CINXE.COM

Search results for: porous rotating disk

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: porous rotating disk</title> <meta name="description" content="Search results for: porous rotating disk"> <meta name="keywords" content="porous rotating disk"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="porous rotating disk" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="porous rotating disk"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1177</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: porous rotating disk</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1177</span> Magnetoviscous Effects on Axi-Symmetric Ferrofluid Flow over a Porous Rotating Disk with Suction/Injection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Kumar">Vikas Kumar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is carried out to investigate the magneto-viscous effects on incompressible ferrofluid flow over a porous rotating disc with suction or injection on the surface of the disc subjected to a magnetic field. The flow under consideration is axi-symmetric steady ferrofluid flow of electrically non-conducting fluid. Karman鈥檚 transformation is used to convert the governing boundary layer equations involved in the problem to a system of non linear coupled differential equations. The solution of this system is obtained by using power series approximation. The flow characteristics i.e. radial, tangential, axial velocities and boundary layer displacement thickness are calculated for various values of MFD (magnetic field dependent) viscosity and for different values of suction injection parameter. Besides this, skin friction coefficients are also calculated on the surface of the disk. Thus, the obtained results are presented numerically and graphically in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axi-symmetric" title="axi-symmetric">axi-symmetric</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrofluid" title=" ferrofluid"> ferrofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20rotating%20disk" title=" porous rotating disk"> porous rotating disk</a> </p> <a href="https://publications.waset.org/abstracts/2034/magnetoviscous-effects-on-axi-symmetric-ferrofluid-flow-over-a-porous-rotating-disk-with-suctioninjection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1176</span> Magnetohydrodynamic (MHD) Flow of Cu-Water Nanofluid Due to a Rotating Disk with Partial Slip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tasawar%20Hayat">Tasawar Hayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Madiha%20Rashid"> Madiha Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Imtiaz"> Maria Imtiaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Alsaedi"> Ahmed Alsaedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This problem is about the study of flow of viscous fluid due to rotating disk in nanofluid. Effects of magnetic field, slip boundary conditions and thermal radiations are encountered. An incompressible fluid soaked the porous medium. In this model, nanoparticles of Cu is considered with water as the base fluid. For Copper-water nanofluid, graphical results are presented to describe the influences of nanoparticles volume fraction (蠁) on velocity and temperature fields for the slip boundary conditions. The governing differential equations are transformed to a system of nonlinear ordinary differential equations by suitable transformations. Convergent solution of the nonlinear system is developed. The obtained results are analyzed through graphical illustrations for different parameters. Moreover, the features of the flow and heat transfer characteristics are analyzed. It is found that the skin friction coefficient and heat transfer rate at the surface are highest in copper-water nanofluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MHD%20nanofluid" title="MHD nanofluid">MHD nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium"> porous medium</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20disk" title=" rotating disk"> rotating disk</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20effect" title=" slip effect"> slip effect</a> </p> <a href="https://publications.waset.org/abstracts/55344/magnetohydrodynamic-mhd-flow-of-cu-water-nanofluid-due-to-a-rotating-disk-with-partial-slip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1175</span> Revolving Ferrofluid Flow in Porous Medium with Rotating Disk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paras%20Ram">Paras Ram</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Kumar"> Vikas Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transmission of Malaria with seasonal were studied through the use of mathematical models. The data from the annual number of Malaria cases reported to the Division of Epidemiology, Ministry of Public Health, Thailand during the period 1997-2011 were analyzed. The transmission of Malaria with seasonal was studied by formulating a mathematical model which had been modified to describe different situations encountered in the transmission of Malaria. In our model, the population was separated into two groups: the human and vector groups, and then constructed a system of nonlinear differential equations. Each human group was divided into susceptible, infectious in hot season, infectious in rainy season, infectious in cool season and recovered classes. The vector population was separated into two classes only: susceptible and infectious vectors. The analysis of the models was given by the standard dynamical modeling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferrofluid" title="ferrofluid">ferrofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium"> porous medium</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20disk" title=" rotating disk"> rotating disk</a>, <a href="https://publications.waset.org/abstracts/search?q=Neuringer-Rosensweig%20Model" title=" Neuringer-Rosensweig Model"> Neuringer-Rosensweig Model</a> </p> <a href="https://publications.waset.org/abstracts/1876/revolving-ferrofluid-flow-in-porous-medium-with-rotating-disk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1174</span> Flow Analysis of Viscous Nanofluid Due to Rotating Rigid Disk with Navier鈥檚 Slip: A Numerical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalil%20Ur%20Rehman">Khalil Ur Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Malik"> M. Y. Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Ali"> Usman Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the problem proposed by Von Karman is treated in the attendance of additional flow field effects when the liquid is spaced above the rotating rigid disk. To be more specific, a purely viscous fluid flow yield by rotating rigid disk with Navier&rsquo;s condition is considered in both magnetohydrodynamic and hydrodynamic frames. The rotating flow regime is manifested with heat source/sink and chemically reactive species. Moreover, the features of thermophoresis and Brownian motion are reported by considering nanofluid model. The flow field formulation is obtained mathematically in terms of high order differential equations. The reduced system of equations is solved numerically through self-coded computational algorithm. The pertinent outcomes are discussed systematically and provided through graphical and tabular practices. A simultaneous way of study makes this attempt attractive in this sense that the article contains dual framework and validation of results with existing work confirms the execution of self-coded algorithm for fluid flow regime over a rotating rigid disk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navier%E2%80%99s%20condition" title="Navier鈥檚 condition">Navier鈥檚 condition</a>, <a href="https://publications.waset.org/abstracts/search?q=Newtonian%20fluid%20model" title=" Newtonian fluid model"> Newtonian fluid model</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20reaction" title=" chemical reaction"> chemical reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20source%2Fsink" title=" heat source/sink"> heat source/sink</a> </p> <a href="https://publications.waset.org/abstracts/82330/flow-analysis-of-viscous-nanofluid-due-to-rotating-rigid-disk-with-naviers-slip-a-numerical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1173</span> Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Spinning Annulus Pulley</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bijit%20Kalita">Bijit Kalita</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20N.%20Surendra"> K. V. N. Surendra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rotating disk is one of the most indispensable parts of a rotating machine. Rotating disk has found many applications in the diverging field of science and technology. In this paper, we have taken into consideration the problem of a heavy spinning disk mounted on a rotor system acted upon by boundary traction. Finite element modelling is used at various loading condition to determine the mixed mode stress intensity factors. The effect of combined shear and normal traction on the boundary is incorporated in the analysis under the action of gravity. The variation near the crack tip is characterized in terms of the stress intensity factor (SIF) with an aim to find the SIF for a wide range of parameters. The results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. A total of hundred cases of the problem are solved for each of the variations in loading arc parameter and crack orientation using finite element models of the disc under compression. All models were prepared and analyzed for the uncracked disk, disk with a single crack at different orientation emanating from shaft hole as well as for a disc with pair of cracks emerging from the same center hole. Curves are plotted for various loading conditions. Finally, crack propagation paths are determined using kink angle concepts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack-tip%20deformations" title="crack-tip deformations">crack-tip deformations</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20loading" title=" static loading"> static loading</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration" title=" stress concentration"> stress concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title=" stress intensity factor"> stress intensity factor</a> </p> <a href="https://publications.waset.org/abstracts/105294/mixed-mode-fracture-analyses-using-finite-element-method-of-edge-cracked-heavy-spinning-annulus-pulley" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1172</span> Exponential Stabilization of a Flexible Structure via a Delayed Boundary Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Smaoui">N. Smaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Chentouf"> B. Chentouf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The boundary stabilization problem of the rotating disk-beam system is a topic of interest in research studies. This system involves a flexible beam attached to the center of a disk, and the control and stabilization of this system have been extensively studied. This research focuses on the case where the center of mass is fixed in an inertial frame, and the rotation of the center is non-uniform. The system is represented by a set of nonlinear coupled partial differential equations and ordinary differential equations. The boundary stabilization problem of this system via a delayed boundary control is considered. We assume that the boundary control is either of a force type control or a moment type control and is subject to the presence of a constant time-delay. The aim of this research is threefold: First, we demonstrate that the rotating disk-beam system is well-posed in an appropriate functional space. Then, we establish the exponential stability property of the system. Finally, we provide numerical simulations that illustrate the theoretical findings. The research utilizes the semigroup theory to establish the well-posedness of the system. The resolvent method is then employed to prove the exponential stability property. Finally, the finite element method is used to demonstrate the theoretical results through numerical simulations. The research findings indicate that the rotating disk-beam system can be stabilized using a boundary control with a time delay. The proof of stability is based on the resolvent method and a variation of constants formula. The numerical simulations further illustrate the theoretical results. The findings have potential implications for the design and implementation of control strategies in similar systems. In conclusion, this research demonstrates that the rotating disk-beam system can be stabilized using a boundary control with time delay. The well-posedness and exponential stability properties are established through theoretical analysis, and these findings are further supported by numerical simulations. The research contributes to the understanding and practical application of control strategies for flexible structures, providing insights into the stability of rotating disk-beam systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotating%20disk-beam" title="rotating disk-beam">rotating disk-beam</a>, <a href="https://publications.waset.org/abstracts/search?q=delayed%20force%20control" title=" delayed force control"> delayed force control</a>, <a href="https://publications.waset.org/abstracts/search?q=delayed%20moment%20control" title=" delayed moment control"> delayed moment control</a>, <a href="https://publications.waset.org/abstracts/search?q=torque%20control" title=" torque control"> torque control</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20stability" title=" exponential stability"> exponential stability</a> </p> <a href="https://publications.waset.org/abstracts/175174/exponential-stabilization-of-a-flexible-structure-via-a-delayed-boundary-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1171</span> Calculation of Stress Intensity Factors in Rotating Disks Containing 3D Semi-Elliptical Cracks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Fakoor">Mahdi Fakoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohammad%20Navid%20Ghoreishi"> Seyed Mohammad Navid Ghoreishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Initiation and propagation of cracks may cause catastrophic failures in rotating disks, and hence determination of fracture parameter in rotating disks under the different working condition is very important issue. In this paper, a comprehensive study of stress intensity factors in rotating disks containing 3D semi-elliptical cracks under the different working condition is investigated. In this regard, after verification of modeling and analytical procedure, the effects of mechanical properties, rotational velocity, and orientation of cracks on Stress Intensity Factors (SIF) in rotating disks under centrifugal loading are investigated. Also, the effects of using composite patch in reduction of SIF in rotating disks are studied. By that way, the effects of patching design variables like mechanical properties, thickness, and ply angle are investigated individually. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title="stress intensity factor">stress intensity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-elliptical%20crack" title=" semi-elliptical crack"> semi-elliptical crack</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20disk" title=" rotating disk"> rotating disk</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis%20%28FEA%29" title=" finite element analysis (FEA)"> finite element analysis (FEA)</a> </p> <a href="https://publications.waset.org/abstracts/47599/calculation-of-stress-intensity-factors-in-rotating-disks-containing-3d-semi-elliptical-cracks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1170</span> Linear Dynamic Stability Analysis of a Continuous Rotor-Disk-Blades System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Rahimi%20Dehgolan">F. Rahimi Dehgolan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20Khadem"> S. E. Khadem</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bab"> S. Bab</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Najafee"> M. Najafee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, using rotating systems like shafts and disks in industrial machines have been increased constantly. Dynamic stability is one of the most important factors in designing rotating systems. In this study, linear frequencies and stability of a coupled continuous flexible rotor-disk-blades system are studied. The Euler-Bernoulli beam theory is utilized to model the blade and shaft. The equations of motion are extracted using the extended Hamilton principle. The equations of motion have been simplified using the Coleman and complex transformations method. The natural frequencies of the linear part of the system are extracted, and the effects of various system parameters on the natural frequencies and decay rates (stability condition) are clarified. It can be seen that the centrifugal stiffening effect applied to the blades is the most important parameter for stability of the considered rotating system. This result highlights the importance of considering this stiffing effect in blades equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotating%20shaft" title="rotating shaft">rotating shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20blades" title=" flexible blades"> flexible blades</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20stiffness" title=" centrifugal stiffness"> centrifugal stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/56540/linear-dynamic-stability-analysis-of-a-continuous-rotor-disk-blades-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1169</span> Magnetohydrodynamics Flow and Heat Transfer in a Non-Newtonian Power-Law Fluid due to a Rotating Disk with Velocity Slip and Temperature Jump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Dayana%20Khairunnisa%20Rosli">Nur Dayana Khairunnisa Rosli</a>, <a href="https://publications.waset.org/abstracts/search?q=Seripah%20Awang%20Kechil"> Seripah Awang Kechil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Swirling flows with velocity slip are important in nature and industrial processes. The present work considers the effects of velocity slip, temperature jump and suction/injection on the flow and heat transfer of power-law fluids due to a rotating disk in the presence of magnetic field. The system of the partial differential equations is highly non-linear. The number of independent variables is reduced by transforming the system into a system of coupled non-linear ordinary differential equations using similarity transformations. The effects of suction/injection, velocity slip and temperature jump on the flow rates are investigated for various cases of shear thinning and shear thickening power law fluids. The thermal and velocity jump strongly reduce the heat transfer rate and skin friction coefficient. Suction decreases the radial and tangential skin friction coefficient and the rate of heat transfer. It is also observed that the effects are more pronounced in the case of shear thinning fluids as compared to shear thickening fluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=power-law%20fluids" title=" power-law fluids"> power-law fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20disk" title=" rotating disk"> rotating disk</a>, <a href="https://publications.waset.org/abstracts/search?q=suction%20or%20injection" title=" suction or injection"> suction or injection</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20jump" title=" temperature jump"> temperature jump</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20slip" title=" velocity slip"> velocity slip</a> </p> <a href="https://publications.waset.org/abstracts/53534/magnetohydrodynamics-flow-and-heat-transfer-in-a-non-newtonian-power-law-fluid-due-to-a-rotating-disk-with-velocity-slip-and-temperature-jump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1168</span> The Creep Analysis of a Varying Thickness on a Rotating Composite Disk with Different Particle Size by Using Sherby鈥檚 Law</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rupinder%20Kaur">Rupinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Harjot%20Kaur"> Harjot Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to present the study of the effect of varying thickness on rotating composite disks made from Al-SiC_P having different particle sizes. Mathematical modeling is used to calculate the effect of varying thickness with different particle sizes on rotating composite disks in radial as well as tangential directions with thermal gradients. In comparison to various particle sizes with varied thicknesses, long-term deformation occurs. The results are displayed visually, demonstrating how creep deformation decreases with changing particle size and thickness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creep" title="creep">creep</a>, <a href="https://publications.waset.org/abstracts/search?q=varying%20thickness" title=" varying thickness"> varying thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title=" particle size"> particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=stresses%20and%20strain%20rates" title=" stresses and strain rates"> stresses and strain rates</a> </p> <a href="https://publications.waset.org/abstracts/173915/the-creep-analysis-of-a-varying-thickness-on-a-rotating-composite-disk-with-different-particle-size-by-using-sherbys-law" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1167</span> Magneto-Electric Behavior a Couple Aluminum / Steel Xc48</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mekroud">A. Mekroud</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khemis"> A. Khemis</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Mecibah"> M. S. Mecibah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tribological behavior of a pin of paramagnetic material (aluminum), rolling on a rotating disk made of ferromagnetic material (steel XC48) in the presence of an externally applied alternating magnetic field, with the passage of electric current were studied. All tests were performed using a conventional tribometer pin- disk. Structural characterization of the surfaces in contact, oxides and wear debris, by X-ray diffraction (胃-2胃 angle), showed the significant effect of magnetic field on the activation of the contact surface of the pin in no ferromagnetic material. The absence of the magnetic field causes a change of wear mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20characterization%20of%20the%20surfaces" title="structural characterization of the surfaces">structural characterization of the surfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=oxides%20and%20wear%20debris" title=" oxides and wear debris"> oxides and wear debris</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction "> X-ray diffraction </a> </p> <a href="https://publications.waset.org/abstracts/28068/magneto-electric-behavior-a-couple-aluminum-steel-xc48" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1166</span> Prediction of the Dark Matter Distribution and Fraction in Individual Galaxies Based Solely on Their Rotation Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramzi%20Suleiman">Ramzi Suleiman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the author proposed an observationally-based relativity theory termed information relativity theory (IRT). The theory is simple and is based only on basic principles, with no prior axioms and no free parameters. For the case of a body of mass in uniform rectilinear motion relative to an observer, the theory transformations uncovered a matter-dark matter duality, which prescribes that the sum of the densities of the body's baryonic matter and dark matter, as measured by the observer, is equal to the body's matter density at rest. It was shown that the theory transformations were successful in predicting several important phenomena in small particle physics, quantum physics, and cosmology. This paper extends the theory transformations to the cases of rotating disks and spheres. The resulting transformations for a rotating disk are utilized to derive predictions of the radial distributions of matter and dark matter densities in rotationally supported galaxies based solely on their observed rotation curves. It is also shown that for galaxies with flattening curves, good approximations of the radial distributions of matter and dark matter and of the dark matter fraction could be obtained from one measurable scale radius. Test of the model on five galaxies, chosen randomly from the SPARC database, yielded impressive predictions. The rotation curves of all the investigated galaxies emerged as accurate traces of the predicted radial density distributions of their dark matter. This striking result raises an intriguing physical explanation of gravity in galaxies, according to which it is the proximal drag of the stars and gas in the galaxy by its rotating dark matter web. We conclude by alluding briefly to the application of the proposed model to stellar systems and black holes. This study also hints at the potential of the discovered matter-dark matter duality in fixing the standard model of elementary particles in a natural manner without the need for hypothesizing about supersymmetric particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dark%20matter" title="dark matter">dark matter</a>, <a href="https://publications.waset.org/abstracts/search?q=galaxies%20rotation%20curves" title=" galaxies rotation curves"> galaxies rotation curves</a>, <a href="https://publications.waset.org/abstracts/search?q=SPARC" title=" SPARC"> SPARC</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20disk" title=" rotating disk"> rotating disk</a> </p> <a href="https://publications.waset.org/abstracts/171407/prediction-of-the-dark-matter-distribution-and-fraction-in-individual-galaxies-based-solely-on-their-rotation-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1165</span> The Quasar 3C 47:Extreme Population B Jetted Source with Double-Peaked Profile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shimeles%20Terefe%20Mengistue">Shimeles Terefe Mengistue</a>, <a href="https://publications.waset.org/abstracts/search?q=Paola%20Marziani"> Paola Marziani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ascensi%C3%B3ndel%20Olmo"> Ascensi贸ndel Olmo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Perea"> Jaime Perea</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirjana%20Povi%C4%87"> Mirjana Povi膰</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The theory that rotating accretion disks are responsible for the broad emission-line profiles in quasars is frequently put forth; however, the presence of accretion disk (AD) in active galactic nuclei (AGN) had limited and indirect observational support. In order to evaluate the extent to which the AD is a source of the broad Balmer lines and high ionization UV lines in radio-loud (RL) AGN, we focused on an extremely jetted RL quasar, 3C 47 that clearly shows a double peaked profile. This work presents its optical spectra and UV observations from the HST/FOS covering the rest-frame spectral range from 2000 to 7000 \AA. The fit of the low ionization lines, Hbeta, Halpha and MgII2800 show profiles that are in very good agreement with a relativistic Keplerian AD model. The profile of the prototypical high ionization lines can also be modeled by the contribution of the AD, with additional components due to outflows and emissions from the innermost part of the narrow line regions (NLRs). A prominent fit of the resulting double peaked profiles were found and very important disk parameters of the disk have been determined using the Hbeta, Halpha and MgII2800 lines: the inner and outer radii (both in units of G/mbh, where mbh is the supermassive black hole), an inclination to the line of sight, the emissivity index and the local broadening parameter. In addition, the accretion parameters, /mbh and /lledd are also determined. This work indicates that the line profile of 3C 47 shows the most convincing direct evidence for the presence of a rotating AD in AGN and the broad, double-peaked profiles originate from this AD that surrounds an /mbh. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20galactic%20nuclei" title="active galactic nuclei">active galactic nuclei</a>, <a href="https://publications.waset.org/abstracts/search?q=quasars" title=" quasars"> quasars</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20lines" title=" emission lines"> emission lines</a>, <a href="https://publications.waset.org/abstracts/search?q=Double-peaked" title=" Double-peaked"> Double-peaked</a>, <a href="https://publications.waset.org/abstracts/search?q=supermassive%20black%20hole" title=" supermassive black hole"> supermassive black hole</a> </p> <a href="https://publications.waset.org/abstracts/175551/the-quasar-3c-47extreme-population-b-jetted-source-with-double-peaked-profile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1164</span> Preparation of Porous Metal Membrane by Thermal Annealing for Thin Film Encapsulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaibir%20Sharma">Jaibir Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20JaeWung"> Lee JaeWung</a>, <a href="https://publications.waset.org/abstracts/search?q=Merugu%20Srinivas"> Merugu Srinivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Navab%20Singh"> Navab Singh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents thermal annealing dewetting technique for the preparation of porous metal membrane for thin film encapsulation application. Thermal annealing dewetting experimental results reveal that pore size in porous metal membrane depend upon i.e. 1. The substrate on which metal is deposited for formation of porous metal cap membrane, 2. Melting point of metal used for porous metal cap layer membrane formation, 3. Thickness of metal used for cap layer, 4. Temperature used for porous metal membrane formation. Silver (Ag) was used as a metal for preparation of porous metal membrane by annealing the film at different temperature. Pores in porous silver film were analyzed using Scanning Electron Microscope (SEM). In order to check the usefulness of porous metal film for thin film encapsulation application, the porous silver film prepared on amorphous silicon (a-Si) was release using XeF2. Finally, guide line and structures are suggested to use this porous membrane for thin film encapsulation (TFE) application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dewetting" title="dewetting">dewetting</a>, <a href="https://publications.waset.org/abstracts/search?q=themal%20annealing" title=" themal annealing"> themal annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=metal" title=" metal"> metal</a>, <a href="https://publications.waset.org/abstracts/search?q=melting%20point" title=" melting point"> melting point</a>, <a href="https://publications.waset.org/abstracts/search?q=porous" title=" porous"> porous</a> </p> <a href="https://publications.waset.org/abstracts/31602/preparation-of-porous-metal-membrane-by-thermal-annealing-for-thin-film-encapsulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">657</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1163</span> CFD-Parametric Study in Stator Heat Transfer of an Axial Flux Permanent Magnet Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Rasekh">Alireza Rasekh</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Sergeant"> Peter Sergeant</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Vierendeels"> Jan Vierendeels</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper copes with the numerical simulation for convective heat transfer in the stator disk of an axial flux permanent magnet (AFPM) electrical machine. Overheating is one of the main issues in the design of AFMPs, which mainly occurs in the stator disk, so that it needs to be prevented. A rotor-stator configuration with 16 magnets at the periphery of the rotor is considered. Air is allowed to flow through openings in the rotor disk and channels being formed between the magnets and in the gap region between the magnets and the stator surface. The rotating channels between the magnets act as a driving force for the air flow. The significant non-dimensional parameters are the rotational Reynolds number, the gap size ratio, the magnet thickness ratio, and the magnet angle ratio. The goal is to find correlations for the Nusselt number on the stator disk according to these non-dimensional numbers. Therefore, CFD simulations have been performed with the multiple reference frame (MRF) technique to model the rotary motion of the rotor and the flow around and inside the machine. A minimization method is introduced by a pattern-search algorithm to find the appropriate values of the reference temperature. It is found that the correlations are fast, robust and is capable of predicting the stator heat transfer with a good accuracy. The results reveal that the magnet angle ratio diminishes the stator heat transfer, whereas the rotational Reynolds number and the magnet thickness ratio improve the convective heat transfer. On the other hand, there a certain gap size ratio at which the stator heat transfer reaches a maximum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AFPM" title="AFPM">AFPM</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=magnet%20parameters" title=" magnet parameters"> magnet parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=stator%20heat%20transfer" title=" stator heat transfer"> stator heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/56746/cfd-parametric-study-in-stator-heat-transfer-of-an-axial-flux-permanent-magnet-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1162</span> Fabrication of Highly-Ordered Interconnected Porous Polymeric Particles and Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Alroaithi">Mohammad Alroaithi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Porous polymeric materials have attracted a great attention due to their distinctive porous structure within a polymer matrix. They are characterised by the presence of external pores on the surface as well as inner interconnected windows. Conventional techniques to produce porous polymeric materials encounters major challenge in controlling the properties of the resultant structures including morphology, pores, cavities size, and porosity. Herein, we present a facile and versatile microfluidics technique for the fabrication of uniform porous polymeric structures with highly ordered and well-defined interconnected windows. The shapes of the porous structures can either be a microparticles or foam. Both shapes used microfluidics platform to first produce monodisperse emulsion. The uniform emulsions, were then consolidated into porous structures through UV photopolymerisation. The morphology, pores, cavities size, and porosity of the structures can be precisely manipulated by the flowrate. The proposed strategy might provide a key advantage for fabrication of uniform porous materials over many existing technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer" title="polymer">polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20particles" title=" porous particles"> porous particles</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20structures" title=" porous structures"> porous structures</a> </p> <a href="https://publications.waset.org/abstracts/84709/fabrication-of-highly-ordered-interconnected-porous-polymeric-particles-and-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1161</span> Numerical Study of Fluid Flow and Heat Transfer in the Spongy-Porous Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeinab%20Sayed%20Abdel%20Rehim">Zeinab Sayed Abdel Rehim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ziada"> M. A. Ziada</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Salwa%20El-Deeb"> H. Salwa El-Deeb </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical study of fluid flow, heat transfer and thermal energy storing or released in/from spongy-porous media to predict the thermal performance and characteristics of the porous media as packed bed system is presented in this work. This system is cylindrical channel filled with porous media (carbon foam). The system consists of working fluid (air) and spongy-porous medium; they act as the heat exchanger (heating or cooling modes) where thermal interaction occurs between the working fluid and the porous medium. The spongy-porous media are defined by the different type of porous medium employed in the storing or cooling modes. Two different porous media are considered in this study: Carbon foam, and Silicon rubber. The flow of the working fluid (air) is one dimensional in the axial direction from the top to downward and steady state conditions. The numerical results of transient temperature distribution for both working fluid and the spongy-porous medium phases and the amount of stored/realized heat inside/from the porous medium for each case with respect to the operating parameters and the spongy-porous media characteristics are illustrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20flow" title="fluid flow">fluid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=spongy-porous%20media" title=" spongy-porous media"> spongy-porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20performance" title=" thermal performance"> thermal performance</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20conditions" title=" transient conditions"> transient conditions</a> </p> <a href="https://publications.waset.org/abstracts/30266/numerical-study-of-fluid-flow-and-heat-transfer-in-the-spongy-porous-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1160</span> Enhanced Disk-Based Databases towards Improved Hybrid in-Memory Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Kaspi">Samuel Kaspi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sitalakshmi%20Venkatraman"> Sitalakshmi Venkatraman </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In-memory database systems are becoming popular due to the availability and affordability of sufficiently large RAM and processors in modern high-end servers with the capacity to manage large in-memory database transactions. While fast and reliable in-memory systems are still being developed to overcome cache misses, CPU/IO bottlenecks and distributed transaction costs, disk-based data stores still serve as the primary persistence. In addition, with the recent growth in multi-tenancy cloud applications and associated security concerns, many organisations consider the trade-offs and continue to require fast and reliable transaction processing of disk-based database systems as an available choice. For these organizations, the only way of increasing throughput is by improving the performance of disk-based concurrency control. This warrants a hybrid database system with the ability to selectively apply an enhanced disk-based data management within the context of in-memory systems that would help improve overall throughput. The general view is that in-memory systems substantially outperform disk-based systems. We question this assumption and examine how a modified variation of access invariance that we call enhanced memory access, (EMA) can be used to allow very high levels of concurrency in the pre-fetching of data in disk-based systems. We demonstrate how this prefetching in disk-based systems can yield close to in-memory performance, which paves the way for improved hybrid database systems. This paper proposes a novel EMA technique and presents a comparative study between disk-based EMA systems and in-memory systems running on hardware configurations of equivalent power in terms of the number of processors and their speeds. The results of the experiments conducted clearly substantiate that when used in conjunction with all concurrency control mechanisms, EMA can increase the throughput of disk-based systems to levels quite close to those achieved by in-memory system. The promising results of this work show that enhanced disk-based systems facilitate in improving hybrid data management within the broader context of in-memory systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in-memory%20database" title="in-memory database">in-memory database</a>, <a href="https://publications.waset.org/abstracts/search?q=disk-based%20system" title=" disk-based system"> disk-based system</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20database" title=" hybrid database"> hybrid database</a>, <a href="https://publications.waset.org/abstracts/search?q=concurrency%20control" title=" concurrency control"> concurrency control</a> </p> <a href="https://publications.waset.org/abstracts/20941/enhanced-disk-based-databases-towards-improved-hybrid-in-memory-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1159</span> Numerical Simulation of Von Karman Swirling Bioconvection Nanofluid Flow from a Deformable Rotating Disk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kadir">Ali Kadir</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Mishra"> S. R. Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shamshuddin"> M. Shamshuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Anwar%20Beg"> O. Anwar Beg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motivation- Rotating disk bio-reactors are fundamental to numerous medical/biochemical engineering processes including oxygen transfer, chromatography, purification and swirl-assisted pumping. The modern upsurge in biologically-enhanced engineering devices has embraced new phenomena including bioconvection of micro-organisms (photo-tactic, oxy-tactic, gyrotactic etc). The proven thermal performance superiority of nanofluids i.e. base fluids doped with engineered nanoparticles has also stimulated immense implementation in biomedical designs. Motivated by these emerging applications, we present a numerical thermofluid dynamic simulation of the transport phenomena in bioconvection nanofluid rotating disk bioreactor flow. Methodology- We study analytically and computationally the time-dependent three-dimensional viscous gyrotactic bioconvection in swirling nanofluid flow from a rotating disk configuration. The disk is also deformable i.e. able to extend (stretch) in the radial direction. Stefan blowing is included. The Buongiorno dilute nanofluid model is adopted wherein Brownian motion and thermophoresis are the dominant nanoscale effects. The primitive conservation equations for mass, radial, tangential and axial momentum, heat (energy), nanoparticle concentration and micro-organism density function are formulated in a cylindrical polar coordinate system with appropriate wall and free stream boundary conditions. A mass convective condition is also incorporated at the disk surface. Forced convection is considered i.e. buoyancy forces are neglected. This highly nonlinear, strongly coupled system of unsteady partial differential equations is normalized with the classical Von Karman and other transformations to render the boundary value problem (BVP) into an ordinary differential system which is solved with the efficient Adomian decomposition method (ADM). Validation with earlier Runge-Kutta shooting computations in the literature is also conducted. Extensive computations are presented (with the aid of MATLAB symbolic software) for radial and circumferential velocity components, temperature, nanoparticle concentration, micro-organism density number and gradients of these functions at the disk surface (radial local skin friction, local circumferential skin friction, Local Nusselt number, Local Sherwood number, motile microorganism mass transfer rate). Main Findings- Increasing radial stretching parameter decreases radial velocity and radial skin friction, reduces azimuthal velocity and skin friction, decreases local Nusselt number and motile micro-organism mass wall flux whereas it increases nano-particle local Sherwood number. Disk deceleration accelerates the radial flow, damps the azimuthal flow, decreases temperatures and thermal boundary layer thickness, depletes the nano-particle concentration magnitudes (and associated nano-particle species boundary layer thickness) and furthermore decreases the micro-organism density number and gyrotactic micro-organism species boundary layer thickness. Increasing Stefan blowing accelerates the radial flow and azimuthal (circumferential flow), elevates temperatures of the nanofluid, boosts nano-particle concentration (volume fraction) and gyrotactic micro-organism density number magnitudes whereas suction generates the reverse effects. Increasing suction effect reduces radial skin friction and azimuthal skin friction, local Nusselt number, and motile micro-organism wall mass flux whereas it enhances the nano-particle species local Sherwood number. Conclusions - Important transport characteristics are identified of relevance to real bioreactor nanotechnological systems not discussed in previous works. ADM is shown to achieve very rapid convergence and highly accurate solutions and shows excellent promise in simulating swirling multi-physical nano-bioconvection fluid dynamics problems. Furthermore, it provides an excellent complement to more general commercial computational fluid dynamics simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-nanofluids" title="bio-nanofluids">bio-nanofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20disk%20bioreactors" title=" rotating disk bioreactors"> rotating disk bioreactors</a>, <a href="https://publications.waset.org/abstracts/search?q=Von%20Karman%20swirling%20flow" title=" Von Karman swirling flow"> Von Karman swirling flow</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solutions" title=" numerical solutions"> numerical solutions</a> </p> <a href="https://publications.waset.org/abstracts/97804/numerical-simulation-of-von-karman-swirling-bioconvection-nanofluid-flow-from-a-deformable-rotating-disk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1158</span> Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Annulus Pulley</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bijit%20Kalita">Bijit Kalita</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20N.%20Surendra"> K. V. N. Surendra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pulley works under both compressive loading due to contacting belt in tension and central torque due to cause rotation. In a power transmission system, the belt pulley assemblies offer a contact problem in the form of two mating cylindrical parts. In this work, we modeled a pulley as a heavy two-dimensional circular disk. Stress analysis due to contact loading in the pulley mechanism is performed. Finite element analysis (FEA) is conducted for a pulley to investigate the stresses experienced on its inner and outer periphery. In most of the heavy-duty applications, most frequently used mechanisms to transmit power in applications such as automotive engines, industrial machines, etc. is Belt Drive. Usually, very heavy circular disks are used as pulleys. A pulley could be entitled as a drum and may have a groove between two flanges around the circumference. A rope, belt, cable or chain can be the driving element of a pulley system that runs over the pulley inside the groove. A pulley is experienced by normal and shear tractions on its contact region in the process of motion transmission. The region may be belt-pulley contact surface or pulley-shaft contact surface. In 1895, Hertz solved the elastic contact problem for point contact and line contact of an ideal smooth object. Afterward, this hypothesis is generally utilized for computing the actual contact zone. Detailed stress analysis in such contact region of such pulleys is quite necessary to prevent early failure. In this paper, the results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. Based on the literature on contact stress problem induced in the wide field of applications, generated stress distribution on the shaft-pulley and belt-pulley interfaces due to the application of high-tension and torque was evaluated in this study using FEA concepts. Finally, the results obtained from ANSYS (APDL) were compared with the Hertzian contact theory. The study is mainly focused on the fatigue life estimation of a rotating part as a component of an engine assembly using the most famous Paris equation. Digital Image Correlation (DIC) analyses have been performed using the open-source software. From the displacement computed using the images acquired at a minimum and maximum force, displacement field amplitude is computed. From these fields, the crack path is defined and stress intensity factors and crack tip position are extracted. A non-linear least-squares projection is used for the purpose of the estimation of fatigue crack growth. Further study will be extended for the various application of rotating machinery such as rotating flywheel disk, jet engine, compressor disk, roller disk cutter etc., where Stress Intensity Factor (SIF) calculation plays a significant role on the accuracy and reliability of a safe design. Additionally, this study will be progressed to predict crack propagation in the pulley using maximum tangential stress (MTS) criteria for mixed mode fracture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack-tip%20deformations" title="crack-tip deformations">crack-tip deformations</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20stress" title=" contact stress"> contact stress</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration" title=" stress concentration"> stress concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title=" stress intensity factor"> stress intensity factor</a> </p> <a href="https://publications.waset.org/abstracts/109631/mixed-mode-fracture-analyses-using-finite-element-method-of-edge-cracked-heavy-annulus-pulley" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1157</span> Humidity Sensing Behavior of Graphene Oxide on Porous Silicon Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Hasani">Amirhossein Hasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamin%20Houshmand%20Sharifi"> Shamin Houshmand Sharifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we investigate humidity sensing behavior of the graphene oxide with porous silicon substrate. By evaporation method, aluminum interdigital electrodes have been deposited onto porous silicon substrate. Then, by drop-casting method graphene oxide solution was deposited onto electrodes. The porous silicon was formed by electrochemical etching. The experimental results showed that using porous silicon substrate, we obtained two times larger sensitivity and response time compared with the results obtained with silicon substrate without porosity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title="graphene oxide">graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20silicon" title=" porous silicon"> porous silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity%20sensor" title=" humidity sensor"> humidity sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a> </p> <a href="https://publications.waset.org/abstracts/13093/humidity-sensing-behavior-of-graphene-oxide-on-porous-silicon-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">605</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1156</span> Memristive Properties of Nanostructured Porous Silicon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madina%20Alimova">Madina Alimova</a>, <a href="https://publications.waset.org/abstracts/search?q=Margulan%20Ibraimov"> Margulan Ibraimov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayan%20Tileu"> Ayan Tileu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper describes methods for obtaining porous structures with the properties of a silicon-based memristor and explains the electrical properties of porous silicon films. Based on the results, there is a positive shift in the current-voltage characteristics (CVC) after each measurement, i.e., electrical properties depend not only on the applied voltage but also on the previous state. After 3 minutes of rest, the film returns to its original state (reset). The method for obtaining a porous silicon nanofilm with the properties of a memristor is simple and does not require additional effort. Based on the measurement results, the typical memristive behavior of the porous silicon nanofilm is analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20silicon" title="porous silicon">porous silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=current-voltage%20characteristics" title=" current-voltage characteristics"> current-voltage characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=memristor" title=" memristor"> memristor</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofilms" title=" nanofilms"> nanofilms</a> </p> <a href="https://publications.waset.org/abstracts/147523/memristive-properties-of-nanostructured-porous-silicon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1155</span> Experimental Technique to Study Colloid Deposition in Porous Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Djehiche">Abdelkader Djehiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostefa%20Gafsi"> Mostefa Gafsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Henri%20Bertin"> Henri Bertin</a>, <a href="https://publications.waset.org/abstracts/search?q=Aziz%20Omari"> Aziz Omari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flows of colloidal suspensions in porous media find many applications in fields such as Petroleum, Hydraulic engineering, deep-bed filtration. For each application, the scientific problems can be summarized the flow in porous medium of a colloidal suspension whose particles having characteristic dimension is considerable in comparison with the pores dimension. In certain cases, one can observe a deposit of particles on the surface of the pores which results in a significant modification in the physical properties of the porous medium. The objective of our study is to use a non-destructive experimental method, the attenuation of g-rays, to study the influence of the number of Peclet on the deposit of latex particles in a consolidated porous medium. The first results obtained show a good agreement between local and global measurements of the deposit of the particles in porous medium. The deposit takes place in a progressive way along the porous medium and leads to a monolayer deposit of which the average thickness is of about the size diameter of the colloidal particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colloid" title="colloid">colloid</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20ray" title=" gamma ray"> gamma ray</a>, <a href="https://publications.waset.org/abstracts/search?q=Peclet%20number" title=" Peclet number"> Peclet number</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium"> porous medium</a> </p> <a href="https://publications.waset.org/abstracts/85302/experimental-technique-to-study-colloid-deposition-in-porous-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1154</span> HcDD: The Hybrid Combination of Disk Drives in Active Storage Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shu%20Yin">Shu Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiyang%20Ding"> Zhiyang Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianzhong%20Huang"> Jianzhong Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaojun%20Ruan"> Xiaojun Ruan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaomin%20Zhu"> Xiaomin Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Qin"> Xiao Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since large-scale and data-intensive applications have been widely deployed, there is a growing demand for high-performance storage systems to support data-intensive applications. Compared with traditional storage systems, next-generation systems will embrace dedicated processor to reduce computational load of host machines and will have hybrid combinations of different storage devices. The advent of flash- memory-based solid state disk has become a critical role in revolutionizing the storage world. However, instead of simply replacing the traditional magnetic hard disk with the solid state disk, it is believed that finding a complementary approach to corporate both of them is more challenging and attractive. This paper explores an idea of active storage, an emerging new storage configuration, in terms of the architecture and design, the parallel processing capability, the cooperation of other machines in cluster computing environment, and a disk configuration, the hybrid combination of different types of disk drives. Experimental results indicate that the proposed HcDD achieves better I/O performance and longer storage system lifespan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arallel%20storage%20system" title="arallel storage system">arallel storage system</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20storage%20system" title=" hybrid storage system"> hybrid storage system</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20inten-%20sive" title=" data inten- sive"> data inten- sive</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20disks" title=" solid state disks"> solid state disks</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a> </p> <a href="https://publications.waset.org/abstracts/14833/hcdd-the-hybrid-combination-of-disk-drives-in-active-storage-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1153</span> Developing an Intelligent Table Tennis Ball Machine with Human Play Simulation for Technical Training</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen-Chi%20An">Chen-Chi An</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Yi%20He"> Jun-Yi He</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Han%20Hsieh"> Cheng-Han Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen-Ching%20Ting"> Chen-Ching Ting</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research has successfully developed an intelligent table tennis ball machine with human play simulate all situations of human play to take the service. It is well known; an excellent ball machine can help the table tennis coach to provide more efficient teaching, also give players the good technical training and entertainment. An excellent ball machine should be able to service all balls based on human play simulation due to the conventional competitions are today all taken place for people. In this work, two counter-rotating wheels are used to service the balls, where changing the absolute rotating speeds of the two wheels and the differences of rotating speeds between the two wheels can adjust the struck forces and the rotating speeds of the ball. The relationships between the absolute rotating speed of the two wheels and the struck forces of the ball as well as the differences rotating speeds between the two wheels and the rotating speeds of the ball are experimentally determined for technical development. The outlet speed, the ejected distance, and the rotating speed of the ball were measured by changing the absolute rotating speeds of the two wheels in terms of a series of differences in rotating speed between the two wheels for calibration of the ball machine; where the outlet speed and the ejected distance of the ball were further converted to the struck forces of the ball. In process, the balls serviced by the intelligent ball machine were based on the received calibration curves with help of the computer. Experiments technically used photosensitive devices to detect the outlet and rotating speed of the ball. Finally, this research developed some teaching programs for technical training using three ball machines and received more efficient training. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=table%20tennis" title="table tennis">table tennis</a>, <a href="https://publications.waset.org/abstracts/search?q=ball%20machine" title=" ball machine"> ball machine</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20play%20simulation" title=" human play simulation"> human play simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=counter-rotating%20wheels" title=" counter-rotating wheels"> counter-rotating wheels</a> </p> <a href="https://publications.waset.org/abstracts/49530/developing-an-intelligent-table-tennis-ball-machine-with-human-play-simulation-for-technical-training" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1152</span> Effect of Coriolis Force on Magnetoconvection in an Anisotropic Porous Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20F.%20M.%20Mokhtar">N. F. M. Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Z.%20A.%20Hamid"> N. Z. A. Hamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports an analytical investigation of the stability and thermal convection in a horizontal anisotropic porous medium in the presence of Coriolis force and magnetic field. The Darcy model is used in the momentum equation and Boussinesq approximation is considered for the density variation of the porous medium. The upper and lower boundaries of the porous medium are assumed to be conducting to temperature perturbation and we used first order Chebyshev polynomial Tau method to solve the resulting eigenvalue problem. Analytical solution is obtained for the case of stationary convection. It is found that the porous layer system becomes unstable when the mechanical anisotropy parameter elevated and increasing the Coriolis force and magnetic field help to stabilize the anisotropy porous medium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic" title="anisotropic">anisotropic</a>, <a href="https://publications.waset.org/abstracts/search?q=Chebyshev%20tau%20method" title=" Chebyshev tau method"> Chebyshev tau method</a>, <a href="https://publications.waset.org/abstracts/search?q=Coriolis%20force" title=" Coriolis force"> Coriolis force</a>, <a href="https://publications.waset.org/abstracts/search?q=Magnetic%20field" title=" Magnetic field"> Magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/96169/effect-of-coriolis-force-on-magnetoconvection-in-an-anisotropic-porous-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1151</span> Design of a Sliding Controller for Optical Disk Drives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Sheng%20Lu">Yu-Sheng Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung-Hsin%20Cheng"> Chung-Hsin Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuen-Shing%20Jan"> Shuen-Shing Jan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design and implementation of a sliding-mod controller for tracking servo of optical disk drives. The tracking servo is majorly subject to two disturbance sources: radial run-out and shock. The lateral run-out disturbance is mostly repeatable, and a model of such disturbance is incorporated into the controller design to effectively compensate for it. Meanwhile, as a shock disturbance is usually non-repeatable and unpredictable, the sliding-mode controller is employed for its robustness to abrupt perturbations. As a result, a sliding-mode controller design based on the internal model principle is tailored for tracking servo of optical disk drives in order to deal with these two major disturbances. Experimental comparative studies are conducted to investigate the effectiveness of the specially designed controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechatronics" title="mechatronics">mechatronics</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20disk%20drive" title=" optical disk drive"> optical disk drive</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding-mode%20control" title=" sliding-mode control"> sliding-mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=servo%20systems" title=" servo systems"> servo systems</a> </p> <a href="https://publications.waset.org/abstracts/9020/design-of-a-sliding-controller-for-optical-disk-drives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1150</span> A Rotating Facility with High Temporal and Spatial Resolution Particle Image Velocimetry System to Investigate the Turbulent Boundary Layer Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruquan%20You">Ruquan You</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiwang%20Li"> Haiwang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi%20Tao"> Zhi Tao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A time-resolved particle image velocimetry (PIV) system is developed to investigate the boundary layer flow with the effect of rotating Coriolis and buoyancy force. This time-resolved PIV system consists of a 10 Watts continuous laser diode and a high-speed camera. The laser diode is able to provide a less than 1mm thickness sheet light, and the high-speed camera can capture the 6400 frames per second with 1024脳1024 pixels. The whole laser and the camera are fixed on the rotating facility with 1 radius meters and up to 500 revolutions per minute, which can measure the boundary flow velocity in the rotating channel with and without ribs directly at rotating conditions. To investigate the effect of buoyancy force, transparent heater glasses are used to provide the constant thermal heat flux, and then the density differences are generated near the channel wall, and the buoyancy force can be simulated when the channel is rotating. Due to the high temporal and spatial resolution of the system, the proper orthogonal decomposition (POD) can be developed to analyze the characteristic of the turbulent boundary layer flow at rotating conditions. With this rotating facility and PIV system, the velocity profile, Reynolds shear stress, spatial and temporal correlation, and the POD modes of the turbulent boundary layer flow can be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotating%20facility" title="rotating facility">rotating facility</a>, <a href="https://publications.waset.org/abstracts/search?q=PIV" title=" PIV"> PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20flow" title=" boundary layer flow"> boundary layer flow</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20and%20temporal%20resolution" title=" spatial and temporal resolution"> spatial and temporal resolution</a> </p> <a href="https://publications.waset.org/abstracts/100655/a-rotating-facility-with-high-temporal-and-spatial-resolution-particle-image-velocimetry-system-to-investigate-the-turbulent-boundary-layer-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1149</span> Elaboration and Investigation of the New Ecologically Clean Friction Composite Materials on the Basis of Nanoporous Raw Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lia%20Gventsadze">Lia Gventsadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Elguja%20Kutelia"> Elguja Kutelia</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Gventsadze"> David Gventsadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the article is to show the possibility for the development of a new generation, eco-friendly (asbestos free) nano-porous friction materials on the basis of Georgian raw materials, along with the determination of technological parameters for their production, as well as the optimization of tribological properties and the investigation of structural aspects of wear peculiarities of elaborated materials using the scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) methods. The study investigated the tribological properties of the polymer friction materials on the basis of the phenol-formaldehyde resin using the porous diatomite filler modified by silane with the aim to improve the thermal stability, while the composition was modified by iron phosphate, technical carbon and basalt fibre. As a result of testing the stable values of friction factor (0.3-0,45) were reached, both in dry and wet friction conditions, the friction working parameters (friction factor and wear stability) remained stable up to 500 OC temperatures, the wear stability of gray cast-iron disk increased 3-4 times, the soundless operation of materials without squeaking were achieved. Herewith it was proved that small amount of ingredients (5-6) are enough to compose the nano-porous friction materials. The study explains the mechanism of the action of nano-porous composition base brake lining materials and its tribological efficiency on the basis of the triple phase model of the tribo-pair. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brake%20lining" title="brake lining">brake lining</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20coefficient" title=" friction coefficient"> friction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoporous%20composite" title=" nanoporous composite"> nanoporous composite</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20resin" title=" phenolic resin"> phenolic resin</a> </p> <a href="https://publications.waset.org/abstracts/13090/elaboration-and-investigation-of-the-new-ecologically-clean-friction-composite-materials-on-the-basis-of-nanoporous-raw-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1148</span> Performance Analysis of a 6-Phase PMG Exciter with Rotating Thyristor-Controlled Rectification Topologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonas%20Kristiansen%20N%C3%B8land">Jonas Kristiansen N酶land</a>, <a href="https://publications.waset.org/abstracts/search?q=Karina%20Hjelmervik"> Karina Hjelmervik</a>, <a href="https://publications.waset.org/abstracts/search?q=Urban%20Lundin"> Urban Lundin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thyristor bridge rectifier is often used for control of excitation equipment for synchronous generators. However, on the rotating shaft of brushless exciters, the diode bridge rectifier is mostly used. The step response of a conventional brushless rotating excitation system is slow compared to static excitation systems. This paper investigates the performance of different thyristor-controlled rectification topologies applied on the shaft of a 6-phase PMG exciter connected to a synchronous generator. One of the important issues is the steady-state torque ripple produced by the thyristor bridges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brushless%20exciters" title="brushless exciters">brushless exciters</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20exciters" title=" rotating exciters"> rotating exciters</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20machines" title=" permanent magnet machines"> permanent magnet machines</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20generators" title=" synchronous generators"> synchronous generators</a> </p> <a href="https://publications.waset.org/abstracts/35257/performance-analysis-of-a-6-phase-pmg-exciter-with-rotating-thyristor-controlled-rectification-topologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=porous%20rotating%20disk&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=porous%20rotating%20disk&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=porous%20rotating%20disk&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=porous%20rotating%20disk&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=porous%20rotating%20disk&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=porous%20rotating%20disk&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=porous%20rotating%20disk&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=porous%20rotating%20disk&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=porous%20rotating%20disk&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=porous%20rotating%20disk&amp;page=39">39</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=porous%20rotating%20disk&amp;page=40">40</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=porous%20rotating%20disk&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10