org/abstracts/search?q=landslide" title=" landslide"> landslide</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=topographic%20monitoring" title=" topographic monitoring"> topographic monitoring</a> </p> <a href="https://publications.waset.org/abstracts/60456/study-of-landslide-behavior-with-topographic-monitoring-and-numerical-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Two Points Crossover Genetic Algorithm for Loop Layout Design Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xu%20LiYun">Xu LiYun</a>, <a href="https://publications.waset.org/abstracts/search?q=Briand%20Florent"> Briand Florent</a>, <a href="https://publications.waset.org/abstracts/search?q=Fan%20GuoLiang"> Fan GuoLiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The loop-layout design problem (LLDP) aims at optimizing the sequence of positioning of the machines around the cyclic production line. Traffic congestion is the usual criteria to minimize in this type of problem, i.e. the number of additional cycles spent by each part in the network until the completion of its required routing sequence of machines. This paper aims at applying several improvements mechanisms such as a positioned-based crossover operator for the Genetic Algorithm (GA) called a Two Points Crossover (TPC) and an offspring selection process. The performance of the improved GA is measured using well-known examples from literature and compared to other evolutionary algorithms. Good results show that GA can still be competitive for this type of problem against more recent evolutionary algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crossover" title="crossover">crossover</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=layout%20design%20problem" title=" layout design problem"> layout design problem</a>, <a href="https://publications.waset.org/abstracts/search?q=loop-layout" title=" loop-layout"> loop-layout</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20optimization" title=" manufacturing optimization"> manufacturing optimization</a> </p> <a href="https://publications.waset.org/abstracts/75351/two-points-crossover-genetic-algorithm-for-loop-layout-design-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Impact of Network Workload between Virtualization Solutions on a Testbed Environment for Cybersecurity Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Fernagut">Kevin Fernagut</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Flauzac"> Olivier Flauzac</a>, <a href="https://publications.waset.org/abstracts/search?q=Erick%20M.%20G.%20Robledo"> Erick M. G. Robledo</a>, <a href="https://publications.waset.org/abstracts/search?q=Florent%20Nolot"> Florent Nolot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adoption of modern lightweight virtualization often comes with new threats and network vulnerabilities. This paper seeks to assess this with a different approach studying the behavior of a testbed built with tools such as Kernel-Based Virtual Machine (KVM), Linux Containers (LXC) and Docker, by performing stress tests within a platform where students experiment simultaneously with cyber-attacks, and thus observe the impact on the campus network and also find the best solution for cyber-security learning. Interesting outcomes can be found in the literature comparing these technologies. It is, however, difficult to find results of the effects on the global network where experiments are carried out. Our work shows that other physical hosts and the faculty network were impacted while performing these trials. The problems found are discussed, as well as security solutions and the adoption of new network policies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=containerization" title="containerization">containerization</a>, <a href="https://publications.waset.org/abstracts/search?q=containers" title=" containers"> containers</a>, <a href="https://publications.waset.org/abstracts/search?q=cybersecurity" title=" cybersecurity"> cybersecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=cyberattacks" title=" cyberattacks"> cyberattacks</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation" title=" isolation"> isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=virtualization" title=" virtualization"> virtualization</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20machines" title=" virtual machines"> virtual machines</a> </p> <a href="https://publications.waset.org/abstracts/127012/impact-of-network-workload-between-virtualization-solutions-on-a-testbed-environment-for-cybersecurity-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Thin Films of Glassy Carbon Prepared by Cluster Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Diaf">Hatem Diaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrice%20Melinon"> Patrice Melinon</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Pereira"> Antonio Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernard%20Moine"> Bernard Moine</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Blanchard"> Nicholas Blanchard</a>, <a href="https://publications.waset.org/abstracts/search?q=Florent%20Bourquard"> Florent Bourquard</a>, <a href="https://publications.waset.org/abstracts/search?q=Florence%20Garrelie"> Florence Garrelie</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Donnet"> Christophe Donnet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glassy carbon exhibits excellent biological compatibility with live tissues meaning it has high potential for applications in life science. Moreover, glassy carbon has interesting properties including 'high temperature resistance', hardness, low density, low electrical resistance, low friction, and low thermal resistance. The structure of glassy carbon has long been a subject of debate. It is now admitted that glassy carbon is 100% sp2. This term is a little bit confusing as long sp2 hybridization defined from quantum chemistry is related to both properties: threefold configuration and pi bonding (parallel pz orbitals). Using plasma laser deposition of carbon clusters combined with pulsed nano/femto laser annealing, we are able to synthesize thin films of glassy carbon of good quality (probed by G band/ D disorder band ratio in Raman spectroscopy) without thermal post annealing. A careful inspecting of Raman signal, plasmon losses and structure performed by HRTEM (High Resolution Transmission Electron Microscopy) reveals that both properties (threefold and pi orbitals) cannot coexist together. The structure of the films is compared to models including schwarzites based from negatively curved surfaces at the opposite of onions or fullerene-like structures with positively curved surfaces. This study shows that a huge collection of porous carbon named vitreous carbon with different structures can coexist. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glassy%20carbon" title="glassy carbon">glassy carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster%20deposition" title=" cluster deposition"> cluster deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20structure" title=" electronic structure"> electronic structure</a> </p> <a href="https://publications.waset.org/abstracts/69832/thin-films-of-glassy-carbon-prepared-by-cluster-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Bionaut™: A Microrobotic Drug-Device Platform for the Local Treatment of Brainstem Gliomas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alex%20Kiselyov">Alex Kiselyov</a>, <a href="https://publications.waset.org/abstracts/search?q=Suehyun%20Cho"> Suehyun Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Darrell%20Harrington%3B%20Florent%20Cros"> Darrell Harrington; Florent Cros</a>, <a href="https://publications.waset.org/abstracts/search?q=Olin%20Palmer"> Olin Palmer</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Caputo"> John Caputo</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Kardosh"> Michael Kardosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Eran%20Oren"> Eran Oren</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Loudon"> William Loudon</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Shpigelmacher"> Michael Shpigelmacher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the most aggressive surgical and adjuvant therapeutic strategies, treatment of both pediatric and adult brainstem tumors remains problematic. Novel strategies, including targeted biologics, immunotherapy, and specialized delivery systems such as convection-enhanced delivery (CED), have been proposed. While some of these novel treatments are entering phase I trials, the field is still in need of treatment(s) that exhibits dramatically enhanced potency with optimal therapeutic ratio. Bionaut Labs has developed a modular microrobotic platform for performing localized delivery of diverse therapeutics in vivo. Our biocompatible particles (Bionauts™) are externally propelled and visualized in real-time. Bionauts™ are specifically designed to enhance the effect of radiation therapy via anatomically precise delivery of a radiosensitizing agent, as exemplified by temozolomide (TMZ) and Avastin™ to the brainstem gliomas of diverse origin. The treatment protocol is designed to furnish a better therapeutic outcome due to the localized (vs systemic) delivery of the drug to the neoplastic lesion(s) for use as a synergistic combination of radiation and radiosensitizing agent. In addition, the procedure is minimally invasive and is expected to be appropriate for both adult and pediatric patients. Current progress, including platform optimization, selection of the lead radiosensitizer as well as in vivo safety studies of the Bionauts™ in large animals, specifically the spine and the brain of porcine and ovine models, will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bionaut" title="Bionaut">Bionaut</a>, <a href="https://publications.waset.org/abstracts/search?q=brainstem" title=" brainstem"> brainstem</a>, <a href="https://publications.waset.org/abstracts/search?q=glioma" title=" glioma"> glioma</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20delivery" title=" local delivery"> local delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-robot" title=" micro-robot"> micro-robot</a>, <a href="https://publications.waset.org/abstracts/search?q=radiosensitizer" title=" radiosensitizer"> radiosensitizer</a> </p> <a href="https://publications.waset.org/abstracts/131922/bionaut-a-microrobotic-drug-device-platform-for-the-local-treatment-of-brainstem-gliomas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Crystalline Particles Dispersed Cu-Based Metallic Glassy Composites Fabricated by Spark Plasma Sintering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandrine%20Cardinal">Sandrine Cardinal</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Marc%20Pelletier"> Jean-Marc Pelletier</a>, <a href="https://publications.waset.org/abstracts/search?q=Guang%20Xie"> Guang Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Florian%20Mercier"> Florian Mercier</a>, <a href="https://publications.waset.org/abstracts/search?q=Florent%20Delmas"> Florent Delmas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bulk metallic glasses exhibit several superior properties, compared to their corresponding crystalline counterpart, such as high strength, high elastic limit or good corrosion resistance. Therefore they can be considered as good candidates for structural applications in many sectors. However, they are generally brittle and do not exhibit plastic deformation at room temperature. These materials are mainly obtained by rapid cooling from a liquid state to prevent crystallization, which limits their size. To overcome these two drawbacks: fragility and limited dimensions, composite metallic glass matrix reinforced by a second phase whose role is to slow crack growth are developed. Concerning the limited size of the pieces, the proposed solution is to get the material from amorphous powders by densifying under load. In this study, Cu50Zr45Al5 bulk metallic glassy matrix composites (MGMCs) containing different volume fraction (Vf) of Zr crystalline particles were manufactured by spark plasma sintering (SPS). Microstructure, thermal stability and mechanical properties of the MGMCs were investigated. Matrix of the composites remains a fully amorphous phase after consolidation at 420°C under 600 MPa. A good dispersion of the particles in the glassy matrix is obtained. Results show that the compressive strength decreases with Vf : 1670 MPa (Vf=0%) to 1300MPa (Vf=30%), the elastic modulus decreases but only slighty respectively 97.3GPa and 94.5 GPa and plasticity is improved from 0 to 4%. Fractographic investigation indicates a good bonding between amorphous and crystalline particles. In conclusion, present study has demonstrated that SPS method is useful for the synthesis of the bulk glassy composites. Large controlled microstructure specimens with interesting ductility can be obtained compared with others methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20glasses" title=" metallic glasses"> metallic glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma%20sintering" title=" spark plasma sintering"> spark plasma sintering</a> </p> <a href="https://publications.waset.org/abstracts/67629/crystalline-particles-dispersed-cu-based-metallic-glassy-composites-fabricated-by-spark-plasma-sintering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> 3D Microscopy, Image Processing, and Analysis of Lymphangiogenesis in Biological Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Louis">Thomas Louis</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20Primac"> Irina Primac</a>, <a href="https://publications.waset.org/abstracts/search?q=Florent%20Morfoisse"> Florent Morfoisse</a>, <a href="https://publications.waset.org/abstracts/search?q=Tania%20Durre"> Tania Durre</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Blacher"> Silvia Blacher</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnes%20Noel"> Agnes Noel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In vitro and in vivo lymphangiogenesis assays are essential for the identification of potential lymphangiogenic agents and the screening of pharmacological inhibitors. In the present study, we analyse three biological models: in vitro lymphatic endothelial cell spheroids, in vivo ear sponge assay, and in vivo lymph node colonisation by tumour cells. These assays provide suitable 3D models to test pro- and anti-lymphangiogenic factors or drugs. 3D images were acquired by confocal laser scanning and light sheet fluorescence microscopy. Virtual scan microscopy followed by 3D reconstruction by image aligning methods was also used to obtain 3D images of whole large sponge and ganglion samples. 3D reconstruction, image segmentation, skeletonisation, and other image processing algorithms are described. Fixed and time-lapse imaging techniques are used to analyse lymphatic endothelial cell spheroids behaviour. The study of cell spatial distribution in spheroid models enables to detect interactions between cells and to identify invasion hierarchy and guidance patterns. Global measurements such as volume, length, and density of lymphatic vessels are measured in both in vivo models. Branching density and tortuosity evaluation are also proposed to determine structure complexity. Those properties combined with vessel spatial distribution are evaluated in order to determine lymphangiogenesis extent. Lymphatic endothelial cell invasion and lymphangiogenesis were evaluated under various experimental conditions. The comparison of these conditions enables to identify lymphangiogenic agents and to better comprehend their roles in the lymphangiogenesis process. The proposed methodology is validated by its application on the three presented models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20image%20segmentation" title="3D image segmentation">3D image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20image%20skeletonisation" title=" 3D image skeletonisation"> 3D image skeletonisation</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20invasion" title=" cell invasion"> cell invasion</a>, <a href="https://publications.waset.org/abstracts/search?q=confocal%20microscopy" title=" confocal microscopy"> confocal microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=ear%20sponges" title=" ear sponges"> ear sponges</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20sheet%20microscopy" title=" light sheet microscopy"> light sheet microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=lymph%20nodes" title=" lymph nodes"> lymph nodes</a>, <a href="https://publications.waset.org/abstracts/search?q=lymphangiogenesis" title=" lymphangiogenesis"> lymphangiogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=spheroids" title=" spheroids"> spheroids</a> </p> <a href="https://publications.waset.org/abstracts/87470/3d-microscopy-image-processing-and-analysis-of-lymphangiogenesis-in-biological-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Using Biofunctool® Index to Assess Soil Quality after Eight Years of Conservation Agriculture in New Caledonia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Remy%20Kulagowski">Remy Kulagowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Tobias%20Sturm"> Tobias Sturm</a>, <a href="https://publications.waset.org/abstracts/search?q=Audrey%20Leopold"> Audrey Leopold</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurelie%20Metay"> Aurelie Metay</a>, <a href="https://publications.waset.org/abstracts/search?q=Josephine%20Peigne"> Josephine Peigne</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexis%20Thoumazeau"> Alexis Thoumazeau</a>, <a href="https://publications.waset.org/abstracts/search?q=Alain%20Brauman"> Alain Brauman</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Fogliani"> Bruno Fogliani</a>, <a href="https://publications.waset.org/abstracts/search?q=Florent%20Tivet"> Florent Tivet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A major challenge for agriculture is to enhance productivity while limiting the impact on the environment. Conservation agriculture (CA) is one strategy whereby both sustainability and productivity can be achieved by preserving and improving the soil quality. Soils provide and regulate a large number of ecosystem services (ES) such as agricultural productivity and climate change adaptation and mitigation. The aim of this study is to assess the impacts of contrasted CA crop management on soil functions for maize (Zea mays L.) cultivation in an eight years field experiment (2010-2018). The study included two CA practices: direct seeding in dead mulch (DM) and living mulch (LM), and conventional plough-based tillage (CT) practices on a fluvisol in New Caledonia (French Archipelago in the South Pacific). In 2018, soil quality of the cropping systems were evaluated with the Biofunctool® set of indicators, that consists in twelve integrative, in-field, and low-tech indicators assessing the biological, physical and chemical properties of soils. Main soil functions were evaluated including (i) carbon transformation, (ii) structure maintenance, and (iii) nutrient cycling in the ten first soil centimeters. The results showed significant higher score for soil structure maintenance (e.g., aggregate stability, water infiltration) and carbon transformation function (e.g., soil respiration, labile carbon) under CA in DM and LM when compared with CT. Score of carbon transformation index was higher in DM compared with LM. However, no significant effect of cropping systems was observed on nutrient cycling (i.e., nitrogen and phosphorus). In conclusion, the aggregated synthetic scores of soil multi-functions evaluated with Biofunctool® demonstrate that CA cropping systems lead to a better soil functioning. Further analysis of the results with agronomic performance of the soil-crop systems would allow to better understand the links between soil functioning and production ES of CA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation%20agriculture" title="conservation agriculture">conservation agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=cropping%20systems" title=" cropping systems"> cropping systems</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20services" title=" ecosystem services"> ecosystem services</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20functions" title=" soil functions"> soil functions</a> </p> <a href="https://publications.waset.org/abstracts/106119/using-biofunctool-index-to-assess-soil-quality-after-eight-years-of-conservation-agriculture-in-new-caledonia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Impact of Land-Use and Climate Change on the Population Structure and Distribution Range of the Rare and Endangered Dracaena ombet and Dobera glabra in Northern Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emiru%20Birhane">Emiru Birhane</a>, <a href="https://publications.waset.org/abstracts/search?q=Tesfay%20Gidey"> Tesfay Gidey</a>, <a href="https://publications.waset.org/abstracts/search?q=Haftu%20Abrha"> Haftu Abrha</a>, <a href="https://publications.waset.org/abstracts/search?q=Abrha%20Brhan"> Abrha Brhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Amanuel%20Zenebe"> Amanuel Zenebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Girmay%20Gebresamuel"> Girmay Gebresamuel</a>, <a href="https://publications.waset.org/abstracts/search?q=Florent%20Noul%C3%A8koun"> Florent Noulèkoun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dracaena ombet and Dobera glabra are two of the most rare and endangered tree species in dryland areas. Unfortunately, their sustainability is being compromised by different anthropogenic and natural factors. However, the impacts of ongoing land use and climate change on the population structure and distribution of the species are less explored. This study was carried out in the grazing lands and hillside areas of the Desa'a dry Afromontane forest, northern Ethiopia, to characterize the population structure of the species and predict the impact of climate change on their potential distributions. In each land-use type, abundance, diameter at breast height, and height of the trees were collected using 70 sampling plots distributed over seven transects spaced one km apart. The geographic coordinates of each individual tree were also recorded. The results showed that the species populations were characterized by low abundance and unstable population structure. The latter was evinced by a lack of seedlings and mature trees. The study also revealed that the total abundance and dendrometric traits of the trees were significantly different between the two land uses. The hillside areas had a denser abundance of bigger and taller trees than the grazing lands. Climate change predictions using the MaxEnt model highlighted that future temperature increases coupled with reduced precipitation would lead to significant reductions in the suitable habitats of the species in northern Ethiopia. The species' suitable habitats were predicted to decline by 48–83% for D. ombet and 35–87% for D. glabra. Hence, to sustain the species populations, different strategies should be adopted, namely the introduction of alternative livelihoods (e.g., gathering NTFP) to reduce the overexploitation of the species for subsistence income and the protection of the current habitats that will remain suitable in the future using community-based exclosures. Additionally, the preservation of the species' seeds in gene banks is crucial to ensure their long-term conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grazing%20lands" title="grazing lands">grazing lands</a>, <a href="https://publications.waset.org/abstracts/search?q=hillside%20areas" title=" hillside areas"> hillside areas</a>, <a href="https://publications.waset.org/abstracts/search?q=land-use%20change" title=" land-use change"> land-use change</a>, <a href="https://publications.waset.org/abstracts/search?q=MaxEnt" title=" MaxEnt"> MaxEnt</a>, <a href="https://publications.waset.org/abstracts/search?q=range%20limitation" title=" range limitation"> range limitation</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20and%20endangered%20tree%20species" title=" rare and endangered tree species"> rare and endangered tree species</a> </p> <a href="https://publications.waset.org/abstracts/174106/impact-of-land-use-and-climate-change-on-the-population-structure-and-distribution-range-of-the-rare-and-endangered-dracaena-ombet-and-dobera-glabra-in-northern-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Bionaut™: A Breakthrough Robotic Microdevice to Treat Non-Communicating Hydrocephalus in Both Adult and Pediatric Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suehyun%20Cho">Suehyun Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Darrell%20Harrington"> Darrell Harrington</a>, <a href="https://publications.waset.org/abstracts/search?q=Florent%20Cros"> Florent Cros</a>, <a href="https://publications.waset.org/abstracts/search?q=Olin%20Palmer"> Olin Palmer</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Caputo"> John Caputo</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Kardosh"> Michael Kardosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Eran%20Oren"> Eran Oren</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Loudon"> William Loudon</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Kiselyov"> Alex Kiselyov</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Shpigelmacher"> Michael Shpigelmacher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bionaut Labs, LLC is developing a minimally invasive robotic microdevice designed to treat non-communicating hydrocephalus in both adult and pediatric patients. The device utilizes biocompatible microsurgical particles (Bionaut™) that are specifically designed to safely and reliably perform accurate fenestration(s) in the 3rd ventricle, aqueduct of Sylvius, and/or trapped intraventricular cysts of the brain in order to re-establish normal cerebrospinal fluid flow dynamics and thereby balance and/or normalize intra/intercompartmental pressure. The Bionaut™ is navigated to the target via CSF or brain tissue in a minimally invasive fashion with precise control using real-time imaging. Upon reaching the pre-defined anatomical target, the external driver allows for directing the specific microsurgical action defined to achieve the surgical goal. Notable features of the proposed protocol are i) Bionaut™ access to the intraventricular target follows a clinically validated endoscopy trajectory which may not be feasible via ‘traditional’ rigid endoscopy: ii) the treatment is microsurgical, there are no foreign materials left behind post-procedure; iii) Bionaut™ is an untethered device that is navigated through the subarachnoid and intraventricular compartments of the brain, following pre-designated non-linear trajectories as determined by the safest anatomical and physiological path; iv) Overall protocol involves minimally invasive delivery and post-operational retrieval of the surgical Bionaut™. The approach is expected to be suitable to treat pediatric patients 0-12 months old as well as adult patients with obstructive hydrocephalus who fail traditional shunts or are eligible for endoscopy. Current progress, including platform optimization, Bionaut™ control, and real-time imaging and in vivo safety studies of the Bionauts™ in large animals, specifically the spine and the brain of ovine models, will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bionaut%E2%84%A2" title="Bionaut™">Bionaut™</a>, <a href="https://publications.waset.org/abstracts/search?q=cerebrospinal%20fluid" title=" cerebrospinal fluid"> cerebrospinal fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=CSF" title=" CSF"> CSF</a>, <a href="https://publications.waset.org/abstracts/search?q=fenestration" title=" fenestration"> fenestration</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocephalus" title=" hydrocephalus"> hydrocephalus</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-robot" title=" micro-robot"> micro-robot</a>, <a href="https://publications.waset.org/abstracts/search?q=microsurgery" title=" microsurgery"> microsurgery</a> </p> <a href="https://publications.waset.org/abstracts/131924/bionaut-a-breakthrough-robotic-microdevice-to-treat-non-communicating-hydrocephalus-in-both-adult-and-pediatric-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Bionaut™: A Minimally Invasive Microsurgical Platform to Treat Non-Communicating Hydrocephalus in Dandy-Walker Malformation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suehyun%20Cho">Suehyun Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Darrell%20Harrington"> Darrell Harrington</a>, <a href="https://publications.waset.org/abstracts/search?q=Florent%20Cros"> Florent Cros</a>, <a href="https://publications.waset.org/abstracts/search?q=Olin%20Palmer"> Olin Palmer</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Caputo"> John Caputo</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Kardosh"> Michael Kardosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Eran%20Oren"> Eran Oren</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Loudon"> William Loudon</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Kiselyov"> Alex Kiselyov</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Shpigelmacher"> Michael Shpigelmacher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Dandy-Walker malformation (DWM) represents a clinical syndrome manifesting as a combination of posterior fossa cyst, hypoplasia of the cerebellar vermis, and obstructive hydrocephalus. Anatomic hallmarks include hypoplasia of the cerebellar vermis, enlargement of the posterior fossa, and cystic dilatation of the fourth ventricle. Current treatments of DWM, including shunting of the cerebral spinal fluid ventricular system and endoscopic third ventriculostomy (ETV), are frequently clinically insufficient, require additional surgical interventions, and carry risks of infections and neurological deficits. Bionaut Labs develops an alternative way to treat Dandy-Walker Malformation (DWM) associated with non-communicating hydrocephalus. We utilize our discreet microsurgical Bionaut™ particles that are controlled externally and remotely to perform safe, accurate, effective fenestration of the Dandy-Walker cyst, specifically in the posterior fossa of the brain, to directly normalize intracranial pressure. Bionaut™ allows for complex non-linear trajectories not feasible by any conventional surgical techniques. The microsurgical particle safely reaches targets in the lower occipital section of the brain. Bionaut™ offers a minimally invasive surgical alternative to highly involved posterior craniotomy or shunts via direct fenestration of the fourth ventricular cyst at the locus defined by the individual anatomy. Our approach offers significant advantages over the current standards of care in patients exhibiting anatomical challenge(s) as a manifestation of DWM, and therefore, is intended to replace conventional therapeutic strategies. Current progress, including platform optimization, Bionaut™ control, and real-time imaging and in vivo safety studies of the Bionauts™ in large animals, specifically the spine and the brain of ovine models, will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bionaut%E2%84%A2" title="Bionaut™">Bionaut™</a>, <a href="https://publications.waset.org/abstracts/search?q=cerebral%20spinal%20fluid" title=" cerebral spinal fluid"> cerebral spinal fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=CSF" title=" CSF"> CSF</a>, <a href="https://publications.waset.org/abstracts/search?q=cyst" title=" cyst"> cyst</a>, <a href="https://publications.waset.org/abstracts/search?q=Dandy-Walker" title=" Dandy-Walker"> Dandy-Walker</a>, <a href="https://publications.waset.org/abstracts/search?q=fenestration" title=" fenestration"> fenestration</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocephalus" title=" hydrocephalus"> hydrocephalus</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-robot" title=" micro-robot"> micro-robot</a> </p> <a href="https://publications.waset.org/abstracts/131925/bionaut-a-minimally-invasive-microsurgical-platform-to-treat-non-communicating-hydrocephalus-in-dandy-walker-malformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Study of Durability of Porous Polymer Materials, Glass-Fiber-Reinforced Polyurethane Foam (R-PUF) in MarkIII Containment Membrane System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Florent%20Cerdan">Florent Cerdan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne-Ga%C3%ABlle%20Denay"> Anne-Gaëlle Denay</a>, <a href="https://publications.waset.org/abstracts/search?q=Annette%20Roy"> Annette Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Claude%20Grandidier"> Jean-Claude Grandidier</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%89ric%20Laine"> Éric Laine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The insulation of MarkIII membrane of the Liquid Natural Gas Carriers (LNGC) consists of a load- bearing system made of panels in reinforced polyurethane foam (R-PUF). During the shipping, the cargo containment shall be potentially subject to risk events which can be water leakage through the wall ballast tank. The aim of these present works is to further develop understanding of water transfer mechanisms and water effect on properties of R-PUF. This multi-scale approach contributes to improve the durability. Macroscale / Mesoscale Firstly, the use of the gravimetric technique has allowed to define, at room temperature, the water transfer mechanisms and kinetic diffusion, in the R-PUF. The solubility follows a first kinetic fast growing connected to the water absorption by the micro-porosity, and then evolves linearly slowly, this second stage is connected to molecular diffusion and dissolution of water in the dense membranes polyurethane. Secondly, in the purpose of improving the understanding of the transfer mechanism, the study of the evolution of the buoyant force has been established. It allowed to identify the effect of the balance of total and partial pressure of mixture gas contained in pores surface. Mesoscale / Microscale The differential scanning calorimetry (DSC) and Dynamical Mechanical Analysis (DMA), have been used to investigate the hydration of the hard and soft segments of the polyurethane matrix. The purpose was to identify the sensitivity of these two phases. It been shown that the glass transition temperatures shifts towards the low temperatures when the solubility of the water increases. These observations permit to conclude to a plasticization of the polymer matrix. Microscale The Fourier Transform Infrared (FTIR) study has been used to investigate the characterization of functional groups on the edge, the center and mid-way of the sample according the duration of submersion. More water there is in the material, more the water fix themselves on the urethanes groups and more specifically on amide groups. The pic of C=O urethane shifts at lower frequencies quickly before 24 hours of submersion then grows slowly. The intensity of the pic decreases more flatly after that. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20materials" title="porous materials">porous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20sorption" title=" water sorption"> water sorption</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20transition%20temperature" title=" glass transition temperature"> glass transition temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=DSC" title=" DSC"> DSC</a>, <a href="https://publications.waset.org/abstracts/search?q=DMA" title=" DMA"> DMA</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20mechanisms" title=" transfer mechanisms"> transfer mechanisms</a> </p> <a href="https://publications.waset.org/abstracts/20664/study-of-durability-of-porous-polymer-materials-glass-fiber-reinforced-polyurethane-foam-r-puf-in-markiii-containment-membrane-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Quantum Chemical Prediction of Standard Formation Enthalpies of Uranyl Nitrates and Its Degradation Products </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20%20Saab">Mohamad Saab</a>, <a href="https://publications.waset.org/abstracts/search?q=Florent%20Real"> Florent Real</a>, <a href="https://publications.waset.org/abstracts/search?q=Francois%20Virot"> Francois Virot</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Cantrel"> Laurent Cantrel</a>, <a href="https://publications.waset.org/abstracts/search?q=Valerie%20Vallet"> Valerie Vallet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All spent nuclear fuel reprocessing plants use the PUREX process (Plutonium Uranium Refining by Extraction), which is a liquid-liquid extraction method. The organic extracting solvent is a mixture of tri-n-butyl phosphate (TBP) and hydrocarbon solvent such as hydrogenated tetra-propylene (TPH). By chemical complexation, uranium and plutonium (from spent fuel dissolved in nitric acid solution), are separated from fission products and minor actinides. During a normal extraction operation, uranium is extracted in the organic phase as the UO₂(NO₃)₂(TBP)₂ complex. The TBP solvent can form an explosive mixture called red oil when it comes in contact with nitric acid. The formation of this unstable organic phase originates from the reaction between TBP and its degradation products on the one hand, and nitric acid, its derivatives and heavy metal nitrate complexes on the other hand. The decomposition of the red oil can lead to violent explosive thermal runaway. These hazards are at the origin of several accidents such as the two in the United States in 1953 and 1975 (Savannah River) and, more recently, the one in Russia in 1993 (Tomsk). This raises the question of the exothermicity of reactions that involve TBP and all other degradation products, and calls for a better knowledge of the underlying chemical phenomena. A simulation tool (Alambic) is currently being developed at IRSN that integrates thermal and kinetic functions related to the deterioration of uranyl nitrates in organic and aqueous phases, but not of the n-butyl phosphate. To include them in the modeling scheme, there is an urgent need to obtain the thermodynamic and kinetic functions governing the deterioration processes in liquid phase. However, little is known about the thermodynamic properties, like standard enthalpies of formation, of the n-butyl phosphate molecules and of the UO₂(NO₃)₂(TBP)₂ UO₂(NO₃)₂(HDBP)(TBP) and UO₂(NO₃)₂(HDBP)₂ complexes. In this work, we propose to estimate the thermodynamic properties with Quantum Methods (QM). Thus, in the first part of our project, we focused on the mono, di, and tri-butyl complexes. Quantum chemical calculations have been performed to study several reactions leading to the formation of mono-(H₂MBP), di-(HDBP), and TBP in gas and liquid phases. In the gas phase, the optimal structures of all species were optimized using the B3LYP density functional. Triple-ζ def2-TZVP basis sets were used for all atoms. All geometries were optimized in the gas-phase, and the corresponding harmonic frequencies were used without scaling to compute the vibrational partition functions at 298.15 K and 0.1 Mpa. Accurate single point energies were calculated using the efficient localized LCCSD(T) method to the complete basis set limit. Whenever species in the liquid phase are considered, solvent effects are included with the COSMO-RS continuum model. The standard enthalpies of formation of TBP, HDBP, and H2MBP are finally predicted with an uncertainty of about 15 kJ mol⁻¹. In the second part of this project, we have investigated the fundamental properties of three organic species that mostly contribute to the thermal runaway: UO₂(NO₃)₂(TBP)₂, UO₂(NO₃)₂(HDBP)(TBP), and UO₂(NO₃)₂(HDBP)₂ using the same quantum chemical methods that were used for TBP and its derivatives in both the gas and the liquid phase. We will discuss the structures and thermodynamic properties of all these species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PUREX%20process" title="PUREX process">PUREX process</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20oils" title=" red oils"> red oils</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20chemical%20methods" title=" quantum chemical methods"> quantum chemical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolysis" title=" hydrolysis"> hydrolysis</a> </p> <a href="https://publications.waset.org/abstracts/87718/quantum-chemical-prediction-of-standard-formation-enthalpies-of-uranyl-nitrates-and-its-degradation-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Mapping of Urban Micro-Climate in Lyon (France) by Integrating Complementary Predictors at Different Scales into Multiple Linear Regression Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucille%20Alonso">Lucille Alonso</a>, <a href="https://publications.waset.org/abstracts/search?q=Florent%20Renard"> Florent Renard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The characterizations of urban heat island (UHI) and their interactions with climate change and urban climates are the main research and public health issue, due to the increasing urbanization of the population. These solutions require a better knowledge of the UHI and micro-climate in urban areas, by combining measurements and modelling. This study is part of this topic by evaluating microclimatic conditions in dense urban areas in the Lyon Metropolitan Area (France) using a combination of data traditionally used such as topography, but also from LiDAR (Light Detection And Ranging) data, Landsat 8 satellite observation and Sentinel and ground measurements by bike. These bicycle-dependent weather data collections are used to build the database of the variable to be modelled, the air temperature, over Lyon’s hyper-center. This study aims to model the air temperature, measured during 6 mobile campaigns in Lyon in clear weather, using multiple linear regressions based on 33 explanatory variables. They are of various categories such as meteorological parameters from remote sensing, topographic variables, vegetation indices, the presence of water, humidity, bare soil, buildings, radiation, urban morphology or proximity and density to various land uses (water surfaces, vegetation, bare soil, etc.). The acquisition sources are multiple and come from the Landsat 8 and Sentinel satellites, LiDAR points, and cartographic products downloaded from an open data platform in Greater Lyon. Regarding the presence of low, medium, and high vegetation, the presence of buildings and ground, several buffers close to these factors were tested (5, 10, 20, 25, 50, 100, 200 and 500m). The buffers with the best linear correlations with air temperature for ground are 5m around the measurement points, for low and medium vegetation, and for building 50m and for high vegetation is 100m. The explanatory model of the dependent variable is obtained by multiple linear regression of the remaining explanatory variables (Pearson correlation matrix with a |r| < 0.7 and VIF with < 5) by integrating a stepwise sorting algorithm. Moreover, holdout cross-validation is performed, due to its ability to detect over-fitting of multiple regression, although multiple regression provides internal validation and randomization (80% training, 20% testing). Multiple linear regression explained, on average, 72% of the variance for the study days, with an average RMSE of only 0.20°C. The impact on the model of surface temperature in the estimation of air temperature is the most important variable. Other variables are recurrent such as distance to subway stations, distance to water areas, NDVI, digital elevation model, sky view factor, average vegetation density, or building density. Changing urban morphology influences the city's thermal patterns. The thermal atmosphere in dense urban areas can only be analysed on a microscale to be able to consider the local impact of trees, streets, and buildings. There is currently no network of fixed weather stations sufficiently deployed in central Lyon and most major urban areas. Therefore, it is necessary to use mobile measurements, followed by modelling to characterize the city's multiple thermal environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20temperature" title="air temperature">air temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=LIDAR" title=" LIDAR"> LIDAR</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20linear%20regression" title=" multiple linear regression"> multiple linear regression</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20temperature" title=" surface temperature"> surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20heat%20island" title=" urban heat island"> urban heat island</a> </p> <a href="https://publications.waset.org/abstracts/113786/mapping-of-urban-micro-climate-in-lyon-france-by-integrating-complementary-predictors-at-different-scales-into-multiple-linear-regression-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>