CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 99 results for author: <span class="mathjax">Garcia-Fernandez, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Garcia-Fernandez, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Garcia-Fernandez%2C+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Garcia-Fernandez, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.15514">arXiv:2502.15514</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.15514">pdf</a>, <a href="https://arxiv.org/format/2502.15514">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Handling systematic node biases in TDoA positioning systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Miquel Garcia-Fernandez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.15514v1-abstract-short" style="display: inline;"> Node-specific hardware biases represent significant error source in wireless Time of Arrival (ToA) and Time Difference of Arrival (TDoA) positioning. While bias estimation and treatment are well-established in Global Navigation Satellite Systems (GNSS), their application in wireless Positioning, Navigation, and Timing (PNT) remains a significant challenge. This work proposes a methodology, based o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15514v1-abstract-full').style.display = 'inline'; document.getElementById('2502.15514v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.15514v1-abstract-full" style="display: none;"> Node-specific hardware biases represent significant error source in wireless Time of Arrival (ToA) and Time Difference of Arrival (TDoA) positioning. While bias estimation and treatment are well-established in Global Navigation Satellite Systems (GNSS), their application in wireless Positioning, Navigation, and Timing (PNT) remains a significant challenge. This work proposes a methodology, based on GNSS data processing, to mitigate these systematic biases. Specifically, the concept of Differential Transmitter Bias (DTB) is introduced to account for node-specific hardware variations. These DTB are in fact analogous to the Differential Code Bias (DCB) used in GNSS. This paper includes an analysis based on real data from a network of wireless nodes employed in an indoor navigation context and shows that the DTB exhibits remarkable stability, allowing it to be treated as a constant during an entire positioning session, with small variations as low as 2m, which is in the same uncertainty level as the noise of the measurements used by a TDoA-based positioning engine. In an operating positioning service context, these DTB would be transmitted to the user, similarly to GNSS, where satellite clock corrections are provided through navigation messages. This would allow the user to callibrate the TDoA measurements in order to obtain positioning with errors on the meter level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15514v1-abstract-full').style.display = 'none'; document.getElementById('2502.15514v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 10 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 94-10 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> G.4; J.2 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10809">arXiv:2502.10809</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.10809">pdf</a>, <a href="https://arxiv.org/ps/2502.10809">ps</a>, <a href="https://arxiv.org/format/2502.10809">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Circular Dichroism in Resonant Inelastic X-ray Scattering: Probing Altermagnetic Domains in MnTe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Takegami%2C+D">D. Takegami</a>, <a href="/search/?searchtype=author&amp;query=Aoyama%2C+T">T. Aoyama</a>, <a href="/search/?searchtype=author&amp;query=Okauchi%2C+T">T. Okauchi</a>, <a href="/search/?searchtype=author&amp;query=Yamaguchi%2C+T">T. Yamaguchi</a>, <a href="/search/?searchtype=author&amp;query=Tippireddy%2C+S">S. Tippireddy</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Garc%C3%ADa-Fern%C3%A1ndez%2C+M">M. Garc铆a-Fern谩ndez</a>, <a href="/search/?searchtype=author&amp;query=Mizokawa%2C+T">T. Mizokawa</a>, <a href="/search/?searchtype=author&amp;query=Ohgushi%2C+K">K. Ohgushi</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Chaloupka%2C+J">J. Chaloupka</a>, <a href="/search/?searchtype=author&amp;query=Kune%C5%A1%2C+J">J. Kune拧</a>, <a href="/search/?searchtype=author&amp;query=Hariki%2C+A">A. Hariki</a>, <a href="/search/?searchtype=author&amp;query=Suzuki%2C+H">H. Suzuki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10809v1-abstract-short" style="display: inline;"> X-ray magnetic circular dichroism provides a means to identify ferromagnetic, chiral, and altermagnetic orders via their time-reversal-symmetry ($\mathcal{T}$) breaking. However, differentiating magnetic domains related by crystallographic symmetries remains a technical challenge. Here we reveal a circular dichroism (CD) in the resonant inelastic x-ray scattering (RIXS) spectra from the altermagne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10809v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10809v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10809v1-abstract-full" style="display: none;"> X-ray magnetic circular dichroism provides a means to identify ferromagnetic, chiral, and altermagnetic orders via their time-reversal-symmetry ($\mathcal{T}$) breaking. However, differentiating magnetic domains related by crystallographic symmetries remains a technical challenge. Here we reveal a circular dichroism (CD) in the resonant inelastic x-ray scattering (RIXS) spectra from the altermagnetic MnTe. The azimuthal dependence of the RIXS-CD intensity of the magnon excitations indicates a dominant occupation of a single altermagnetic domain. The RIXS-CD in our scattering geometry is ascribed to the mirror-symmetry breaking associated with the $\mathcal{T}$-broken altermagnetic order. Our results establish RIXS-CD as a domain-sensitive probe of elementary excitations in quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10809v1-abstract-full').style.display = 'none'; document.getElementById('2502.10809v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02769">arXiv:2502.02769</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.02769">pdf</a>, <a href="https://arxiv.org/ps/2502.02769">ps</a>, <a href="https://arxiv.org/format/2502.02769">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Differential Geometry">math.DG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Algebra">math.QA</span> </div> </div> <p class="title is-5 mathjax"> $\mathrm{G}_2$-structures with torsion and the deformed Shatashvili-Vafa vertex algebra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=de+La+Hera%2C+A+D+A">Andoni De Arriba de La Hera</a>, <a href="/search/?searchtype=author&amp;query=Galdeano%2C+M">Mateo Galdeano</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mario Garcia-Fernandez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02769v1-abstract-short" style="display: inline;"> We construct representations of the deformed Shatashvili-Vafa vertex algebra $\mathrm{SV}_a$, with parameter $a \in \mathbb{C}$, as recently proposed in the physics literature by Fiset and Gaberdiel. The geometric input for our construction are integrable $\mathrm{G}_2$-structures with closed torsion, solving the heterotic $\mathrm{G}_2$ system with $伪&#39;=0$ on the group manifolds $S^3\times T^4$ an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02769v1-abstract-full').style.display = 'inline'; document.getElementById('2502.02769v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02769v1-abstract-full" style="display: none;"> We construct representations of the deformed Shatashvili-Vafa vertex algebra $\mathrm{SV}_a$, with parameter $a \in \mathbb{C}$, as recently proposed in the physics literature by Fiset and Gaberdiel. The geometric input for our construction are integrable $\mathrm{G}_2$-structures with closed torsion, solving the heterotic $\mathrm{G}_2$ system with $伪&#39;=0$ on the group manifolds $S^3\times T^4$ and $S^3\times S^3\times S^1$. From considerations in string theory, one expects the chiral algebra of these backgrounds to include $\mathrm{SV}_a$, and we provide a mathematical realization of this expectation by obtaining embeddings of $\mathrm{SV}_a$ in the corresponding superaffine vertex algebra and the chiral de Rham complex. In our examples, the parameter $a$ is proportional to the scalar torsion class of the $\mathrm{G}_2$ structure, $a \sim 蟿_0$, as expected from previous work in the semi-classical limit by the second author, jointly with De la Ossa and Marchetto. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02769v1-abstract-full').style.display = 'none'; document.getElementById('2502.02769v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, submitted for consideration to the proceedings of the MATRIX research programme &#34;The Geometry of Moduli Spaces in String Theory&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.16034">arXiv:2501.16034</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.16034">pdf</a>, <a href="https://arxiv.org/format/2501.16034">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Circular dichroism in resonant inelastic x-ray scattering from birefringence in CuO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/?searchtype=author&amp;query=Perren%2C+G+S">G茅rard Sylvester Perren</a>, <a href="/search/?searchtype=author&amp;query=Ueda%2C+H">Hiroki Ueda</a>, <a href="/search/?searchtype=author&amp;query=Boothroyd%2C+A+T">A. T. Boothroyd</a>, <a href="/search/?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/?searchtype=author&amp;query=Garc%C3%ADa-Fern%C3%A1ndez%2C+M">M. Garc铆a-Fern谩ndez</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Staub%2C+U">Urs Staub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.16034v1-abstract-short" style="display: inline;"> Resonant inelastic x-ray scattering (RIXS) has become a prominent technique to study quasiparticle excitations. With advances in polarization analysis capabilities at different facilities, RIXS offers exceptional potential for investigating symmetry-broken quasiparticles like chiral phonons and magnons. At optical wavelengths birefringence can severely affect polarization states in low-symmetry sy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16034v1-abstract-full').style.display = 'inline'; document.getElementById('2501.16034v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.16034v1-abstract-full" style="display: none;"> Resonant inelastic x-ray scattering (RIXS) has become a prominent technique to study quasiparticle excitations. With advances in polarization analysis capabilities at different facilities, RIXS offers exceptional potential for investigating symmetry-broken quasiparticles like chiral phonons and magnons. At optical wavelengths birefringence can severely affect polarization states in low-symmetry systems. Here we show its importance for soft x-ray resonances. Given the growing interest in Circular Dichroism (CD) in RIXS, it is important to evaluate how birefringence may affect the RIXS spectra of anisotropic systems. We investigate CuO, a well-known anisotropic material, using Cu $L_3$-edge RIXS and detect significant CD in both magnetic and orbital excitations in the collinear antiferromagnetic phase. We demonstrate that the CD can be modeled by a proper treatment of RIXS scattering amplitudes derived from single-ion calculations with birefringence. Recognizing these effects is crucial for unambiguous identification of subtle dichroic effects induced by symmetry-broken quasiparticles. Furthermore, the combined sensitivity of RIXS and birefringence to local symmetry presents an opportunity to study microscopic changes driven by external perturbations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.16034v1-abstract-full').style.display = 'none'; document.getElementById('2501.16034v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main Text of 7 Pages including references and 4 figures. Supplementary of 6 pages appended</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06532">arXiv:2501.06532</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.06532">pdf</a>, <a href="https://arxiv.org/format/2501.06532">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Determination of galaxy photometric redshifts using Conditional Generative Adversarial Networks (CGANs) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06532v1-abstract-short" style="display: inline;"> Accurate and reliable photometric redshifts determination is one of the key aspects for wide-field photometric surveys. Determination of photometric redshift for galaxies, has been traditionally solved by use of machine-learning and artificial intelligence techniques trained on a calibration sample of galaxies, where both photometry and spectrometry are determined. On this paper, we present a new&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06532v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06532v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06532v1-abstract-full" style="display: none;"> Accurate and reliable photometric redshifts determination is one of the key aspects for wide-field photometric surveys. Determination of photometric redshift for galaxies, has been traditionally solved by use of machine-learning and artificial intelligence techniques trained on a calibration sample of galaxies, where both photometry and spectrometry are determined. On this paper, we present a new algorithmic approach for determining photometric redshifts of galaxies using Conditional Generative Adversarial Networks (CGANs). Proposed CGAN implementation, approaches photometric redshift determination as a probabilistic regression, where instead of determining a single value for the estimated redshift of the galaxy, a full probability density is computed. The methodology proposed, is tested with data from Dark Energy Survey (DES) Y1 data and compared with other existing algorithm such as a Random Forest regressor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06532v1-abstract-full').style.display = 'none'; document.getElementById('2501.06532v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05173">arXiv:2501.05173</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.05173">pdf</a>, <a href="https://arxiv.org/format/2501.05173">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Holographic Metasurfaces Enabling Wave Computing for 6G: Status Overview, Challenges, and Future Research Trends </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Omam%2C+Z+R">Zahra Rahimian Omam</a>, <a href="/search/?searchtype=author&amp;query=Taghvaee%2C+H">Hamidreza Taghvaee</a>, <a href="/search/?searchtype=author&amp;query=Araghi%2C+A">Ali Araghi</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Maria Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Alvarez-Narciandi%2C+G">Guillermo Alvarez-Narciandi</a>, <a href="/search/?searchtype=author&amp;query=Alexandropoulos%2C+G+C">George C. Alexandropoulos</a>, <a href="/search/?searchtype=author&amp;query=Yurduseven%2C+O">Okan Yurduseven</a>, <a href="/search/?searchtype=author&amp;query=Khalily%2C+M">Mohsen Khalily</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05173v1-abstract-short" style="display: inline;"> Recent advancements in wave computing using metasurfaces are poised to transform wireless communications by enabling high-speed, energy-efficient, and highly parallelized signal processing. These capabilities are essential to meet the ultra-high data rates of up to 1 terabit per second and minimal latency as low as 1 millisecond required by next-generation wireless networks. Diverging from traditi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05173v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05173v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05173v1-abstract-full" style="display: none;"> Recent advancements in wave computing using metasurfaces are poised to transform wireless communications by enabling high-speed, energy-efficient, and highly parallelized signal processing. These capabilities are essential to meet the ultra-high data rates of up to 1 terabit per second and minimal latency as low as 1 millisecond required by next-generation wireless networks. Diverging from traditional digital processing, wave computing adopts continuous analog signals to foster innovative functions such as over-the-air computation, integrated sensing and communications, computational electromagnetic imaging, and physical-layer security. This article explores the potential of reconfigurable multi-functional metasurfaces in wave computing, emphasizing their pivotal role in facilitating seamless communications and addressing the escalating computational demands for sixth generation (6G) networks. As artificial intelligence has become one of the most prominent and rapidly advancing fields of research over the last decade, we also introduce a wave-domain-based machine learning approach aimed at achieving power-efficient, fast training and computation. Future research directions are discussed, underscoring how metasurface-based systems can merge computation with communication to innovate components of 6G networks, thus creating smarter, faster, and more adaptable wireless infrastructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05173v1-abstract-full').style.display = 'none'; document.getElementById('2501.05173v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11674">arXiv:2408.11674</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11674">pdf</a>, <a href="https://arxiv.org/ps/2408.11674">ps</a>, <a href="https://arxiv.org/format/2408.11674">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Differential Geometry">math.DG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Analysis of PDEs">math.AP</span> </div> </div> <p class="title is-5 mathjax"> Pluriclosed flow and the Hull-Strominger system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mario Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Molina%2C+R+G">Raul Gonzalez Molina</a>, <a href="/search/?searchtype=author&amp;query=Streets%2C+J">Jeffrey Streets</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11674v1-abstract-short" style="display: inline;"> We define a natural extension of pluriclosed flow aiming at constructing solutions of the Hull-Strominger system. We give several geometric formulations of this flow, which yield a series of a priori estimates for the flow and also for the Hull-Strominger system. The evolution equations are derived using the theory of string algebroids, a class of Courant algebroids which occur naturally in higher&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11674v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11674v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11674v1-abstract-full" style="display: none;"> We define a natural extension of pluriclosed flow aiming at constructing solutions of the Hull-Strominger system. We give several geometric formulations of this flow, which yield a series of a priori estimates for the flow and also for the Hull-Strominger system. The evolution equations are derived using the theory of string algebroids, a class of Courant algebroids which occur naturally in higher gauge theory. Using this, we interpret the flow as generalized Ricci flow and also as a higher/coupled version of Hermitian-Yang-Mills flow, proving furthermore that it is compatible with symmetry reduction. Regarding our main analytical results, we prove a priori $C^{\infty}$ estimates for uniformly parabolic solutions. This in particular settles the question of smooth regularity of uniformly elliptic solutions of the Hull-Strominger system, generalizing Yau&#39;s $C^3$ estimate for the complex Monge-Amp猫re equation. We prove global existence and convergence results for the flow on special backgrounds, and discuss a conjectural relationship of the flow to the geometrization of Reid&#39;s fantasy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11674v1-abstract-full').style.display = 'none'; document.getElementById('2408.11674v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15750">arXiv:2407.15750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15750">pdf</a>, <a href="https://arxiv.org/format/2407.15750">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Unified Description of Charge Density Waves in Electron- and Hole-doped Cuprate Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/?searchtype=author&amp;query=Tu%2C+S">Sijia Tu</a>, <a href="/search/?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/?searchtype=author&amp;query=Tam%2C+C+C">Charles C. Tam</a>, <a href="/search/?searchtype=author&amp;query=Tippireddy%2C+S">Sahil Tippireddy</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+Z">Zefeng Lin</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Jin%2C+K">Kui Jin</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15750v1-abstract-short" style="display: inline;"> High-temperature cuprates superconductors are characterised by the complex interplay between superconductivity (SC) and charge density wave (CDW) in the context of intertwined competing orders. In contrast to abundant studies for hole-doped cuprates, the exact nature of CDW and its relationship to SC was much less explored in electron-doped counterparts. Here, we performed resonant inelastic x-ray&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15750v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15750v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15750v1-abstract-full" style="display: none;"> High-temperature cuprates superconductors are characterised by the complex interplay between superconductivity (SC) and charge density wave (CDW) in the context of intertwined competing orders. In contrast to abundant studies for hole-doped cuprates, the exact nature of CDW and its relationship to SC was much less explored in electron-doped counterparts. Here, we performed resonant inelastic x-ray scattering (RIXS) experiments to investigate the relationship between CDW and SC in electron-doped La$_{2-x}$Ce$_x$CuO$_4$. The short-range CDW order with a correlation length $\sim35$~脜~was found in a wide range of temperature and doping concentration. Near the optimal doping, the CDW order is weakened inside the SC phase, implying an intimate relationship between the two orders. This interplay has been commonly reported in hole-doped La-based cuprates near the optimal doping. We reconciled the diverging behaviour of CDW across the superconducting phase in various cuprate materials by introducing the CDW correlation length as a key parameter. Our study paves the way for establishing a unified picture to describe the phenomenology of CDW and its relationship with SC in the cuprate family. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15750v1-abstract-full').style.display = 'none'; document.getElementById('2407.15750v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages 5 figures; Supplementary Materials available upon request</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15692">arXiv:2407.15692</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15692">pdf</a>, <a href="https://arxiv.org/format/2407.15692">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.043184">10.1103/PhysRevResearch.6.043184 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of electron correlations on two-particle charge response in electron- and hole-doped cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/?searchtype=author&amp;query=Zinni%2C+L">Luciano Zinni</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/?searchtype=author&amp;query=Tu%2C+S">Sijia Tu</a>, <a href="/search/?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Hayden%2C+S+M">S. M. Hayden</a>, <a href="/search/?searchtype=author&amp;query=Bejas%2C+M">Mat铆as Bejas</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+Z">Zefeng Lin</a>, <a href="/search/?searchtype=author&amp;query=Yamase%2C+H">H. Yamase</a>, <a href="/search/?searchtype=author&amp;query=Jin%2C+K">Kui Jin</a>, <a href="/search/?searchtype=author&amp;query=Garc%C3%ADa-Fern%C3%A1ndez%2C+M">M. Garc铆a-Fern谩ndez</a>, <a href="/search/?searchtype=author&amp;query=Fink%2C+J">J. Fink</a>, <a href="/search/?searchtype=author&amp;query=Greco%2C+A">Andr茅s Greco</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15692v2-abstract-short" style="display: inline;"> Estimating many-body effects that deviate from an independent particle approach, has long been a key research interest in condensed matter physics. Layered cuprates are prototypical systems, where electron-electron interactions are found to strongly affect the dynamics of single-particle excitations. It is however, still unclear how the electron correlations influence charge excitations, such as p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15692v2-abstract-full').style.display = 'inline'; document.getElementById('2407.15692v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15692v2-abstract-full" style="display: none;"> Estimating many-body effects that deviate from an independent particle approach, has long been a key research interest in condensed matter physics. Layered cuprates are prototypical systems, where electron-electron interactions are found to strongly affect the dynamics of single-particle excitations. It is however, still unclear how the electron correlations influence charge excitations, such as plasmons, which have been variously treated with either weak or strong correlation models. In this work, we demonstrate the hybridised nature of collective valence charge fluctuations leading to dispersing acoustic-like plasmons in hole-doped La$_{1.84}$Sr$_{0.16}$CuO$_{4}$ and electron-doped La$_{1.84}$Ce$_{0.16}$CuO$_{4}$ using the two-particle probe, resonant inelastic x-ray scattering. We then describe the plasmon dispersions in both systems, within both the weak mean-field Random Phase Approximation (RPA) and strong coupling $t$-$J$-$V$ models. The $t$-$J$-$V$ model, which includes the correlation effects implicitly, accurately describes the plasmon dispersions as resonant excitations outside the single-particle intra-band continuum. In comparison, a quantitative description of the plasmon dispersion in the RPA approach is obtained only upon explicit consideration of re-normalized electronic band parameters. Our comparative analysis shows that electron correlations significantly impact the low-energy plasmon excitations across the cuprate doping phase diagram, even at long wavelengths. Thus, complementary information on the evolution of electron correlations, influenced by the rich electronic phases in condensed matter systems, can be extracted through the study of two-particle charge response. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15692v2-abstract-full').style.display = 'none'; document.getElementById('2407.15692v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 043184 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.15062">arXiv:2406.15062</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.15062">pdf</a>, <a href="https://arxiv.org/format/2406.15062">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Decoupling of Static and Dynamic Charge Correlations revealed by Uniaxial Strain in a Cuprate Superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Martinelli%2C+L">L. Martinelli</a>, <a href="/search/?searchtype=author&amp;query=Bia%C5%82o%2C+I">I. Bia艂o</a>, <a href="/search/?searchtype=author&amp;query=Hong%2C+X">X. Hong</a>, <a href="/search/?searchtype=author&amp;query=Oppliger%2C+J">J. Oppliger</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+C">C. Lin</a>, <a href="/search/?searchtype=author&amp;query=Schaller%2C+T">T. Schaller</a>, <a href="/search/?searchtype=author&amp;query=K%C3%BCspert%2C+J">J. K眉spert</a>, <a href="/search/?searchtype=author&amp;query=Fischer%2C+M+H">M. H. Fischer</a>, <a href="/search/?searchtype=author&amp;query=Kurosawa%2C+T">T. Kurosawa</a>, <a href="/search/?searchtype=author&amp;query=Momono%2C+N">N. Momono</a>, <a href="/search/?searchtype=author&amp;query=Oda%2C+M">M. Oda</a>, <a href="/search/?searchtype=author&amp;query=Novikov%2C+D+V">D. V. Novikov</a>, <a href="/search/?searchtype=author&amp;query=Khadiev%2C+A">A. Khadiev</a>, <a href="/search/?searchtype=author&amp;query=Weschke%2C+E">E. Weschke</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+J">J. Choi</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Q">Q. Wang</a>, <a href="/search/?searchtype=author&amp;query=Chang%2C+J">J. Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.15062v3-abstract-short" style="display: inline;"> We use uniaxial strain in combination with ultra-high-resolution Resonant Inelastic X-ray Scattering (RIXS) at the oxygen K- and copper L3-edges to study the excitations stemming from the charge ordering wave vector in La1.875Sr0.125CuO4. By detwinning stripe ordering, we demonstrate that the optical phonon anomalies do not show any stripe anisotropy. The low-energy charge excitations also retain&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15062v3-abstract-full').style.display = 'inline'; document.getElementById('2406.15062v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.15062v3-abstract-full" style="display: none;"> We use uniaxial strain in combination with ultra-high-resolution Resonant Inelastic X-ray Scattering (RIXS) at the oxygen K- and copper L3-edges to study the excitations stemming from the charge ordering wave vector in La1.875Sr0.125CuO4. By detwinning stripe ordering, we demonstrate that the optical phonon anomalies do not show any stripe anisotropy. The low-energy charge excitations also retain an in-plane four-fold symmetry. As such, we find that both phonon and charge excitations are decoupled entirely from the strength of static charge ordering. The almost isotropic character of charge excitations is indicative of a quantum critical behaviour and remains a possible source for the strange metal properties found in the normal state of cuprate superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15062v3-abstract-full').style.display = 'none'; document.getElementById('2406.15062v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.03639">arXiv:2406.03639</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.03639">pdf</a>, <a href="https://arxiv.org/ps/2406.03639">ps</a>, <a href="https://arxiv.org/format/2406.03639">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Differential Geometry">math.DG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Symplectic Geometry">math.SG</span> </div> </div> <p class="title is-5 mathjax"> Gravitating vortices and Symplectic Reduction by Stages </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=%C3%81lvarez-C%C3%B3nsul%2C+L">L. 脕lvarez-C贸nsul</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Garc%C3%ADa-Prada%2C+O">O. Garc铆a-Prada</a>, <a href="/search/?searchtype=author&amp;query=Pingali%2C+V+P">V. P. Pingali</a>, <a href="/search/?searchtype=author&amp;query=Yao%2C+C+-">C. -J. Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.03639v1-abstract-short" style="display: inline;"> We undertake a novel approach to the existence problem for gravitating vortices on a Riemann surface based on symplectic reduction by stages, which seems to be new in the PDE as well as the gauge theory literature. The main technical tool for our study is the reduced $伪$-K-energy, for which we establish convexity properties by means of finite-energy pluripotential theory, as recently applied to th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03639v1-abstract-full').style.display = 'inline'; document.getElementById('2406.03639v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.03639v1-abstract-full" style="display: none;"> We undertake a novel approach to the existence problem for gravitating vortices on a Riemann surface based on symplectic reduction by stages, which seems to be new in the PDE as well as the gauge theory literature. The main technical tool for our study is the reduced $伪$-K-energy, for which we establish convexity properties by means of finite-energy pluripotential theory, as recently applied to the study of constant scalar curvature K盲hler metrics. Using these methods, we prove that the existence of solutions to the gravitating vortex equations on the sphere implies the polystability of the effective divisor defined by the zeroes of the Higgs field. This approach also enables us to establish the uniqueness of gravitating vortices in any admissible K盲hler class, in the absence of automorphisms. Lastly, we also prove the existence of solutions for the gravitating vortex equations for genus $g\geq 1$ for certain ranges of the coupling constant $伪$ and the volume. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.03639v1-abstract-full').style.display = 'none'; document.getElementById('2406.03639v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">48 pages, no figures, comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> Primary 53C07; Secondary 53D20; 53C25 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12937">arXiv:2404.12937</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.12937">pdf</a>, <a href="https://arxiv.org/ps/2404.12937">ps</a>, <a href="https://arxiv.org/format/2404.12937">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Differential Geometry">math.DG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Coupled $\operatorname{G}_2$-instantons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Silva%2C+A+A+d">Agnaldo A. da Silva Jr.</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mario Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Lotay%2C+J+D">Jason D. Lotay</a>, <a href="/search/?searchtype=author&amp;query=Earp%2C+H+N+S">Henrique N. S谩 Earp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12937v2-abstract-short" style="display: inline;"> We introduce the coupled instanton equations for a metric, a spinor, a three-form, and a connection on a bundle, over a spin manifold. Special solutions in dimensions $6$ and $7$ arise, respectively, from the Hull--Strominger and the heterotic $\operatorname{G}_2$ system. The equations are motivated by recent developments in theoretical physics and can be recast using generalized geometry; we inve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12937v2-abstract-full').style.display = 'inline'; document.getElementById('2404.12937v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12937v2-abstract-full" style="display: none;"> We introduce the coupled instanton equations for a metric, a spinor, a three-form, and a connection on a bundle, over a spin manifold. Special solutions in dimensions $6$ and $7$ arise, respectively, from the Hull--Strominger and the heterotic $\operatorname{G}_2$ system. The equations are motivated by recent developments in theoretical physics and can be recast using generalized geometry; we investigate how coupled instantons relate to generalized Ricci-flat metrics and also to Killing spinors on a Courant algebroid. We present two open questions regarding how these different geometric conditions are intertwined, for which a positive answer is expected from recent developments in the physics literature by De la Ossa, Larfors and Svanes, and in the mathematics literature on Calabi--Yau manifolds, in recent work by the second-named author with Gonz谩lez Molina. We give a complete solution to the first of these problems, providing a new method for the construction of instantons in arbitrary dimensions. For $\operatorname{G}_2$-structures with torsion coupled to $\operatorname{G}_2$-instantons, in dimension $7$, we also establish results around the second problem. The last part of the present work carefully studies the approximate solutions to the heterotic $\operatorname{G}_2$-system constructed by the third and fourth authors on contact Calabi--Yau $7$-manifolds, for which we prove the existence of approximate coupled $\operatorname{G}_2$-instantons and generalized Ricci-flat metrics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12937v2-abstract-full').style.display = 'none'; document.getElementById('2404.12937v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, new Theorem 2.32 with complete solution to Problem 1, in arbitrary dimensions. Improved version of Theorem 4.9. New Remark 4.10 about the Spin(7) case. Submitted for consideration in the International Journal of Mathematics special issue &#34;At the interface of complex geometry and string theory&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00728">arXiv:2403.00728</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00728">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202310668">10.1002/adma.202310668 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of interfacial magnetism in strongly-correlated nickelate-titanate superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Asmara%2C+T+C">Teguh Citra Asmara</a>, <a href="/search/?searchtype=author&amp;query=Green%2C+R+J">Robert J. Green</a>, <a href="/search/?searchtype=author&amp;query=Suter%2C+A">Andreas Suter</a>, <a href="/search/?searchtype=author&amp;query=Wei%2C+Y">Yuan Wei</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+W">Wenliang Zhang</a>, <a href="/search/?searchtype=author&amp;query=Knez%2C+D">Daniel Knez</a>, <a href="/search/?searchtype=author&amp;query=Harris%2C+G">Grant Harris</a>, <a href="/search/?searchtype=author&amp;query=Tseng%2C+Y">Yi Tseng</a>, <a href="/search/?searchtype=author&amp;query=Yu%2C+T">Tianlun Yu</a>, <a href="/search/?searchtype=author&amp;query=Betto%2C+D">Davide Betto</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Klein%2C+Y+M">Yannick Maximilian Klein</a>, <a href="/search/?searchtype=author&amp;query=Kumar%2C+N">Neeraj Kumar</a>, <a href="/search/?searchtype=author&amp;query=Galdino%2C+C+W">Carlos William Galdino</a>, <a href="/search/?searchtype=author&amp;query=Salman%2C+Z">Zaher Salman</a>, <a href="/search/?searchtype=author&amp;query=Prokscha%2C+T">Thomas Prokscha</a>, <a href="/search/?searchtype=author&amp;query=Medarde%2C+M">Marisa Medarde</a>, <a href="/search/?searchtype=author&amp;query=M%C3%BCller%2C+E">Elisabeth M眉ller</a>, <a href="/search/?searchtype=author&amp;query=Soh%2C+Y">Yona Soh</a>, <a href="/search/?searchtype=author&amp;query=Brookes%2C+N+B">Nicholas B. Brookes</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Radovic%2C+M">Milan Radovic</a>, <a href="/search/?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00728v2-abstract-short" style="display: inline;"> Strongly-correlated transition-metal oxides are widely known for their various exotic phenomena. This is exemplified by rare-earth nickelates such as LaNiO$_{3}$, which possess intimate interconnections between their electronic, spin, and lattice degrees of freedom. Their properties can be further enhanced by pairing them in hybrid heterostructures, which can lead to hidden phases and emergent phe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00728v2-abstract-full').style.display = 'inline'; document.getElementById('2403.00728v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00728v2-abstract-full" style="display: none;"> Strongly-correlated transition-metal oxides are widely known for their various exotic phenomena. This is exemplified by rare-earth nickelates such as LaNiO$_{3}$, which possess intimate interconnections between their electronic, spin, and lattice degrees of freedom. Their properties can be further enhanced by pairing them in hybrid heterostructures, which can lead to hidden phases and emergent phenomena. An important example is the LaNiO$_{3}$/LaTiO$_{3}$ superlattice, where an interlayer electron transfer has been observed from LaTiO$_{3}$ into LaNiO$_{3}$ leading to a high-spin state. However, macroscopic emergence of magnetic order associated with this high-spin state has so far not been observed. Here, by using muon spin rotation, x-ray absorption, and resonant inelastic x-ray scattering, we present direct evidence of an emergent antiferromagnetic order with high magnon energy and exchange interactions at the LaNiO$_{3}$/LaTiO$_{3}$ interface. As the magnetism is purely interfacial, a single LaNiO$_{3}$/LaTiO$_{3}$ interface can essentially behave as an atomically thin strongly-correlated quasi-two-dimensional antiferromagnet, potentially allowing its technological utilisation in advanced spintronic devices. Furthermore, its strong quasi-two-dimensional magnetic correlations, orbitally-polarized planar ligand holes, and layered superlattice design make its electronic, magnetic, and lattice configurations resemble the precursor states of superconducting cuprates and nickelates, but with an $S \rightarrow 1$ spin state instead. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00728v2-abstract-full').style.display = 'none'; document.getElementById('2403.00728v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Materials 36, 2310668 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.00493">arXiv:2403.00493</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.00493">pdf</a>, <a href="https://arxiv.org/format/2403.00493">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.235106">10.1103/PhysRevB.109.235106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigation of spin excitations and charge order in bulk crystals of the infinite-layer nickelate LaNiO$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hayashida%2C+S">S. Hayashida</a>, <a href="/search/?searchtype=author&amp;query=Sundaramurthy%2C+V">V. Sundaramurthy</a>, <a href="/search/?searchtype=author&amp;query=Puphal%2C+P">P. Puphal</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Fenk%2C+B">B. Fenk</a>, <a href="/search/?searchtype=author&amp;query=Isobe%2C+M">M. Isobe</a>, <a href="/search/?searchtype=author&amp;query=Minola%2C+M">M. Minola</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+Y+-">Y. -M. Wu</a>, <a href="/search/?searchtype=author&amp;query=Suyolcu%2C+Y+E">Y. E. Suyolcu</a>, <a href="/search/?searchtype=author&amp;query=van+Aken%2C+P+A">P. A. van Aken</a>, <a href="/search/?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a>, <a href="/search/?searchtype=author&amp;query=Hepting%2C+M">M. Hepting</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.00493v2-abstract-short" style="display: inline;"> Recent x-ray spectroscopic studies have revealed spin excitations and charge density waves in thin films of infinite-layer (IL) nickelates. However, clarifying whether the origin of these phenomena is intrinsic to the material class or attributable to impurity phases in the films has presented a major challenge. Here we utilize topotactic methods to synthesize bulk crystals of the IL nickelate LaN&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00493v2-abstract-full').style.display = 'inline'; document.getElementById('2403.00493v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.00493v2-abstract-full" style="display: none;"> Recent x-ray spectroscopic studies have revealed spin excitations and charge density waves in thin films of infinite-layer (IL) nickelates. However, clarifying whether the origin of these phenomena is intrinsic to the material class or attributable to impurity phases in the films has presented a major challenge. Here we utilize topotactic methods to synthesize bulk crystals of the IL nickelate LaNiO$_2$ with crystallographically oriented surfaces. We examine these crystals using resonant inelastic x-ray scattering (RIXS) at the Ni $L_3$-edge to elucidate the spin and charge correlations in the bulk of the material. While we detect the presence of prominent spin excitations in the crystals, fingerprints of charge order are absent at the ordering vectors identified in previous in thin-film studies. These results contribute to the understanding of the bulk properties of LaNiO$_2$ and establish topotactically synthesized crystals as viable complementary specimens for spectroscopic investigations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.00493v2-abstract-full').style.display = 'none'; document.getElementById('2403.00493v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures with supplemental materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 235106 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.17767">arXiv:2401.17767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.17767">pdf</a>, <a href="https://arxiv.org/format/2401.17767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Mapping TLE orbital parameters to GNSS ephemeris for LEO PNT mega-constellation orbit simulations and visibility analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Miquel Garcia-Fernandez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.17767v1-abstract-short" style="display: inline;"> The emergence of Low Earth Orbit (LEO) satellite constellations dedicated to positioning applications holds the promise of improving the capabilities of existing Global Navigation Satellite Systems (GNSS). However, the absence of operational systems necessitates a qualitative assessment of potential improvements through simulation. This paper introduces a methodology to convert Two Line Element (T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17767v1-abstract-full').style.display = 'inline'; document.getElementById('2401.17767v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.17767v1-abstract-full" style="display: none;"> The emergence of Low Earth Orbit (LEO) satellite constellations dedicated to positioning applications holds the promise of improving the capabilities of existing Global Navigation Satellite Systems (GNSS). However, the absence of operational systems necessitates a qualitative assessment of potential improvements through simulation. This paper introduces a methodology to convert Two Line Element (TLE) orbital parameters, abundantly available for LEO constellations for communication and Earth Observation, into the widely used RINEX 4 format employed by GNSS. The primary goal is to establish a comprehensive database of LEO constellation orbits directly compatible with the orbit propagation algorithms utilized in GNSS systems like the Global Positioning System (GPS). This approach enables seamless integration into simulation tools with minimal adjustments. While TLE parameters are optimized for the SGP4 propagation model and cautioned against use in classical Kepler orbit propagation scenarios requiring precision, the obtained discrepancies, within a few tens of kilometers, suggest that these representations are realistic for simulation purposes, as demonstrated with the Spire LEMUR LEO constellation. As a practical application, the paper conducts a visibility analysis using the Starlink constellation. Results affirm expectations, showcasing that the combination of GNSS with a LEO mega-constellation significantly enhances satellite coverage and reduces Dilution of Precision. This work contributes to the ongoing discourse on the potential benefits and practicality of integrating emerging LEO constellations with established GNSS systems, offering insights into improved navigation and timing capabilities through simulation-based assessments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.17767v1-abstract-full').style.display = 'none'; document.getElementById('2401.17767v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, pre-print</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 37M05; 70M20 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.6.5 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.12657">arXiv:2401.12657</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.12657">pdf</a>, <a href="https://arxiv.org/ps/2401.12657">ps</a>, <a href="https://arxiv.org/format/2401.12657">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53863-5">10.1038/s41467-024-53863-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic and magnetic excitations in La$_3$Ni$_2$O$_7$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chen%2C+X">Xiaoyang Chen</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/?searchtype=author&amp;query=Jiang%2C+Z">Zhicheng Jiang</a>, <a href="/search/?searchtype=author&amp;query=Mei%2C+J">Jiong Mei</a>, <a href="/search/?searchtype=author&amp;query=Jiang%2C+K">Kun Jiang</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+J">Jie Li</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+X">Xing Huang</a>, <a href="/search/?searchtype=author&amp;query=Sun%2C+H">Hualei Sun</a>, <a href="/search/?searchtype=author&amp;query=Shen%2C+D">Dawei Shen</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+M">Meng Wang</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+J">Jiangping Hu</a>, <a href="/search/?searchtype=author&amp;query=Lu%2C+Y">Yi Lu</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Feng%2C+D">Donglai Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.12657v1-abstract-short" style="display: inline;"> The striking discovery of high-temperature superconductivity (HTSC) of 80 K in a bilayer nickelate La$_3$Ni$_2$O$_7$ under a moderately high pressure of about 14 GPa ignited a new wave of studying HTSC in nickelates. The properties of the parental phase at ambient pressure may contain key information on basic interactions therein and bosons that may mediate pairing giving birth to superconductivit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12657v1-abstract-full').style.display = 'inline'; document.getElementById('2401.12657v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.12657v1-abstract-full" style="display: none;"> The striking discovery of high-temperature superconductivity (HTSC) of 80 K in a bilayer nickelate La$_3$Ni$_2$O$_7$ under a moderately high pressure of about 14 GPa ignited a new wave of studying HTSC in nickelates. The properties of the parental phase at ambient pressure may contain key information on basic interactions therein and bosons that may mediate pairing giving birth to superconductivity. Moreover, the bilayer structure of La$_3$Ni$_2$O$_7$ may suggest a distinct minimal model in comparison to cuprate superconductors. Here using X-ray absorption spectroscopy and resonant inelastic X-ray scattering, we studied La$_3$Ni$_2$O$_7$ at ambient pressure, and found that Ni 3$d_{x^2-y^2}$, Ni 3$d_{z^2}$, and ligand oxygen 2$p$ orbitals dominate the low-energy physics with a small charge-transfer energy. Remarkably, well-defined optical-like magnetic excitations were found to soften into a quasi-static spin-density-wave ordering, evidencing the strong electronic correlations and rich magnetic properties. Based on a Heisenberg spin model, we found that the inter-layer effective magnetic superexchange interaction is much larger than the intra-layer ones, and proposed two viable magnetic structures. Our results set the foundation for further exploration of La$_3$Ni$_2$O$_7$ superconductor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12657v1-abstract-full').style.display = 'none'; document.getElementById('2401.12657v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 9597 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.12035">arXiv:2401.12035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.12035">pdf</a>, <a href="https://arxiv.org/format/2401.12035">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.066501">10.1103/PhysRevLett.133.066501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The origin of magnetism in a supposedly nonmagnetic osmium oxide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Borgatti%2C+F">F. Borgatti</a>, <a href="/search/?searchtype=author&amp;query=Florio%2C+P">P. Florio</a>, <a href="/search/?searchtype=author&amp;query=Frassineti%2C+J">J. Frassineti</a>, <a href="/search/?searchtype=author&amp;query=Mosca%2C+D+F">D. Fiore Mosca</a>, <a href="/search/?searchtype=author&amp;query=Faure%2C+Q">Q. Faure</a>, <a href="/search/?searchtype=author&amp;query=Detlefs%2C+B">B. Detlefs</a>, <a href="/search/?searchtype=author&amp;query=Sahle%2C+C+J">C. J. Sahle</a>, <a href="/search/?searchtype=author&amp;query=Francoual%2C+S">S. Francoual</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+J">J. Choi</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K+-">K. -J. Zhou</a>, <a href="/search/?searchtype=author&amp;query=Mitrovic%2C+V+F">V. F. Mitrovic</a>, <a href="/search/?searchtype=author&amp;query=Woodward%2C+P+M">P. M. Woodward</a>, <a href="/search/?searchtype=author&amp;query=Ghiringhelli%2C+G">G. Ghiringhelli</a>, <a href="/search/?searchtype=author&amp;query=Franchini%2C+C">C. Franchini</a>, <a href="/search/?searchtype=author&amp;query=Boscherini%2C+F">F. Boscherini</a>, <a href="/search/?searchtype=author&amp;query=Sanna%2C+S">S. Sanna</a>, <a href="/search/?searchtype=author&amp;query=Sala%2C+a+M+M">and M. Moretti Sala</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.12035v1-abstract-short" style="display: inline;"> A supposedly nonmagnetic 5d$^1$ double perosvkite oxide is investigated by a combination of spectroscopic and theoretical methods, namely resonant inelastic X-ray scattering, X-ray absorption spectroscopy, magnetic circular dichroism, and multiplet ligand field calculations. We found that the large spin-orbit coupling admixes the 5d $t_{2g}$ and $e_g$ orbitals, covalency raises the 5d population w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12035v1-abstract-full').style.display = 'inline'; document.getElementById('2401.12035v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.12035v1-abstract-full" style="display: none;"> A supposedly nonmagnetic 5d$^1$ double perosvkite oxide is investigated by a combination of spectroscopic and theoretical methods, namely resonant inelastic X-ray scattering, X-ray absorption spectroscopy, magnetic circular dichroism, and multiplet ligand field calculations. We found that the large spin-orbit coupling admixes the 5d $t_{2g}$ and $e_g$ orbitals, covalency raises the 5d population well above the nominal value, and the local symmetry is lower than $O_h$. The obtained electronic interactions account for the finite magnetic moment of Os in this compound and, in general, of 5d$^1$ ions. Our results provide direct evidence of elusive Jahn-Teller distortions, hinting at a strong electron-lattice coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12035v1-abstract-full').style.display = 'none'; document.getElementById('2401.12035v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 066501 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16444">arXiv:2312.16444</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.16444">pdf</a>, <a href="https://arxiv.org/format/2312.16444">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Universal orbital and magnetic structures in infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Rossi%2C+M">M. Rossi</a>, <a href="/search/?searchtype=author&amp;query=Lu%2C+H">H. Lu</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+K">K. Lee</a>, <a href="/search/?searchtype=author&amp;query=Goodge%2C+B+H">B. H. Goodge</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+J">J. Choi</a>, <a href="/search/?searchtype=author&amp;query=Osada%2C+M">M. Osada</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+Y">Y. Lee</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+D">D. Li</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+B+Y">B. Y. Wang</a>, <a href="/search/?searchtype=author&amp;query=Jost%2C+D">D. Jost</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Shen%2C+Z+X">Z. X. Shen</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Been%2C+E">E. Been</a>, <a href="/search/?searchtype=author&amp;query=Moritz%2C+B">B. Moritz</a>, <a href="/search/?searchtype=author&amp;query=Kourkoutis%2C+L+F">L. F. Kourkoutis</a>, <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/?searchtype=author&amp;query=Hwang%2C+H+Y">H. Y. Hwang</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+W+S">W. S. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16444v1-abstract-short" style="display: inline;"> We conducted a comparative study of the rare-earth infinite-layer nickelates films, RNiO2 (R = La, Pr, and Nd) using resonant inelastic X-ray scattering (RIXS). We found that the gross features of the orbital configurations are essentially the same, with minor variations in the detailed hybridization. For low-energy excitations, we unambiguously confirm the presence of damped magnetic excitations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16444v1-abstract-full').style.display = 'inline'; document.getElementById('2312.16444v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16444v1-abstract-full" style="display: none;"> We conducted a comparative study of the rare-earth infinite-layer nickelates films, RNiO2 (R = La, Pr, and Nd) using resonant inelastic X-ray scattering (RIXS). We found that the gross features of the orbital configurations are essentially the same, with minor variations in the detailed hybridization. For low-energy excitations, we unambiguously confirm the presence of damped magnetic excitations in all three compounds. By fitting to a linear spin-wave theory, comparable spin exchange coupling strengths and damping coefficients are extracted, indicating a universal magnetic structure in the infinite-layer nickelates. Interestingly, while signatures of a charge order are observed in LaNiO2 in the quasi-elastic region of the RIXS spectrum, it is absent in NdNiO2 and PrNiO2. This prompts further investigation into the universality and the origins of charge order within the infinite-layer inickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16444v1-abstract-full').style.display = 'none'; document.getElementById('2312.16444v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 figures. Accepted by Physical Review B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04406">arXiv:2312.04406</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.04406">pdf</a>, <a href="https://arxiv.org/format/2312.04406">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Resolving the Orbital Character of Low-energy Excitations in Mott Insulator with Intermediate Spin-orbit Coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=von+Arx%2C+K">K. von Arx</a>, <a href="/search/?searchtype=author&amp;query=Rothenb%C3%BChler%2C+P">P. Rothenb眉hler</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Q">Qisi Wang</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+J">J. Choi</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Vecchione%2C+A">A. Vecchione</a>, <a href="/search/?searchtype=author&amp;query=Fittipaldi%2C+R">R. Fittipaldi</a>, <a href="/search/?searchtype=author&amp;query=Sassa%2C+Y">Y. Sassa</a>, <a href="/search/?searchtype=author&amp;query=Cuoco%2C+M">M. Cuoco</a>, <a href="/search/?searchtype=author&amp;query=Forte%2C+F">F. Forte</a>, <a href="/search/?searchtype=author&amp;query=Chang%2C+J">J. Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04406v1-abstract-short" style="display: inline;"> Multi-band Mott insulators with moderate spin-orbit and Hund&#39;s coupling are key reference points for theoretical concept developments of correlated electron systems. The ruthenate Mott insulator Ca$_{2}$RuO$_{4}$ has therefore been intensively studied by spectroscopic probes. However, it has been challenging to resolve the fundamental excitations emerging from the hierarchy of electronic energy sc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04406v1-abstract-full').style.display = 'inline'; document.getElementById('2312.04406v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04406v1-abstract-full" style="display: none;"> Multi-band Mott insulators with moderate spin-orbit and Hund&#39;s coupling are key reference points for theoretical concept developments of correlated electron systems. The ruthenate Mott insulator Ca$_{2}$RuO$_{4}$ has therefore been intensively studied by spectroscopic probes. However, it has been challenging to resolve the fundamental excitations emerging from the hierarchy of electronic energy scales. Here we apply state-of-the-art resonant inelastic x-ray scattering to probe deeper into the electronic excitations found in Ca$_{2}$RuO$_{4}$. In this fashion, we probe a series of spin-orbital excitations at low energies and resolve the level splitting of the intra-$t_{2g}$ structure due to spin-orbit coupling and crystal field splitting. Most importantly, the low-energy excitations exhibit strong orbital character. Such direct determination of relevant electronic energy scales is important, as it sharpens the target for theory developments of Mott insulators&#39; orbital degree of freedom. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04406v1-abstract-full').style.display = 'none'; document.getElementById('2312.04406v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.13214">arXiv:2310.13214</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.13214">pdf</a>, <a href="https://arxiv.org/format/2310.13214">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.056002">10.1103/PhysRevLett.132.056002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of the magnetic excitations in electron-doped $\mathrm{La}_{2-x} \mathrm{Ce}_x \mathrm{CuO}_{4}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Li%2C+X+T">X. T. Li</a>, <a href="/search/?searchtype=author&amp;query=Tu%2C+S+J">S. J. Tu</a>, <a href="/search/?searchtype=author&amp;query=Chaix%2C+L">L. Chaix</a>, <a href="/search/?searchtype=author&amp;query=Fawaz%2C+C">C. Fawaz</a>, <a href="/search/?searchtype=author&amp;query=d%27Astuto%2C+M">M. d&#39;Astuto</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+X">X. Li</a>, <a href="/search/?searchtype=author&amp;query=Yakhou-Harris%2C+F">F. Yakhou-Harris</a>, <a href="/search/?searchtype=author&amp;query=Kummer%2C+K">K. Kummer</a>, <a href="/search/?searchtype=author&amp;query=Brookes%2C+N+B">N. B. Brookes</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K+J">K. J. Zhou</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+Z+F">Z. F. Lin</a>, <a href="/search/?searchtype=author&amp;query=Yuan%2C+J">J. Yuan</a>, <a href="/search/?searchtype=author&amp;query=Jin%2C+K">K. Jin</a>, <a href="/search/?searchtype=author&amp;query=Dean%2C+M+P+M">M. P. M. Dean</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+X">X. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.13214v2-abstract-short" style="display: inline;"> We investigated the high energy spin excitations in electron-doped $\mathrm{La}_{2-x} \mathrm{Ce}_x \mathrm{CuO}_{4}$, a cuprate superconductor, by resonant inelastic x-ray scattering (RIXS) measurements. Efforts were paid to disentangle the paramagnon signal from non-spin-flip spectral weight mixing in the RIXS spectrum at $\bf{Q_{\|}}$ = $(0.6蟺, 0)$ and $(0.9蟺, 0)$ along the (1 0) direction. Our&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13214v2-abstract-full').style.display = 'inline'; document.getElementById('2310.13214v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.13214v2-abstract-full" style="display: none;"> We investigated the high energy spin excitations in electron-doped $\mathrm{La}_{2-x} \mathrm{Ce}_x \mathrm{CuO}_{4}$, a cuprate superconductor, by resonant inelastic x-ray scattering (RIXS) measurements. Efforts were paid to disentangle the paramagnon signal from non-spin-flip spectral weight mixing in the RIXS spectrum at $\bf{Q_{\|}}$ = $(0.6蟺, 0)$ and $(0.9蟺, 0)$ along the (1 0) direction. Our results show that, for doping level x from 0.07 to 0.185, the variation of the paramagnon excitation energy is marginal. We discuss the implication of our results in connection with the evolution of the electron correlation strength in this system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13214v2-abstract-full').style.display = 'none'; document.getElementById('2310.13214v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">in press on Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 056002 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.10847">arXiv:2310.10847</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.10847">pdf</a>, <a href="https://arxiv.org/format/2310.10847">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.155122">10.1103/PhysRevB.108.155122 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-local features of the spin-orbit exciton in Kitaev materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lebert%2C+B+W">Blair W. Lebert</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+S">Subin Kim</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+B+H">Beom Hyun Kim</a>, <a href="/search/?searchtype=author&amp;query=Chun%2C+S+H">Sae Hwan Chun</a>, <a href="/search/?searchtype=author&amp;query=Casa%2C+D">Diego Casa</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Kejin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+Y">Young-June Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.10847v1-abstract-short" style="display: inline;"> A comparative resonant inelastic x-ray scattering (RIXS) study of three well-known Kitaev materials is presented: $伪$-Li$_2$IrO$_3$, Na$_2$IrO$_3$, and $伪$-RuCl$_3$. Despite similar low-energy physics, these materials show distinct electronic properties, such as the large difference in the size of the charge gap. The RIXS spectra of the spin-orbit exciton for these materials show remarkably simila&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10847v1-abstract-full').style.display = 'inline'; document.getElementById('2310.10847v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.10847v1-abstract-full" style="display: none;"> A comparative resonant inelastic x-ray scattering (RIXS) study of three well-known Kitaev materials is presented: $伪$-Li$_2$IrO$_3$, Na$_2$IrO$_3$, and $伪$-RuCl$_3$. Despite similar low-energy physics, these materials show distinct electronic properties, such as the large difference in the size of the charge gap. The RIXS spectra of the spin-orbit exciton for these materials show remarkably similar three-peak features, including sharp low energy peak (peak A) as well as transitions between $j_{\text{eff}}=1/2$ and $j_{\text{eff}}=3/2$ states. Comparison of experimental spectra with cluster calculations reveals that the observed three-peak structure reflects the significant role that non-local physics plays in the electronic structure of these materials. In particular, the low-energy peak A arises from a holon-doublon pair rather than a conventional particle-hole exciton as proposed earlier. Our study suggests that while spin-orbit assisted Mott insulator is still the best description for these materials, electron itinerancy cannot be ignored when formulating low-energy Hamiltonian of these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.10847v1-abstract-full').style.display = 'none'; document.getElementById('2310.10847v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 155122, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.15989">arXiv:2309.15989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.15989">pdf</a>, <a href="https://arxiv.org/format/2309.15989">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.125126">10.1103/PhysRevB.109.125126 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of a two-phonon mode in a cuprate superconductor via polarimetric RIXS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Scott%2C+K">Kirsty Scott</a>, <a href="/search/?searchtype=author&amp;query=Kisiel%2C+E">Elliot Kisiel</a>, <a href="/search/?searchtype=author&amp;query=Yakhou%2C+F">Flora Yakhou</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Kummer%2C+K">Kurt Kummer</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/?searchtype=author&amp;query=Zhong%2C+R">Ruidan Zhong</a>, <a href="/search/?searchtype=author&amp;query=Schneeloch%2C+J+A">John A. Schneeloch</a>, <a href="/search/?searchtype=author&amp;query=Gu%2C+G+D">Genda D. Gu</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Brookes%2C+N+B">Nicholas B. Brookes</a>, <a href="/search/?searchtype=author&amp;query=Kemper%2C+A+F">Alexander F. Kemper</a>, <a href="/search/?searchtype=author&amp;query=Minola%2C+M">Matteo Minola</a>, <a href="/search/?searchtype=author&amp;query=Boschini%2C+F">Fabio Boschini</a>, <a href="/search/?searchtype=author&amp;query=Frano%2C+A">Alex Frano</a>, <a href="/search/?searchtype=author&amp;query=Gozar%2C+A">Adrian Gozar</a>, <a href="/search/?searchtype=author&amp;query=Neto%2C+E+H+d+S">Eduardo H. da Silva Neto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.15989v1-abstract-short" style="display: inline;"> Recent improvements in the energy resolution of resonant inelastic x-ray scattering experiments (RIXS) at the Cu-L$_3$ edge have enabled the study of lattice, spin, and charge excitations. Here, we report on the detection of a low intensity signal at 140meV, twice the energy of the bond-stretching (BS) phonon mode, in the cuprate superconductor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15989v1-abstract-full').style.display = 'inline'; document.getElementById('2309.15989v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.15989v1-abstract-full" style="display: none;"> Recent improvements in the energy resolution of resonant inelastic x-ray scattering experiments (RIXS) at the Cu-L$_3$ edge have enabled the study of lattice, spin, and charge excitations. Here, we report on the detection of a low intensity signal at 140meV, twice the energy of the bond-stretching (BS) phonon mode, in the cuprate superconductor $\textrm{Bi}_2\textrm{Sr}_2\textrm{Ca}\textrm{Cu}_2\textrm{O}_{8+x}$ (Bi-2212). Ultra-high resolution polarimetric RIXS measurements allow us to resolve the outgoing polarization of the signal and identify this feature as a two-phonon excitation. Further, we study the connection between the two-phonon mode and the BS one-phonon mode by constructing a joint density of states toy model that reproduces the key features of the data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15989v1-abstract-full').style.display = 'none'; document.getElementById('2309.15989v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13569">arXiv:2307.13569</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.13569">pdf</a>, <a href="https://arxiv.org/format/2307.13569">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Reply to &#34;Comment on newly found Charge Density Waves in infinite layer Nickelates&#39;&#39; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Tam%2C+C+C">Charles C. Tam</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/?searchtype=author&amp;query=Ding%2C+X">Xiang Ding</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+M">Mei Wu</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+B">Bing Huang</a>, <a href="/search/?searchtype=author&amp;query=Luo%2C+H">Huiqian Luo</a>, <a href="/search/?searchtype=author&amp;query=Gao%2C+P">Peng Gao</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Qiao%2C+L">Liang Qiao</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13569v1-abstract-short" style="display: inline;"> Charge density waves (CDW) have been reported in NdNiO$_2$ and LaNiO$_2$ thin films grown on SrTiO$_3$ substrates using Ni-$L_3$ resonant x-ray scattering in Refs. [1-3]. In their comment [arXiv:2306.15086] on these reports, Pelliciari et al. found no evidence for a CDW in a NdNiO$_2$ film by performing fixed-momentum energy-dependent measurements. Instead, they observed a nearby non-resonant scat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13569v1-abstract-full').style.display = 'inline'; document.getElementById('2307.13569v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13569v1-abstract-full" style="display: none;"> Charge density waves (CDW) have been reported in NdNiO$_2$ and LaNiO$_2$ thin films grown on SrTiO$_3$ substrates using Ni-$L_3$ resonant x-ray scattering in Refs. [1-3]. In their comment [arXiv:2306.15086] on these reports, Pelliciari et al. found no evidence for a CDW in a NdNiO$_2$ film by performing fixed-momentum energy-dependent measurements. Instead, they observed a nearby non-resonant scattering peak, attributed to the (101) substrate reflection, made accessible at Ni-$L_3$ due to third harmonic light contamination. Here we present fixed-momentum energy-dependent resonant inelastic x-ray scattering measurements across Ni-$L_3$ on NdNiO$_2$, used in the preceding study [1]. We see intrinsic Ni-$L_3$ energy profiles at all measured \textbf{Q} values, including a strong resonance effect at $\mathbf{Q}_\mathrm{CDW} = (-1/3, 0, 0.316)$ reciprocal lattice units. Attempts to measure the (101) substrate peak using third harmonic light at Ni-$L_3$ at I21, Diamond were unfruitful. Our results clearly demonstrate the electronic origin of the scattering peak published in Ref. [1] and lack of a detectable structural component in the peak. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13569v1-abstract-full').style.display = 'none'; document.getElementById('2307.13569v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.05828">arXiv:2306.05828</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.05828">pdf</a>, <a href="https://arxiv.org/format/2306.05828">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-024-01701-x">10.1038/s42005-024-01701-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strain-Tuned Magnetic Frustration in a Square Lattice $J_1$-$J_2$ Material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bia%C5%82o%2C+I">I. Bia艂o</a>, <a href="/search/?searchtype=author&amp;query=Martinelli%2C+L">L. Martinelli</a>, <a href="/search/?searchtype=author&amp;query=De+Luca%2C+G">G. De Luca</a>, <a href="/search/?searchtype=author&amp;query=Worm%2C+P">P. Worm</a>, <a href="/search/?searchtype=author&amp;query=Drewanowski%2C+A">A. Drewanowski</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+J">J. Choi</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Kummer%2C+K">K. Kummer</a>, <a href="/search/?searchtype=author&amp;query=Brookes%2C+N+B">N. B. Brookes</a>, <a href="/search/?searchtype=author&amp;query=Guo%2C+L">L. Guo</a>, <a href="/search/?searchtype=author&amp;query=Edgeton%2C+A">A. Edgeton</a>, <a href="/search/?searchtype=author&amp;query=Eom%2C+C+B">C. B. Eom</a>, <a href="/search/?searchtype=author&amp;query=Tomczak%2C+J+M">J. M. Tomczak</a>, <a href="/search/?searchtype=author&amp;query=Held%2C+K">K. Held</a>, <a href="/search/?searchtype=author&amp;query=Gibert%2C+M">M. Gibert</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Q">Qisi Wang</a>, <a href="/search/?searchtype=author&amp;query=Chang%2C+J">J. Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.05828v2-abstract-short" style="display: inline;"> Magnetic frustration is a route that can lead to the emergence of novel ground states, including spin liquids and spin ices. Such frustration can be introduced through either the geometry of lattice structures or by incompatible exchange interactions. Identifying suitable strategies to control the degree of magnetic frustration in real systems is an active field of research. In this study, we devi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05828v2-abstract-full').style.display = 'inline'; document.getElementById('2306.05828v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.05828v2-abstract-full" style="display: none;"> Magnetic frustration is a route that can lead to the emergence of novel ground states, including spin liquids and spin ices. Such frustration can be introduced through either the geometry of lattice structures or by incompatible exchange interactions. Identifying suitable strategies to control the degree of magnetic frustration in real systems is an active field of research. In this study, we devise a design principle for the tuning of frustrated magnetism on the square lattice through the manipulation of nearest (NN) and next-nearest neighbor (NNN) antiferromagnetic (AF) exchange interactions. By studying the magnon excitations in epitaxially-strained La$_2$NiO$_4$ films using resonant inelastic x-ray scattering (RIXS) we show that, in contrast to the cuprates, the dispersion peaks at the AF zone boundary. This indicates the presence of an AF-NNN spin interaction. Using first principles simulations and an effective spin-model, we demonstrate the AF-NNN coupling to be a consequence of the two-orbital nature of La$_2$NiO$_4$. Our results demonstrate that compressive strain can enhance this coupling, providing a design principle for the tunability of frustrated magnetism on a square lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05828v2-abstract-full').style.display = 'none'; document.getElementById('2306.05828v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun. Phys. 7, 230 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.06836">arXiv:2305.06836</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.06836">pdf</a>, <a href="https://arxiv.org/ps/2305.06836">ps</a>, <a href="https://arxiv.org/format/2305.06836">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Differential Geometry">math.DG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Algebraic Geometry">math.AG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Algebra">math.QA</span> </div> </div> <p class="title is-5 mathjax"> Vertex algebras from the Hull-Strominger system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=%C3%81lvarez-C%C3%B3nsul%2C+L">Luis 脕lvarez-C贸nsul</a>, <a href="/search/?searchtype=author&amp;query=de+La+Hera%2C+A+D+A">Andoni De Arriba de La Hera</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mario Garcia-Fernandez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.06836v2-abstract-short" style="display: inline;"> Motivated by the programme on mirror symmetry for non-K盲hler manifolds, we construct representations of the $N=2$ superconformal vertex algebra associated to solutions of the Hull-Strominger system. The construction is via embeddings of the $N=2$ superconformal vertex algebra in the chiral de Rham complex of a string Courant algebroid. Our results require that the connection $\nabla$, one of the u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06836v2-abstract-full').style.display = 'inline'; document.getElementById('2305.06836v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.06836v2-abstract-full" style="display: none;"> Motivated by the programme on mirror symmetry for non-K盲hler manifolds, we construct representations of the $N=2$ superconformal vertex algebra associated to solutions of the Hull-Strominger system. The construction is via embeddings of the $N=2$ superconformal vertex algebra in the chiral de Rham complex of a string Courant algebroid. Our results require that the connection $\nabla$, one of the unknowns of the system, is Hermitian-Yang-Mills. Our main theorem proves that any solution of the Hull-Strominger system satisfying this condition has an associated $N=2$ embedding. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.06836v2-abstract-full').style.display = 'none'; document.getElementById('2305.06836v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">72 pages. Improved versions of the main results, which remove the hypothesis on the torsion bivector. In particular, Conjecture 1.2 in the previous version is settled in the affirmative</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05274">arXiv:2303.05274</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.05274">pdf</a>, <a href="https://arxiv.org/ps/2303.05274">ps</a>, <a href="https://arxiv.org/format/2303.05274">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Differential Geometry">math.DG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Algebraic Geometry">math.AG</span> </div> </div> <p class="title is-5 mathjax"> Futaki Invariants and Yau&#39;s Conjecture on the Hull-Strominger system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mario Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Molina%2C+R+G">Raul Gonzalez Molina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05274v1-abstract-short" style="display: inline;"> We find a new obstruction to the existence of solutions of the Hull-Strominger system, which goes beyond the balanced property of the Calabi-Yau manifold $(X,惟)$ and the Mumford-Takemoto slope stability of the bundle over it. The basic principle is the construction of a (possibly indefinite) Hermitian-Einstein metric on the holomorphic string algebroid associated to a solution of the system, provi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05274v1-abstract-full').style.display = 'inline'; document.getElementById('2303.05274v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05274v1-abstract-full" style="display: none;"> We find a new obstruction to the existence of solutions of the Hull-Strominger system, which goes beyond the balanced property of the Calabi-Yau manifold $(X,惟)$ and the Mumford-Takemoto slope stability of the bundle over it. The basic principle is the construction of a (possibly indefinite) Hermitian-Einstein metric on the holomorphic string algebroid associated to a solution of the system, provided that the connection $\nabla$ on the tangent bundle is Hermitian-Yang Mills. Using this, we define a family of Futaki invariants obstructing the existence of solutions in a given balanced class. Our results are motivated by a strong version of a conjecture by Yau on the existence problem for these equations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05274v1-abstract-full').style.display = 'none'; document.getElementById('2303.05274v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.03925">arXiv:2302.03925</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.03925">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-06016-5">10.1038/s41586-023-06016-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral phonons probed by X rays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ueda%2C+H">Hiroki Ueda</a>, <a href="/search/?searchtype=author&amp;query=Garc%C3%ADa-Fern%C3%A1ndez%2C+M">Mirian Garc铆a-Fern谩ndez</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Romao%2C+C+P">Carl P. Romao</a>, <a href="/search/?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/?searchtype=author&amp;query=Spaldin%2C+N+A">Nicola A. Spaldin</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Staub%2C+U">Urs Staub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.03925v1-abstract-short" style="display: inline;"> The concept of chirality is of great relevance in nature, from chiral molecules such as sugar to parity transformations in particle physics. In condensed matter physics, recent studies have demonstrated chiral fermions and their relevance in emergent phenomena closely related to topology. The experimental verification of chiral phonons (bosons) remains challenging, however, despite their expected&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.03925v1-abstract-full').style.display = 'inline'; document.getElementById('2302.03925v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.03925v1-abstract-full" style="display: none;"> The concept of chirality is of great relevance in nature, from chiral molecules such as sugar to parity transformations in particle physics. In condensed matter physics, recent studies have demonstrated chiral fermions and their relevance in emergent phenomena closely related to topology. The experimental verification of chiral phonons (bosons) remains challenging, however, despite their expected strong impact on fundamental physical properties. Here we show experimental proof of chiral phonons using resonant inelastic X-ray scattering with circularly polarized X rays. Using the prototypical chiral material, quartz, we demonstrate that circularly polarized X rays, which are intrinsically chiral, couple to chiral phonons at specific positions in reciprocal space, allowing us to determine the chiral dispersion of the lattice modes. Our experimental proof of chiral phonons demonstrates a new degree of freedom in condensed matter that is both of fundamental importance and opens the door to exploration of novel emergent phenomena based on chiral bosons <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.03925v1-abstract-full').style.display = 'none'; document.getElementById('2302.03925v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 618 946 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.08415">arXiv:2301.08415</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.08415">pdf</a>, <a href="https://arxiv.org/format/2301.08415">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.adg3710">10.1126/sciadv.adg3710 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-energy quasi-circular electron correlations with charge order wavelength in $\textrm{Bi}_2\textrm{Sr}_2\textrm{Ca}\textrm{Cu}_2\textrm{O}_{8+未}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Scott%2C+K">K. Scott</a>, <a href="/search/?searchtype=author&amp;query=Kisiel%2C+E">E. Kisiel</a>, <a href="/search/?searchtype=author&amp;query=Boyle%2C+T+J">T. J. Boyle</a>, <a href="/search/?searchtype=author&amp;query=Basak%2C+R">R. Basak</a>, <a href="/search/?searchtype=author&amp;query=Jargot%2C+G">G. Jargot</a>, <a href="/search/?searchtype=author&amp;query=Das%2C+S">S. Das</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+J">J. Choi</a>, <a href="/search/?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/?searchtype=author&amp;query=Chuang%2C+Y+D">Y. D. Chuang</a>, <a href="/search/?searchtype=author&amp;query=Zhong%2C+R+D">R. D. Zhong</a>, <a href="/search/?searchtype=author&amp;query=Schneeloch%2C+J+A">J. A. Schneeloch</a>, <a href="/search/?searchtype=author&amp;query=Gu%2C+G+D">G. D. Gu</a>, <a href="/search/?searchtype=author&amp;query=L%C3%A9gar%C3%A9%2C+F">F. L茅gar茅</a>, <a href="/search/?searchtype=author&amp;query=Kemper%2C+A+F">A. F. Kemper</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Bisogni%2C+V">V. Bisogni</a>, <a href="/search/?searchtype=author&amp;query=Blanco-Canosa%2C+S">S. Blanco-Canosa</a>, <a href="/search/?searchtype=author&amp;query=Frano%2C+A">A. Frano</a>, <a href="/search/?searchtype=author&amp;query=Boschini%2C+F">F. Boschini</a>, <a href="/search/?searchtype=author&amp;query=Neto%2C+E+H+d+S">E. H. da Silva Neto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.08415v1-abstract-short" style="display: inline;"> In the study of dynamic charge order correlations in the cuprates, most high energy-resolution resonant inelastic x-ray scattering (RIXS) measurements have focused on momenta along the high-symmetry directions of the copper oxide plane. However, electron scattering along other in-plane directions should not be neglected as they may contain information relevant, for example, to the origin of charge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08415v1-abstract-full').style.display = 'inline'; document.getElementById('2301.08415v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.08415v1-abstract-full" style="display: none;"> In the study of dynamic charge order correlations in the cuprates, most high energy-resolution resonant inelastic x-ray scattering (RIXS) measurements have focused on momenta along the high-symmetry directions of the copper oxide plane. However, electron scattering along other in-plane directions should not be neglected as they may contain information relevant, for example, to the origin of charge order correlations or to our understanding of the isotropic scattering responsible for strange metal behavior in cuprates. We report high-resolution resonant inelastic x-ray scattering (RIXS) experiments that reveal the presence of dynamic electron correlations over the $q_x$-$q_y$ scattering plane in underdoped $\textrm{Bi}_2\textrm{Sr}_2\textrm{Ca}\textrm{Cu}_2\textrm{O}_{8+未}$ with $T_c=54$ K. We use the softening of the RIXS-measured bond stretching phonon line as a marker for the presence of charge-order-related dynamic electron correlations. The experiments show that these dynamic correlations exist at energies below approximately $70$ meV and are centered around a quasi-circular manifold in the $q_x$-$q_y$ scattering plane with radius equal to the magnitude of the charge order wave vector, $q_{CO}$. We also demonstrate how this phonon-tracking procedure provides the necessary experimental precision to rule out fluctuations of short-range directional charge order (i.e. centered around $[q_x=\pm q_{CO}, q_y=0]$ and $[q_x=0, q_y=\pm q_{CO}]$) as the origin of the observed correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08415v1-abstract-full').style.display = 'none'; document.getElementById('2301.08415v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted and under review</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 9, eadg3710 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.08236">arXiv:2301.08236</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.08236">pdf</a>, <a href="https://arxiv.org/ps/2301.08236">ps</a>, <a href="https://arxiv.org/format/2301.08236">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Differential Geometry">math.DG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Algebraic Geometry">math.AG</span> </div> </div> <p class="title is-5 mathjax"> Harmonic metrics for the Hull-Strominger system and stability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mario Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Molina%2C+R+G">Raul Gonzalez Molina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.08236v1-abstract-short" style="display: inline;"> We investigate stability conditions related to the existence of solutions of the Hull-Strominger system with prescribed balanced class. We build on recent work by the authors, where the Hull-Strominger system is recasted using non-Hermitian Yang-Mills connections and holomorphic Courant algebroids. Our main development is a notion of harmonic metric for the Hull-Strominger system, motivated by an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08236v1-abstract-full').style.display = 'inline'; document.getElementById('2301.08236v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.08236v1-abstract-full" style="display: none;"> We investigate stability conditions related to the existence of solutions of the Hull-Strominger system with prescribed balanced class. We build on recent work by the authors, where the Hull-Strominger system is recasted using non-Hermitian Yang-Mills connections and holomorphic Courant algebroids. Our main development is a notion of harmonic metric for the Hull-Strominger system, motivated by an infinite-dimensional hyperK盲hler moment map and related to a numerical stability condition, which we expect to exist generically for families of solutions. We illustrate our theory with an infinite number of continuous families of examples on the Iwasawa manifold. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08236v1-abstract-full').style.display = 'none'; document.getElementById('2301.08236v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.07637">arXiv:2301.07637</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.07637">pdf</a>, <a href="https://arxiv.org/format/2301.07637">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202307515">10.1002/adma.202307515 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stripe Symmetry of Short-range Charge Density Waves in Cuprate Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+J">Jiemin Li</a>, <a href="/search/?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/?searchtype=author&amp;query=Pelliciari%2C+J">Jonathan Pelliciari</a>, <a href="/search/?searchtype=author&amp;query=Robarts%2C+H">Hannah Robarts</a>, <a href="/search/?searchtype=author&amp;query=Tam%2C+C+C">Charles C. Tam</a>, <a href="/search/?searchtype=author&amp;query=Walters%2C+A">Andrew Walters</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Garc%C3%ADa-Fern%C3%A1ndez%2C+M">Mirian Garc铆a-Fern谩ndez</a>, <a href="/search/?searchtype=author&amp;query=Song%2C+D">Dongjoon Song</a>, <a href="/search/?searchtype=author&amp;query=Eisaki%2C+H">Hiroshi Eisaki</a>, <a href="/search/?searchtype=author&amp;query=Johnston%2C+S">Steven Johnston</a>, <a href="/search/?searchtype=author&amp;query=Comin%2C+R">Riccardo Comin</a>, <a href="/search/?searchtype=author&amp;query=Ding%2C+H">Hong Ding</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.07637v1-abstract-short" style="display: inline;"> The omnipresence of charge density waves (CDWs) across almost all cuprate families underpins a common organizing principle. However, a longstanding debate of whether its spatial symmetry is stripe or checkerboard remains unresolved. While CDWs in lanthanum- and yttrium-based cuprates possess a stripe symmetry, distinguishing these two scenarios has been challenging for the short-range CDW in bismu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07637v1-abstract-full').style.display = 'inline'; document.getElementById('2301.07637v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.07637v1-abstract-full" style="display: none;"> The omnipresence of charge density waves (CDWs) across almost all cuprate families underpins a common organizing principle. However, a longstanding debate of whether its spatial symmetry is stripe or checkerboard remains unresolved. While CDWs in lanthanum- and yttrium-based cuprates possess a stripe symmetry, distinguishing these two scenarios has been challenging for the short-range CDW in bismuth-based cuprates. Here, we employed high-resolution resonant inelastic x-ray scattering to uncover the spatial symmetry of the CDW in Bi$_2$Sr$_{2-x}$La$_{x}$CuO$_{6+未}$. Across a wide range of doping and temperature, anisotropic CDW peaks with elliptical shapes were found in reciprocal space. Based on Fourier transform analysis of real-space models, we interpret the results as evidence of unidirectional charge stripes, hosted by mutually 90$^\circ$-rotated anisotropic domains. Our work paves the way for a unified symmetry and microscopic description of CDW order in cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.07637v1-abstract-full').style.display = 'none'; document.getElementById('2301.07637v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures and Supplementary Information; Under peer review</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Materials 36, 2307515 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.15292">arXiv:2211.15292</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.15292">pdf</a>, <a href="https://arxiv.org/format/2211.15292">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-34933-y">10.1038/s41467-022-34933-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlation driven near-flat band Stoner excitations in a Kagome magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/?searchtype=author&amp;query=Peng%2C+Y">Yiran Peng</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+J">Jiemin Li</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Robarts%2C+H+C">H. C. Robarts</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/?searchtype=author&amp;query=Yin%2C+Q">Qiangwei Yin</a>, <a href="/search/?searchtype=author&amp;query=Lei%2C+H">Hechang Lei</a>, <a href="/search/?searchtype=author&amp;query=Yin%2C+Z">Zhiping Yin</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.15292v1-abstract-short" style="display: inline;"> Among condensed matter systems, Mott insulators exhibit diverse properties that emerge from electronic correlations. In itinerant metals, correlations are usually weak, but can also be enhanced via geometrical confinement of electrons, that manifest as `flat&#39; dispersionless electronic bands. In the fast developing field of topological materials, which includes Dirac and Weyl semimetals, flat bands&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15292v1-abstract-full').style.display = 'inline'; document.getElementById('2211.15292v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.15292v1-abstract-full" style="display: none;"> Among condensed matter systems, Mott insulators exhibit diverse properties that emerge from electronic correlations. In itinerant metals, correlations are usually weak, but can also be enhanced via geometrical confinement of electrons, that manifest as `flat&#39; dispersionless electronic bands. In the fast developing field of topological materials, which includes Dirac and Weyl semimetals, flat bands are one of the important components that can result in unusual magnetic and transport behaviour. To date, characterisation of flat bands and their magnetism is scarce, hindering the design of novel materials. Here, we investigate the ferromagnetic Kagom茅 semimetal Co$_3$Sn$_2$S$_2$ using resonant inelastic X-ray scattering. Remarkably, nearly non-dispersive Stoner spin excitation peaks are observed, sharply contrasting with the featureless Stoner continuum expected in conventional ferromagnetic metals. Our band structure and dynamic spin susceptibility calculations, and thermal evolution of the excitations, confirm the nearly non-dispersive Stoner excitations as unique signatures of correlations and spin-polarized electronic flat bands in Co$_3$Sn$_2$S$_2$. These observations serve as a cornerstone for further exploration of band-induced symmetry-breaking orders in topological materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.15292v1-abstract-full').style.display = 'none'; document.getElementById('2211.15292v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures, and Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 13, 7317 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.10201">arXiv:2210.10201</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.10201">pdf</a>, <a href="https://arxiv.org/ps/2210.10201">ps</a>, <a href="https://arxiv.org/format/2210.10201">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.155109">10.1103/PhysRevB.106.155109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Identification of a Critical Doping for Charge Order Phenomena in Bi-2212 Cuprates via RIXS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lu%2C+H">Haiyu Lu</a>, <a href="/search/?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+S">Su-Di Chen</a>, <a href="/search/?searchtype=author&amp;query=Ishida%2C+S">Shigeyuki Ishida</a>, <a href="/search/?searchtype=author&amp;query=Song%2C+D">Dongjoon Song</a>, <a href="/search/?searchtype=author&amp;query=Eisaki%2C+H">Hiroshi Eisaki</a>, <a href="/search/?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Arpaia%2C+R">Riccardo Arpaia</a>, <a href="/search/?searchtype=author&amp;query=Ghiringhelli%2C+G">Giacomo Ghiringhelli</a>, <a href="/search/?searchtype=author&amp;query=Braicovich%2C+L">Lucio Braicovich</a>, <a href="/search/?searchtype=author&amp;query=Zaanen%2C+J">Jan Zaanen</a>, <a href="/search/?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/?searchtype=author&amp;query=Kummer%2C+K">Kurt Kummer</a>, <a href="/search/?searchtype=author&amp;query=Brookes%2C+N+B">Nicholas B. Brookes</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+W">Wei-Sheng Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.10201v1-abstract-short" style="display: inline;"> Identifying quantum critical points (QCPs) and their associated fluctuations may hold the key to unraveling the unusual electronic phenomena observed in cuprate superconductors. Recently, signatures of quantum fluctuations associated with charge order (CO) have been inferred from the anomalous enhancement of CO excitations that accompany the reduction of the CO order parameter in the superconducti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10201v1-abstract-full').style.display = 'inline'; document.getElementById('2210.10201v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.10201v1-abstract-full" style="display: none;"> Identifying quantum critical points (QCPs) and their associated fluctuations may hold the key to unraveling the unusual electronic phenomena observed in cuprate superconductors. Recently, signatures of quantum fluctuations associated with charge order (CO) have been inferred from the anomalous enhancement of CO excitations that accompany the reduction of the CO order parameter in the superconducting state. To gain more insight about the interplay between CO and superconductivity, here we investigate the doping dependence of this phenomenon throughout the Bi-2212 cuprate phase diagram using resonant inelastic x-ray scattering (RIXS) at the Cu L3- edge. As doping increases, the CO wavevector decreases, saturating at a commensurate value of 0.25 r.l.u. beyond a characteristic doping pc, where the correlation length becomes shorter than the apparent periodicity (4a0). Such behavior is indicative of the fluctuating nature of the CO; and the proliferation of CO excitations in the superconducting state also appears strongest at pc, consistent with expected behavior at a CO QCP. Intriguingly, pc appears to be near optimal doping, where the superconducting transition temperature Tc is maximal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10201v1-abstract-full').style.display = 'none'; document.getElementById('2210.10201v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is a submitted version of the manuscript. The revised manuscript is now published on Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 106, 155109 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09247">arXiv:2209.09247</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.09247">pdf</a>, <a href="https://arxiv.org/format/2209.09247">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42256-024-00790-1">10.1038/s42256-024-00790-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Weak-signal extraction enabled by deep-neural-network denoising of diffraction data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Oppliger%2C+J">Jens Oppliger</a>, <a href="/search/?searchtype=author&amp;query=Denner%2C+M+M">M. Michael Denner</a>, <a href="/search/?searchtype=author&amp;query=K%C3%BCspert%2C+J">Julia K眉spert</a>, <a href="/search/?searchtype=author&amp;query=Frison%2C+R">Ruggero Frison</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Q">Qisi Wang</a>, <a href="/search/?searchtype=author&amp;query=Morawietz%2C+A">Alexander Morawietz</a>, <a href="/search/?searchtype=author&amp;query=Ivashko%2C+O">Oleh Ivashko</a>, <a href="/search/?searchtype=author&amp;query=Dippel%2C+A">Ann-Christin Dippel</a>, <a href="/search/?searchtype=author&amp;query=von+Zimmermann%2C+M">Martin von Zimmermann</a>, <a href="/search/?searchtype=author&amp;query=Bia%C5%82o%2C+I">Izabela Bia艂o</a>, <a href="/search/?searchtype=author&amp;query=Martinelli%2C+L">Leonardo Martinelli</a>, <a href="/search/?searchtype=author&amp;query=Fauqu%C3%A9%2C+B">Beno卯t Fauqu茅</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Christensen%2C+N+B">Niels B. Christensen</a>, <a href="/search/?searchtype=author&amp;query=Kurosawa%2C+T">Tohru Kurosawa</a>, <a href="/search/?searchtype=author&amp;query=Momono%2C+N">Naoki Momono</a>, <a href="/search/?searchtype=author&amp;query=Oda%2C+M">Migaku Oda</a>, <a href="/search/?searchtype=author&amp;query=Natterer%2C+F+D">Fabian D. Natterer</a>, <a href="/search/?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/?searchtype=author&amp;query=Chang%2C+J">Johan Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09247v3-abstract-short" style="display: inline;"> Removal or cancellation of noise has wide-spread applications for imaging and acoustics. In every-day-life applications, denoising may even include generative aspects, which are unfaithful to the ground truth. For scientific use, however, denoising must reproduce the ground truth accurately. Here, we show how data can be denoised via a deep convolutional neural network such that weak signals appea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09247v3-abstract-full').style.display = 'inline'; document.getElementById('2209.09247v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09247v3-abstract-full" style="display: none;"> Removal or cancellation of noise has wide-spread applications for imaging and acoustics. In every-day-life applications, denoising may even include generative aspects, which are unfaithful to the ground truth. For scientific use, however, denoising must reproduce the ground truth accurately. Here, we show how data can be denoised via a deep convolutional neural network such that weak signals appear with quantitative accuracy. In particular, we study X-ray diffraction on crystalline materials. We demonstrate that weak signals stemming from charge ordering, insignificant in the noisy data, become visible and accurate in the denoised data. This success is enabled by supervised training of a deep neural network with pairs of measured low- and high-noise data. We demonstrate that using artificial noise does not yield such quantitatively accurate results. Our approach thus illustrates a practical strategy for noise filtering that can be applied to challenging acquisition problems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09247v3-abstract-full').style.display = 'none'; document.getElementById('2209.09247v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures; extended study, additional supplementary information, results unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Machine Intelligence (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.13918">arXiv:2208.13918</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.13918">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-42961-5">10.1038/s41467-023-42961-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signature of quantum criticality in cuprates by charge density fluctuations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Arpaia%2C+R">R. Arpaia</a>, <a href="/search/?searchtype=author&amp;query=Martinelli%2C+L">L. Martinelli</a>, <a href="/search/?searchtype=author&amp;query=Sala%2C+M+M">M. Moretti Sala</a>, <a href="/search/?searchtype=author&amp;query=Caprara%2C+S">S. Caprara</a>, <a href="/search/?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/?searchtype=author&amp;query=Brookes%2C+N+B">N. B. Brookes</a>, <a href="/search/?searchtype=author&amp;query=Camisa%2C+P">P. Camisa</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+Q">Q. Li</a>, <a href="/search/?searchtype=author&amp;query=Gao%2C+Q">Q. Gao</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+X">X. Zhou</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K+-">K. -J. Zhou</a>, <a href="/search/?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/?searchtype=author&amp;query=Bauch%2C+T">T. Bauch</a>, <a href="/search/?searchtype=author&amp;query=Peng%2C+Y+Y">Y. Y. Peng</a>, <a href="/search/?searchtype=author&amp;query=Di+Castro%2C+C">C. Di Castro</a>, <a href="/search/?searchtype=author&amp;query=Grilli%2C+M">M. Grilli</a>, <a href="/search/?searchtype=author&amp;query=Lombardi%2C+F">F. Lombardi</a>, <a href="/search/?searchtype=author&amp;query=Braicovich%2C+L">L. Braicovich</a>, <a href="/search/?searchtype=author&amp;query=Ghiringhelli%2C+G">G. Ghiringhelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.13918v3-abstract-short" style="display: inline;"> The universality of the strange metal phase in many quantum materials is often attributed to the presence of a quantum critical point (QCP), a zero-temperature phase transition ruled by quantum fluctuations. In cuprates, where superconductivity hinders direct QCP observation, indirect evidence comes from the identification of fluctuations compatible with the strange metal phase. Here we show that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13918v3-abstract-full').style.display = 'inline'; document.getElementById('2208.13918v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.13918v3-abstract-full" style="display: none;"> The universality of the strange metal phase in many quantum materials is often attributed to the presence of a quantum critical point (QCP), a zero-temperature phase transition ruled by quantum fluctuations. In cuprates, where superconductivity hinders direct QCP observation, indirect evidence comes from the identification of fluctuations compatible with the strange metal phase. Here we show that the recently discovered charge density fluctuations (CDF) possess the right properties to be associated to a quantum phase transition. Using resonant x-ray scattering, we studied the CDF in two families of cuprate superconductors across a wide doping range (up to $p$=0.22). At $p^*\approx$0.19, the putative QCP, the CDF intensity peaks, and the characteristic energy $螖$ is minimum, marking a wedge-shaped region in the phase diagram indicative of a quantum critical behavior, albeit with anomalies. These findings strengthen the role of charge order in explaining strange metal phenomenology and provide insights into high-temperature superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13918v3-abstract-full').style.display = 'none'; document.getElementById('2208.13918v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 4 figures, 9 supplementary figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 14, 7198 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14083">arXiv:2206.14083</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.14083">pdf</a>, <a href="https://arxiv.org/format/2206.14083">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.047001">10.1103/PhysRevLett.129.047001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gapped collective charge excitations and interlayer hopping in cuprate superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hepting%2C+M">M. Hepting</a>, <a href="/search/?searchtype=author&amp;query=Bejas%2C+M">M. Bejas</a>, <a href="/search/?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/?searchtype=author&amp;query=Yamase%2C+H">H. Yamase</a>, <a href="/search/?searchtype=author&amp;query=Coppola%2C+N">N. Coppola</a>, <a href="/search/?searchtype=author&amp;query=Betto%2C+D">D. Betto</a>, <a href="/search/?searchtype=author&amp;query=Falter%2C+C">C. Falter</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K+-">K. -J. Zhou</a>, <a href="/search/?searchtype=author&amp;query=Minola%2C+M">M. Minola</a>, <a href="/search/?searchtype=author&amp;query=Sacco%2C+C">C. Sacco</a>, <a href="/search/?searchtype=author&amp;query=Maritato%2C+L">L. Maritato</a>, <a href="/search/?searchtype=author&amp;query=Orgiani%2C+P">P. Orgiani</a>, <a href="/search/?searchtype=author&amp;query=Wei%2C+H+I">H. I. Wei</a>, <a href="/search/?searchtype=author&amp;query=Shen%2C+K+M">K. M. Shen</a>, <a href="/search/?searchtype=author&amp;query=Schlom%2C+D+G">D. G. Schlom</a>, <a href="/search/?searchtype=author&amp;query=Galdi%2C+A">A. Galdi</a>, <a href="/search/?searchtype=author&amp;query=Greco%2C+A">A. Greco</a>, <a href="/search/?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14083v1-abstract-short" style="display: inline;"> We use resonant inelastic x-ray scattering (RIXS) to probe the propagation of plasmons in the electron-doped cuprate superconductor Sr$_{0.9}$La$_{0.1}$CuO$_2$ (SLCO). We detect a plasmon gap of $\sim$~120 meV at the two-dimensional Brillouin zone center, indicating that low-energy plasmons in SLCO are not strictly acoustic. The plasmon dispersion, including the gap, is accurately captured by laye&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14083v1-abstract-full').style.display = 'inline'; document.getElementById('2206.14083v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14083v1-abstract-full" style="display: none;"> We use resonant inelastic x-ray scattering (RIXS) to probe the propagation of plasmons in the electron-doped cuprate superconductor Sr$_{0.9}$La$_{0.1}$CuO$_2$ (SLCO). We detect a plasmon gap of $\sim$~120 meV at the two-dimensional Brillouin zone center, indicating that low-energy plasmons in SLCO are not strictly acoustic. The plasmon dispersion, including the gap, is accurately captured by layered $t$-$J$-$V$ model calculations. A similar analysis performed on recent RIXS data from other cuprates suggests that the plasmon gap is generic and its size is related to the magnitude of the interlayer hopping $t_z$. Our work signifies the three-dimensionality of the charge dynamics in layered cuprates and provides a new method to determine $t_z$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14083v1-abstract-full').style.display = 'none'; document.getElementById('2206.14083v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures, includes Supplemental Material. Accepted for publication in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 129, 047001 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.03455">arXiv:2201.03455</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.03455">pdf</a>, <a href="https://arxiv.org/ps/2201.03455">ps</a>, <a href="https://arxiv.org/format/2201.03455">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Analysis of PDEs">math.AP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Differential Geometry">math.DG</span> </div> </div> <p class="title is-5 mathjax"> Obstructions to the existence of solutions of the self-dual Einstein-Maxwell-Higgs equations on a compact surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=%C3%81lvarez-C%C3%B3nsul%2C+L">Luis 脕lvarez-C贸nsul</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mario Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Garc%C3%ADa-Prada%2C+O">Oscar Garc铆a-Prada</a>, <a href="/search/?searchtype=author&amp;query=Pingali%2C+V+P">Vamsi Pritham Pingali</a>, <a href="/search/?searchtype=author&amp;query=Yao%2C+C">Chengjian Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.03455v1-abstract-short" style="display: inline;"> In this note we present an obstruction to the existence of solutions to the self-dual Einstein-Maxwell-Higgs equations on a compact surface, which depends on the multiplicities of the zeroes of the \emph{Higgs field} and the \emph{vortex number} $N$. In particular, we exhibit infinitely many examples of Higgs fields for which solutions cannot exist. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.03455v1-abstract-full" style="display: none;"> In this note we present an obstruction to the existence of solutions to the self-dual Einstein-Maxwell-Higgs equations on a compact surface, which depends on the multiplicities of the zeroes of the \emph{Higgs field} and the \emph{vortex number} $N$. In particular, we exhibit infinitely many examples of Higgs fields for which solutions cannot exist. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03455v1-abstract-full').style.display = 'none'; document.getElementById('2201.03455v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04440">arXiv:2112.04440</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.04440">pdf</a>, <a href="https://arxiv.org/format/2112.04440">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-022-01330-1">10.1038/s41563-022-01330-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge density waves in infinite-layer NdNiO$_2$ nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Tam%2C+C+C">Charles C. Tam</a>, <a href="/search/?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/?searchtype=author&amp;query=Ding%2C+X">Xiang Ding</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+B">Bing Huang</a>, <a href="/search/?searchtype=author&amp;query=Luo%2C+H">Huiqian Luo</a>, <a href="/search/?searchtype=author&amp;query=Garc%C3%ADa-Fern%C3%A1ndez%2C+M">Mirian Garc铆a-Fern谩ndez</a>, <a href="/search/?searchtype=author&amp;query=Qiao%2C+L">Liang Qiao</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04440v2-abstract-short" style="display: inline;"> In materials science, much effort has been devoted to reproduce superconductivity in chemical compositions analogous to cuprate superconductors since their discovery over thirty years ago. This approach was recently successful in realising superconductivity in infinite-layer nickelates. Although differing from cuprates in electronic and magnetic properties, strong Coulomb interactions suggest infi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04440v2-abstract-full').style.display = 'inline'; document.getElementById('2112.04440v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04440v2-abstract-full" style="display: none;"> In materials science, much effort has been devoted to reproduce superconductivity in chemical compositions analogous to cuprate superconductors since their discovery over thirty years ago. This approach was recently successful in realising superconductivity in infinite-layer nickelates. Although differing from cuprates in electronic and magnetic properties, strong Coulomb interactions suggest infinite-layer nickelates have a propensity to various symmetry-breaking orders that populate the cuprates. Here we report the observation of charge density waves (CDWs) in infinite-layer NdNiO$_2$ films using Ni-$L_3$ resonant x-ray scattering. Remarkably, CDWs form in Nd 5$d$ and Ni 3$d$ orbitals at the same commensurate wavevector $(0.333, 0)\;r.l.u.$, with non-negligible out-of-plane dependence, and an in-plane correlation length up to $\sim$ 60 Angstrom. Spectroscopic studies reveal a strong connection between CDWs and the Nd 5$d$ - Ni 3$d$ orbital hybridisation. Upon entering the superconducting state at 20\% Sr doping, the CDWs disappear. Our work demonstrates the existence of CDWs in infinite-layer nickelates with a multi-orbital character distinct from cuprates, which establishes their low-energy physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04440v2-abstract-full').style.display = 'none'; document.getElementById('2112.04440v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, and Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03625">arXiv:2111.03625</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.03625">pdf</a>, <a href="https://arxiv.org/format/2111.03625">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-30065-5">10.1038/s41467-022-30065-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quadrupolar magnetic excitations in an isotropic spin-1 antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/?searchtype=author&amp;query=Nocera%2C+A">A. Nocera</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/?searchtype=author&amp;query=Cheong%2C+S">Sang-Wook Cheong</a>, <a href="/search/?searchtype=author&amp;query=Johnston%2C+S">S. Johnston</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03625v1-abstract-short" style="display: inline;"> The microscopic origins of emergent behaviours in condensed matter systems are encoded in their excitations. In ordinary magnetic materials, single spin-flips give rise to collective dipolar magnetic excitations called magnons. Likewise, multiple spin-flips can give rise to multipolar magnetic excitations in magnetic materials with spin $\mathbf{S} \boldsymbol{\ge} \mathbf{1}$. Unfortunately, sinc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03625v1-abstract-full').style.display = 'inline'; document.getElementById('2111.03625v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03625v1-abstract-full" style="display: none;"> The microscopic origins of emergent behaviours in condensed matter systems are encoded in their excitations. In ordinary magnetic materials, single spin-flips give rise to collective dipolar magnetic excitations called magnons. Likewise, multiple spin-flips can give rise to multipolar magnetic excitations in magnetic materials with spin $\mathbf{S} \boldsymbol{\ge} \mathbf{1}$. Unfortunately, since most experimental probes are governed by dipolar selection rules, collective multipolar excitations have generally remained elusive. For instance, only dipolar magnetic excitations have been observed in isotropic $\mathbf{S}\boldsymbol{=}\mathbf{1}$ Haldane spin systems. Here, we unveil a hidden quadrupolar constituent of the spin dynamics in antiferromagnetic $\mathbf{S}\boldsymbol{=}\mathbf{1}$ Haldane chain material Y$_\mathbf{2}$BaNiO$_\mathbf{5}$ using Ni $\mathbf{L_3}$-edge resonant inelastic x-ray scattering. Our results demonstrate that pure quadrupolar magnetic excitations can be probed without direct interactions with dipolar excitations or anisotropic perturbations. Originating from on-site double spin-flip processes, the quadrupolar magnetic excitations in Y$_\mathbf{2}$BaNiO$_\mathbf{5}$ show a remarkable dual nature of collective dispersion. While one component propagates as non-interacting entities, the other behaves as a bound quadrupolar magnetic wave. This result highlights the rich and largely unexplored physics of higher-order magnetic excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03625v1-abstract-full').style.display = 'none'; document.getElementById('2111.03625v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 13, 2327 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.09572">arXiv:2110.09572</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.09572">pdf</a>, <a href="https://arxiv.org/format/2110.09572">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.11.041052">10.1103/PhysRevX.11.041052 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing electron-phonon interactions away from the Fermi level with resonant inelastic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Dashwood%2C+C+D">C. D. Dashwood</a>, <a href="/search/?searchtype=author&amp;query=Geondzhian%2C+A">A. Geondzhian</a>, <a href="/search/?searchtype=author&amp;query=Vale%2C+J+G">J. G. Vale</a>, <a href="/search/?searchtype=author&amp;query=Pakpour-Tabrizi%2C+A+C">A. C. Pakpour-Tabrizi</a>, <a href="/search/?searchtype=author&amp;query=Howard%2C+C+A">C. A. Howard</a>, <a href="/search/?searchtype=author&amp;query=Faure%2C+Q">Q. Faure</a>, <a href="/search/?searchtype=author&amp;query=Veiga%2C+L+S+I">L. S. I. Veiga</a>, <a href="/search/?searchtype=author&amp;query=Meyers%2C+D">D. Meyers</a>, <a href="/search/?searchtype=author&amp;query=Chiuzbaian%2C+S+G">S. G. Chiuzbaian</a>, <a href="/search/?searchtype=author&amp;query=Nicolaou%2C+A">A. Nicolaou</a>, <a href="/search/?searchtype=author&amp;query=Jaouen%2C+N">N. Jaouen</a>, <a href="/search/?searchtype=author&amp;query=Jackman%2C+R+B">R. B. Jackman</a>, <a href="/search/?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/?searchtype=author&amp;query=Gilmore%2C+K">K. Gilmore</a>, <a href="/search/?searchtype=author&amp;query=McMorrow%2C+D+F">D. F. McMorrow</a>, <a href="/search/?searchtype=author&amp;query=Dean%2C+M+P+M">M. P. M. Dean</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.09572v2-abstract-short" style="display: inline;"> Interactions between electrons and lattice vibrations are responsible for a wide range of material properties and applications. Recently, there has been considerable interest in the development of resonant inelastic x-ray scattering (RIXS) as a tool for measuring electron-phonon (e-ph) interactions. Here, we demonstrate the ability of RIXS to probe the interaction between phonons and specific elec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09572v2-abstract-full').style.display = 'inline'; document.getElementById('2110.09572v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.09572v2-abstract-full" style="display: none;"> Interactions between electrons and lattice vibrations are responsible for a wide range of material properties and applications. Recently, there has been considerable interest in the development of resonant inelastic x-ray scattering (RIXS) as a tool for measuring electron-phonon (e-ph) interactions. Here, we demonstrate the ability of RIXS to probe the interaction between phonons and specific electronic states both near to, and away from, the Fermi level. We performed carbon $K$-edge RIXS measurements on graphite, tuning the incident x-ray energy to separately probe the interactions of the $蟺^*$ and $蟽^*$ electronic states. Our high-resolution data reveals detailed structure in the multi-phonon RIXS features that directly encodes the momentum dependence of the e-ph interaction strength. We develop a Green&#39;s-function method to model this structure, which naturally accounts for the phonon and interaction-strength dispersions, as well as the mixing of phonon momenta in the intermediate state. This model shows that the differences between the spectra can be fully explained by contrasting trends of the e-ph interaction through the Brillouin zone, being concentrated at the $螕$ and $K$ points for the $蟺^*$ states, while being significant at all momenta for the $蟽^*$ states. Our results advance the interpretation of phonon excitations in RIXS, and extend its applicability as a probe of e-ph interactions to a new range of out-of-equilibrium situations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09572v2-abstract-full').style.display = 'none'; document.getElementById('2110.09572v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures plus supplementary materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 11, 041052 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.03186">arXiv:2110.03186</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.03186">pdf</a>, <a href="https://arxiv.org/format/2110.03186">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.L060406">10.1103/PhysRevB.106.L060406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unraveling higher-order corrections in the spin dynamics of RIXS spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kumar%2C+U">Umesh Kumar</a>, <a href="/search/?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+J">Jiemin Li</a>, <a href="/search/?searchtype=author&amp;query=Robarts%2C+H+C">H. C. Robarts</a>, <a href="/search/?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/?searchtype=author&amp;query=Garc%C3%ADa-Fern%C3%A1ndez%2C+M">Mirian Garc铆a-Fern谩ndez</a>, <a href="/search/?searchtype=author&amp;query=Saint-Martin%2C+R">R. Saint-Martin</a>, <a href="/search/?searchtype=author&amp;query=Revcolevschi%2C+A">A. Revcolevschi</a>, <a href="/search/?searchtype=author&amp;query=Schlappa%2C+J">Justine Schlappa</a>, <a href="/search/?searchtype=author&amp;query=Schmitt%2C+T">Thorsten Schmitt</a>, <a href="/search/?searchtype=author&amp;query=Johnston%2C+S">Steve Johnston</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.03186v1-abstract-short" style="display: inline;"> Resonant inelastic x-ray scattering (RIXS) is an evolving tool for investigating spin dynamics of strongly correlated materials, which complements inelastic neutron scattering. Both techniques have found that non-spin-conserving (NSC) excitations in quasi-1D isotropic quantum antiferromagnets are confined to the two-spinon phase space. Outside this phase space, only spin-conserving (SC) four-spino&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03186v1-abstract-full').style.display = 'inline'; document.getElementById('2110.03186v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.03186v1-abstract-full" style="display: none;"> Resonant inelastic x-ray scattering (RIXS) is an evolving tool for investigating spin dynamics of strongly correlated materials, which complements inelastic neutron scattering. Both techniques have found that non-spin-conserving (NSC) excitations in quasi-1D isotropic quantum antiferromagnets are confined to the two-spinon phase space. Outside this phase space, only spin-conserving (SC) four-spinon excitations have been detected using O $K$-edge RIXS. Here, we investigate SrCuO$_2$ and find four-spinon excitations outside the two-spinon phase space at both O $K$- and Cu $L_3$-edges. Using the Kramers-Heisenberg formalism, we demonstrate that the four-spinon excitations arise from both SC and NSC processes at Cu $L_3$-edge. We show that these new excitations only appear in the second-order terms of the ultra-fast core-hole lifetime expansion and arise from long-range spin fluctuations. These results thus open a new window to the spin dynamics of quantum magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03186v1-abstract-full').style.display = 'none'; document.getElementById('2110.03186v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4+3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.13716">arXiv:2106.13716</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.13716">pdf</a>, <a href="https://arxiv.org/ps/2106.13716">ps</a>, <a href="https://arxiv.org/format/2106.13716">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Differential Geometry">math.DG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Analysis of PDEs">math.AP</span> </div> </div> <p class="title is-5 mathjax"> Non-K盲hler Calabi-Yau geometry and pluriclosed flow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mario Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Jordan%2C+J">Joshua Jordan</a>, <a href="/search/?searchtype=author&amp;query=Streets%2C+J">Jeffrey Streets</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.13716v1-abstract-short" style="display: inline;"> Hermitian, pluriclosed metrics with vanishing Bismut-Ricci form give a natural extension of Calabi-Yau metrics to the setting of complex, non-K盲hler manifolds, and arise independently in mathematical physics. We reinterpret this condition in terms of the Hermitian-Einstein equation on an associated holomorphic Courant algebroid, and thus refer to solutions as Bismut Hermitian-Einstein. This implie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13716v1-abstract-full').style.display = 'inline'; document.getElementById('2106.13716v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.13716v1-abstract-full" style="display: none;"> Hermitian, pluriclosed metrics with vanishing Bismut-Ricci form give a natural extension of Calabi-Yau metrics to the setting of complex, non-K盲hler manifolds, and arise independently in mathematical physics. We reinterpret this condition in terms of the Hermitian-Einstein equation on an associated holomorphic Courant algebroid, and thus refer to solutions as Bismut Hermitian-Einstein. This implies Mumford-Takemoto slope stability obstructions, and using these we exhibit infinitely many topologically distinct complex manifolds in every dimension with vanishing first Chern class which do not admit Bismut Hermitian-Einstein metrics. This reformulation also leads to a new description of pluriclosed flow in terms of Hermitian metrics on holomorphic Courant algebroids, implying new global existence results, in particular on all complex non-K盲hler surfaces of nonnegative Kodaira dimension. On complex manifolds which admit Bismut-flat metrics we show global existence and convergence of pluriclosed flow to a Bismut-flat metric, which in turn gives a classification of generalized K盲hler structures on these spaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13716v1-abstract-full').style.display = 'none'; document.getElementById('2106.13716v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.08465">arXiv:2106.08465</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.08465">pdf</a>, <a href="https://arxiv.org/format/2106.08465">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.235159">10.1103/PhysRevB.103.235159 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of the electronic structure in Ta$_2$NiSe$_5$ across the structural transition revealed by resonant inelastic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lu%2C+H">Haiyu Lu</a>, <a href="/search/?searchtype=author&amp;query=Ross%2C+M">Matteo Ross</a>, <a href="/search/?searchtype=author&amp;query=Kim%2C+1">1Jung-ho Kim</a>, <a href="/search/?searchtype=author&amp;query=Yavas%2C+H">Hasan Yavas</a>, <a href="/search/?searchtype=author&amp;query=Said%2C+A">Ayman Said</a>, <a href="/search/?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">Stefano Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Kejin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+W">Wei-Sheng Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.08465v1-abstract-short" style="display: inline;"> We utilized high-energy-resolution resonant inelastic X-ray scattering (RIXS) at both the Ta and Ni $L_3$-edges to map out element-specific particle-hole excitations in Ta$_2$NiSe$_5$ across the phase transition. Our results reveal a momentum dependent gap-like feature in the low energy spectrum, which agrees well with the band gap in element-specific joint density of states calculations based on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08465v1-abstract-full').style.display = 'inline'; document.getElementById('2106.08465v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.08465v1-abstract-full" style="display: none;"> We utilized high-energy-resolution resonant inelastic X-ray scattering (RIXS) at both the Ta and Ni $L_3$-edges to map out element-specific particle-hole excitations in Ta$_2$NiSe$_5$ across the phase transition. Our results reveal a momentum dependent gap-like feature in the low energy spectrum, which agrees well with the band gap in element-specific joint density of states calculations based on ab initio estimates of the electronic structure in both the low temperature monoclinic and the high temperature orthorhombic structure. Below $T_c$, the RIXS energy-momentum map shows a minimal gap at the Brillouin zone center ($\sim$ 0.16 eV), confirming that Ta$_2$NiSe$_5$ possesses a direct band gap in its low temperature ground state. However, inside the gap, no signature of anticipated collective modes with an energy scale comparable to the gap size can be identified. Upon increasing the temperature to above $T_c$, whereas the gap at the zone center closes, the RIXS map at finite momenta still possesses the gross features of the low temperature map, suggesting a substantial mixing between the Ta and Ni orbits in the conduction and valence bands, which does not change substantially across the phase transition. Our experimental observations and comparison to the theoretical calculations lend further support that the phase transition and the corresponding gap opening in Ta$_2$NiSe$_5$ is largely structural by nature with possible minor contribution from the putative exciton condensate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08465v1-abstract-full').style.display = 'none'; document.getElementById('2106.08465v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The manuscript has been accepted by Physical Review B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 235159 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.11300">arXiv:2105.11300</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.11300">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.abd7726">10.1126/science.abd7726 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic excitations in infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lu%2C+H">H. Lu</a>, <a href="/search/?searchtype=author&amp;query=Rossi%2C+M">M. Rossi</a>, <a href="/search/?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/?searchtype=author&amp;query=Osada%2C+M">M. Osada</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+D+F">D. F. Li</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+K">K. Lee</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+B+Y">B. Y. Wang</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Shen%2C+Z+X">Z. X. Shen</a>, <a href="/search/?searchtype=author&amp;query=Been%2C+E+M">E. M. Been</a>, <a href="/search/?searchtype=author&amp;query=Moritz%2C+B">B. Moritz</a>, <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/?searchtype=author&amp;query=Zaanen%2C+J">J. Zaanen</a>, <a href="/search/?searchtype=author&amp;query=Hwang%2C+H+Y">H. Y. Hwang</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+W+S">W. S. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.11300v1-abstract-short" style="display: inline;"> The discovery of superconductivity in infinite-layer nickelates brings us tantalizingly close to a new material class that mirrors the cuprate superconductors. Here, we report on magnetic excitations in these nickelates, measured using resonant inelastic x-ray scattering (RIXS) at the Ni L3-edge, to shed light on the material complexity and microscopic physics. Undoped NdNiO2 possesses a branch of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.11300v1-abstract-full').style.display = 'inline'; document.getElementById('2105.11300v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.11300v1-abstract-full" style="display: none;"> The discovery of superconductivity in infinite-layer nickelates brings us tantalizingly close to a new material class that mirrors the cuprate superconductors. Here, we report on magnetic excitations in these nickelates, measured using resonant inelastic x-ray scattering (RIXS) at the Ni L3-edge, to shed light on the material complexity and microscopic physics. Undoped NdNiO2 possesses a branch of dispersive excitations with a bandwidth of approximately 200 meV, reminiscent of strongly-coupled, antiferromagnetically aligned spins on a square lattice, despite a lack of evidence for long range magnetic order. The significant damping of these modes indicates the importance of coupling to rare-earth itinerant electrons. Upon doping, the spectral weight and energy decrease slightly, while the modes become overdamped. Our results highlight the role of Mottness in infinite-layer nickelates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.11300v1-abstract-full').style.display = 'none'; document.getElementById('2105.11300v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is the initially submitted version before revising for reviewers&#39; comments. The peer-reviewed version has been accepted at Science and will be published soon</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 373, 213-216 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.10503">arXiv:2012.10503</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.10503">pdf</a>, <a href="https://arxiv.org/format/2012.10503">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abg7394">10.1126/sciadv.abg7394 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge Order Lock-in by Electron-Phonon Coupling in La$_{1.675}$Eu$_{0.2}$Sr$_{0.125}$CuO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wang%2C+Q">Qisi Wang</a>, <a href="/search/?searchtype=author&amp;query=von+Arx%2C+K">K. von Arx</a>, <a href="/search/?searchtype=author&amp;query=Horio%2C+M">M. Horio</a>, <a href="/search/?searchtype=author&amp;query=Mukkattukavil%2C+D+J">D. John Mukkattukavil</a>, <a href="/search/?searchtype=author&amp;query=K%C3%BCspert%2C+J">J. K眉spert</a>, <a href="/search/?searchtype=author&amp;query=Sassa%2C+Y">Y. Sassa</a>, <a href="/search/?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/?searchtype=author&amp;query=Pyon%2C+S">S. Pyon</a>, <a href="/search/?searchtype=author&amp;query=Takayama%2C+T">T. Takayama</a>, <a href="/search/?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Chang%2C+J">J. Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.10503v1-abstract-short" style="display: inline;"> We report an ultrahigh resolution resonant inelastic x-ray scattering (RIXS) study of the in-plane bond-stretching phonon mode in stripe-ordered cuprate La$_{1.675}$Eu$_{0.2}$Sr$_{0.125}$CuO$_4$. Phonon softening and lifetime shortening are found around the charge ordering wave vector. In addition to these self-energy effects, the electron-phonon coupling is probed by its proportionality to the RI&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10503v1-abstract-full').style.display = 'inline'; document.getElementById('2012.10503v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.10503v1-abstract-full" style="display: none;"> We report an ultrahigh resolution resonant inelastic x-ray scattering (RIXS) study of the in-plane bond-stretching phonon mode in stripe-ordered cuprate La$_{1.675}$Eu$_{0.2}$Sr$_{0.125}$CuO$_4$. Phonon softening and lifetime shortening are found around the charge ordering wave vector. In addition to these self-energy effects, the electron-phonon coupling is probed by its proportionality to the RIXS cross section. We find an enhancement of the electron-phonon coupling around the charge-stripe ordering wave vector upon cooling into the low-temperature tetragonal structure phase. These results suggest that in addition to electronic correlations, electron-phonon coupling contributes significantly to the emergence of long-range charge-stripe order in cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.10503v1-abstract-full').style.display = 'none'; document.getElementById('2012.10503v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supplemental Material available on request</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 7, eabg7394 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.01851">arXiv:2012.01851</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.01851">pdf</a>, <a href="https://arxiv.org/ps/2012.01851">ps</a>, <a href="https://arxiv.org/format/2012.01851">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Differential Geometry">math.DG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Algebraic Geometry">math.AG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Algebra">math.QA</span> </div> </div> <p class="title is-5 mathjax"> (0,2) Mirror Symmetry on homogeneous Hopf surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=%C3%81lvarez-C%C3%B3nsul%2C+L">Luis 脕lvarez-C贸nsul</a>, <a href="/search/?searchtype=author&amp;query=de+La+Hera%2C+A+D+A">Andoni De Arriba de La Hera</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mario Garcia-Fernandez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.01851v3-abstract-short" style="display: inline;"> In this work we find the first examples of (0,2) mirror symmetry on compact non-K盲hler complex manifolds. For this we follow Borisov&#39;s approach to mirror symmetry using vertex algebras and the chiral de Rham complex. Our examples of (0,2) mirrors are given by pairs of Hopf surfaces endowed with a Bismut-flat pluriclosed metric. Requiring that the geometry is homogeneous, we reduce the problem to t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01851v3-abstract-full').style.display = 'inline'; document.getElementById('2012.01851v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.01851v3-abstract-full" style="display: none;"> In this work we find the first examples of (0,2) mirror symmetry on compact non-K盲hler complex manifolds. For this we follow Borisov&#39;s approach to mirror symmetry using vertex algebras and the chiral de Rham complex. Our examples of (0,2) mirrors are given by pairs of Hopf surfaces endowed with a Bismut-flat pluriclosed metric. Requiring that the geometry is homogeneous, we reduce the problem to the study of Killing spinors on a quadratic Lie algebra and the construction of embeddings of the $N=2$ superconformal vertex algebra in the superaffine vertex algebra, combined with topological T-duality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.01851v3-abstract-full').style.display = 'none'; document.getElementById('2012.01851v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">58 pages, improved version. Section 4 has been split into two parts, and a new Section 5.2 has been added. References updated. To appear in the International Mathematics Research Notices</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.05029">arXiv:2011.05029</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.05029">pdf</a>, <a href="https://arxiv.org/format/2011.05029">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-30918-z">10.1038/s41467-022-30918-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Paramagnons and high-temperature superconductivity in mercury-based cuprates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wang%2C+L">Lichen Wang</a>, <a href="/search/?searchtype=author&amp;query=He%2C+G">Guanhong He</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+Z">Zichen Yang</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Minola%2C+M">Matteo Minola</a>, <a href="/search/?searchtype=author&amp;query=Tacon%2C+M+L">Matthieu Le Tacon</a>, <a href="/search/?searchtype=author&amp;query=Keimer%2C+B">Bernhard Keimer</a>, <a href="/search/?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.05029v1-abstract-short" style="display: inline;"> We present a comparative study of magnetic excitations in the first two Ruddlesden-Popper members of the Hg-family of high-temperature superconducting cuprates, which are chemically nearly identical and have the highest critical temperature ($T_\mathrm{c}$) among all cuprate families. Our inelastic photon scattering experiments reveal that the two compounds&#39; paramagnon spectra are nearly identical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05029v1-abstract-full').style.display = 'inline'; document.getElementById('2011.05029v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.05029v1-abstract-full" style="display: none;"> We present a comparative study of magnetic excitations in the first two Ruddlesden-Popper members of the Hg-family of high-temperature superconducting cuprates, which are chemically nearly identical and have the highest critical temperature ($T_\mathrm{c}$) among all cuprate families. Our inelastic photon scattering experiments reveal that the two compounds&#39; paramagnon spectra are nearly identical apart from an energy scale factor of $\sim130\%$ that matches the ratio of $T_\mathrm{c}$&#39;s, as expected in magnetic Cooper pairing theories. By relating our observations to other cuprates, we infer that the strength of magnetic interactions determines how high $T_\mathrm{c}$ can reach. Our finding can be viewed as a magnetic analogue of the isotope effect, thus firmly supporting models of magnetically mediated high-temperature superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.05029v1-abstract-full').style.display = 'none'; document.getElementById('2011.05029v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, SM available via link in pdf</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 13, 3163 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.00595">arXiv:2011.00595</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.00595">pdf</a>, <a href="https://arxiv.org/format/2011.00595">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.L220505">10.1103/PhysRevB.104.L220505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbital and Spin Character of Doped Carriers in Infinite-Layer Nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Rossi%2C+M">M. Rossi</a>, <a href="/search/?searchtype=author&amp;query=Lu%2C+H">H. Lu</a>, <a href="/search/?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+D">D. Li</a>, <a href="/search/?searchtype=author&amp;query=Osada%2C+M">M. Osada</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+K">K. Lee</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+B+Y">B. Y. Wang</a>, <a href="/search/?searchtype=author&amp;query=Agrestini%2C+S">S. Agrestini</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Chuang%2C+Y+-">Y. -D. Chuang</a>, <a href="/search/?searchtype=author&amp;query=Shen%2C+Z+X">Z. X. Shen</a>, <a href="/search/?searchtype=author&amp;query=Hwang%2C+H+Y">H. Y. Hwang</a>, <a href="/search/?searchtype=author&amp;query=Moritz%2C+B">B. Moritz</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+W+S">W. S. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.00595v1-abstract-short" style="display: inline;"> The recent discovery of superconductivity in Nd$_{1-x}$Sr$_{x}$NiO$_2$ has drawn significant attention in the field. A key open question regards the evolution of the electronic structure with respect to hole doping. Here, we exploit x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS) to probe the doping dependent electronic structure of the NiO$_2$ planes. Upon dopin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.00595v1-abstract-full').style.display = 'inline'; document.getElementById('2011.00595v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.00595v1-abstract-full" style="display: none;"> The recent discovery of superconductivity in Nd$_{1-x}$Sr$_{x}$NiO$_2$ has drawn significant attention in the field. A key open question regards the evolution of the electronic structure with respect to hole doping. Here, we exploit x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS) to probe the doping dependent electronic structure of the NiO$_2$ planes. Upon doping, a higher energy feature in Ni $L_3$ edge XAS develops in addition to the main absorption peak. By comparing our data to atomic multiplet calculations including $D_{4h}$ crystal field, the doping induced feature is consistent with a $d^8$ spin singlet state, in which doped holes reside in the $d_{x^2-y^2}$ orbitals, similar to doped single band Hubbard models. This is further supported by orbital excitations observed in RIXS spectra, which soften upon doping, corroborating with Fermi level shift associated with increasing holes in the $d_{x^2-y^2}$ orbital. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.00595v1-abstract-full').style.display = 'none'; document.getElementById('2011.00595v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures. Supplemental material included</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.12289">arXiv:2010.12289</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.12289">pdf</a>, <a href="https://arxiv.org/format/2010.12289">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.106401">10.1103/PhysRevLett.126.106401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unraveling the orbital physics in a canonical orbital system KCuF$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Li%2C+J">Jiemin Li</a>, <a href="/search/?searchtype=author&amp;query=Xu%2C+L">Lei Xu</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Nag%2C+A">Abhishek Nag</a>, <a href="/search/?searchtype=author&amp;query=Robarts%2C+H+C">H. C. Robarts</a>, <a href="/search/?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+X">X. Liu</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+J">Jianshi Zhou</a>, <a href="/search/?searchtype=author&amp;query=Wohlfeld%2C+K">Krzysztof Wohlfeld</a>, <a href="/search/?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/?searchtype=author&amp;query=Ding%2C+H">Hong Ding</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.12289v2-abstract-short" style="display: inline;"> We explore the existence of the collective orbital excitations, orbitons, in the canonical orbital system KCuF$_3$. Using the Cu $L_3$-edge resonant inelastic X-ray scattering we show that the non-dispersive high-energy peaks result from the Cu$^{2+}$ $dd$ orbital excitations. These high-energy modes show good agreement with the {\it ab-initio} quantum chemistry calculation based on a single clust&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12289v2-abstract-full').style.display = 'inline'; document.getElementById('2010.12289v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.12289v2-abstract-full" style="display: none;"> We explore the existence of the collective orbital excitations, orbitons, in the canonical orbital system KCuF$_3$. Using the Cu $L_3$-edge resonant inelastic X-ray scattering we show that the non-dispersive high-energy peaks result from the Cu$^{2+}$ $dd$ orbital excitations. These high-energy modes show good agreement with the {\it ab-initio} quantum chemistry calculation based on a single cluster, indicating that the $dd$ excitations are highly localized. At the same time, the low-energy excitations present clear dispersion. They match extremely well with the two-spinon continuum following the comparison with Mueller Ansatz calculations. The localized $dd$ excitations and the observation of the strongly dispersive magnetic excitations suggest that orbiton dispersion is below the resolution detection limit. Our results can reconcile with the strong {\it local} Jahn-Teller effect in KCuF$_3$, which predominantly drives orbital ordering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12289v2-abstract-full').style.display = 'none'; document.getElementById('2010.12289v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 106401 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.12925">arXiv:2009.12925</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.12925">pdf</a>, <a href="https://arxiv.org/format/2009.12925">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.224427">10.1103/PhysRevB.103.224427 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical spin susceptibility in La2CuO4 studied by resonant inelastic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Robarts%2C+H+C">H. C. Robarts</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/?searchtype=author&amp;query=Headings%2C+N+E">N. E. Headings</a>, <a href="/search/?searchtype=author&amp;query=Hayden%2C+S+M">S. M. Hayden</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.12925v1-abstract-short" style="display: inline;"> Resonant inelastic X-ray scattering (RIXS) is a powerful probe of elementary excitations in solids. It is now widely applied to study magnetic excitations. However, its complex cross-section means that RIXS has been more difficult to interpret than inelastic neutron scattering (INS). Here we report high-resolution RIXS measurements of magnetic excitations of La2CuO4, the antiferromagnetic parent o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12925v1-abstract-full').style.display = 'inline'; document.getElementById('2009.12925v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.12925v1-abstract-full" style="display: none;"> Resonant inelastic X-ray scattering (RIXS) is a powerful probe of elementary excitations in solids. It is now widely applied to study magnetic excitations. However, its complex cross-section means that RIXS has been more difficult to interpret than inelastic neutron scattering (INS). Here we report high-resolution RIXS measurements of magnetic excitations of La2CuO4, the antiferromagnetic parent of one system of high-temperature superconductors. At high energies (~2 eV), the RIXS spectra show angular-dependent dd orbital excitations which are found to be in good agreement with single-site multiplet calculations. At lower energies (&lt;0.3 eV), we show that the wavevector-dependent RIXS intensities are proportional to the product of the single-ion spin-flip cross section and the dynamical susceptibility of the spin-wave excitations. When the spin-flip crosssection is dividing out, the RIXS magnon intensities show a remarkable resemblance to INS data. Our results show that RIXS is a quantitative probe the dynamical spin susceptibility in cuprate and therefore should be used for quantitative investigation of other correlated electron materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.12925v1-abstract-full').style.display = 'none'; document.getElementById('2009.12925v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 224427 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.09618">arXiv:2008.09618</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.09618">pdf</a>, <a href="https://arxiv.org/format/2008.09618">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-23317-3">10.1038/s41467-021-23317-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of spin excitations from bulk to monolayer FeSe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pelliciari%2C+J">J. Pelliciari</a>, <a href="/search/?searchtype=author&amp;query=Karakuzu%2C+S">S. Karakuzu</a>, <a href="/search/?searchtype=author&amp;query=Song%2C+Q">Q. Song</a>, <a href="/search/?searchtype=author&amp;query=Arpaia%2C+R">R. Arpaia</a>, <a href="/search/?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/?searchtype=author&amp;query=Rossi%2C+M">M. Rossi</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/?searchtype=author&amp;query=Yu%2C+T">T. Yu</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+X">X. Chen</a>, <a href="/search/?searchtype=author&amp;query=Peng%2C+R">R. Peng</a>, <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/?searchtype=author&amp;query=Walters%2C+A+C">A. C. Walters</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Q">Q. Wang</a>, <a href="/search/?searchtype=author&amp;query=Zhao%2C+J">J. Zhao</a>, <a href="/search/?searchtype=author&amp;query=Ghiringhelli%2C+G">G. Ghiringhelli</a>, <a href="/search/?searchtype=author&amp;query=Feng%2C+D">D. Feng</a>, <a href="/search/?searchtype=author&amp;query=Maier%2C+T+A">T. A. Maier</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+K+-">K. -J. Zhou</a>, <a href="/search/?searchtype=author&amp;query=Johnston%2C+S">S. Johnston</a>, <a href="/search/?searchtype=author&amp;query=Comin%2C+R">R. Comin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.09618v2-abstract-short" style="display: inline;"> The discovery of enhanced superconductivity (SC) in FeSe films grown on SrTiO3 (FeSe/STO) has revitalized the field of Fe-based superconductors. In the ultrathin limit, the superconducting transition temperature Tc is increased by almost an order of magnitude, raising new questions on the pairing mechanism. As in other unconventional superconductors, antiferromagnetic spin fluctuations have been p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09618v2-abstract-full').style.display = 'inline'; document.getElementById('2008.09618v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.09618v2-abstract-full" style="display: none;"> The discovery of enhanced superconductivity (SC) in FeSe films grown on SrTiO3 (FeSe/STO) has revitalized the field of Fe-based superconductors. In the ultrathin limit, the superconducting transition temperature Tc is increased by almost an order of magnitude, raising new questions on the pairing mechanism. As in other unconventional superconductors, antiferromagnetic spin fluctuations have been proposed as a candidate to mediate SC in this system. Thus, it is essential to study the evolution of the spin dynamics of FeSe in the ultrathin limit to elucidate their relationship with superconductivity. Here, we investigate and compare the spin excitations in bulk and monolayer FeSe grown on STO using high-resolution resonant inelastic x-ray scattering (RIXS) and quantum Monte Carlo (QMC) calculations. Despite the absence of long-range magnetic order, bulk FeSe displays dispersive magnetic excitations reminiscent of other Fe-pnictides. Conversely, the spin excitations in FeSe/STO are gapped, dispersionless, and significantly hardened relative to the bulk counterpart. By comparing our RIXS results with simulations of a bilayer Hubbard model, we connect the evolution of the spin excitations to the Fermiology of the two systems. The present study reveals a remarkable reconfiguration of spin excitations in FeSe/STO, which is essential to understand the role of spin fluctuations in the pairing mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09618v2-abstract-full').style.display = 'none'; document.getElementById('2008.09618v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Garcia-Fernandez%2C+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10