CINXE.COM

Quantization (signal processing) - Wikipedia

<!doctype html> <html class="client-nojs skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="en" dir="ltr"> <head> <base href="https://en.m.wikipedia.org/wiki/Quantization_(signal_processing)"> <meta charset="UTF-8"> <title>Quantization (signal processing) - Wikipedia</title> <script>(function(){var className="client-js skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"4d7872b0-6574-4cea-bc83-9b5a93278350","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Quantization_(signal_processing)","wgTitle":"Quantization (signal processing)","wgCurRevisionId":1256393006,"wgRevisionId": 1256393006,"wgArticleId":317018,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Quantization_(signal_processing)","wgRelevantArticleId":317018,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true}, "wgMFIsSupportedEditRequest":true,"wgMFScriptPath":"","wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":true,"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"ast","autonym":"asturianu","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym": "Kotava","dir":"ltr"},{"lang":"awa","autonym":"अवधी","dir":"ltr"},{"lang":"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"be","autonym":"беларуская","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bn","autonym":"বাংলা","dir":"ltr"},{"lang":"bo","autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy", "autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"bs","autonym":"bosanski","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"ckb","autonym":"کوردی","dir":"rtl"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"cy","autonym":"Cymraeg","dir":"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"dga","autonym":"Dagaare", "dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"el","autonym":"Ελληνικά","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"eo","autonym":"Esperanto","dir":"ltr"},{"lang":"eu","autonym":"euskara","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir":"ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym": "Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"gl","autonym":"galego","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym":"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"hi","autonym":"हिन्दी","dir":"ltr"},{"lang":"hif", "autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hy","autonym":"հայերեն","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"is","autonym":"íslenska","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"ja","autonym":"日本語","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir":"ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"ka","autonym":"ქართული","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir": "ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kk","autonym":"қазақша","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym":"ಕನ್ನಡ","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr" },{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"lt","autonym":"lietuvių","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"lv","autonym":"latviešu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{ "lang":"ml","autonym":"മലയാളം","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"ms","autonym":"Bahasa Melayu","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl", "autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nn","autonym":"norsk nynorsk","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch", "dir":"ltr"},{"lang":"pms","autonym":"Piemontèis","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"ro","autonym":"română","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se", "autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"sh","autonym":"srpskohrvatski / српскохрватски","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym":"සිංහල","dir":"ltr"},{"lang":"sk","autonym":"slovenčina","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sl","autonym":"slovenščina","dir":"ltr"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so","autonym":"Soomaaliga","dir":"ltr"},{"lang":"sq","autonym":"shqip","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang": "sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"th","autonym":"ไทย","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tl","autonym":"Tagalog","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka", "dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ur","autonym":"اردو","dir":"rtl"},{"lang":"uz","autonym":"oʻzbekcha / ўзбекча","dir":"ltr"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vec","autonym":"vèneto","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"wuu","autonym":"吴语","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש", "dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv", "ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"], "isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q198099","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true,"talkAtTop":true,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":true},"wgMinervaDownloadNamespaces":[0]};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready", "ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","skins.minerva.amc.styles":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages", "ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.amc.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&amp;only=styles&amp;skin=minerva"> <script async src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Quantization_error.png/1200px-Quantization_error.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="407"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Quantization_error.png/800px-Quantization_error.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="271"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Quantization_error.png/640px-Quantization_error.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="217"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Quantization (signal processing) - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Quantization_(signal_processing)&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Quantization_(signal_processing)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="dns-prefetch" href="//meta.wikimedia.org"> <link rel="dns-prefetch" href="//login.wikimedia.org"> <meta http-equiv="X-Translated-By" content="Google"> <meta http-equiv="X-Translated-To" content="en"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.1hbgkFx4Qn8.O/am=DgY/d=1/rs=AN8SPfqlmAPxwfG457BPbRXwNq39oSMGHg/m=corsproxy" data-sourceurl="https://en.m.wikipedia.org/wiki/Quantization_(signal_processing)"></script> <link href="https://fonts.googleapis.com/css2?family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20..48,100..700,0..1,-50..200" rel="stylesheet"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.1hbgkFx4Qn8.O/am=DgY/d=1/exm=corsproxy/ed=1/rs=AN8SPfqlmAPxwfG457BPbRXwNq39oSMGHg/m=phishing_protection" data-phishing-protection-enabled="false" data-forms-warning-enabled="true" data-source-url="https://en.m.wikipedia.org/wiki/Quantization_(signal_processing)"></script> <meta name="robots" content="none"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Quantization_signal_processing rootpage-Quantization_signal_processing stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.1hbgkFx4Qn8.O/am=DgY/d=1/exm=corsproxy,phishing_protection/ed=1/rs=AN8SPfqlmAPxwfG457BPbRXwNq39oSMGHg/m=navigationui" data-environment="prod" data-proxy-url="https://en-m-wikipedia-org.translate.goog" data-proxy-full-url="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-source-url="https://en.m.wikipedia.org/wiki/Quantization_(signal_processing)" data-source-language="auto" data-target-language="en" data-display-language="en-GB" data-detected-source-language="en" data-is-source-untranslated="false" data-source-untranslated-url="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.m.wikipedia.org/wiki/Quantization_(signal_processing)&amp;anno=2" data-client="tr"></script> <div id="mw-mf-viewport"> <div id="mw-mf-page-center"><a class="mw-mf-page-center__mask" href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"><input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--home" href="https://en-m-wikipedia-org.translate.goog/wiki/Main_Page?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Home</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--random" href="https://en-m-wikipedia-org.translate.goog/wiki/Special:Random?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Random</span> </a></li> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--nearby" href="https://en-m-wikipedia-org.translate.goog/wiki/Special:Nearby?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">Nearby</span> </a></li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--login" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Special:UserLogin&amp;returnto=Quantization+(signal+processing)&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Log in</span> </a></li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--settings" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Special:MobileOptions&amp;returnto=Quantization+(signal+processing)&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Settings</span> </a></li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--donate" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source%3Ddonate%26utm_medium%3Dsidebar%26utm_campaign%3DC13_en.wikipedia.org%26uselang%3Den%26utm_key%3Dminerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Donate</span> </a></li> </ul> <ul class="hlist"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--about" href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:About?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">About Wikipedia</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--disclaimers" href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:General_disclaimer?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">Disclaimers</span> </a></li> </ul> </div><label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Main_Page?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"><input type="hidden" name="title" value="Special:Search"> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div><button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Search</span> </button> </form> <nav class="minerva-user-navigation" aria-label="User navigation"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Quantization (signal processing)</span></h1> <div class="tagline"></div> </div> <ul id="p-associated-pages" class="minerva__tab-container"> <li class="minerva__tab selected"><a class="minerva__tab-text" href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" rel="" data-event-name="tabs.subject">Article</a></li> <li class="minerva__tab "><a class="minerva__tab-text" href="https://en-m-wikipedia-org.translate.goog/wiki/Talk:Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" rel="discussion" data-event-name="tabs.talk">Talk</a></li> </ul> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"><a role="button" href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#p-lang" data-mw="interface" data-event-name="menu.languages" title="Language" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Language</span> </a></li> <li id="page-actions-watch" class="page-actions-menu__list-item"><a role="button" id="ca-watch" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Special:UserLogin&amp;returnto=Quantization+(signal+processing)&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Watch</span> </a></li> <li id="page-actions-edit" class="page-actions-menu__list-item"><a role="button" id="ca-edit" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Edit</span> </a></li> </ul> </nav><!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"> <script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script> <div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"> <section class="mf-section-0" id="mf-section-0"> <p class="mw-empty-elt"></p> <p><b>Quantization</b>, in mathematics and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Digital_signal_processing?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Digital signal processing">digital signal processing</a>, is the process of mapping input values from a large set (often a continuous set) to output values in a (countable) smaller set, often with a finite <a href="https://en-m-wikipedia-org.translate.goog/wiki/Number_of_elements?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Number of elements">number of elements</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Rounding?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Rounding">Rounding</a> and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Truncation?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Truncation">truncation</a> are typical examples of quantization processes. Quantization is involved to some degree in nearly all digital signal processing, as the process of representing a signal in digital form ordinarily involves rounding. Quantization also forms the core of essentially all <a href="https://en-m-wikipedia-org.translate.goog/wiki/Lossy_compression?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Lossy compression">lossy compression</a> algorithms.</p> <figure class="mw-default-size" typeof="mw:File/Thumb"> <a href="https://en-m-wikipedia-org.translate.goog/wiki/File:Quantization_error.png?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Quantization_error.png/440px-Quantization_error.png" decoding="async" width="440" height="149" class="mw-file-element" srcset="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Quantization_error.png/660px-Quantization_error.png 1.5x,https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Quantization_error.png/880px-Quantization_error.png 2x" data-file-width="1280" data-file-height="434"></a> <figcaption> The simplest way to quantize a signal is to choose the digital amplitude value closest to the original analog amplitude. This example shows the original analog signal (green), the quantized signal (black dots), the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Signal_reconstruction?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Signal reconstruction">signal reconstructed</a> from the quantized signal (yellow) and the difference between the original signal and the reconstructed signal (red). The difference between the original signal and the reconstructed signal is the quantization error and, in this simple quantization scheme, is a deterministic function of the input signal. </figcaption> </figure> <p>The difference between an input value and its quantized value (such as <a href="https://en-m-wikipedia-org.translate.goog/wiki/Round-off_error?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Round-off error">round-off error</a>) is referred to as <b>quantization error</b>. A device or <a href="https://en-m-wikipedia-org.translate.goog/wiki/Algorithm_function?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Algorithm function">algorithmic function</a> that performs quantization is called a <b>quantizer</b>. An <a href="https://en-m-wikipedia-org.translate.goog/wiki/Analog-to-digital_converter?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Analog-to-digital converter">analog-to-digital converter</a> is an example of a quantizer.</p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"> <input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"> <div class="toctitle" lang="en" dir="ltr"> <h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span> </div> <ul> <li class="toclevel-1 tocsection-1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Example"><span class="tocnumber">1</span> <span class="toctext">Example</span></a></li> <li class="toclevel-1 tocsection-2"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Mathematical_properties"><span class="tocnumber">2</span> <span class="toctext">Mathematical properties</span></a></li> <li class="toclevel-1 tocsection-3"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Types"><span class="tocnumber">3</span> <span class="toctext">Types</span></a> <ul> <li class="toclevel-2 tocsection-4"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Analog-to-digital_converter"><span class="tocnumber">3.1</span> <span class="toctext">Analog-to-digital converter</span></a></li> <li class="toclevel-2 tocsection-5"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Rate%E2%80%93distortion_optimization"><span class="tocnumber">3.2</span> <span class="toctext">Rate–distortion optimization</span></a></li> <li class="toclevel-2 tocsection-6"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Mid-riser_and_mid-tread_uniform_quantizers"><span class="tocnumber">3.3</span> <span class="toctext">Mid-riser and mid-tread uniform quantizers</span></a></li> <li class="toclevel-2 tocsection-7"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Dead-zone_quantizers"><span class="tocnumber">3.4</span> <span class="toctext">Dead-zone quantizers</span></a></li> </ul></li> <li class="toclevel-1 tocsection-8"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Noise_and_error_characteristics"><span class="tocnumber">4</span> <span class="toctext">Noise and error characteristics</span></a> <ul> <li class="toclevel-2 tocsection-9"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Additive_noise_model"><span class="tocnumber">4.1</span> <span class="toctext">Additive noise model</span></a></li> <li class="toclevel-2 tocsection-10"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Quantization_error_models"><span class="tocnumber">4.2</span> <span class="toctext">Quantization error models</span></a></li> <li class="toclevel-2 tocsection-11"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Quantization_noise_model"><span class="tocnumber">4.3</span> <span class="toctext">Quantization noise model</span></a></li> </ul></li> <li class="toclevel-1 tocsection-12"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Design"><span class="tocnumber">5</span> <span class="toctext">Design</span></a> <ul> <li class="toclevel-2 tocsection-13"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Granular_distortion_and_overload_distortion"><span class="tocnumber">5.1</span> <span class="toctext">Granular distortion and overload distortion</span></a></li> <li class="toclevel-2 tocsection-14"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Rate%E2%80%93distortion_quantizer_design"><span class="tocnumber">5.2</span> <span class="toctext">Rate–distortion quantizer design</span></a></li> <li class="toclevel-2 tocsection-15"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Neglecting_the_entropy_constraint:_Lloyd%E2%80%93Max_quantization"><span class="tocnumber">5.3</span> <span class="toctext">Neglecting the entropy constraint: Lloyd–Max quantization</span></a></li> <li class="toclevel-2 tocsection-16"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Uniform_quantization_and_the_6_dB/bit_approximation"><span class="tocnumber">5.4</span> <span class="toctext">Uniform quantization and the 6&nbsp;dB/bit approximation</span></a></li> </ul></li> <li class="toclevel-1 tocsection-17"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#In_other_fields"><span class="tocnumber">6</span> <span class="toctext">In other fields</span></a></li> <li class="toclevel-1 tocsection-18"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#See_also"><span class="tocnumber">7</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-19"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Notes"><span class="tocnumber">8</span> <span class="toctext">Notes</span></a></li> <li class="toclevel-1 tocsection-20"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#References"><span class="tocnumber">9</span> <span class="toctext">References</span></a></li> <li class="toclevel-1 tocsection-21"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Further_reading"><span class="tocnumber">10</span> <span class="toctext">Further reading</span></a></li> <li class="toclevel-1 tocsection-22"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#See_also_2"><span class="tocnumber">11</span> <span class="toctext">See also</span></a></li> </ul> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Example">Example</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Example" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-1 collapsible-block" id="mf-section-1"> <p>For example, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Rounding?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Round_half_up" title="Rounding">rounding</a> a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Real_number?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Real number">real number</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"> </noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" data-alt="{\displaystyle x}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> to the nearest integer value forms a very basic type of quantizer – a <i>uniform</i> one. A typical (<i>mid-tread</i>) uniform quantizer with a quantization <i>step size</i> equal to some value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \Delta } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \Delta }"> </noscript><span class="lazy-image-placeholder" style="width: 1.936ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" data-alt="{\displaystyle \Delta }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> can be expressed as</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q(x)=\Delta \cdot \left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> Q </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ⌊ </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> x </mi> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> </mfrac> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ⌋ </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle Q(x)=\Delta \cdot \left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953f2b96d64a62e07c90e47cff07b22cfe2cdd85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.012ex; height:6.176ex;" alt="{\displaystyle Q(x)=\Delta \cdot \left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor }"> </noscript><span class="lazy-image-placeholder" style="width: 22.012ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953f2b96d64a62e07c90e47cff07b22cfe2cdd85" data-alt="{\displaystyle Q(x)=\Delta \cdot \left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, </dd> </dl> <p>where the notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lfloor \ \rfloor }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ⌊<!-- ⌊ --> </mo> <mtext> &nbsp; </mtext> <mo fence="false" stretchy="false"> ⌋<!-- ⌋ --> </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \lfloor \ \rfloor } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5c5f3c09db405aa8eeb516b1281a0af12c5633b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.645ex; height:2.843ex;" alt="{\displaystyle \lfloor \ \rfloor }"> </noscript><span class="lazy-image-placeholder" style="width: 2.645ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5c5f3c09db405aa8eeb516b1281a0af12c5633b" data-alt="{\displaystyle \lfloor \ \rfloor }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> denotes the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Floor_function?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Floor function">floor function</a>.</p> <p>Alternatively, the same quantizer may be expressed in terms of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Ceiling_function?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Ceiling function">ceiling function</a>, as</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q(x)=\Delta \cdot \left\lceil {\frac {x}{\Delta }}-{\frac {1}{2}}\right\rceil }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> Q </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ⌈ </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> x </mi> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> </mfrac> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ⌉ </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle Q(x)=\Delta \cdot \left\lceil {\frac {x}{\Delta }}-{\frac {1}{2}}\right\rceil } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/589717e3717d0cced093c0af004dc20ffbe02f58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.012ex; height:6.176ex;" alt="{\displaystyle Q(x)=\Delta \cdot \left\lceil {\frac {x}{\Delta }}-{\frac {1}{2}}\right\rceil }"> </noscript><span class="lazy-image-placeholder" style="width: 22.012ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/589717e3717d0cced093c0af004dc20ffbe02f58" data-alt="{\displaystyle Q(x)=\Delta \cdot \left\lceil {\frac {x}{\Delta }}-{\frac {1}{2}}\right\rceil }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. </dd> </dl> <p>(The notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lceil \ \rceil }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ⌈<!-- ⌈ --> </mo> <mtext> &nbsp; </mtext> <mo fence="false" stretchy="false"> ⌉<!-- ⌉ --> </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \lceil \ \rceil } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cd9da603e62fe9d5acb19777c56b59d13c3d2de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.645ex; height:2.843ex;" alt="{\displaystyle \lceil \ \rceil }"> </noscript><span class="lazy-image-placeholder" style="width: 2.645ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cd9da603e62fe9d5acb19777c56b59d13c3d2de" data-alt="{\displaystyle \lceil \ \rceil }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> denotes the ceiling function).</p> <p>The essential property of a quantizer is having a countable-set of possible output-values members smaller than the set of possible input values. The members of the set of output values may have integer, rational, or real values. For simple rounding to the nearest integer, the step size <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \Delta } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \Delta }"> </noscript><span class="lazy-image-placeholder" style="width: 1.936ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" data-alt="{\displaystyle \Delta }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is equal to 1. With <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta =1}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <mo> = </mo> <mn> 1 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \Delta =1} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf46f3fc2f930287a56caef6549a2909c3978fbd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.197ex; height:2.176ex;" alt="{\displaystyle \Delta =1}"> </noscript><span class="lazy-image-placeholder" style="width: 6.197ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf46f3fc2f930287a56caef6549a2909c3978fbd" data-alt="{\displaystyle \Delta =1}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> or with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \Delta } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \Delta }"> </noscript><span class="lazy-image-placeholder" style="width: 1.936ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" data-alt="{\displaystyle \Delta }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> equal to any other integer value, this quantizer has real-valued inputs and integer-valued outputs.</p> <p>When the quantization step size (Δ) is small relative to the variation in the signal being quantized, it is relatively simple to show that the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Mean_squared_error?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Mean squared error">mean squared error</a> produced by such a rounding operation will be approximately <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta ^{2}/12}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 12 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \Delta ^{2}/12} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34b5be83e88394057daa090c25107b1b57adb48a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.477ex; height:3.176ex;" alt="{\displaystyle \Delta ^{2}/12}"> </noscript><span class="lazy-image-placeholder" style="width: 6.477ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34b5be83e88394057daa090c25107b1b57adb48a" data-alt="{\displaystyle \Delta ^{2}/12}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.<sup id="cite_ref-Sheppard_1-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Sheppard-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Bennett_2-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Bennett-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-OliverPierceShannon_3-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-OliverPierceShannon-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Stein_4-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Stein-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-GishPierce_5-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-GishPierce-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-GrayNeuhoff_6-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-GrayNeuhoff-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Mean squared error is also called the quantization <i>noise power</i>. Adding one bit to the quantizer halves the value of Δ, which reduces the noise power by the factor <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span>. In terms of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Decibel?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Decibel">decibels</a>, the noise power change is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle 10\cdot \log _{10}(1/4)\ \approx \ -6\ \mathrm {dB} .}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mn> 10 </mn> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mi> log </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 10 </mn> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 4 </mn> <mo stretchy="false"> ) </mo> <mtext> &nbsp; </mtext> <mo> ≈<!-- ≈ --> </mo> <mtext> &nbsp; </mtext> <mo> −<!-- − --> </mo> <mn> 6 </mn> <mtext> &nbsp; </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> <mi mathvariant="normal"> B </mi> </mrow> <mo> . </mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \scriptstyle 10\cdot \log _{10}(1/4)\ \approx \ -6\ \mathrm {dB} .} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c8fd999c7f6991821f8d2fe533d63994d6de7ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.103ex; height:2.176ex;" alt="{\displaystyle \scriptstyle 10\cdot \log _{10}(1/4)\ \approx \ -6\ \mathrm {dB} .}"> </noscript><span class="lazy-image-placeholder" style="width: 17.103ex;height: 2.176ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c8fd999c7f6991821f8d2fe533d63994d6de7ae" data-alt="{\displaystyle \scriptstyle 10\cdot \log _{10}(1/4)\ \approx \ -6\ \mathrm {dB} .}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Because the set of possible output values of a quantizer is countable, any quantizer can be decomposed into two distinct stages, which can be referred to as the <i>classification</i> stage (or <i>forward quantization</i> stage) and the <i>reconstruction</i> stage (or <i>inverse quantization</i> stage), where the classification stage maps the input value to an integer <i>quantization index</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"> </noscript><span class="lazy-image-placeholder" style="width: 1.211ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" data-alt="{\displaystyle k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and the reconstruction stage maps the index <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"> </noscript><span class="lazy-image-placeholder" style="width: 1.211ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" data-alt="{\displaystyle k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> to the <i>reconstruction value</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y_{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b2ab0248723a410cc2c67ce06ad5c043dcbb933" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.228ex; height:2.009ex;" alt="{\displaystyle y_{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.228ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b2ab0248723a410cc2c67ce06ad5c043dcbb933" data-alt="{\displaystyle y_{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> that is the output approximation of the input value. For the example uniform quantizer described above, the forward quantization stage can be expressed as</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=\left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> k </mi> <mo> = </mo> <mrow> <mo> ⌊ </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> x </mi> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> </mfrac> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ⌋ </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k=\left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2dabc358baa4191891f0933adcfb4040bc67d33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:14.631ex; height:6.176ex;" alt="{\displaystyle k=\left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor }"> </noscript><span class="lazy-image-placeholder" style="width: 14.631ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2dabc358baa4191891f0933adcfb4040bc67d33" data-alt="{\displaystyle k=\left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, </dd> </dl> <p>and the reconstruction stage for this example quantizer is simply</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}=k\cdot \Delta }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> = </mo> <mi> k </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y_{k}=k\cdot \Delta } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4613add6fc8632fbf47861b25cec9fc8388f7339" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.153ex; height:2.509ex;" alt="{\displaystyle y_{k}=k\cdot \Delta }"> </noscript><span class="lazy-image-placeholder" style="width: 10.153ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4613add6fc8632fbf47861b25cec9fc8388f7339" data-alt="{\displaystyle y_{k}=k\cdot \Delta }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. </dd> </dl> <p>This decomposition is useful for the design and analysis of quantization behavior, and it illustrates how the quantized data can be communicated over a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Communication_channel?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Communication channel">communication channel</a> – a <i>source encoder</i> can perform the forward quantization stage and send the index information through a communication channel, and a <i>decoder</i> can perform the reconstruction stage to produce the output approximation of the original input data. In general, the forward quantization stage may use any function that maps the input data to the integer space of the quantization index data, and the inverse quantization stage can conceptually (or literally) be a table look-up operation to map each quantization index to a corresponding reconstruction value. This two-stage decomposition applies equally well to <a href="https://en-m-wikipedia-org.translate.goog/wiki/Vector_quantization?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Vector quantization">vector</a> as well as scalar quantizers.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Mathematical_properties">Mathematical properties</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=2&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Mathematical properties" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-2 collapsible-block" id="mf-section-2"> <p>Because quantization is a many-to-few mapping, it is an inherently <a href="https://en-m-wikipedia-org.translate.goog/wiki/Non-linear?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Non-linear">non-linear</a> and irreversible process (i.e., because the same output value is shared by multiple input values, it is impossible, in general, to recover the exact input value when given only the output value).</p> <p>The set of possible input values may be infinitely large, and may possibly be continuous and therefore <a href="https://en-m-wikipedia-org.translate.goog/wiki/Uncountable?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Uncountable">uncountable</a> (such as the set of all real numbers, or all real numbers within some limited range). The set of possible output values may be <a href="https://en-m-wikipedia-org.translate.goog/wiki/Finite_set?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Finite set">finite</a> or <a href="https://en-m-wikipedia-org.translate.goog/wiki/Countably_infinite?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Countably infinite">countably infinite</a>.<sup id="cite_ref-GrayNeuhoff_6-1" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-GrayNeuhoff-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> The input and output sets involved in quantization can be defined in a rather general way. For example, vector quantization is the application of quantization to multi-dimensional (vector-valued) input data.<sup id="cite_ref-7" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Types">Types</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=3&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Types" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-3 collapsible-block" id="mf-section-3"> <figure class="mw-default-size" typeof="mw:File/Thumb"> <a href="https://en-m-wikipedia-org.translate.goog/wiki/File:2-bit_resolution_analog_comparison.png?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b1/2-bit_resolution_analog_comparison.png/220px-2-bit_resolution_analog_comparison.png" decoding="async" width="220" height="159" class="mw-file-element" data-file-width="797" data-file-height="577"> </noscript><span class="lazy-image-placeholder" style="width: 220px;height: 159px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b1/2-bit_resolution_analog_comparison.png/220px-2-bit_resolution_analog_comparison.png" data-width="220" data-height="159" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b1/2-bit_resolution_analog_comparison.png/330px-2-bit_resolution_analog_comparison.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b1/2-bit_resolution_analog_comparison.png/440px-2-bit_resolution_analog_comparison.png 2x" data-class="mw-file-element">&nbsp;</span></a> <figcaption> 2-bit resolution with four levels of quantization compared to analog<sup id="cite_ref-8" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </figcaption> </figure> <figure class="mw-default-size" typeof="mw:File/Thumb"> <a href="https://en-m-wikipedia-org.translate.goog/wiki/File:3-bit_resolution_analog_comparison.png?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/3-bit_resolution_analog_comparison.png/220px-3-bit_resolution_analog_comparison.png" decoding="async" width="220" height="185" class="mw-file-element" data-file-width="724" data-file-height="608"> </noscript><span class="lazy-image-placeholder" style="width: 220px;height: 185px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/3-bit_resolution_analog_comparison.png/220px-3-bit_resolution_analog_comparison.png" data-width="220" data-height="185" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/3-bit_resolution_analog_comparison.png/330px-3-bit_resolution_analog_comparison.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b7/3-bit_resolution_analog_comparison.png/440px-3-bit_resolution_analog_comparison.png 2x" data-class="mw-file-element">&nbsp;</span></a> <figcaption> 3-bit resolution with eight levels </figcaption> </figure> <div class="mw-heading mw-heading3"> <h3 id="Analog-to-digital_converter">Analog-to-digital converter</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=4&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Analog-to-digital converter" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>An <a href="https://en-m-wikipedia-org.translate.goog/wiki/Analog-to-digital_converter?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Analog-to-digital converter">analog-to-digital converter</a> (ADC) can be modeled as two processes: <a href="https://en-m-wikipedia-org.translate.goog/wiki/Sampling_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sampling (signal processing)">sampling</a> and quantization. Sampling converts a time-varying voltage signal into a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Discrete-time_signal?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Discrete-time signal">discrete-time signal</a>, a sequence of real numbers. Quantization replaces each real number with an approximation from a finite set of discrete values. Most commonly, these discrete values are represented as fixed-point words. Though any number of quantization levels is possible, common word-lengths are <a href="https://en-m-wikipedia-org.translate.goog/wiki/Audio_bit_depth?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Audio bit depth">8-bit</a> (256 levels), 16-bit (65,536 levels) and 24-bit (16.8&nbsp;million levels). Quantizing a sequence of numbers produces a sequence of quantization errors which is sometimes modeled as an additive random signal called <b>quantization noise</b> because of its <a href="https://en-m-wikipedia-org.translate.goog/wiki/Stochastic?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Stochastic">stochastic</a> behavior. The more levels a quantizer uses, the lower is its quantization noise power.</p> <div class="mw-heading mw-heading3"> <h3 id="Rate–distortion_optimization"><span id="Rate.E2.80.93distortion_optimization"></span>Rate–distortion optimization</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=5&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Rate–distortion optimization" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p><i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Rate%E2%80%93distortion_theory?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Rate–distortion theory">Rate–distortion optimized</a></i> quantization is encountered in <a href="https://en-m-wikipedia-org.translate.goog/wiki/Source_coding?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Source coding">source coding</a> for lossy data compression algorithms, where the purpose is to manage distortion within the limits of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Bit_rate?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Bit rate">bit rate</a> supported by a communication channel or storage medium. The analysis of quantization in this context involves studying the amount of data (typically measured in digits or bits or bit <i>rate</i>) that is used to represent the output of the quantizer, and studying the loss of precision that is introduced by the quantization process (which is referred to as the <i>distortion</i>).</p> <div class="mw-heading mw-heading3"> <h3 id="Mid-riser_and_mid-tread_uniform_quantizers">Mid-riser and mid-tread uniform quantizers</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=6&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Mid-riser and mid-tread uniform quantizers" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Most uniform quantizers for signed input data can be classified as being of one of two types: <i>mid-riser</i> and <i>mid-tread</i>. The terminology is based on what happens in the region around the value 0, and uses the analogy of viewing the input-output function of the quantizer as a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Stairway?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Stairway">stairway</a>. Mid-tread quantizers have a zero-valued reconstruction level (corresponding to a <i>tread</i> of a stairway), while mid-riser quantizers have a zero-valued classification threshold (corresponding to a <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Stair_riser?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Stair riser">riser</a></i> of a stairway).<sup id="cite_ref-Gersho77_9-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Gersho77-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup></p> <p>Mid-tread quantization involves rounding. The formulas for mid-tread uniform quantization are provided in the previous section.</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q(x)=\Delta \cdot \left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> Q </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ⌊ </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> x </mi> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> </mfrac> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ⌋ </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle Q(x)=\Delta \cdot \left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953f2b96d64a62e07c90e47cff07b22cfe2cdd85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.012ex; height:6.176ex;" alt="{\displaystyle Q(x)=\Delta \cdot \left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor }"> </noscript><span class="lazy-image-placeholder" style="width: 22.012ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953f2b96d64a62e07c90e47cff07b22cfe2cdd85" data-alt="{\displaystyle Q(x)=\Delta \cdot \left\lfloor {\frac {x}{\Delta }}+{\frac {1}{2}}\right\rfloor }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, </dd> </dl> <p>Mid-riser quantization involves truncation. The input-output formula for a mid-riser uniform quantizer is given by:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q(x)=\Delta \cdot \left(\left\lfloor {\frac {x}{\Delta }}\right\rfloor +{\frac {1}{2}}\right)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> Q </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ⌊ </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> x </mi> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> </mfrac> </mrow> <mo> ⌋ </mo> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle Q(x)=\Delta \cdot \left(\left\lfloor {\frac {x}{\Delta }}\right\rfloor +{\frac {1}{2}}\right)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e294457483e180cf6b618167c48076fd31e58194" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:25.178ex; height:6.176ex;" alt="{\displaystyle Q(x)=\Delta \cdot \left(\left\lfloor {\frac {x}{\Delta }}\right\rfloor +{\frac {1}{2}}\right)}"> </noscript><span class="lazy-image-placeholder" style="width: 25.178ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e294457483e180cf6b618167c48076fd31e58194" data-alt="{\displaystyle Q(x)=\Delta \cdot \left(\left\lfloor {\frac {x}{\Delta }}\right\rfloor +{\frac {1}{2}}\right)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, </dd> </dl> <p>where the classification rule is given by</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=\left\lfloor {\frac {x}{\Delta }}\right\rfloor }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> k </mi> <mo> = </mo> <mrow> <mo> ⌊ </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> x </mi> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> </mfrac> </mrow> <mo> ⌋ </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k=\left\lfloor {\frac {x}{\Delta }}\right\rfloor } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9db48424d238d4426587160971975b052e9d65bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:9.537ex; height:5.009ex;" alt="{\displaystyle k=\left\lfloor {\frac {x}{\Delta }}\right\rfloor }"> </noscript><span class="lazy-image-placeholder" style="width: 9.537ex;height: 5.009ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9db48424d238d4426587160971975b052e9d65bd" data-alt="{\displaystyle k=\left\lfloor {\frac {x}{\Delta }}\right\rfloor }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>and the reconstruction rule is</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}=\Delta \cdot \left(k+{\tfrac {1}{2}}\right)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> = </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mstyle> </mrow> </mrow> <mo> ) </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y_{k}=\Delta \cdot \left(k+{\tfrac {1}{2}}\right)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df40d7422579750cb074a226966e8b9c8731280a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:16.781ex; height:3.509ex;" alt="{\displaystyle y_{k}=\Delta \cdot \left(k+{\tfrac {1}{2}}\right)}"> </noscript><span class="lazy-image-placeholder" style="width: 16.781ex;height: 3.509ex;vertical-align: -1.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df40d7422579750cb074a226966e8b9c8731280a" data-alt="{\displaystyle y_{k}=\Delta \cdot \left(k+{\tfrac {1}{2}}\right)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. </dd> </dl> <p>Note that mid-riser uniform quantizers do not have a zero output value – their minimum output magnitude is half the step size. In contrast, mid-tread quantizers do have a zero output level. For some applications, having a zero output signal representation may be a necessity.</p> <p>In general, a mid-riser or mid-tread quantizer may not actually be a <i>uniform</i> quantizer – i.e., the size of the quantizer's classification <a href="https://en-m-wikipedia-org.translate.goog/wiki/Interval_(mathematics)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Interval (mathematics)">intervals</a> may not all be the same, or the spacing between its possible output values may not all be the same. The distinguishing characteristic of a mid-riser quantizer is that it has a classification threshold value that is exactly zero, and the distinguishing characteristic of a mid-tread quantizer is that is it has a reconstruction value that is exactly zero.<sup id="cite_ref-Gersho77_9-1" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Gersho77-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup></p> <div class="mw-heading mw-heading3"> <h3 id="Dead-zone_quantizers">Dead-zone quantizers</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=7&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Dead-zone quantizers" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>A <b>dead-zone quantizer</b> is a type of mid-tread quantizer with symmetric behavior around 0. The region around the zero output value of such a quantizer is referred to as the <i>dead zone</i> or <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Deadband?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Deadband">deadband</a></i>. The dead zone can sometimes serve the same purpose as a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Noise_gate?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Noise gate">noise gate</a> or <a href="https://en-m-wikipedia-org.translate.goog/wiki/Squelch?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Squelch">squelch</a> function. Especially for compression applications, the dead-zone may be given a different width than that for the other steps. For an otherwise-uniform quantizer, the dead-zone width can be set to any value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> w </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle w} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}"> </noscript><span class="lazy-image-placeholder" style="width: 1.664ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" data-alt="{\displaystyle w}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> by using the forward quantization rule<sup id="cite_ref-10" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-11" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-SullivanIT_12-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-SullivanIT-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup></p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=\operatorname {sgn}(x)\cdot \max \left(0,\left\lfloor {\frac {\left|x\right|-w/2}{\Delta }}+1\right\rfloor \right)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> k </mi> <mo> = </mo> <mi> sgn </mi> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mo movablelimits="true" form="prefix"> max </mo> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mo> ⌊ </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow> <mo> | </mo> <mi> x </mi> <mo> | </mo> </mrow> <mo> −<!-- − --> </mo> <mi> w </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 2 </mn> </mrow> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> </mfrac> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ⌋ </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k=\operatorname {sgn}(x)\cdot \max \left(0,\left\lfloor {\frac {\left|x\right|-w/2}{\Delta }}+1\right\rfloor \right)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/009afc81fefff3cd64b9a8d17bc18a714d49f547" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:39.832ex; height:6.343ex;" alt="{\displaystyle k=\operatorname {sgn}(x)\cdot \max \left(0,\left\lfloor {\frac {\left|x\right|-w/2}{\Delta }}+1\right\rfloor \right)}"> </noscript><span class="lazy-image-placeholder" style="width: 39.832ex;height: 6.343ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/009afc81fefff3cd64b9a8d17bc18a714d49f547" data-alt="{\displaystyle k=\operatorname {sgn}(x)\cdot \max \left(0,\left\lfloor {\frac {\left|x\right|-w/2}{\Delta }}+1\right\rfloor \right)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, </dd> </dl> <p>where the function <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {sgn} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> sgn </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \operatorname {sgn} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec838dfd8a4a659b2877f93a6b53f22fc7777d07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.371ex; height:2.009ex;" alt="{\displaystyle \operatorname {sgn} }"> </noscript><span class="lazy-image-placeholder" style="width: 3.371ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec838dfd8a4a659b2877f93a6b53f22fc7777d07" data-alt="{\displaystyle \operatorname {sgn} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>(&nbsp;)</span> is the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Sign_function?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sign function">sign function</a> (also known as the <i>signum</i> function). The general reconstruction rule for such a dead-zone quantizer is given by</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}=\operatorname {sgn}(k)\cdot \left({\frac {w}{2}}+\Delta \cdot (|k|-1+r_{k})\right)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> = </mo> <mi> sgn </mi> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <mi> k </mi> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> w </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo> + </mo> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> </mrow> <mo> ) </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y_{k}=\operatorname {sgn}(k)\cdot \left({\frac {w}{2}}+\Delta \cdot (|k|-1+r_{k})\right)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a361f041f33dd3ceaa2f30b90671bd16d5bdb77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:38.423ex; height:4.843ex;" alt="{\displaystyle y_{k}=\operatorname {sgn}(k)\cdot \left({\frac {w}{2}}+\Delta \cdot (|k|-1+r_{k})\right)}"> </noscript><span class="lazy-image-placeholder" style="width: 38.423ex;height: 4.843ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a361f041f33dd3ceaa2f30b90671bd16d5bdb77" data-alt="{\displaystyle y_{k}=\operatorname {sgn}(k)\cdot \left({\frac {w}{2}}+\Delta \cdot (|k|-1+r_{k})\right)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, </dd> </dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b28e0e640d099f3676330bd4f604ae15c37bb4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.137ex; height:2.009ex;" alt="{\displaystyle r_{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.137ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b28e0e640d099f3676330bd4f604ae15c37bb4f" data-alt="{\displaystyle r_{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is a reconstruction offset value in the range of 0 to 1 as a fraction of the step size. Ordinarily, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq r_{k}\leq {\tfrac {1}{2}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn> 0 </mn> <mo> ≤<!-- ≤ --> </mo> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> ≤<!-- ≤ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle 0\leq r_{k}\leq {\tfrac {1}{2}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5e4d14e88315ce3a9b5d58eed4cf10129b391b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:11.155ex; height:3.509ex;" alt="{\displaystyle 0\leq r_{k}\leq {\tfrac {1}{2}}}"> </noscript><span class="lazy-image-placeholder" style="width: 11.155ex;height: 3.509ex;vertical-align: -1.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5e4d14e88315ce3a9b5d58eed4cf10129b391b3" data-alt="{\displaystyle 0\leq r_{k}\leq {\tfrac {1}{2}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> when quantizing input data with a typical <a href="https://en-m-wikipedia-org.translate.goog/wiki/Probability_density_function?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Probability density function">probability density function</a> (PDF) that is symmetric around zero and reaches its peak value at zero (such as a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Gaussian_distribution?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Gaussian distribution">Gaussian</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/Laplacian_distribution?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Laplacian distribution">Laplacian</a>, or <a href="https://en-m-wikipedia-org.translate.goog/wiki/Generalized_Gaussian_distribution?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Generalized Gaussian distribution">generalized Gaussian</a> PDF). Although <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b28e0e640d099f3676330bd4f604ae15c37bb4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.137ex; height:2.009ex;" alt="{\displaystyle r_{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.137ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b28e0e640d099f3676330bd4f604ae15c37bb4f" data-alt="{\displaystyle r_{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> may depend on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"> </noscript><span class="lazy-image-placeholder" style="width: 1.211ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" data-alt="{\displaystyle k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> in general, and can be chosen to fulfill the optimality condition described below, it is often simply set to a constant, such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{2}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\tfrac {1}{2}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edef8290613648790a8ac1a95c2fb7c3972aea2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:1.658ex; height:3.509ex;" alt="{\displaystyle {\tfrac {1}{2}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.658ex;height: 3.509ex;vertical-align: -1.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edef8290613648790a8ac1a95c2fb7c3972aea2f" data-alt="{\displaystyle {\tfrac {1}{2}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. (Note that in this definition, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{0}=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y_{0}=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f952fc15fe931e15f2f4a766b3ce68dc52f64842" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.454ex; height:2.509ex;" alt="{\displaystyle y_{0}=0}"> </noscript><span class="lazy-image-placeholder" style="width: 6.454ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f952fc15fe931e15f2f4a766b3ce68dc52f64842" data-alt="{\displaystyle y_{0}=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> due to the definition of the <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {sgn} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> sgn </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \operatorname {sgn} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec838dfd8a4a659b2877f93a6b53f22fc7777d07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.371ex; height:2.009ex;" alt="{\displaystyle \operatorname {sgn} }"> </noscript><span class="lazy-image-placeholder" style="width: 3.371ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec838dfd8a4a659b2877f93a6b53f22fc7777d07" data-alt="{\displaystyle \operatorname {sgn} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>(&nbsp;)</span> function, so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{0}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{0}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb12fcfddb65e3d1e6a044215f6e833f0cd4337b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.103ex; height:2.009ex;" alt="{\displaystyle r_{0}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.103ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb12fcfddb65e3d1e6a044215f6e833f0cd4337b" data-alt="{\displaystyle r_{0}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> has no effect.)</p> <p>A very commonly used special case (e.g., the scheme typically used in financial accounting and elementary mathematics) is to set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w=\Delta }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> w </mi> <mo> = </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle w=\Delta } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9956a3e4f12e1d7ed19e3bf9d0b7024fb3974225" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.698ex; height:2.176ex;" alt="{\displaystyle w=\Delta }"> </noscript><span class="lazy-image-placeholder" style="width: 6.698ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9956a3e4f12e1d7ed19e3bf9d0b7024fb3974225" data-alt="{\displaystyle w=\Delta }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{k}={\tfrac {1}{2}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> r </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle r_{k}={\tfrac {1}{2}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2dd7cac862a69cf03af1e547d1359270cba0173d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:6.894ex; height:3.509ex;" alt="{\displaystyle r_{k}={\tfrac {1}{2}}}"> </noscript><span class="lazy-image-placeholder" style="width: 6.894ex;height: 3.509ex;vertical-align: -1.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2dd7cac862a69cf03af1e547d1359270cba0173d" data-alt="{\displaystyle r_{k}={\tfrac {1}{2}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"> </noscript><span class="lazy-image-placeholder" style="width: 1.211ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" data-alt="{\displaystyle k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. In this case, the dead-zone quantizer is also a uniform quantizer, since the central dead-zone of this quantizer has the same width as all of its other steps, and all of its reconstruction values are equally spaced as well.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Noise_and_error_characteristics">Noise and error characteristics<span class="anchor" id="Noise"></span><span class="anchor" id="Error"></span></h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=8&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Noise and error characteristics" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-4 collapsible-block" id="mf-section-4"> <div class="mw-heading mw-heading3"> <h3 id="Additive_noise_model">Additive noise model</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=9&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Additive noise model" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>A common assumption for the analysis of quantization error is that it affects a signal processing system in a similar manner to that of additive <a href="https://en-m-wikipedia-org.translate.goog/wiki/White_noise?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="White noise">white noise</a> – having negligible correlation with the signal and an approximately flat <a href="https://en-m-wikipedia-org.translate.goog/wiki/Power_spectral_density?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Power spectral density">power spectral density</a>.<sup id="cite_ref-Bennett_2-1" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Bennett-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-GrayNeuhoff_6-2" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-GrayNeuhoff-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Widrow1_13-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Widrow1-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Widrow2_14-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Widrow2-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> The additive noise model is commonly used for the analysis of quantization error effects in digital filtering systems, and it can be very useful in such analysis. It has been shown to be a valid model in cases of high-resolution quantization (small <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \Delta } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \Delta }"> </noscript><span class="lazy-image-placeholder" style="width: 1.936ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" data-alt="{\displaystyle \Delta }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> relative to the signal strength) with smooth PDFs.<sup id="cite_ref-Bennett_2-2" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Bennett-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-MarcoNeuhoff_15-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-MarcoNeuhoff-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup></p> <p>Additive noise behavior is not always a valid assumption. Quantization error (for quantizers defined as described here) is deterministically related to the signal and not entirely independent of it. Thus, periodic signals can create periodic quantization noise. And in some cases it can even cause <a href="https://en-m-wikipedia-org.translate.goog/wiki/Limit_cycle?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Limit cycle">limit cycles</a> to appear in digital signal processing systems. One way to ensure effective independence of the quantization error from the source signal is to perform <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Dither?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Dither">dithered</a> quantization</i> (sometimes with <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Noise_shaping?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Noise shaping">noise shaping</a></i>), which involves adding random (or <a href="https://en-m-wikipedia-org.translate.goog/wiki/Pseudo-random?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Pseudo-random">pseudo-random</a>) noise to the signal prior to quantization.<sup id="cite_ref-GrayNeuhoff_6-3" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-GrayNeuhoff-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Widrow2_14-1" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Widrow2-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup></p> <div class="mw-heading mw-heading3"> <h3 id="Quantization_error_models">Quantization error models</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=10&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Quantization error models" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>In the typical case, the original signal is much larger than one <a href="https://en-m-wikipedia-org.translate.goog/wiki/Least_significant_bit?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Least significant bit">least significant bit</a> (LSB). When this is the case, the quantization error is not significantly correlated with the signal, and has an approximately <a href="https://en-m-wikipedia-org.translate.goog/wiki/Uniform_distribution_(continuous)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Uniform distribution (continuous)">uniform distribution</a>. When rounding is used to quantize, the quantization error has a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Mean?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Mean">mean</a> of zero and the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Root_mean_square?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Root mean square">root mean square</a> (RMS) value is the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Standard_deviation?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Standard deviation">standard deviation</a> of this distribution, given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\frac {1}{\sqrt {12}}}\mathrm {LSB} \ \approx \ 0.289\,\mathrm {LSB} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <msqrt> <mn> 12 </mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> L </mi> <mi mathvariant="normal"> S </mi> <mi mathvariant="normal"> B </mi> </mrow> <mtext> &nbsp; </mtext> <mo> ≈<!-- ≈ --> </mo> <mtext> &nbsp; </mtext> <mn> 0.289 </mn> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> L </mi> <mi mathvariant="normal"> S </mi> <mi mathvariant="normal"> B </mi> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \scriptstyle {\frac {1}{\sqrt {12}}}\mathrm {LSB} \ \approx \ 0.289\,\mathrm {LSB} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c72e40c7f9413dca8ed4f297a8c6845fb789afd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:16.064ex; height:3.676ex;" alt="{\displaystyle \scriptstyle {\frac {1}{\sqrt {12}}}\mathrm {LSB} \ \approx \ 0.289\,\mathrm {LSB} }"> </noscript><span class="lazy-image-placeholder" style="width: 16.064ex;height: 3.676ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c72e40c7f9413dca8ed4f297a8c6845fb789afd6" data-alt="{\displaystyle \scriptstyle {\frac {1}{\sqrt {12}}}\mathrm {LSB} \ \approx \ 0.289\,\mathrm {LSB} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. When truncation is used, the error has a non-zero mean of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\frac {1}{2}}\mathrm {LSB} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> L </mi> <mi mathvariant="normal"> S </mi> <mi mathvariant="normal"> B </mi> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \scriptstyle {\frac {1}{2}}\mathrm {LSB} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfd195bb6e3343a60b349bd85cabd90b08578f09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:4.608ex; height:3.176ex;" alt="{\displaystyle \scriptstyle {\frac {1}{2}}\mathrm {LSB} }"> </noscript><span class="lazy-image-placeholder" style="width: 4.608ex;height: 3.176ex;vertical-align: -1.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfd195bb6e3343a60b349bd85cabd90b08578f09" data-alt="{\displaystyle \scriptstyle {\frac {1}{2}}\mathrm {LSB} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and the RMS value is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\frac {1}{\sqrt {3}}}\mathrm {LSB} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <msqrt> <mn> 3 </mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> L </mi> <mi mathvariant="normal"> S </mi> <mi mathvariant="normal"> B </mi> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \scriptstyle {\frac {1}{\sqrt {3}}}\mathrm {LSB} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f19eb3947c3d3dd9d73dd8025e4f750c5015466" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:5.72ex; height:3.676ex;" alt="{\displaystyle \scriptstyle {\frac {1}{\sqrt {3}}}\mathrm {LSB} }"> </noscript><span class="lazy-image-placeholder" style="width: 5.72ex;height: 3.676ex;vertical-align: -1.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f19eb3947c3d3dd9d73dd8025e4f750c5015466" data-alt="{\displaystyle \scriptstyle {\frac {1}{\sqrt {3}}}\mathrm {LSB} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. Although rounding yields less RMS error than truncation, the difference is only due to the static (DC) term of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\frac {1}{2}}\mathrm {LSB} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> L </mi> <mi mathvariant="normal"> S </mi> <mi mathvariant="normal"> B </mi> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \scriptstyle {\frac {1}{2}}\mathrm {LSB} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfd195bb6e3343a60b349bd85cabd90b08578f09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:4.608ex; height:3.176ex;" alt="{\displaystyle \scriptstyle {\frac {1}{2}}\mathrm {LSB} }"> </noscript><span class="lazy-image-placeholder" style="width: 4.608ex;height: 3.176ex;vertical-align: -1.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cfd195bb6e3343a60b349bd85cabd90b08578f09" data-alt="{\displaystyle \scriptstyle {\frac {1}{2}}\mathrm {LSB} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. The RMS values of the AC error are exactly the same in both cases, so there is no special advantage of rounding over truncation in situations where the DC term of the error can be ignored (such as in AC coupled systems). In either case, the standard deviation, as a percentage of the full signal range, changes by a factor of 2 for each 1-bit change in the number of quantization bits. The potential signal-to-quantization-noise power ratio therefore changes by 4, or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle 10\cdot \log _{10}(4)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mn> 10 </mn> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mi> log </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 10 </mn> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <mn> 4 </mn> <mo stretchy="false"> ) </mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \scriptstyle 10\cdot \log _{10}(4)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b09a0a45232f3ac39635982a95e3990b3b38c135" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.803ex; height:2.176ex;" alt="{\displaystyle \scriptstyle 10\cdot \log _{10}(4)}"> </noscript><span class="lazy-image-placeholder" style="width: 7.803ex;height: 2.176ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b09a0a45232f3ac39635982a95e3990b3b38c135" data-alt="{\displaystyle \scriptstyle 10\cdot \log _{10}(4)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, approximately 6&nbsp;dB per bit.</p> <p>At lower amplitudes the quantization error becomes dependent on the input signal, resulting in distortion. This distortion is created after the anti-aliasing filter, and if these distortions are above 1/2 the sample rate they will alias back into the band of interest. In order to make the quantization error independent of the input signal, the signal is dithered by adding noise to the signal. This slightly reduces signal to noise ratio, but can completely eliminate the distortion.</p> <div class="mw-heading mw-heading3"> <h3 id="Quantization_noise_model">Quantization noise model</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=11&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Quantization noise model" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <figure typeof="mw:File/Thumb"> <a href="https://en-m-wikipedia-org.translate.goog/wiki/File:Frequency_spectrum_of_a_sinusoid_and_its_quantization_noise_floor.gif?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Frequency_spectrum_of_a_sinusoid_and_its_quantization_noise_floor.gif/300px-Frequency_spectrum_of_a_sinusoid_and_its_quantization_noise_floor.gif" decoding="async" width="300" height="152" class="mw-file-element" data-file-width="864" data-file-height="438"> </noscript><span class="lazy-image-placeholder" style="width: 300px;height: 152px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Frequency_spectrum_of_a_sinusoid_and_its_quantization_noise_floor.gif/300px-Frequency_spectrum_of_a_sinusoid_and_its_quantization_noise_floor.gif" data-width="300" data-height="152" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Frequency_spectrum_of_a_sinusoid_and_its_quantization_noise_floor.gif/450px-Frequency_spectrum_of_a_sinusoid_and_its_quantization_noise_floor.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Frequency_spectrum_of_a_sinusoid_and_its_quantization_noise_floor.gif/600px-Frequency_spectrum_of_a_sinusoid_and_its_quantization_noise_floor.gif 2x" data-class="mw-file-element">&nbsp;</span></a> <figcaption> Comparison of quantizing a sinusoid to 64 levels (6 bits) and 256 levels (8 bits). The additive noise created by 6-bit quantization is 12 dB greater than the noise created by 8-bit quantization. When the spectral distribution is flat, as in this example, the 12 dB difference manifests as a measurable difference in the noise floors. </figcaption> </figure> <p>Quantization noise is a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Model_(abstract)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Model (abstract)">model</a> of quantization error introduced by quantization in the ADC. It is a rounding error between the analog input voltage to the ADC and the output digitized value. The noise is non-linear and signal-dependent. It can be modelled in several different ways.</p> <p>In an ideal ADC, where the quantization error is uniformly distributed between −1/2 LSB and +1/2 LSB, and the signal has a uniform distribution covering all quantization levels, the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Signal-to-quantization-noise_ratio?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Signal-to-quantization-noise ratio">Signal-to-quantization-noise ratio</a> (SQNR) can be calculated from</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {SQNR} =20\log _{10}(2^{Q})\approx 6.02\cdot Q\ \mathrm {dB} \,\!}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> S </mi> <mi mathvariant="normal"> Q </mi> <mi mathvariant="normal"> N </mi> <mi mathvariant="normal"> R </mi> </mrow> <mo> = </mo> <mn> 20 </mn> <msub> <mi> log </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 10 </mn> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mo stretchy="false"> ( </mo> <msup> <mn> 2 </mn> <mrow class="MJX-TeXAtom-ORD"> <mi> Q </mi> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo> ≈<!-- ≈ --> </mo> <mn> 6.02 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mi> Q </mi> <mtext> &nbsp; </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> <mi mathvariant="normal"> B </mi> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathrm {SQNR} =20\log _{10}(2^{Q})\approx 6.02\cdot Q\ \mathrm {dB} \,\!} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28d7ed262342c70036f3bde52bba94f1e19547fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.387ex; width:36.373ex; height:3.176ex;" alt="{\displaystyle \mathrm {SQNR} =20\log _{10}(2^{Q})\approx 6.02\cdot Q\ \mathrm {dB} \,\!}"> </noscript><span class="lazy-image-placeholder" style="width: 36.373ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28d7ed262342c70036f3bde52bba94f1e19547fc" data-alt="{\displaystyle \mathrm {SQNR} =20\log _{10}(2^{Q})\approx 6.02\cdot Q\ \mathrm {dB} \,\!}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>where Q is the number of quantization bits.</p> <p>The most common test signals that fulfill this are full amplitude <a href="https://en-m-wikipedia-org.translate.goog/wiki/Triangle_wave?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Triangle wave">triangle waves</a> and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Sawtooth_wave?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sawtooth wave">sawtooth waves</a>.</p> <p>For example, a <a href="https://en-m-wikipedia-org.translate.goog/wiki/16-bit?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="16-bit">16-bit</a> ADC has a maximum signal-to-quantization-noise ratio of 6.02 × 16 = 96.3&nbsp;dB.</p> <p>When the input signal is a full-amplitude <a href="https://en-m-wikipedia-org.translate.goog/wiki/Sine_wave?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sine wave">sine wave</a> the distribution of the signal is no longer uniform, and the corresponding equation is instead</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {SQNR} \approx 1.761+6.02\cdot Q\ \mathrm {dB} \,\!}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> S </mi> <mi mathvariant="normal"> Q </mi> <mi mathvariant="normal"> N </mi> <mi mathvariant="normal"> R </mi> </mrow> <mo> ≈<!-- ≈ --> </mo> <mn> 1.761 </mn> <mo> + </mo> <mn> 6.02 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mi> Q </mi> <mtext> &nbsp; </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> <mi mathvariant="normal"> B </mi> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathrm {SQNR} \approx 1.761+6.02\cdot Q\ \mathrm {dB} \,\!} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76bbd933a0dd004b25659cecaf61bf955372bd7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.387ex; width:29.347ex; height:2.509ex;" alt="{\displaystyle \mathrm {SQNR} \approx 1.761+6.02\cdot Q\ \mathrm {dB} \,\!}"> </noscript><span class="lazy-image-placeholder" style="width: 29.347ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76bbd933a0dd004b25659cecaf61bf955372bd7a" data-alt="{\displaystyle \mathrm {SQNR} \approx 1.761+6.02\cdot Q\ \mathrm {dB} \,\!}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>Here, the quantization noise is once again <i>assumed</i> to be uniformly distributed. When the input signal has a high amplitude and a wide frequency spectrum this is the case.<sup id="cite_ref-16" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> In this case a 16-bit ADC has a maximum signal-to-noise ratio of 98.09&nbsp;dB. The 1.761 difference in signal-to-noise only occurs due to the signal being a full-scale sine wave instead of a triangle or sawtooth.</p> <p>For complex signals in high-resolution ADCs this is an accurate model. For low-resolution ADCs, low-level signals in high-resolution ADCs, and for simple waveforms the quantization noise is not uniformly distributed, making this model inaccurate.<sup id="cite_ref-17" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> In these cases the quantization noise distribution is strongly affected by the exact amplitude of the signal.</p> <p>The calculations are relative to full-scale input. For smaller signals, the relative quantization distortion can be very large. To circumvent this issue, analog <a href="https://en-m-wikipedia-org.translate.goog/wiki/Companding?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Companding">companding</a> can be used, but this can introduce distortion.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Design">Design</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=12&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Design" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-5 collapsible-block" id="mf-section-5"> <div class="mw-heading mw-heading3"> <h3 id="Granular_distortion_and_overload_distortion">Granular distortion and overload distortion</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=13&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Granular distortion and overload distortion" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Often the design of a quantizer involves supporting only a limited range of possible output values and performing clipping to limit the output to this range whenever the input exceeds the supported range. The error introduced by this clipping is referred to as <i>overload</i> distortion. Within the extreme limits of the supported range, the amount of spacing between the selectable output values of a quantizer is referred to as its <i>granularity</i>, and the error introduced by this spacing is referred to as <i>granular</i> distortion. It is common for the design of a quantizer to involve determining the proper balance between granular distortion and overload distortion. For a given supported number of possible output values, reducing the average granular distortion may involve increasing the average overload distortion, and vice versa. A technique for controlling the amplitude of the signal (or, equivalently, the quantization step size <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \Delta } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \Delta }"> </noscript><span class="lazy-image-placeholder" style="width: 1.936ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" data-alt="{\displaystyle \Delta }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>) to achieve the appropriate balance is the use of <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Automatic_gain_control?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Automatic gain control">automatic gain control</a></i> (AGC). However, in some quantizer designs, the concepts of granular error and overload error may not apply (e.g., for a quantizer with a limited range of input data or with a countably infinite set of selectable output values).<sup id="cite_ref-GrayNeuhoff_6-4" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-GrayNeuhoff-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup></p> <div class="mw-heading mw-heading3"> <h3 id="Rate–distortion_quantizer_design"><span id="Rate.E2.80.93distortion_quantizer_design"></span>Rate–distortion quantizer design</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=14&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Rate–distortion quantizer design" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>A scalar quantizer, which performs a quantization operation, can ordinarily be decomposed into two stages:</p> <dl> <dt> Classification </dt> <dd> A process that classifies the input signal range into <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> M </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle M} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"> </noscript><span class="lazy-image-placeholder" style="width: 2.442ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" data-alt="{\displaystyle M}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> non-overlapping <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Interval_(mathematics)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Interval (mathematics)">intervals</a></i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{I_{k}\}_{k=1}^{M}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false"> } </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{I_{k}\}_{k=1}^{M}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ceb3143e26ff4f2448fba56b28ec119c44ef38f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.626ex; height:3.176ex;" alt="{\displaystyle \{I_{k}\}_{k=1}^{M}}"> </noscript><span class="lazy-image-placeholder" style="width: 7.626ex;height: 3.176ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ceb3143e26ff4f2448fba56b28ec119c44ef38f" data-alt="{\displaystyle \{I_{k}\}_{k=1}^{M}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, by defining <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M-1}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> M </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle M-1} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0ff0c82e48914e34b3c3bd227cf4d09a2fb5eb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.445ex; height:2.343ex;" alt="{\displaystyle M-1}"> </noscript><span class="lazy-image-placeholder" style="width: 6.445ex;height: 2.343ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0ff0c82e48914e34b3c3bd227cf4d09a2fb5eb7" data-alt="{\displaystyle M-1}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> <i>decision boundary</i> values <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false"> } </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{b_{k}\}_{k=1}^{M-1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9199dd54e4e11c3a5f0d99b21e9ee70dc2b70ef9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.471ex; height:3.343ex;" alt="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"> </noscript><span class="lazy-image-placeholder" style="width: 8.471ex;height: 3.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9199dd54e4e11c3a5f0d99b21e9ee70dc2b70ef9" data-alt="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{k}=[b_{k-1}~,~b_{k})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> = </mo> <mo stretchy="false"> [ </mo> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> <mtext> &nbsp; </mtext> <mo> , </mo> <mtext> &nbsp; </mtext> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{k}=[b_{k-1}~,~b_{k})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3684925216f27532e6466f8856fb054798a4aee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.23ex; height:2.843ex;" alt="{\displaystyle I_{k}=[b_{k-1}~,~b_{k})}"> </noscript><span class="lazy-image-placeholder" style="width: 15.23ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3684925216f27532e6466f8856fb054798a4aee" data-alt="{\displaystyle I_{k}=[b_{k-1}~,~b_{k})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=1,2,\ldots ,M}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <mi> M </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k=1,2,\ldots ,M} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac248ad016fdafbb81762175f90559edf2f4af09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.289ex; height:2.509ex;" alt="{\displaystyle k=1,2,\ldots ,M}"> </noscript><span class="lazy-image-placeholder" style="width: 15.289ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac248ad016fdafbb81762175f90559edf2f4af09" data-alt="{\displaystyle k=1,2,\ldots ,M}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, with the extreme limits defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{0}=-\infty }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> = </mo> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> ∞<!-- ∞ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle b_{0}=-\infty } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/128a2a0dde5bc288c7d8999d154187ea3a8b434d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.282ex; height:2.509ex;" alt="{\displaystyle b_{0}=-\infty }"> </noscript><span class="lazy-image-placeholder" style="width: 9.282ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/128a2a0dde5bc288c7d8999d154187ea3a8b434d" data-alt="{\displaystyle b_{0}=-\infty }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{M}=\infty }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> </mrow> </msub> <mo> = </mo> <mi mathvariant="normal"> ∞<!-- ∞ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle b_{M}=\infty } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f6160923ba5d7344e3429e84f949e4577b50be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.379ex; height:2.509ex;" alt="{\displaystyle b_{M}=\infty }"> </noscript><span class="lazy-image-placeholder" style="width: 8.379ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39f6160923ba5d7344e3429e84f949e4577b50be" data-alt="{\displaystyle b_{M}=\infty }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. All the inputs <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"> </noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" data-alt="{\displaystyle x}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> that fall in a given interval range <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d658e7f6b34dd1d3025a7c9a72efba5b9f46475d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.112ex; height:2.509ex;" alt="{\displaystyle I_{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.112ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d658e7f6b34dd1d3025a7c9a72efba5b9f46475d" data-alt="{\displaystyle I_{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> are associated with the same quantization index <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"> </noscript><span class="lazy-image-placeholder" style="width: 1.211ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" data-alt="{\displaystyle k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. </dd> <dt> Reconstruction </dt> <dd> Each interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d658e7f6b34dd1d3025a7c9a72efba5b9f46475d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.112ex; height:2.509ex;" alt="{\displaystyle I_{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.112ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d658e7f6b34dd1d3025a7c9a72efba5b9f46475d" data-alt="{\displaystyle I_{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is represented by a <i>reconstruction value</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y_{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b2ab0248723a410cc2c67ce06ad5c043dcbb933" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.228ex; height:2.009ex;" alt="{\displaystyle y_{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.228ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b2ab0248723a410cc2c67ce06ad5c043dcbb933" data-alt="{\displaystyle y_{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> which implements the mapping <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in I_{k}\Rightarrow y=y_{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> <mo> ∈<!-- ∈ --> </mo> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <mi> y </mi> <mo> = </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x\in I_{k}\Rightarrow y=y_{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d11bc710300f4775c00c72cf4a45ec3b6b53e2cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.378ex; height:2.509ex;" alt="{\displaystyle x\in I_{k}\Rightarrow y=y_{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 16.378ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d11bc710300f4775c00c72cf4a45ec3b6b53e2cb" data-alt="{\displaystyle x\in I_{k}\Rightarrow y=y_{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. </dd> </dl> <p>These two stages together comprise the mathematical operation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=Q(x)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> y </mi> <mo> = </mo> <mi> Q </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y=Q(x)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1764d9f11a2d3d2d15d6b2a483eec179210d5e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.231ex; height:2.843ex;" alt="{\displaystyle y=Q(x)}"> </noscript><span class="lazy-image-placeholder" style="width: 9.231ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1764d9f11a2d3d2d15d6b2a483eec179210d5e2" data-alt="{\displaystyle y=Q(x)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p><a href="https://en-m-wikipedia-org.translate.goog/wiki/Entropy_coding?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Entropy coding">Entropy coding</a> techniques can be applied to communicate the quantization indices from a source encoder that performs the classification stage to a decoder that performs the reconstruction stage. One way to do this is to associate each quantization index <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> k </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle k} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"> </noscript><span class="lazy-image-placeholder" style="width: 1.211ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" data-alt="{\displaystyle k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> with a binary codeword <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle c_{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d2f8052630e67b00d04e3487e1d68ed7070470b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.096ex; height:2.009ex;" alt="{\displaystyle c_{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.096ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d2f8052630e67b00d04e3487e1d68ed7070470b" data-alt="{\displaystyle c_{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. An important consideration is the number of bits used for each codeword, denoted here by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {length} (c_{k})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> l </mi> <mi mathvariant="normal"> e </mi> <mi mathvariant="normal"> n </mi> <mi mathvariant="normal"> g </mi> <mi mathvariant="normal"> t </mi> <mi mathvariant="normal"> h </mi> </mrow> <mo stretchy="false"> ( </mo> <msub> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathrm {length} (c_{k})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91859f2ea09cc0ae87099f4d508dc7146241cfd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.236ex; height:2.843ex;" alt="{\displaystyle \mathrm {length} (c_{k})}"> </noscript><span class="lazy-image-placeholder" style="width: 10.236ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91859f2ea09cc0ae87099f4d508dc7146241cfd2" data-alt="{\displaystyle \mathrm {length} (c_{k})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. As a result, the design of an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> M </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle M} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"> </noscript><span class="lazy-image-placeholder" style="width: 2.442ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" data-alt="{\displaystyle M}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>-level quantizer and an associated set of codewords for communicating its index values requires finding the values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false"> } </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{b_{k}\}_{k=1}^{M-1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9199dd54e4e11c3a5f0d99b21e9ee70dc2b70ef9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.471ex; height:3.343ex;" alt="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"> </noscript><span class="lazy-image-placeholder" style="width: 8.471ex;height: 3.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9199dd54e4e11c3a5f0d99b21e9ee70dc2b70ef9" data-alt="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{c_{k}\}_{k=1}^{M}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <msub> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false"> } </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{c_{k}\}_{k=1}^{M}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9acf6646441fbed725b59d8a09f5c1243dd738c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.61ex; height:3.176ex;" alt="{\displaystyle \{c_{k}\}_{k=1}^{M}}"> </noscript><span class="lazy-image-placeholder" style="width: 7.61ex;height: 3.176ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9acf6646441fbed725b59d8a09f5c1243dd738c" data-alt="{\displaystyle \{c_{k}\}_{k=1}^{M}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{y_{k}\}_{k=1}^{M}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false"> } </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{y_{k}\}_{k=1}^{M}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c8af3c644d08bd3d01bb32b308b4c0c04148b40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.742ex; height:3.176ex;" alt="{\displaystyle \{y_{k}\}_{k=1}^{M}}"> </noscript><span class="lazy-image-placeholder" style="width: 7.742ex;height: 3.176ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c8af3c644d08bd3d01bb32b308b4c0c04148b40" data-alt="{\displaystyle \{y_{k}\}_{k=1}^{M}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> which optimally satisfy a selected set of design constraints such as the <i>bit rate</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> R </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle R} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"> </noscript><span class="lazy-image-placeholder" style="width: 1.764ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" data-alt="{\displaystyle R}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and <i>distortion</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> D </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle D} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"> </noscript><span class="lazy-image-placeholder" style="width: 1.924ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" data-alt="{\displaystyle D}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p>Assuming that an information source <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> S </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle S} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"> </noscript><span class="lazy-image-placeholder" style="width: 1.499ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" data-alt="{\displaystyle S}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> produces random variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> X </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle X} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"> </noscript><span class="lazy-image-placeholder" style="width: 1.98ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" data-alt="{\displaystyle X}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> with an associated PDF <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle f(x)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"> </noscript><span class="lazy-image-placeholder" style="width: 4.418ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" data-alt="{\displaystyle f(x)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, the probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle p_{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01084a31964201514f3e6bd0136989e11ea6e58a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.348ex; height:2.009ex;" alt="{\displaystyle p_{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.348ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01084a31964201514f3e6bd0136989e11ea6e58a" data-alt="{\displaystyle p_{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> that the random variable falls within a particular quantization interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d658e7f6b34dd1d3025a7c9a72efba5b9f46475d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.112ex; height:2.509ex;" alt="{\displaystyle I_{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.112ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d658e7f6b34dd1d3025a7c9a72efba5b9f46475d" data-alt="{\displaystyle I_{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is given by:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{k}=P[x\in I_{k}]=\int _{b_{k-1}}^{b_{k}}f(x)dx}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> = </mo> <mi> P </mi> <mo stretchy="false"> [ </mo> <mi> x </mi> <mo> ∈<!-- ∈ --> </mo> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo stretchy="false"> ] </mo> <mo> = </mo> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> </msubsup> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mi> d </mi> <mi> x </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle p_{k}=P[x\in I_{k}]=\int _{b_{k-1}}^{b_{k}}f(x)dx} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26424325c60e39665f71cb6c4881bb490b08e841" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; margin-left: -0.089ex; width:30.011ex; height:6.843ex;" alt="{\displaystyle p_{k}=P[x\in I_{k}]=\int _{b_{k-1}}^{b_{k}}f(x)dx}"> </noscript><span class="lazy-image-placeholder" style="width: 30.011ex;height: 6.843ex;vertical-align: -2.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26424325c60e39665f71cb6c4881bb490b08e841" data-alt="{\displaystyle p_{k}=P[x\in I_{k}]=\int _{b_{k-1}}^{b_{k}}f(x)dx}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. </dd> </dl> <p>The resulting bit rate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> R </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle R} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"> </noscript><span class="lazy-image-placeholder" style="width: 1.764ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" data-alt="{\displaystyle R}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, in units of average bits per quantized value, for this quantizer can be derived as follows:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=\sum _{k=1}^{M}p_{k}\cdot \mathrm {length} (c_{k})=\sum _{k=1}^{M}\mathrm {length} (c_{k})\int _{b_{k-1}}^{b_{k}}f(x)dx}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> R </mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> </mrow> </munderover> <msub> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> l </mi> <mi mathvariant="normal"> e </mi> <mi mathvariant="normal"> n </mi> <mi mathvariant="normal"> g </mi> <mi mathvariant="normal"> t </mi> <mi mathvariant="normal"> h </mi> </mrow> <mo stretchy="false"> ( </mo> <msub> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> l </mi> <mi mathvariant="normal"> e </mi> <mi mathvariant="normal"> n </mi> <mi mathvariant="normal"> g </mi> <mi mathvariant="normal"> t </mi> <mi mathvariant="normal"> h </mi> </mrow> <mo stretchy="false"> ( </mo> <msub> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> </msubsup> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mi> d </mi> <mi> x </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle R=\sum _{k=1}^{M}p_{k}\cdot \mathrm {length} (c_{k})=\sum _{k=1}^{M}\mathrm {length} (c_{k})\int _{b_{k-1}}^{b_{k}}f(x)dx} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cc60b0158fc37a302e5f29f7d9e18067481a173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:52.387ex; height:7.343ex;" alt="{\displaystyle R=\sum _{k=1}^{M}p_{k}\cdot \mathrm {length} (c_{k})=\sum _{k=1}^{M}\mathrm {length} (c_{k})\int _{b_{k-1}}^{b_{k}}f(x)dx}"> </noscript><span class="lazy-image-placeholder" style="width: 52.387ex;height: 7.343ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2cc60b0158fc37a302e5f29f7d9e18067481a173" data-alt="{\displaystyle R=\sum _{k=1}^{M}p_{k}\cdot \mathrm {length} (c_{k})=\sum _{k=1}^{M}\mathrm {length} (c_{k})\int _{b_{k-1}}^{b_{k}}f(x)dx}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. </dd> </dl> <p>If it is assumed that distortion is measured by mean squared error,<sup id="cite_ref-18" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-18"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup> the distortion <b>D</b>, is given by:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D=E[(x-Q(x))^{2}]=\int _{-\infty }^{\infty }(x-Q(x))^{2}f(x)dx=\sum _{k=1}^{M}\int _{b_{k-1}}^{b_{k}}(x-y_{k})^{2}f(x)dx}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> D </mi> <mo> = </mo> <mi> E </mi> <mo stretchy="false"> [ </mo> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> −<!-- − --> </mo> <mi> Q </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo stretchy="false"> ] </mo> <mo> = </mo> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> ∞<!-- ∞ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ∞<!-- ∞ --> </mi> </mrow> </msubsup> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> −<!-- − --> </mo> <mi> Q </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mi> d </mi> <mi> x </mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> </mrow> </munderover> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> </msubsup> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> −<!-- − --> </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mi> d </mi> <mi> x </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle D=E[(x-Q(x))^{2}]=\int _{-\infty }^{\infty }(x-Q(x))^{2}f(x)dx=\sum _{k=1}^{M}\int _{b_{k-1}}^{b_{k}}(x-y_{k})^{2}f(x)dx} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2292fcf1093dc30c77e2f85e4ad930c2b695ec54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:74.482ex; height:7.343ex;" alt="{\displaystyle D=E[(x-Q(x))^{2}]=\int _{-\infty }^{\infty }(x-Q(x))^{2}f(x)dx=\sum _{k=1}^{M}\int _{b_{k-1}}^{b_{k}}(x-y_{k})^{2}f(x)dx}"> </noscript><span class="lazy-image-placeholder" style="width: 74.482ex;height: 7.343ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2292fcf1093dc30c77e2f85e4ad930c2b695ec54" data-alt="{\displaystyle D=E[(x-Q(x))^{2}]=\int _{-\infty }^{\infty }(x-Q(x))^{2}f(x)dx=\sum _{k=1}^{M}\int _{b_{k-1}}^{b_{k}}(x-y_{k})^{2}f(x)dx}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. </dd> </dl> <p>A key observation is that rate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> R </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle R} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"> </noscript><span class="lazy-image-placeholder" style="width: 1.764ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" data-alt="{\displaystyle R}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> depends on the decision boundaries <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false"> } </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{b_{k}\}_{k=1}^{M-1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9199dd54e4e11c3a5f0d99b21e9ee70dc2b70ef9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.471ex; height:3.343ex;" alt="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"> </noscript><span class="lazy-image-placeholder" style="width: 8.471ex;height: 3.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9199dd54e4e11c3a5f0d99b21e9ee70dc2b70ef9" data-alt="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and the codeword lengths <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{\mathrm {length} (c_{k})\}_{k=1}^{M}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> l </mi> <mi mathvariant="normal"> e </mi> <mi mathvariant="normal"> n </mi> <mi mathvariant="normal"> g </mi> <mi mathvariant="normal"> t </mi> <mi mathvariant="normal"> h </mi> </mrow> <mo stretchy="false"> ( </mo> <msub> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <msubsup> <mo fence="false" stretchy="false"> } </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{\mathrm {length} (c_{k})\}_{k=1}^{M}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e349fb4e6c0b6807ef136c6bb9c49ff43d0d595f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.75ex; height:3.176ex;" alt="{\displaystyle \{\mathrm {length} (c_{k})\}_{k=1}^{M}}"> </noscript><span class="lazy-image-placeholder" style="width: 15.75ex;height: 3.176ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e349fb4e6c0b6807ef136c6bb9c49ff43d0d595f" data-alt="{\displaystyle \{\mathrm {length} (c_{k})\}_{k=1}^{M}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, whereas the distortion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> D </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle D} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"> </noscript><span class="lazy-image-placeholder" style="width: 1.924ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" data-alt="{\displaystyle D}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> depends on the decision boundaries <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false"> } </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{b_{k}\}_{k=1}^{M-1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9199dd54e4e11c3a5f0d99b21e9ee70dc2b70ef9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.471ex; height:3.343ex;" alt="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"> </noscript><span class="lazy-image-placeholder" style="width: 8.471ex;height: 3.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9199dd54e4e11c3a5f0d99b21e9ee70dc2b70ef9" data-alt="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and the reconstruction levels <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{y_{k}\}_{k=1}^{M}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false"> } </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{y_{k}\}_{k=1}^{M}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c8af3c644d08bd3d01bb32b308b4c0c04148b40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.742ex; height:3.176ex;" alt="{\displaystyle \{y_{k}\}_{k=1}^{M}}"> </noscript><span class="lazy-image-placeholder" style="width: 7.742ex;height: 3.176ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c8af3c644d08bd3d01bb32b308b4c0c04148b40" data-alt="{\displaystyle \{y_{k}\}_{k=1}^{M}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p>After defining these two performance metrics for the quantizer, a typical rate–distortion formulation for a quantizer design problem can be expressed in one of two ways:</p> <ol> <li>Given a maximum distortion constraint <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D\leq D_{\max }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> D </mi> <mo> ≤<!-- ≤ --> </mo> <msub> <mi> D </mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix"> max </mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle D\leq D_{\max }} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af7904fc86e20fc913effc17768cefd86d97df36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.238ex; height:2.509ex;" alt="{\displaystyle D\leq D_{\max }}"> </noscript><span class="lazy-image-placeholder" style="width: 10.238ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af7904fc86e20fc913effc17768cefd86d97df36" data-alt="{\displaystyle D\leq D_{\max }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, minimize the bit rate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> R </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle R} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"> </noscript><span class="lazy-image-placeholder" style="width: 1.764ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" data-alt="{\displaystyle R}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></li> <li>Given a maximum bit rate constraint <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R\leq R_{\max }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> R </mi> <mo> ≤<!-- ≤ --> </mo> <msub> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix"> max </mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle R\leq R_{\max }} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5392b6623ce9c9c96329bfe254cf8e774675a78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.918ex; height:2.509ex;" alt="{\displaystyle R\leq R_{\max }}"> </noscript><span class="lazy-image-placeholder" style="width: 9.918ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5392b6623ce9c9c96329bfe254cf8e774675a78" data-alt="{\displaystyle R\leq R_{\max }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, minimize the distortion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> D </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle D} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"> </noscript><span class="lazy-image-placeholder" style="width: 1.924ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" data-alt="{\displaystyle D}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></li> </ol> <p>Often the solution to these problems can be equivalently (or approximately) expressed and solved by converting the formulation to the unconstrained problem <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \min \left\{D+\lambda \cdot R\right\}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix"> min </mo> <mrow> <mo> { </mo> <mrow> <mi> D </mi> <mo> + </mo> <mi> λ<!-- λ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> R </mi> </mrow> <mo> } </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \min \left\{D+\lambda \cdot R\right\}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df5a2218e7bc6b7531d68e36d2dcb69aa7474e1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.15ex; height:2.843ex;" alt="{\displaystyle \min \left\{D+\lambda \cdot R\right\}}"> </noscript><span class="lazy-image-placeholder" style="width: 16.15ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df5a2218e7bc6b7531d68e36d2dcb69aa7474e1f" data-alt="{\displaystyle \min \left\{D+\lambda \cdot R\right\}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> where the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Lagrange_multiplier?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Lagrange multiplier">Lagrange multiplier</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> λ<!-- λ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \lambda } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"> </noscript><span class="lazy-image-placeholder" style="width: 1.355ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" data-alt="{\displaystyle \lambda }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is a non-negative constant that establishes the appropriate balance between rate and distortion. Solving the unconstrained problem is equivalent to finding a point on the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Convex_hull?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Convex hull">convex hull</a> of the family of solutions to an equivalent constrained formulation of the problem. However, finding a solution – especially a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Closed-form_expression?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Closed-form expression">closed-form</a> solution – to any of these three problem formulations can be difficult. Solutions that do not require multi-dimensional iterative optimization techniques have been published for only three PDFs: the uniform,<sup id="cite_ref-19" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-19"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Exponential_distribution?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Exponential distribution">exponential</a>,<sup id="cite_ref-SullivanIT_12-1" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-SullivanIT-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Laplace_distribution?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Laplace distribution">Laplacian</a><sup id="cite_ref-SullivanIT_12-2" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-SullivanIT-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> distributions. Iterative optimization approaches can be used to find solutions in other cases.<sup id="cite_ref-GrayNeuhoff_6-5" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-GrayNeuhoff-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Berger72_20-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Berger72-20"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Berger82_21-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Berger82-21"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup></p> <p>Note that the reconstruction values <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{y_{k}\}_{k=1}^{M}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false"> } </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{y_{k}\}_{k=1}^{M}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c8af3c644d08bd3d01bb32b308b4c0c04148b40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.742ex; height:3.176ex;" alt="{\displaystyle \{y_{k}\}_{k=1}^{M}}"> </noscript><span class="lazy-image-placeholder" style="width: 7.742ex;height: 3.176ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c8af3c644d08bd3d01bb32b308b4c0c04148b40" data-alt="{\displaystyle \{y_{k}\}_{k=1}^{M}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> affect only the distortion – they do not affect the bit rate – and that each individual <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y_{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b2ab0248723a410cc2c67ce06ad5c043dcbb933" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.228ex; height:2.009ex;" alt="{\displaystyle y_{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.228ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b2ab0248723a410cc2c67ce06ad5c043dcbb933" data-alt="{\displaystyle y_{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> makes a separate contribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> d </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle d_{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b78f5b2abc48e63b987b6d7527caa5aa9b1bb512" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.298ex; height:2.509ex;" alt="{\displaystyle d_{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.298ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b78f5b2abc48e63b987b6d7527caa5aa9b1bb512" data-alt="{\displaystyle d_{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> to the total distortion as shown below:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D=\sum _{k=1}^{M}d_{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> D </mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> </mrow> </munderover> <msub> <mi> d </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle D=\sum _{k=1}^{M}d_{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6759e8d74d80fd7800d16001df1e49c089d3ab73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:11.062ex; height:7.343ex;" alt="{\displaystyle D=\sum _{k=1}^{M}d_{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 11.062ex;height: 7.343ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6759e8d74d80fd7800d16001df1e49c089d3ab73" data-alt="{\displaystyle D=\sum _{k=1}^{M}d_{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>where</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{k}=\int _{b_{k-1}}^{b_{k}}(x-y_{k})^{2}f(x)dx}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> d </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> = </mo> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> </msubsup> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> −<!-- − --> </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mi> d </mi> <mi> x </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle d_{k}=\int _{b_{k-1}}^{b_{k}}(x-y_{k})^{2}f(x)dx} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15bdfe74aa22be46dd4522218f3bda5fc59ad0bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:26.416ex; height:6.843ex;" alt="{\displaystyle d_{k}=\int _{b_{k-1}}^{b_{k}}(x-y_{k})^{2}f(x)dx}"> </noscript><span class="lazy-image-placeholder" style="width: 26.416ex;height: 6.843ex;vertical-align: -2.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15bdfe74aa22be46dd4522218f3bda5fc59ad0bc" data-alt="{\displaystyle d_{k}=\int _{b_{k-1}}^{b_{k}}(x-y_{k})^{2}f(x)dx}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>This observation can be used to ease the analysis – given the set of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false"> } </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{b_{k}\}_{k=1}^{M-1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9199dd54e4e11c3a5f0d99b21e9ee70dc2b70ef9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.471ex; height:3.343ex;" alt="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"> </noscript><span class="lazy-image-placeholder" style="width: 8.471ex;height: 3.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9199dd54e4e11c3a5f0d99b21e9ee70dc2b70ef9" data-alt="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> values, the value of each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y_{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b2ab0248723a410cc2c67ce06ad5c043dcbb933" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.228ex; height:2.009ex;" alt="{\displaystyle y_{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.228ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b2ab0248723a410cc2c67ce06ad5c043dcbb933" data-alt="{\displaystyle y_{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> can be optimized separately to minimize its contribution to the distortion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> D </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle D} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"> </noscript><span class="lazy-image-placeholder" style="width: 1.924ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" data-alt="{\displaystyle D}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p>For the mean-square error distortion criterion, it can be easily shown that the optimal set of reconstruction values <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{y_{k}^{*}\}_{k=1}^{M}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <msubsup> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> ∗<!-- ∗ --> </mo> </mrow> </msubsup> <msubsup> <mo fence="false" stretchy="false"> } </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{y_{k}^{*}\}_{k=1}^{M}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4a59687bce6f8cf8261d492815afe9f0f3f3894" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.742ex; height:3.176ex;" alt="{\displaystyle \{y_{k}^{*}\}_{k=1}^{M}}"> </noscript><span class="lazy-image-placeholder" style="width: 7.742ex;height: 3.176ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4a59687bce6f8cf8261d492815afe9f0f3f3894" data-alt="{\displaystyle \{y_{k}^{*}\}_{k=1}^{M}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is given by setting the reconstruction value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y_{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b2ab0248723a410cc2c67ce06ad5c043dcbb933" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.228ex; height:2.009ex;" alt="{\displaystyle y_{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.228ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b2ab0248723a410cc2c67ce06ad5c043dcbb933" data-alt="{\displaystyle y_{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> within each interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> I </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle I_{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d658e7f6b34dd1d3025a7c9a72efba5b9f46475d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.112ex; height:2.509ex;" alt="{\displaystyle I_{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.112ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d658e7f6b34dd1d3025a7c9a72efba5b9f46475d" data-alt="{\displaystyle I_{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> to the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Conditional_expected_value?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Conditional expected value">conditional expected value</a> (also referred to as the <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Centroid?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Centroid">centroid</a></i>) within the interval, as given by:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{k}^{*}={\frac {1}{p_{k}}}\int _{b_{k-1}}^{b_{k}}xf(x)dx}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> ∗<!-- ∗ --> </mo> </mrow> </msubsup> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <msub> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mfrac> </mrow> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> </msubsup> <mi> x </mi> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mi> d </mi> <mi> x </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle y_{k}^{*}={\frac {1}{p_{k}}}\int _{b_{k-1}}^{b_{k}}xf(x)dx} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34766e917f54bae886b389ad16227d5d7b91f9b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:22.283ex; height:6.843ex;" alt="{\displaystyle y_{k}^{*}={\frac {1}{p_{k}}}\int _{b_{k-1}}^{b_{k}}xf(x)dx}"> </noscript><span class="lazy-image-placeholder" style="width: 22.283ex;height: 6.843ex;vertical-align: -2.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34766e917f54bae886b389ad16227d5d7b91f9b7" data-alt="{\displaystyle y_{k}^{*}={\frac {1}{p_{k}}}\int _{b_{k-1}}^{b_{k}}xf(x)dx}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. </dd> </dl> <p>The use of sufficiently well-designed entropy coding techniques can result in the use of a bit rate that is close to the true information content of the indices <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{k\}_{k=1}^{M}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <mi> k </mi> <msubsup> <mo fence="false" stretchy="false"> } </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{k\}_{k=1}^{M}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de9e2048051738754e3e74d141def4edf9e8bbd5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.725ex; height:3.176ex;" alt="{\displaystyle \{k\}_{k=1}^{M}}"> </noscript><span class="lazy-image-placeholder" style="width: 6.725ex;height: 3.176ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de9e2048051738754e3e74d141def4edf9e8bbd5" data-alt="{\displaystyle \{k\}_{k=1}^{M}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, such that effectively</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {length} (c_{k})\approx -\log _{2}\left(p_{k}\right)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> l </mi> <mi mathvariant="normal"> e </mi> <mi mathvariant="normal"> n </mi> <mi mathvariant="normal"> g </mi> <mi mathvariant="normal"> t </mi> <mi mathvariant="normal"> h </mi> </mrow> <mo stretchy="false"> ( </mo> <msub> <mi> c </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> ≈<!-- ≈ --> </mo> <mo> −<!-- − --> </mo> <msub> <mi> log </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mrow> <mo> ( </mo> <msub> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> ) </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathrm {length} (c_{k})\approx -\log _{2}\left(p_{k}\right)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/141ccdb272b76a8c66e00c4fe2a76df0fc1d5df6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.623ex; height:2.843ex;" alt="{\displaystyle \mathrm {length} (c_{k})\approx -\log _{2}\left(p_{k}\right)}"> </noscript><span class="lazy-image-placeholder" style="width: 23.623ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/141ccdb272b76a8c66e00c4fe2a76df0fc1d5df6" data-alt="{\displaystyle \mathrm {length} (c_{k})\approx -\log _{2}\left(p_{k}\right)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>and therefore</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=\sum _{k=1}^{M}-p_{k}\cdot \log _{2}\left(p_{k}\right)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> R </mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> </mrow> </munderover> <mo> −<!-- − --> </mo> <msub> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mi> log </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mrow> <mo> ( </mo> <msub> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> ) </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle R=\sum _{k=1}^{M}-p_{k}\cdot \log _{2}\left(p_{k}\right)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06761368ad66036d99a4b7bf173ceaf585c9323f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:22.443ex; height:7.343ex;" alt="{\displaystyle R=\sum _{k=1}^{M}-p_{k}\cdot \log _{2}\left(p_{k}\right)}"> </noscript><span class="lazy-image-placeholder" style="width: 22.443ex;height: 7.343ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06761368ad66036d99a4b7bf173ceaf585c9323f" data-alt="{\displaystyle R=\sum _{k=1}^{M}-p_{k}\cdot \log _{2}\left(p_{k}\right)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. </dd> </dl> <p>The use of this approximation can allow the entropy coding design problem to be separated from the design of the quantizer itself. Modern entropy coding techniques such as <a href="https://en-m-wikipedia-org.translate.goog/wiki/Arithmetic_coding?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Arithmetic coding">arithmetic coding</a> can achieve bit rates that are very close to the true entropy of a source, given a set of known (or adaptively estimated) probabilities <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{p_{k}\}_{k=1}^{M}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <msub> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false"> } </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{p_{k}\}_{k=1}^{M}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2772fbad6866aaf6f44334424688ee8ae3d32050" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.772ex; height:3.176ex;" alt="{\displaystyle \{p_{k}\}_{k=1}^{M}}"> </noscript><span class="lazy-image-placeholder" style="width: 7.772ex;height: 3.176ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2772fbad6866aaf6f44334424688ee8ae3d32050" data-alt="{\displaystyle \{p_{k}\}_{k=1}^{M}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>.</p> <p>In some designs, rather than optimizing for a particular number of classification regions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> M </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle M} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"> </noscript><span class="lazy-image-placeholder" style="width: 2.442ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" data-alt="{\displaystyle M}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, the quantizer design problem may include optimization of the value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> M </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle M} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"> </noscript><span class="lazy-image-placeholder" style="width: 2.442ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" data-alt="{\displaystyle M}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> as well. For some probabilistic source models, the best performance may be achieved when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> M </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle M} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"> </noscript><span class="lazy-image-placeholder" style="width: 2.442ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" data-alt="{\displaystyle M}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> approaches infinity.</p> <div class="mw-heading mw-heading3"> <h3 id="Neglecting_the_entropy_constraint:_Lloyd–Max_quantization"><span id="Neglecting_the_entropy_constraint:_Lloyd.E2.80.93Max_quantization"></span>Neglecting the entropy constraint: Lloyd–Max quantization</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=15&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Neglecting the entropy constraint: Lloyd–Max quantization" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>In the above formulation, if the bit rate constraint is neglected by setting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> λ<!-- λ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \lambda } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"> </noscript><span class="lazy-image-placeholder" style="width: 1.355ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" data-alt="{\displaystyle \lambda }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> equal to 0, or equivalently if it is assumed that a fixed-length code (FLC) will be used to represent the quantized data instead of a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Variable-length_code?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Variable-length code">variable-length code</a> (or some other entropy coding technology such as arithmetic coding that is better than an FLC in the rate–distortion sense), the optimization problem reduces to minimization of distortion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> D </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle D} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"> </noscript><span class="lazy-image-placeholder" style="width: 1.924ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" data-alt="{\displaystyle D}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> alone.</p> <p>The indices produced by an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> M </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle M} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"> </noscript><span class="lazy-image-placeholder" style="width: 2.442ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" data-alt="{\displaystyle M}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>-level quantizer can be coded using a fixed-length code using <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=\lceil \log _{2}M\rceil }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> R </mi> <mo> = </mo> <mo fence="false" stretchy="false"> ⌈<!-- ⌈ --> </mo> <msub> <mi> log </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mi> M </mi> <mo fence="false" stretchy="false"> ⌉<!-- ⌉ --> </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle R=\lceil \log _{2}M\rceil } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27e11c2290e53831cd6c28a3661b02e3c2c235f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.783ex; height:2.843ex;" alt="{\displaystyle R=\lceil \log _{2}M\rceil }"> </noscript><span class="lazy-image-placeholder" style="width: 13.783ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27e11c2290e53831cd6c28a3661b02e3c2c235f9" data-alt="{\displaystyle R=\lceil \log _{2}M\rceil }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> bits/symbol. For example, when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> M </mi> <mo> = </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle M=} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a5897444f2fc12b87773bf24c2b4744789d5a8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.896ex; height:2.176ex;" alt="{\displaystyle M=}"> </noscript><span class="lazy-image-placeholder" style="width: 4.896ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a5897444f2fc12b87773bf24c2b4744789d5a8d" data-alt="{\displaystyle M=}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>256 levels, the FLC bit rate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> R </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle R} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle R}"> </noscript><span class="lazy-image-placeholder" style="width: 1.764ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b0bfb3769bf24d80e15374dc37b0441e2616e33" data-alt="{\displaystyle R}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> is 8 bits/symbol. For this reason, such a quantizer has sometimes been called an 8-bit quantizer. However using an FLC eliminates the compression improvement that can be obtained by use of better entropy coding.</p> <p>Assuming an FLC with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> M </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle M} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"> </noscript><span class="lazy-image-placeholder" style="width: 2.442ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" data-alt="{\displaystyle M}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> levels, the rate–distortion minimization problem can be reduced to distortion minimization alone. The reduced problem can be stated as follows: given a source <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> X </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle X} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"> </noscript><span class="lazy-image-placeholder" style="width: 1.98ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" data-alt="{\displaystyle X}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> with PDF <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle f(x)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"> </noscript><span class="lazy-image-placeholder" style="width: 4.418ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" data-alt="{\displaystyle f(x)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and the constraint that the quantizer must use only <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> M </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle M} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"> </noscript><span class="lazy-image-placeholder" style="width: 2.442ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" data-alt="{\displaystyle M}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> classification regions, find the decision boundaries <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false"> } </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{b_{k}\}_{k=1}^{M-1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9199dd54e4e11c3a5f0d99b21e9ee70dc2b70ef9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.471ex; height:3.343ex;" alt="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}"> </noscript><span class="lazy-image-placeholder" style="width: 8.471ex;height: 3.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9199dd54e4e11c3a5f0d99b21e9ee70dc2b70ef9" data-alt="{\displaystyle \{b_{k}\}_{k=1}^{M-1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and reconstruction levels <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{y_{k}\}_{k=1}^{M}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> { </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false"> } </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \{y_{k}\}_{k=1}^{M}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c8af3c644d08bd3d01bb32b308b4c0c04148b40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.742ex; height:3.176ex;" alt="{\displaystyle \{y_{k}\}_{k=1}^{M}}"> </noscript><span class="lazy-image-placeholder" style="width: 7.742ex;height: 3.176ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c8af3c644d08bd3d01bb32b308b4c0c04148b40" data-alt="{\displaystyle \{y_{k}\}_{k=1}^{M}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> to minimize the resulting distortion</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D=E[(x-Q(x))^{2}]=\int _{-\infty }^{\infty }(x-Q(x))^{2}f(x)dx=\sum _{k=1}^{M}\int _{b_{k-1}}^{b_{k}}(x-y_{k})^{2}f(x)dx=\sum _{k=1}^{M}d_{k}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> D </mi> <mo> = </mo> <mi> E </mi> <mo stretchy="false"> [ </mo> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> −<!-- − --> </mo> <mi> Q </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo stretchy="false"> ] </mo> <mo> = </mo> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> ∞<!-- ∞ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ∞<!-- ∞ --> </mi> </mrow> </msubsup> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> −<!-- − --> </mo> <mi> Q </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mi> d </mi> <mi> x </mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> </mrow> </munderover> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> </msubsup> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> −<!-- − --> </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mi> d </mi> <mi> x </mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> </mrow> </munderover> <msub> <mi> d </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle D=E[(x-Q(x))^{2}]=\int _{-\infty }^{\infty }(x-Q(x))^{2}f(x)dx=\sum _{k=1}^{M}\int _{b_{k-1}}^{b_{k}}(x-y_{k})^{2}f(x)dx=\sum _{k=1}^{M}d_{k}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a11a15b3c5710c31187e8dfd713f12ca0981a65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:83.62ex; height:7.343ex;" alt="{\displaystyle D=E[(x-Q(x))^{2}]=\int _{-\infty }^{\infty }(x-Q(x))^{2}f(x)dx=\sum _{k=1}^{M}\int _{b_{k-1}}^{b_{k}}(x-y_{k})^{2}f(x)dx=\sum _{k=1}^{M}d_{k}}"> </noscript><span class="lazy-image-placeholder" style="width: 83.62ex;height: 7.343ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a11a15b3c5710c31187e8dfd713f12ca0981a65" data-alt="{\displaystyle D=E[(x-Q(x))^{2}]=\int _{-\infty }^{\infty }(x-Q(x))^{2}f(x)dx=\sum _{k=1}^{M}\int _{b_{k-1}}^{b_{k}}(x-y_{k})^{2}f(x)dx=\sum _{k=1}^{M}d_{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. </dd> </dl> <p>Finding an optimal solution to the above problem results in a quantizer sometimes called a MMSQE (minimum mean-square quantization error) solution, and the resulting PDF-optimized (non-uniform) quantizer is referred to as a <i>Lloyd–Max</i> quantizer, named after two people who independently developed iterative methods<sup id="cite_ref-GrayNeuhoff_6-6" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-GrayNeuhoff-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-22" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-22"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-23" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-23"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> to solve the two sets of simultaneous equations resulting from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\partial D/\partial b_{k}}=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mi> D </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\partial D/\partial b_{k}}=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a37a80a8ecb1ffae64b043e5392c9f98ec678753" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.07ex; height:2.843ex;" alt="{\displaystyle {\partial D/\partial b_{k}}=0}"> </noscript><span class="lazy-image-placeholder" style="width: 12.07ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a37a80a8ecb1ffae64b043e5392c9f98ec678753" data-alt="{\displaystyle {\partial D/\partial b_{k}}=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\partial D/\partial y_{k}}=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mi> D </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\partial D/\partial y_{k}}=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1014f1ba7809ecb5830cb8a9d5e36f489480a9f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.212ex; height:2.843ex;" alt="{\displaystyle {\partial D/\partial y_{k}}=0}"> </noscript><span class="lazy-image-placeholder" style="width: 12.212ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1014f1ba7809ecb5830cb8a9d5e36f489480a9f2" data-alt="{\displaystyle {\partial D/\partial y_{k}}=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, as follows:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\partial D \over \partial b_{k}}=0\Rightarrow b_{k}={y_{k}+y_{k+1} \over 2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mi> D </mi> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo> = </mo> <mn> 0 </mn> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> + </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\partial D \over \partial b_{k}}=0\Rightarrow b_{k}={y_{k}+y_{k+1} \over 2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3f94675620ae34f529f89b7faf05351f9a0abb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:27.533ex; height:5.843ex;" alt="{\displaystyle {\partial D \over \partial b_{k}}=0\Rightarrow b_{k}={y_{k}+y_{k+1} \over 2}}"> </noscript><span class="lazy-image-placeholder" style="width: 27.533ex;height: 5.843ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3f94675620ae34f529f89b7faf05351f9a0abb0" data-alt="{\displaystyle {\partial D \over \partial b_{k}}=0\Rightarrow b_{k}={y_{k}+y_{k+1} \over 2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, </dd> </dl> <p>which places each threshold at the midpoint between each pair of reconstruction values, and</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\partial D \over \partial y_{k}}=0\Rightarrow y_{k}={\int _{b_{k-1}}^{b_{k}}xf(x)dx \over \int _{b_{k-1}}^{b_{k}}f(x)dx}={\frac {1}{p_{k}}}\int _{b_{k-1}}^{b_{k}}xf(x)dx}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mi> D </mi> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo> = </mo> <mn> 0 </mn> <mo stretchy="false"> ⇒<!-- ⇒ --> </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> </msubsup> <mi> x </mi> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mi> d </mi> <mi> x </mi> </mrow> <mrow> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> </msubsup> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mi> d </mi> <mi> x </mi> </mrow> </mfrac> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <msub> <mi> p </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mfrac> </mrow> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> b </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> </msubsup> <mi> x </mi> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mi> d </mi> <mi> x </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\partial D \over \partial y_{k}}=0\Rightarrow y_{k}={\int _{b_{k-1}}^{b_{k}}xf(x)dx \over \int _{b_{k-1}}^{b_{k}}f(x)dx}={\frac {1}{p_{k}}}\int _{b_{k-1}}^{b_{k}}xf(x)dx} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/715d5b7d8dfad8e5096842f95b4b7f4189f334b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:51.754ex; height:9.176ex;" alt="{\displaystyle {\partial D \over \partial y_{k}}=0\Rightarrow y_{k}={\int _{b_{k-1}}^{b_{k}}xf(x)dx \over \int _{b_{k-1}}^{b_{k}}f(x)dx}={\frac {1}{p_{k}}}\int _{b_{k-1}}^{b_{k}}xf(x)dx}"> </noscript><span class="lazy-image-placeholder" style="width: 51.754ex;height: 9.176ex;vertical-align: -4.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/715d5b7d8dfad8e5096842f95b4b7f4189f334b2" data-alt="{\displaystyle {\partial D \over \partial y_{k}}=0\Rightarrow y_{k}={\int _{b_{k-1}}^{b_{k}}xf(x)dx \over \int _{b_{k-1}}^{b_{k}}f(x)dx}={\frac {1}{p_{k}}}\int _{b_{k-1}}^{b_{k}}xf(x)dx}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> </dd> </dl> <p>which places each reconstruction value at the centroid (conditional expected value) of its associated classification interval.</p> <p><a href="https://en-m-wikipedia-org.translate.goog/wiki/Lloyd%27s_algorithm?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Lloyd's algorithm">Lloyd's Method I algorithm</a>, originally described in 1957, can be generalized in a straightforward way for application to vector data. This generalization results in the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Linde%E2%80%93Buzo%E2%80%93Gray_algorithm?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Linde–Buzo–Gray algorithm">Linde–Buzo–Gray (LBG)</a> or <a href="https://en-m-wikipedia-org.translate.goog/wiki/K-means?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="K-means">k-means</a> classifier optimization methods. Moreover, the technique can be further generalized in a straightforward way to also include an entropy constraint for vector data.<sup id="cite_ref-ChouLookabaughGray_24-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-ChouLookabaughGray-24"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup></p> <div class="mw-heading mw-heading3"> <h3 id="Uniform_quantization_and_the_6_dB/bit_approximation"><span id="Uniform_quantization_and_the_6_dB.2Fbit_approximation"></span>Uniform quantization and the 6&nbsp;dB/bit approximation</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=16&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Uniform quantization and the 6&nbsp;dB/bit approximation" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The Lloyd–Max quantizer is actually a uniform quantizer when the input PDF is uniformly distributed over the range <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [y_{1}-\Delta /2,~y_{M}+\Delta /2)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> [ </mo> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 2 </mn> <mo> , </mo> <mtext> &nbsp; </mtext> <msub> <mi> y </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> M </mi> </mrow> </msub> <mo> + </mo> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 2 </mn> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle [y_{1}-\Delta /2,~y_{M}+\Delta /2)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28ac33ec6bc757d3e717fc9b35ee9b67676de2e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.66ex; height:2.843ex;" alt="{\displaystyle [y_{1}-\Delta /2,~y_{M}+\Delta /2)}"> </noscript><span class="lazy-image-placeholder" style="width: 22.66ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28ac33ec6bc757d3e717fc9b35ee9b67676de2e5" data-alt="{\displaystyle [y_{1}-\Delta /2,~y_{M}+\Delta /2)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. However, for a source that does not have a uniform distribution, the minimum-distortion quantizer may not be a uniform quantizer. The analysis of a uniform quantizer applied to a uniformly distributed source can be summarized in what follows:</p> <p>A symmetric source X can be modelled with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)={\tfrac {1}{2X_{\max }}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <msub> <mi> X </mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix"> max </mo> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle f(x)={\tfrac {1}{2X_{\max }}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0d075377e8f186bfd990d9ee8969b0a9714c9b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:13.182ex; height:3.843ex;" alt="{\displaystyle f(x)={\tfrac {1}{2X_{\max }}}}"> </noscript><span class="lazy-image-placeholder" style="width: 13.182ex;height: 3.843ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0d075377e8f186bfd990d9ee8969b0a9714c9b5" data-alt="{\displaystyle f(x)={\tfrac {1}{2X_{\max }}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in [-X_{\max },X_{\max }]}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> <mo> ∈<!-- ∈ --> </mo> <mo stretchy="false"> [ </mo> <mo> −<!-- − --> </mo> <msub> <mi> X </mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix"> max </mo> </mrow> </msub> <mo> , </mo> <msub> <mi> X </mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix"> max </mo> </mrow> </msub> <mo stretchy="false"> ] </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x\in [-X_{\max },X_{\max }]} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cf4bd582eef8f8d55332145bed84a97829c283d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.737ex; height:2.843ex;" alt="{\displaystyle x\in [-X_{\max },X_{\max }]}"> </noscript><span class="lazy-image-placeholder" style="width: 18.737ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cf4bd582eef8f8d55332145bed84a97829c283d" data-alt="{\displaystyle x\in [-X_{\max },X_{\max }]}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and 0 elsewhere. The step size <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta ={\tfrac {2X_{\max }}{M}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn> 2 </mn> <msub> <mi> X </mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix"> max </mo> </mrow> </msub> </mrow> <mi> M </mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \Delta ={\tfrac {2X_{\max }}{M}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b101d88f0807c3bd3de76054ff190bd32fa9e6a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:10.701ex; height:3.843ex;" alt="{\displaystyle \Delta ={\tfrac {2X_{\max }}{M}}}"> </noscript><span class="lazy-image-placeholder" style="width: 10.701ex;height: 3.843ex;vertical-align: -1.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b101d88f0807c3bd3de76054ff190bd32fa9e6a6" data-alt="{\displaystyle \Delta ={\tfrac {2X_{\max }}{M}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> and the <i>signal to quantization noise ratio</i> (SQNR) of the quantizer is</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\rm {SQNR}}=10\log _{10}{\frac {\sigma _{x}^{2}}{\sigma _{q}^{2}}}=10\log _{10}{\frac {(M\Delta )^{2}/12}{\Delta ^{2}/12}}=10\log _{10}M^{2}=20\log _{10}M}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> S </mi> <mi mathvariant="normal"> Q </mi> <mi mathvariant="normal"> N </mi> <mi mathvariant="normal"> R </mi> </mrow> </mrow> <mo> = </mo> <mn> 10 </mn> <msub> <mi> log </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 10 </mn> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <msubsup> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> q </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> </mfrac> </mrow> <mo> = </mo> <mn> 10 </mn> <msub> <mi> log </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 10 </mn> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mi> M </mi> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 12 </mn> </mrow> <mrow> <msup> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 12 </mn> </mrow> </mfrac> </mrow> <mo> = </mo> <mn> 10 </mn> <msub> <mi> log </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 10 </mn> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <msup> <mi> M </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo> = </mo> <mn> 20 </mn> <msub> <mi> log </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 10 </mn> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mi> M </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\rm {SQNR}}=10\log _{10}{\frac {\sigma _{x}^{2}}{\sigma _{q}^{2}}}=10\log _{10}{\frac {(M\Delta )^{2}/12}{\Delta ^{2}/12}}=10\log _{10}M^{2}=20\log _{10}M} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20a6923476ba7cb90a86fc06d0b9fa9e0f67a6bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:71.633ex; height:6.843ex;" alt="{\displaystyle {\rm {SQNR}}=10\log _{10}{\frac {\sigma _{x}^{2}}{\sigma _{q}^{2}}}=10\log _{10}{\frac {(M\Delta )^{2}/12}{\Delta ^{2}/12}}=10\log _{10}M^{2}=20\log _{10}M}"> </noscript><span class="lazy-image-placeholder" style="width: 71.633ex;height: 6.843ex;vertical-align: -2.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20a6923476ba7cb90a86fc06d0b9fa9e0f67a6bd" data-alt="{\displaystyle {\rm {SQNR}}=10\log _{10}{\frac {\sigma _{x}^{2}}{\sigma _{q}^{2}}}=10\log _{10}{\frac {(M\Delta )^{2}/12}{\Delta ^{2}/12}}=10\log _{10}M^{2}=20\log _{10}M}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. </dd> </dl> <p>For a fixed-length code using <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> N </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle N} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"> </noscript><span class="lazy-image-placeholder" style="width: 2.064ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" data-alt="{\displaystyle N}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> bits, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=2^{N}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> M </mi> <mo> = </mo> <msup> <mn> 2 </mn> <mrow class="MJX-TeXAtom-ORD"> <mi> N </mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle M=2^{N}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aaa5bdbbea857a913997a146a038f6b5242cfca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.395ex; height:2.676ex;" alt="{\displaystyle M=2^{N}}"> </noscript><span class="lazy-image-placeholder" style="width: 8.395ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aaa5bdbbea857a913997a146a038f6b5242cfca" data-alt="{\displaystyle M=2^{N}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, resulting in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\rm {SQNR}}=20\log _{10}{2^{N}}=N\cdot (20\log _{10}2)=N\cdot 6.0206\,{\rm {dB}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> S </mi> <mi mathvariant="normal"> Q </mi> <mi mathvariant="normal"> N </mi> <mi mathvariant="normal"> R </mi> </mrow> </mrow> <mo> = </mo> <mn> 20 </mn> <msub> <mi> log </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 10 </mn> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn> 2 </mn> <mrow class="MJX-TeXAtom-ORD"> <mi> N </mi> </mrow> </msup> </mrow> <mo> = </mo> <mi> N </mi> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mn> 20 </mn> <msub> <mi> log </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 10 </mn> </mrow> </msub> <mo> ⁡<!-- ⁡ --> </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> N </mi> <mo> ⋅<!-- ⋅ --> </mo> <mn> 6.0206 </mn> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> <mi mathvariant="normal"> B </mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\rm {SQNR}}=20\log _{10}{2^{N}}=N\cdot (20\log _{10}2)=N\cdot 6.0206\,{\rm {dB}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63b07ba237bcf7826e8bb6692f3f39550ab38cd0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:54.839ex; height:3.176ex;" alt="{\displaystyle {\rm {SQNR}}=20\log _{10}{2^{N}}=N\cdot (20\log _{10}2)=N\cdot 6.0206\,{\rm {dB}}}"> </noscript><span class="lazy-image-placeholder" style="width: 54.839ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63b07ba237bcf7826e8bb6692f3f39550ab38cd0" data-alt="{\displaystyle {\rm {SQNR}}=20\log _{10}{2^{N}}=N\cdot (20\log _{10}2)=N\cdot 6.0206\,{\rm {dB}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>,</p> <p>or approximately 6&nbsp;dB per bit. For example, for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> N </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle N} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"> </noscript><span class="lazy-image-placeholder" style="width: 2.064ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" data-alt="{\displaystyle N}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>=8 bits, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> M </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle M} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"> </noscript><span class="lazy-image-placeholder" style="width: 2.442ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" data-alt="{\displaystyle M}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>=256 levels and SQNR = 8×6 = 48&nbsp;dB; and for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> N </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle N} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"> </noscript><span class="lazy-image-placeholder" style="width: 2.064ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" data-alt="{\displaystyle N}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>=16 bits, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> M </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle M} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"> </noscript><span class="lazy-image-placeholder" style="width: 2.442ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" data-alt="{\displaystyle M}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>=65536 and SQNR = 16×6 = 96&nbsp;dB. The property of 6&nbsp;dB improvement in SQNR for each extra bit used in quantization is a well-known figure of merit. However, it must be used with care: this derivation is only for a uniform quantizer applied to a uniform source. For other source PDFs and other quantizer designs, the SQNR may be somewhat different from that predicted by 6&nbsp;dB/bit, depending on the type of PDF, the type of source, the type of quantizer, and the bit rate range of operation.</p> <p>However, it is common to assume that for many sources, the slope of a quantizer SQNR function can be approximated as 6&nbsp;dB/bit when operating at a sufficiently high bit rate. At asymptotically high bit rates, cutting the step size in half increases the bit rate by approximately 1 bit per sample (because 1 bit is needed to indicate whether the value is in the left or right half of the prior double-sized interval) and reduces the mean squared error by a factor of 4 (i.e., 6&nbsp;dB) based on the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta ^{2}/12}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal"> Δ<!-- Δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 12 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \Delta ^{2}/12} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34b5be83e88394057daa090c25107b1b57adb48a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.477ex; height:3.176ex;" alt="{\displaystyle \Delta ^{2}/12}"> </noscript><span class="lazy-image-placeholder" style="width: 6.477ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34b5be83e88394057daa090c25107b1b57adb48a" data-alt="{\displaystyle \Delta ^{2}/12}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> approximation.</p> <p>At asymptotically high bit rates, the 6&nbsp;dB/bit approximation is supported for many source PDFs by rigorous theoretical analysis.<sup id="cite_ref-Bennett_2-3" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-Bennett-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-OliverPierceShannon_3-1" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-OliverPierceShannon-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-GishPierce_5-1" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-GishPierce-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-GrayNeuhoff_6-7" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-GrayNeuhoff-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Moreover, the structure of the optimal scalar quantizer (in the rate–distortion sense) approaches that of a uniform quantizer under these conditions.<sup id="cite_ref-GishPierce_5-2" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-GishPierce-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-GrayNeuhoff_6-8" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-GrayNeuhoff-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(6)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="In_other_fields">In other fields</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=17&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: In other fields" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-6 collapsible-block" id="mf-section-6"> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style> <div role="note" class="hatnote navigation-not-searchable"> See also: <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantum_noise?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Quantum noise">Quantum noise</a> and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantum_limit?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Quantum limit">Quantum limit</a> </div> <p>Many physical quantities are actually quantized by physical entities. Examples of fields where this limitation applies include <a href="https://en-m-wikipedia-org.translate.goog/wiki/Electronics?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Electronics">electronics</a> (due to <a href="https://en-m-wikipedia-org.translate.goog/wiki/Electron?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Electron">electrons</a>), <a href="https://en-m-wikipedia-org.translate.goog/wiki/Optics?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Optics">optics</a> (due to <a href="https://en-m-wikipedia-org.translate.goog/wiki/Photon?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Photon">photons</a>), <a href="https://en-m-wikipedia-org.translate.goog/wiki/Biology?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Biology">biology</a> (due to <a href="https://en-m-wikipedia-org.translate.goog/wiki/DNA?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="DNA">DNA</a>), <a href="https://en-m-wikipedia-org.translate.goog/wiki/Physics?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Physics">physics</a> (due to <a href="https://en-m-wikipedia-org.translate.goog/wiki/Planck_limits?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Planck limits">Planck limits</a>) and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Chemistry?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Chemistry">chemistry</a> (due to <a href="https://en-m-wikipedia-org.translate.goog/wiki/Molecule?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Molecule">molecules</a>).</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(7)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="See_also">See also</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=18&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: See also" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-7 collapsible-block" id="mf-section-7"> <ul> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Beta_encoder?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Beta encoder">Beta encoder</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Color_quantization?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Color quantization">Color quantization</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Data_binning?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Data binning">Data binning</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Discretization?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Discretization">Discretization</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Discretization_error?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Discretization error">Discretization error</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Posterization?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Posterization">Posterization</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Pulse-code_modulation?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Pulse-code modulation">Pulse-code modulation</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantile?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Quantile">Quantile</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(image_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Quantization (image processing)">Quantization (image processing)</a></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Regression_dilution?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Regression dilution">Regression dilution</a> – a bias in parameter estimates caused by errors such as quantization in the explanatory or independent variable</li> </ul> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(8)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Notes">Notes</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=19&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Notes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-8 collapsible-block" id="mf-section-8"> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style> <div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"> <ol class="references"> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-18">^</a></b></span> <span class="reference-text">Other distortion measures can also be considered, although mean squared error is a popular one.</span></li> </ol> </div> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(9)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="References">References</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=20&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: References" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-9 collapsible-block" id="mf-section-9"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"> <div class="reflist"> <div class="mw-references-wrap mw-references-columns"> <ol class="references"> <li id="cite_note-Sheppard-1"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Sheppard_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFSheppard1897" class="citation journal cs1 cs1-prop-long-vol"><a href="https://en-m-wikipedia-org.translate.goog/wiki/William_Fleetwood_Sheppard?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="William Fleetwood Sheppard">Sheppard, W. F.</a> (1897). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://zenodo.org/record/1447738">"On the Calculation of the most Probable Values of Frequency-Constants, for Data arranged according to Equidistant Division of a Scale"</a>. <i>Proceedings of the London Mathematical Society</i>. s1-29 (1). Wiley: 353–380. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1112%252Fplms%252Fs1-29.1.353">10.1112/plms/s1-29.1.353</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISSN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://search.worldcat.org/issn/0024-6115">0024-6115</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+London+Mathematical+Society&amp;rft.atitle=On+the+Calculation+of+the+most+Probable+Values+of+Frequency-Constants%2C+for+Data+arranged+according+to+Equidistant+Division+of+a+Scale&amp;rft.volume=s1-29&amp;rft.issue=1&amp;rft.pages=353-380&amp;rft.date=1897&amp;rft_id=info%3Adoi%2F10.1112%2Fplms%2Fs1-29.1.353&amp;rft.issn=0024-6115&amp;rft.aulast=Sheppard&amp;rft.aufirst=W.+F.&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1447738&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span></li> <li id="cite_note-Bennett-2"><span class="mw-cite-backlink">^ <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Bennett_2-0"><sup><i><b>a</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Bennett_2-1"><sup><i><b>b</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Bennett_2-2"><sup><i><b>c</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Bennett_2-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text">W. R. Bennett, "<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://www.alcatel-lucent.com/bstj/vol27-1948/articles/bstj27-3-446.pdf">Spectra of Quantized Signals</a>", <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Bell_System_Technical_Journal?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Bell System Technical Journal">Bell System Technical Journal</a></i>, Vol. 27, pp. 446–472, July 1948.</span></li> <li id="cite_note-OliverPierceShannon-3"><span class="mw-cite-backlink">^ <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-OliverPierceShannon_3-0"><sup><i><b>a</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-OliverPierceShannon_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOliverPierceShannon1948" class="citation journal cs1">Oliver, B.M.; Pierce, J.R.; <a href="https://en-m-wikipedia-org.translate.goog/wiki/Claude_Shannon?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Claude Shannon">Shannon, C.E.</a> (1948). "The Philosophy of PCM". <i>Proceedings of the IRE</i>. <b>36</b> (11). Institute of Electrical and Electronics Engineers (IEEE): 1324–1331. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1109%252Fjrproc.1948.231941">10.1109/jrproc.1948.231941</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISSN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://search.worldcat.org/issn/0096-8390">0096-8390</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/S2CID_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://api.semanticscholar.org/CorpusID:51663786">51663786</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+IRE&amp;rft.atitle=The+Philosophy+of+PCM&amp;rft.volume=36&amp;rft.issue=11&amp;rft.pages=1324-1331&amp;rft.date=1948&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A51663786%23id-name%3DS2CID&amp;rft.issn=0096-8390&amp;rft_id=info%3Adoi%2F10.1109%2Fjrproc.1948.231941&amp;rft.aulast=Oliver&amp;rft.aufirst=B.M.&amp;rft.au=Pierce%2C+J.R.&amp;rft.au=Shannon%2C+C.E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span></li> <li id="cite_note-Stein-4"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Stein_4-0">^</a></b></span> <span class="reference-text">Seymour Stein and J. Jay Jones, <i><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://books.google.com/books/about/Modern_communication_principles.html?id%3DjBc3AQAAIAAJ">Modern Communication Principles</a></i>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/McGraw%E2%80%93Hill?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="McGraw–Hill">McGraw–Hill</a>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-0-07-061003-3?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/978-0-07-061003-3">978-0-07-061003-3</a>, 1967 (p. 196).</span></li> <li id="cite_note-GishPierce-5"><span class="mw-cite-backlink">^ <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-GishPierce_5-0"><sup><i><b>a</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-GishPierce_5-1"><sup><i><b>b</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-GishPierce_5-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGishPierce1968" class="citation journal cs1">Gish, H.; Pierce, J. (1968). "Asymptotically efficient quantizing". <i>IEEE Transactions on Information Theory</i>. <b>14</b> (5). Institute of Electrical and Electronics Engineers (IEEE): 676–683. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1109%252Ftit.1968.1054193">10.1109/tit.1968.1054193</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISSN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://search.worldcat.org/issn/0018-9448">0018-9448</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Information+Theory&amp;rft.atitle=Asymptotically+efficient+quantizing&amp;rft.volume=14&amp;rft.issue=5&amp;rft.pages=676-683&amp;rft.date=1968&amp;rft_id=info%3Adoi%2F10.1109%2Ftit.1968.1054193&amp;rft.issn=0018-9448&amp;rft.aulast=Gish&amp;rft.aufirst=H.&amp;rft.au=Pierce%2C+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span></li> <li id="cite_note-GrayNeuhoff-6"><span class="mw-cite-backlink">^ <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-GrayNeuhoff_6-0"><sup><i><b>a</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-GrayNeuhoff_6-1"><sup><i><b>b</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-GrayNeuhoff_6-2"><sup><i><b>c</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-GrayNeuhoff_6-3"><sup><i><b>d</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-GrayNeuhoff_6-4"><sup><i><b>e</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-GrayNeuhoff_6-5"><sup><i><b>f</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-GrayNeuhoff_6-6"><sup><i><b>g</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-GrayNeuhoff_6-7"><sup><i><b>h</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-GrayNeuhoff_6-8"><sup><i><b>i</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrayNeuhoff1998" class="citation journal cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Robert_M._Gray?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Robert M. Gray">Gray, R.M.</a>; Neuhoff, D.L. (1998). "Quantization". <i>IEEE Transactions on Information Theory</i>. <b>44</b> (6). Institute of Electrical and Electronics Engineers (IEEE): 2325–2383. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1109%252F18.720541">10.1109/18.720541</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISSN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://search.worldcat.org/issn/0018-9448">0018-9448</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/S2CID_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://api.semanticscholar.org/CorpusID:212653679">212653679</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Information+Theory&amp;rft.atitle=Quantization&amp;rft.volume=44&amp;rft.issue=6&amp;rft.pages=2325-2383&amp;rft.date=1998&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A212653679%23id-name%3DS2CID&amp;rft.issn=0018-9448&amp;rft_id=info%3Adoi%2F10.1109%2F18.720541&amp;rft.aulast=Gray&amp;rft.aufirst=R.M.&amp;rft.au=Neuhoff%2C+D.L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span></li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-7">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAllen_GershoRobert_M._Gray1991" class="citation book cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Allen_Gersho?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Allen Gersho">Allen Gersho</a>; <a href="https://en-m-wikipedia-org.translate.goog/wiki/Robert_M._Gray?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Robert M. Gray">Robert M. Gray</a> (1991). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://books.google.com/books?id%3DDwcDm6xgItUC"><i>Vector Quantization and Signal Compression</i></a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Springer_Science%2BBusiness_Media?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Springer Science+Business Media">Springer</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-0-7923-9181-4?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/978-0-7923-9181-4"><bdi>978-0-7923-9181-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Vector+Quantization+and+Signal+Compression&amp;rft.pub=Springer&amp;rft.date=1991&amp;rft.isbn=978-0-7923-9181-4&amp;rft.au=Allen+Gersho&amp;rft.au=Robert+M.+Gray&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DDwcDm6xgItUC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span></li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-8">^</a></b></span> <span class="reference-text">Hodgson, Jay (2010). <i>Understanding Records</i>, p.56. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-1-4411-5607-5?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/978-1-4411-5607-5">978-1-4411-5607-5</a>. Adapted from Franz, David (2004). <i>Recording and Producing in the Home Studio</i>, p.38-9. Berklee Press.</span></li> <li id="cite_note-Gersho77-9"><span class="mw-cite-backlink">^ <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Gersho77_9-0"><sup><i><b>a</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Gersho77_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGersho1977" class="citation journal cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Allen_Gersho?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Allen Gersho">Gersho, A.</a> (1977). "Quantization". <i>IEEE Communications Society Magazine</i>. <b>15</b> (5). Institute of Electrical and Electronics Engineers (IEEE): 16–28. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1109%252Fmcom.1977.1089500">10.1109/mcom.1977.1089500</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISSN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://search.worldcat.org/issn/0148-9615">0148-9615</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/S2CID_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://api.semanticscholar.org/CorpusID:260498692">260498692</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Communications+Society+Magazine&amp;rft.atitle=Quantization&amp;rft.volume=15&amp;rft.issue=5&amp;rft.pages=16-28&amp;rft.date=1977&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A260498692%23id-name%3DS2CID&amp;rft.issn=0148-9615&amp;rft_id=info%3Adoi%2F10.1109%2Fmcom.1977.1089500&amp;rft.aulast=Gersho&amp;rft.aufirst=A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span></li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-10">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRabbaniJoshiJones2009" class="citation book cs1">Rabbani, Majid; Joshi, Rajan L.; Jones, Paul W. (2009). "Section 1.2.3: Quantization, in Chapter 1: JPEG 2000 Core Coding System (Part 1)". In Schelkens, Peter; Skodras, Athanassios; Ebrahimi, Touradj (eds.). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://archive.org/details/jpegsuitethewile00sche"><i>The JPEG 2000 Suite</i></a></span>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/John_Wiley_%26_Sons?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="John Wiley &amp; Sons">John Wiley &amp; Sons</a>. pp.&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://archive.org/details/jpegsuitethewile00sche/page/n73">22</a>–24. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-0-470-72147-6?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/978-0-470-72147-6"><bdi>978-0-470-72147-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Section+1.2.3%3A+Quantization%2C+in+Chapter+1%3A+JPEG+2000+Core+Coding+System+%28Part+1%29&amp;rft.btitle=The+JPEG+2000+Suite&amp;rft.pages=22-24&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2009&amp;rft.isbn=978-0-470-72147-6&amp;rft.aulast=Rabbani&amp;rft.aufirst=Majid&amp;rft.au=Joshi%2C+Rajan+L.&amp;rft.au=Jones%2C+Paul+W.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fjpegsuitethewile00sche&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span></li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-11">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaubmanMarcellin2002" class="citation book cs1">Taubman, David S.; Marcellin, Michael W. (2002). "Chapter 3: Quantization". <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://archive.org/details/jpegimagecompres00taub"><i>JPEG2000: Image Compression Fundamentals, Standards and Practice</i></a></span>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Kluwer_Academic_Publishers?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Kluwer Academic Publishers">Kluwer Academic Publishers</a>. p.&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://archive.org/details/jpegimagecompres00taub/page/n126">107</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/0-7923-7519-X?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/0-7923-7519-X"><bdi>0-7923-7519-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapter+3%3A+Quantization&amp;rft.btitle=JPEG2000%3A+Image+Compression+Fundamentals%2C+Standards+and+Practice&amp;rft.pages=107&amp;rft.pub=Kluwer+Academic+Publishers&amp;rft.date=2002&amp;rft.isbn=0-7923-7519-X&amp;rft.aulast=Taubman&amp;rft.aufirst=David+S.&amp;rft.au=Marcellin%2C+Michael+W.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fjpegimagecompres00taub&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span></li> <li id="cite_note-SullivanIT-12"><span class="mw-cite-backlink">^ <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-SullivanIT_12-0"><sup><i><b>a</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-SullivanIT_12-1"><sup><i><b>b</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-SullivanIT_12-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSullivan1996" class="citation journal cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Gary_Sullivan_(engineer)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Gary Sullivan (engineer)">Sullivan, G.J.</a> (1996). "Efficient scalar quantization of exponential and Laplacian random variables". <i>IEEE Transactions on Information Theory</i>. <b>42</b> (5). Institute of Electrical and Electronics Engineers (IEEE): 1365–1374. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1109%252F18.532878">10.1109/18.532878</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISSN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://search.worldcat.org/issn/0018-9448">0018-9448</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Information+Theory&amp;rft.atitle=Efficient+scalar+quantization+of+exponential+and+Laplacian+random+variables&amp;rft.volume=42&amp;rft.issue=5&amp;rft.pages=1365-1374&amp;rft.date=1996&amp;rft_id=info%3Adoi%2F10.1109%2F18.532878&amp;rft.issn=0018-9448&amp;rft.aulast=Sullivan&amp;rft.aufirst=G.J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span></li> <li id="cite_note-Widrow1-13"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Widrow1_13-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWidrow1956" class="citation journal cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Bernard_Widrow?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Bernard Widrow">Widrow, B.</a> (1956). "A Study of Rough Amplitude Quantization by Means of Nyquist Sampling Theory". <i>IRE Transactions on Circuit Theory</i>. <b>3</b> (4). Institute of Electrical and Electronics Engineers (IEEE): 266–276. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1109%252Ftct.1956.1086334">10.1109/tct.1956.1086334</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Hdl_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://hdl.handle.net/1721.1%252F12139">1721.1/12139</a></span>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISSN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://search.worldcat.org/issn/0096-2007">0096-2007</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/S2CID_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://api.semanticscholar.org/CorpusID:16777461">16777461</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IRE+Transactions+on+Circuit+Theory&amp;rft.atitle=A+Study+of+Rough+Amplitude+Quantization+by+Means+of+Nyquist+Sampling+Theory&amp;rft.volume=3&amp;rft.issue=4&amp;rft.pages=266-276&amp;rft.date=1956&amp;rft_id=info%3Ahdl%2F1721.1%2F12139&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16777461%23id-name%3DS2CID&amp;rft.issn=0096-2007&amp;rft_id=info%3Adoi%2F10.1109%2Ftct.1956.1086334&amp;rft.aulast=Widrow&amp;rft.aufirst=B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span></li> <li id="cite_note-Widrow2-14"><span class="mw-cite-backlink">^ <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Widrow2_14-0"><sup><i><b>a</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Widrow2_14-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Bernard_Widrow?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Bernard Widrow">Bernard Widrow</a>, "<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://www-isl.stanford.edu/~widrow/papers/j1961statisticalanalysis.pdf">Statistical analysis of amplitude quantized sampled data systems</a>", <i>Trans. AIEE Pt. II: Appl. Ind.</i>, Vol. 79, pp. 555–568, Jan. 1961.</span></li> <li id="cite_note-MarcoNeuhoff-15"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-MarcoNeuhoff_15-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarcoNeuhoff2005" class="citation journal cs1">Marco, D.; Neuhoff, D.L. (2005). "The Validity of the Additive Noise Model for Uniform Scalar Quantizers". <i>IEEE Transactions on Information Theory</i>. <b>51</b> (5). Institute of Electrical and Electronics Engineers (IEEE): 1739–1755. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1109%252Ftit.2005.846397">10.1109/tit.2005.846397</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISSN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://search.worldcat.org/issn/0018-9448">0018-9448</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/S2CID_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://api.semanticscholar.org/CorpusID:14819261">14819261</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Information+Theory&amp;rft.atitle=The+Validity+of+the+Additive+Noise+Model+for+Uniform+Scalar+Quantizers&amp;rft.volume=51&amp;rft.issue=5&amp;rft.pages=1739-1755&amp;rft.date=2005&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14819261%23id-name%3DS2CID&amp;rft.issn=0018-9448&amp;rft_id=info%3Adoi%2F10.1109%2Ftit.2005.846397&amp;rft.aulast=Marco&amp;rft.aufirst=D.&amp;rft.au=Neuhoff%2C+D.L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span></li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-16">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPohlman1989" class="citation book cs1">Pohlman, Ken C. (1989). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://books.google.com/books?id%3DVZw6z9a03ikC%26pg%3DPA37"><i>Principles of Digital Audio 2nd Edition</i></a>. SAMS. p.&nbsp;60. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/9780071441568?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/9780071441568"><bdi>9780071441568</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Principles+of+Digital+Audio+2nd+Edition&amp;rft.pages=60&amp;rft.pub=SAMS&amp;rft.date=1989&amp;rft.isbn=9780071441568&amp;rft.aulast=Pohlman&amp;rft.aufirst=Ken+C.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DVZw6z9a03ikC%26pg%3DPA37&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span></li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-17">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWatkinson2001" class="citation book cs1">Watkinson, John (2001). <i>The Art of Digital Audio 3rd Edition</i>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Focal_Press?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Focal Press">Focal Press</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/0-240-51587-0?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/0-240-51587-0"><bdi>0-240-51587-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Art+of+Digital+Audio+3rd+Edition&amp;rft.pub=Focal+Press&amp;rft.date=2001&amp;rft.isbn=0-240-51587-0&amp;rft.aulast=Watkinson&amp;rft.aufirst=John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span></li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-19">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFarvardinModestino1984" class="citation journal cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Nariman_Farvardin?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Nariman Farvardin">Farvardin, N.</a>; Modestino, J. (1984). "Optimum quantizer performance for a class of non-Gaussian memoryless sources". <i>IEEE Transactions on Information Theory</i>. <b>30</b> (3). Institute of Electrical and Electronics Engineers (IEEE): 485–497. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1109%252Ftit.1984.1056920">10.1109/tit.1984.1056920</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISSN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://search.worldcat.org/issn/0018-9448">0018-9448</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Information+Theory&amp;rft.atitle=Optimum+quantizer+performance+for+a+class+of+non-Gaussian+memoryless+sources&amp;rft.volume=30&amp;rft.issue=3&amp;rft.pages=485-497&amp;rft.date=1984&amp;rft_id=info%3Adoi%2F10.1109%2Ftit.1984.1056920&amp;rft.issn=0018-9448&amp;rft.aulast=Farvardin&amp;rft.aufirst=N.&amp;rft.au=Modestino%2C+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span>(Section VI.C and Appendix B)</span></li> <li id="cite_note-Berger72-20"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Berger72_20-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerger1972" class="citation journal cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Toby_Berger?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Toby Berger">Berger, T.</a> (1972). "Optimum quantizers and permutation codes". <i>IEEE Transactions on Information Theory</i>. <b>18</b> (6). Institute of Electrical and Electronics Engineers (IEEE): 759–765. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1109%252Ftit.1972.1054906">10.1109/tit.1972.1054906</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISSN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://search.worldcat.org/issn/0018-9448">0018-9448</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Information+Theory&amp;rft.atitle=Optimum+quantizers+and+permutation+codes&amp;rft.volume=18&amp;rft.issue=6&amp;rft.pages=759-765&amp;rft.date=1972&amp;rft_id=info%3Adoi%2F10.1109%2Ftit.1972.1054906&amp;rft.issn=0018-9448&amp;rft.aulast=Berger&amp;rft.aufirst=T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span></li> <li id="cite_note-Berger82-21"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-Berger82_21-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerger1982" class="citation journal cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Toby_Berger?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Toby Berger">Berger, T.</a> (1982). "Minimum entropy quantizers and permutation codes". <i>IEEE Transactions on Information Theory</i>. <b>28</b> (2). Institute of Electrical and Electronics Engineers (IEEE): 149–157. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1109%252Ftit.1982.1056456">10.1109/tit.1982.1056456</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISSN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://search.worldcat.org/issn/0018-9448">0018-9448</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Information+Theory&amp;rft.atitle=Minimum+entropy+quantizers+and+permutation+codes&amp;rft.volume=28&amp;rft.issue=2&amp;rft.pages=149-157&amp;rft.date=1982&amp;rft_id=info%3Adoi%2F10.1109%2Ftit.1982.1056456&amp;rft.issn=0018-9448&amp;rft.aulast=Berger&amp;rft.aufirst=T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span></li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-22">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLloyd1982" class="citation journal cs1">Lloyd, S. (1982). "Least squares quantization in PCM". <i>IEEE Transactions on Information Theory</i>. <b>28</b> (2). Institute of Electrical and Electronics Engineers (IEEE): 129–137. <a href="https://en-m-wikipedia-org.translate.goog/wiki/CiteSeerX_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&nbsp;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://citeseerx.ist.psu.edu/viewdoc/summary?doi%3D10.1.1.131.1338">10.1.1.131.1338</a></span>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1109%252Ftit.1982.1056489">10.1109/tit.1982.1056489</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISSN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://search.worldcat.org/issn/0018-9448">0018-9448</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/S2CID_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://api.semanticscholar.org/CorpusID:10833328">10833328</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Information+Theory&amp;rft.atitle=Least+squares+quantization+in+PCM&amp;rft.volume=28&amp;rft.issue=2&amp;rft.pages=129-137&amp;rft.date=1982&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.131.1338%23id-name%3DCiteSeerX&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A10833328%23id-name%3DS2CID&amp;rft.issn=0018-9448&amp;rft_id=info%3Adoi%2F10.1109%2Ftit.1982.1056489&amp;rft.aulast=Lloyd&amp;rft.aufirst=S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span> (work documented in a manuscript circulated for comments at <a href="https://en-m-wikipedia-org.translate.goog/wiki/Bell_Laboratories?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Bell Laboratories">Bell Laboratories</a> with a department log date of 31 July 1957 and also presented at the 1957 meeting of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Institute_of_Mathematical_Statistics?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Institute of Mathematical Statistics">Institute of Mathematical Statistics</a>, although not formally published until 1982).</span></li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-23">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMax1960" class="citation journal cs1">Max, J. (1960). "Quantizing for minimum distortion". <i>IEEE Transactions on Information Theory</i>. <b>6</b> (1). Institute of Electrical and Electronics Engineers (IEEE): 7–12. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1109%252Ftit.1960.1057548">10.1109/tit.1960.1057548</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISSN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://search.worldcat.org/issn/0018-9448">0018-9448</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Information+Theory&amp;rft.atitle=Quantizing+for+minimum+distortion&amp;rft.volume=6&amp;rft.issue=1&amp;rft.pages=7-12&amp;rft.date=1960&amp;rft_id=info%3Adoi%2F10.1109%2Ftit.1960.1057548&amp;rft.issn=0018-9448&amp;rft.aulast=Max&amp;rft.aufirst=J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span></li> <li id="cite_note-ChouLookabaughGray-24"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Quantization_(signal_processing)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-ChouLookabaughGray_24-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChouLookabaughGray1989" class="citation journal cs1">Chou, P.A.; Lookabaugh, T.; <a href="https://en-m-wikipedia-org.translate.goog/wiki/Robert_M._Gray?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Robert M. Gray">Gray, R.M.</a> (1989). "Entropy-constrained vector quantization". <i>IEEE Transactions on Acoustics, Speech, and Signal Processing</i>. <b>37</b> (1). Institute of Electrical and Electronics Engineers (IEEE): 31–42. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1109%252F29.17498">10.1109/29.17498</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISSN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://search.worldcat.org/issn/0096-3518">0096-3518</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Acoustics%2C+Speech%2C+and+Signal+Processing&amp;rft.atitle=Entropy-constrained+vector+quantization&amp;rft.volume=37&amp;rft.issue=1&amp;rft.pages=31-42&amp;rft.date=1989&amp;rft_id=info%3Adoi%2F10.1109%2F29.17498&amp;rft.issn=0096-3518&amp;rft.aulast=Chou&amp;rft.aufirst=P.A.&amp;rft.au=Lookabaugh%2C+T.&amp;rft.au=Gray%2C+R.M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></span></li> </ol> </div> </div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style> <div class="refbegin" style=""> <ul> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSayood2005" class="citation cs2">Sayood, Khalid (2005), <i>Introduction to Data Compression, Third Edition</i>, Morgan Kaufmann, <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-0-12-620862-7?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/978-0-12-620862-7"><bdi>978-0-12-620862-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Data+Compression%2C+Third+Edition&amp;rft.pub=Morgan+Kaufmann&amp;rft.date=2005&amp;rft.isbn=978-0-12-620862-7&amp;rft.aulast=Sayood&amp;rft.aufirst=Khalid&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></li> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJayantNoll1984" class="citation cs2">Jayant, Nikil S.; Noll, Peter (1984), <i>Digital Coding of Waveforms: Principles and Applications to Speech and Video</i>, Prentice–Hall, <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-0-13-211913-9?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/978-0-13-211913-9"><bdi>978-0-13-211913-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Digital+Coding+of+Waveforms%3A+Principles+and+Applications+to+Speech+and+Video&amp;rft.pub=Prentice%E2%80%93Hall&amp;rft.date=1984&amp;rft.isbn=978-0-13-211913-9&amp;rft.aulast=Jayant&amp;rft.aufirst=Nikil+S.&amp;rft.au=Noll%2C+Peter&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></li> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGregg1977" class="citation cs2">Gregg, W. David (1977), <i>Analog &amp; Digital Communication</i>, John Wiley, <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-0-471-32661-8?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/978-0-471-32661-8"><bdi>978-0-471-32661-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Analog+%26+Digital+Communication&amp;rft.pub=John+Wiley&amp;rft.date=1977&amp;rft.isbn=978-0-471-32661-8&amp;rft.aulast=Gregg&amp;rft.aufirst=W.+David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></li> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteinJones1967" class="citation cs2">Stein, Seymour; Jones, J. Jay (1967), <i>Modern Communication Principles</i>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/McGraw%E2%80%93Hill?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="McGraw–Hill">McGraw–Hill</a>, <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-0-07-061003-3?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/978-0-07-061003-3"><bdi>978-0-07-061003-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Modern+Communication+Principles&amp;rft.pub=McGraw%E2%80%93Hill&amp;rft.date=1967&amp;rft.isbn=978-0-07-061003-3&amp;rft.aulast=Stein&amp;rft.aufirst=Seymour&amp;rft.au=Jones%2C+J.+Jay&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></li> </ul> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(10)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Further_reading">Further reading</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=21&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: Further reading" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-10 collapsible-block" id="mf-section-10"> <ul> <li> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernard_WidrowIstván_Kollár2007" class="citation book cs1">Bernard Widrow; István Kollár (2007). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://www.mit.bme.hu/books/quantization/"><i>Quantization noise in Digital Computation, Signal Processing, and Control</i></a>. Cambridge University Press. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&nbsp;<a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/9780521886710?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Special:BookSources/9780521886710"><bdi>9780521886710</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantization+noise+in+Digital+Computation%2C+Signal+Processing%2C+and+Control&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2007&amp;rft.isbn=9780521886710&amp;rft.au=Bernard+Widrow&amp;rft.au=Istv%C3%A1n+Koll%C3%A1r&amp;rft_id=http%3A%2F%2Fwww.mit.bme.hu%2Fbooks%2Fquantization%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantization+%28signal+processing%29" class="Z3988"></span></li> </ul> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(11)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="See_also_2">See also</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=edit&amp;section=22&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Edit section: See also" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-11 collapsible-block" id="mf-section-11"> <ul> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Least_count?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Least count">Least count</a></li> </ul> <div class="navbox-styles"> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style> <style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style> </div> <div class="navbox-styles"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"> </div> <div class="navbox-styles"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"> </div><!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐cjv9d Cached time: 20241122140720 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.670 seconds Real time usage: 0.945 seconds Preprocessor visited node count: 3500/1000000 Post‐expand include size: 133625/2097152 bytes Template argument size: 1714/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 4/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 128391/5000000 bytes Lua time usage: 0.300/10.000 seconds Lua memory usage: 5913500/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 599.376 1 -total 37.72% 226.103 2 Template:Reflist 24.26% 145.415 14 Template:Cite_journal 18.95% 113.592 9 Template:Navbox 16.42% 98.440 1 Template:Short_description 13.64% 81.755 1 Template:DSP 9.61% 57.576 2 Template:Pagetype 5.66% 33.901 1 Template:Anchor 4.87% 29.216 1 Template:Compression_Methods 4.81% 28.835 8 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:idhash:317018-0!canonical and timestamp 20241122140720 and revision id 1256393006. Rendering was triggered because: page-view --> </section> </div><!-- MobileFormatter took 0.060 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --> <noscript> <img src="https://login.m.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;mobile=1" alt="" width="1" height="1" style="border: none; position: absolute;"> </noscript> <div class="printfooter" data-nosnippet=""> Retrieved from "<a dir="ltr" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.wikipedia.org/w/index.php?title%3DQuantization_(signal_processing)%26oldid%3D1256393006">https://en.wikipedia.org/w/index.php?title=Quantization_(signal_processing)&amp;oldid=1256393006</a>" </div> </div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"><a class="last-modified-bar" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Quantization_(signal_processing)&amp;action=history&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB"> <div class="post-content last-modified-bar__content"><span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="Maxeto0910" data-user-gender="unknown" data-timestamp="1731178746"> <span>Last edited on 9 November 2024, at 18:59</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div></a> <div class="post-content footer-content"> <div id="mw-data-after-content"> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Languages</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ar.wikipedia.org/wiki/%25D8%25AA%25D9%2583%25D9%2585%25D9%258A%25D9%2585_(%25D8%25A5%25D8%25B4%25D8%25A7%25D8%25B1%25D8%25A9)" title="تكميم (إشارة) – Arabic" lang="ar" hreflang="ar" data-title="تكميم (إشارة)" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li> <li class="interlanguage-link interwiki-az mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://az.wikipedia.org/wiki/Kvantlama_s%25C9%2599viyy%25C9%2599si" title="Kvantlama səviyyəsi – Azerbaijani" lang="az" hreflang="az" data-title="Kvantlama səviyyəsi" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li> <li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://bg.wikipedia.org/wiki/%25D0%259A%25D0%25B2%25D0%25B0%25D0%25BD%25D1%2582%25D1%2583%25D0%25B2%25D0%25B0%25D0%25BD_%25D1%2581%25D0%25B8%25D0%25B3%25D0%25BD%25D0%25B0%25D0%25BB" title="Квантуван сигнал – Bulgarian" lang="bg" hreflang="bg" data-title="Квантуван сигнал" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ca.wikipedia.org/wiki/Quantificaci%25C3%25B3_(processament_de_senyal)" title="Quantificació (processament de senyal) – Catalan" lang="ca" hreflang="ca" data-title="Quantificació (processament de senyal)" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li> <li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://cv.wikipedia.org/wiki/%25D0%259A%25D0%25B2%25D0%25B0%25D0%25BD%25D1%2582%25D0%25BB%25D0%25B0%25D0%25BD%25D0%25B8_(%25D1%2581%25D0%25B8%25D0%25B3%25D0%25BD%25D0%25B0%25D0%25BB%25D1%2581%25D0%25B5%25D0%25BD%25D0%25B5_%25D1%2582%25D0%25B8%25D1%2580%25D0%25BF%25D0%25B5%25D0%25B9%25D0%25BB%25D0%25B5%25D0%25BD%25D0%25B8)" title="Квантлани (сигналсене тирпейлени) – Chuvash" lang="cv" hreflang="cv" data-title="Квантлани (сигналсене тирпейлени)" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li> <li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://cs.wikipedia.org/wiki/Kvantov%25C3%25A1n%25C3%25AD_(sign%25C3%25A1l)" title="Kvantování (signál) – Czech" lang="cs" hreflang="cs" data-title="Kvantování (signál)" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li> <li class="interlanguage-link interwiki-da mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://da.wikipedia.org/wiki/Kvantisering" title="Kvantisering – Danish" lang="da" hreflang="da" data-title="Kvantisering" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://de.wikipedia.org/wiki/Quantisierung_(Signalverarbeitung)" title="Quantisierung (Signalverarbeitung) – German" lang="de" hreflang="de" data-title="Quantisierung (Signalverarbeitung)" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li> <li class="interlanguage-link interwiki-et mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://et.wikipedia.org/wiki/Kvantimine" title="Kvantimine – Estonian" lang="et" hreflang="et" data-title="Kvantimine" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://es.wikipedia.org/wiki/Cuantificaci%25C3%25B3n_digital" title="Cuantificación digital – Spanish" lang="es" hreflang="es" data-title="Cuantificación digital" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li> <li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fa.wikipedia.org/wiki/%25DA%25A9%25D9%2588%25D8%25A7%25D9%2586%25D8%25AA%25D8%25B4_(%25D9%25BE%25D8%25B1%25D8%25AF%25D8%25A7%25D8%25B2%25D8%25B4_%25D8%25B3%25DB%258C%25DA%25AF%25D9%2586%25D8%25A7%25D9%2584)" title="کوانتش (پردازش سیگنال) – Persian" lang="fa" hreflang="fa" data-title="کوانتش (پردازش سیگنال)" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li> <li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fr.wikipedia.org/wiki/Quantification_(signal)" title="Quantification (signal) – French" lang="fr" hreflang="fr" data-title="Quantification (signal)" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li> <li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ko.wikipedia.org/wiki/%25EC%2596%2591%25EC%259E%2590%25ED%2599%2594_(%25EC%25A0%2595%25EB%25B3%25B4_%25EC%259D%25B4%25EB%25A1%25A0)" title="양자화 (정보 이론) – Korean" lang="ko" hreflang="ko" data-title="양자화 (정보 이론)" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li> <li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://hr.wikipedia.org/wiki/Kvantizacija" title="Kvantizacija – Croatian" lang="hr" hreflang="hr" data-title="Kvantizacija" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li> <li class="interlanguage-link interwiki-id mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://id.wikipedia.org/wiki/Kuantisasi_(pengolahan_sinyal)" title="Kuantisasi (pengolahan sinyal) – Indonesian" lang="id" hreflang="id" data-title="Kuantisasi (pengolahan sinyal)" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li> <li class="interlanguage-link interwiki-it mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://it.wikipedia.org/wiki/Quantizzazione_(elettronica)" title="Quantizzazione (elettronica) – Italian" lang="it" hreflang="it" data-title="Quantizzazione (elettronica)" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li> <li class="interlanguage-link interwiki-he mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://he.wikipedia.org/wiki/%25D7%25A7%25D7%2595%25D7%2595%25D7%25A0%25D7%2598%25D7%2599%25D7%2596%25D7%25A6%25D7%2599%25D7%2594_(%25D7%25A2%25D7%2599%25D7%2591%25D7%2595%25D7%2593_%25D7%2590%25D7%2595%25D7%25AA%25D7%2595%25D7%25AA)" title="קוונטיזציה (עיבוד אותות) – Hebrew" lang="he" hreflang="he" data-title="קוונטיזציה (עיבוד אותות)" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li> <li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://hu.wikipedia.org/wiki/Kvant%25C3%25A1l%25C3%25A1s_(jelfeldolgoz%25C3%25A1s)" title="Kvantálás (jelfeldolgozás) – Hungarian" lang="hu" hreflang="hu" data-title="Kvantálás (jelfeldolgozás)" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li> <li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://mk.wikipedia.org/wiki/%25D0%259A%25D0%25B2%25D0%25B0%25D0%25BD%25D1%2582%25D0%25B8%25D0%25B7%25D0%25B0%25D1%2586%25D0%25B8%25D1%2598%25D0%25B0_(%25D0%25BE%25D0%25B1%25D1%2580%25D0%25B0%25D0%25B1%25D0%25BE%25D1%2582%25D0%25BA%25D0%25B0_%25D0%25BD%25D0%25B0_%25D1%2581%25D0%25B8%25D0%25B3%25D0%25BD%25D0%25B0%25D0%25BB%25D0%25B8)" title="Квантизација (обработка на сигнали) – Macedonian" lang="mk" hreflang="mk" data-title="Квантизација (обработка на сигнали)" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li> <li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://nl.wikipedia.org/wiki/Kwantisatie_(signaalanalyse)" title="Kwantisatie (signaalanalyse) – Dutch" lang="nl" hreflang="nl" data-title="Kwantisatie (signaalanalyse)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li> <li class="interlanguage-link interwiki-no mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://no.wikipedia.org/wiki/Kvantisering_(signalbehandling)" title="Kvantisering (signalbehandling) – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Kvantisering (signalbehandling)" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li> <li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://pl.wikipedia.org/wiki/Kwantyzacja_(technika)" title="Kwantyzacja (technika) – Polish" lang="pl" hreflang="pl" data-title="Kwantyzacja (technika)" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li> <li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://pt.wikipedia.org/wiki/Quantiza%25C3%25A7%25C3%25A3o" title="Quantização – Portuguese" lang="pt" hreflang="pt" data-title="Quantização" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li> <li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ru.wikipedia.org/wiki/%25D0%259A%25D0%25B2%25D0%25B0%25D0%25BD%25D1%2582%25D0%25BE%25D0%25B2%25D0%25B0%25D0%25BD%25D0%25B8%25D0%25B5_(%25D0%25BE%25D0%25B1%25D1%2580%25D0%25B0%25D0%25B1%25D0%25BE%25D1%2582%25D0%25BA%25D0%25B0_%25D1%2581%25D0%25B8%25D0%25B3%25D0%25BD%25D0%25B0%25D0%25BB%25D0%25BE%25D0%25B2)" title="Квантование (обработка сигналов) – Russian" lang="ru" hreflang="ru" data-title="Квантование (обработка сигналов)" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li> <li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sr.wikipedia.org/wiki/%25D0%259A%25D0%25B2%25D0%25B0%25D0%25BD%25D1%2582%25D0%25B8%25D0%25B7%25D0%25B0%25D1%2586%25D0%25B8%25D1%2598%25D0%25B0_(%25D0%25BE%25D0%25B1%25D1%2580%25D0%25B0%25D0%25B4%25D0%25B0_%25D1%2581%25D0%25B8%25D0%25B3%25D0%25BD%25D0%25B0%25D0%25BB%25D0%25B0)" title="Квантизација (обрада сигнала) – Serbian" lang="sr" hreflang="sr" data-title="Квантизација (обрада сигнала)" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li> <li class="interlanguage-link interwiki-su mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://su.wikipedia.org/wiki/Kuantisasi" title="Kuantisasi – Sundanese" lang="su" hreflang="su" data-title="Kuantisasi" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li> <li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fi.wikipedia.org/wiki/Kvantisointi" title="Kvantisointi – Finnish" lang="fi" hreflang="fi" data-title="Kvantisointi" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li> <li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sv.wikipedia.org/wiki/Kvantisering_(signalbehandling)" title="Kvantisering (signalbehandling) – Swedish" lang="sv" hreflang="sv" data-title="Kvantisering (signalbehandling)" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li> <li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ta.wikipedia.org/wiki/%25E0%25AE%259A%25E0%25AF%258A%25E0%25AE%259F%25E0%25AF%258D%25E0%25AE%259F%25E0%25AE%25BE%25E0%25AE%2595%25E0%25AF%258D%25E0%25AE%2595%25E0%25AE%25AE%25E0%25AF%258D" title="சொட்டாக்கம் – Tamil" lang="ta" hreflang="ta" data-title="சொட்டாக்கம்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li> <li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://tr.wikipedia.org/wiki/Nicemleme_(sinyal_i%25C5%259Fleme)" title="Nicemleme (sinyal işleme) – Turkish" lang="tr" hreflang="tr" data-title="Nicemleme (sinyal işleme)" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li> <li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://uk.wikipedia.org/wiki/%25D0%259A%25D0%25B2%25D0%25B0%25D0%25BD%25D1%2582%25D1%2583%25D0%25B2%25D0%25B0%25D0%25BD%25D0%25BD%25D1%258F_(%25D0%25BE%25D0%25B1%25D1%2580%25D0%25BE%25D0%25B1%25D0%25BA%25D0%25B0_%25D1%2581%25D0%25B8%25D0%25B3%25D0%25BD%25D0%25B0%25D0%25BB%25D1%2596%25D0%25B2)" title="Квантування (обробка сигналів) – Ukrainian" lang="uk" hreflang="uk" data-title="Квантування (обробка сигналів)" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li> <li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://vi.wikipedia.org/wiki/L%25C6%25B0%25E1%25BB%25A3ng_t%25E1%25BB%25AD_h%25C3%25B3a" title="Lượng tử hóa – Vietnamese" lang="vi" hreflang="vi" data-title="Lượng tử hóa" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li> <li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://zh.wikipedia.org/wiki/%25E9%2587%258F%25E5%258C%2596_(%25E4%25BF%25A1%25E5%258F%25B7%25E5%25A4%2584%25E7%2590%2586)" title="量化 (信号处理) – Chinese" lang="zh" hreflang="zh" data-title="量化 (信号处理)" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> </section> </div> <div class="minerva-footer-logo"> <img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod">This page was last edited on 9 November 2024, at 18:59<span class="anonymous-show">&nbsp;(UTC)</span>.</li> <li id="footer-info-copyright">Content is available under <a class="external" rel="nofollow" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://creativecommons.org/licenses/by-sa/4.0/deed.en">CC BY-SA 4.0</a> unless otherwise noted.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:About?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:General_disclaimer?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB">Disclaimers</a></li> <li id="footer-places-contact"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://stats.wikimedia.org/%23/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-terms-use"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Terms of Use</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.wikipedia.org/w/index.php?title%3DQuantization_(signal_processing)%26mobileaction%3Dtoggle_view_desktop" data-event-name="switch_to_desktop">Desktop</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div><!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-6vrgq","wgBackendResponseTime":249,"wgPageParseReport":{"limitreport":{"cputime":"0.670","walltime":"0.945","ppvisitednodes":{"value":3500,"limit":1000000},"postexpandincludesize":{"value":133625,"limit":2097152},"templateargumentsize":{"value":1714,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":128391,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 599.376 1 -total"," 37.72% 226.103 2 Template:Reflist"," 24.26% 145.415 14 Template:Cite_journal"," 18.95% 113.592 9 Template:Navbox"," 16.42% 98.440 1 Template:Short_description"," 13.64% 81.755 1 Template:DSP"," 9.61% 57.576 2 Template:Pagetype"," 5.66% 33.901 1 Template:Anchor"," 4.87% 29.216 1 Template:Compression_Methods"," 4.81% 28.835 8 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.300","limit":"10.000"},"limitreport-memusage":{"value":5913500,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-cjv9d","timestamp":"20241122140720","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Quantization (signal processing)","url":"https:\/\/en.wikipedia.org\/wiki\/Quantization_(signal_processing)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q198099","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q198099","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-09-12T22:10:28Z","dateModified":"2024-11-09T18:59:06Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/b\/b8\/Quantization_error.png","headline":"process of mapping a continuous set to a countable set"}</script> <script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> <script>function gtElInit() {var lib = new google.translate.TranslateService();lib.translatePage('en', 'en', function () {});}</script> <script src="https://translate.google.com/translate_a/element.js?cb=gtElInit&amp;hl=en-GB&amp;client=wt" type="text/javascript"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10