CINXE.COM

Waldhausen category in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Waldhausen category in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Waldhausen category </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussions/?CategoryID=0" title="Discuss this page on the nForum. It does not yet have a dedicated thread; feel free to create one, giving it the same name as the title of this page" style="color:black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="homotopy_theory">Homotopy theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a>, <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+theory">(∞,1)-category theory</a>, <a class="existingWikiWord" href="/nlab/show/homotopy+type+theory">homotopy type theory</a></strong></p> <p>flavors: <a class="existingWikiWord" href="/nlab/show/stable+homotopy+theory">stable</a>, <a class="existingWikiWord" href="/nlab/show/equivariant+homotopy+theory">equivariant</a>, <a class="existingWikiWord" href="/nlab/show/rational+homotopy+theory">rational</a>, <a class="existingWikiWord" href="/nlab/show/p-adic+homotopy+theory">p-adic</a>, <a class="existingWikiWord" href="/nlab/show/proper+homotopy+theory">proper</a>, <a class="existingWikiWord" href="/nlab/show/geometric+homotopy+theory">geometric</a>, <a class="existingWikiWord" href="/nlab/show/cohesive+homotopy+theory">cohesive</a>, <a class="existingWikiWord" href="/nlab/show/directed+homotopy+theory">directed</a>…</p> <p>models: <a class="existingWikiWord" href="/nlab/show/topological+homotopy+theory">topological</a>, <a class="existingWikiWord" href="/nlab/show/simplicial+homotopy+theory">simplicial</a>, <a class="existingWikiWord" href="/nlab/show/localic+homotopy+theory">localic</a>, …</p> <p>see also <strong><a class="existingWikiWord" href="/nlab/show/algebraic+topology">algebraic topology</a></strong></p> <p><strong>Introductions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Introduction+to+Topology+--+2">Introduction to Basic Homotopy Theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Introduction+to+Homotopy+Theory">Introduction to Abstract Homotopy Theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometry+of+physics+--+homotopy+types">geometry of physics – homotopy types</a></p> </li> </ul> <p><strong>Definitions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy">homotopy</a>, <a class="existingWikiWord" href="/nlab/show/higher+homotopy">higher homotopy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+type">homotopy type</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Pi-algebra">Pi-algebra</a>, <a class="existingWikiWord" href="/nlab/show/spherical+object+and+Pi%28A%29-algebra">spherical object and Pi(A)-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+coherent+category+theory">homotopy coherent category theory</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopical+category">homotopical category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/model+category">model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/category+of+fibrant+objects">category of fibrant objects</a>, <a class="existingWikiWord" href="/nlab/show/cofibration+category">cofibration category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Waldhausen+category">Waldhausen category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+category">homotopy category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Ho%28Top%29">Ho(Top)</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/homotopy+category+of+an+%28%E2%88%9E%2C1%29-category">homotopy category of an (∞,1)-category</a></li> </ul> </li> </ul> <p><strong>Paths and cylinders</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/left+homotopy">left homotopy</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cylinder+object">cylinder object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cone">mapping cone</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/right+homotopy">right homotopy</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/path+object">path object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cocone">mapping cocone</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+universal+bundle">universal bundle</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/interval+object">interval object</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+localization">homotopy localization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/infinitesimal+interval+object">infinitesimal interval object</a></p> </li> </ul> </li> </ul> <p><strong>Homotopy groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+group">homotopy group</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+group">fundamental group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/fundamental+group+of+a+topos">fundamental group of a topos</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Brown-Grossman+homotopy+group">Brown-Grossman homotopy group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/categorical+homotopy+groups+in+an+%28%E2%88%9E%2C1%29-topos">categorical homotopy groups in an (∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometric+homotopy+groups+in+an+%28%E2%88%9E%2C1%29-topos">geometric homotopy groups in an (∞,1)-topos</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid">fundamental ∞-groupoid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+groupoid">fundamental groupoid</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/path+groupoid">path groupoid</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid+in+a+locally+%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid+of+a+locally+%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">fundamental ∞-groupoid of a locally ∞-connected (∞,1)-topos</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%28%E2%88%9E%2C1%29-category">fundamental (∞,1)-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/fundamental+category">fundamental category</a></li> </ul> </li> </ul> <p><strong>Basic facts</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/fundamental+group+of+the+circle+is+the+integers">fundamental group of the circle is the integers</a></li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+theorem+of+covering+spaces">fundamental theorem of covering spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Freudenthal+suspension+theorem">Freudenthal suspension theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Blakers-Massey+theorem">Blakers-Massey theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+homotopy+van+Kampen+theorem">higher homotopy van Kampen theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/nerve+theorem">nerve theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Whitehead%27s+theorem">Whitehead's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hurewicz+theorem">Hurewicz theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Galois+theory">Galois theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+hypothesis">homotopy hypothesis</a>-theorem</p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <li><a href='#remarks'>Remarks</a></li> <li><a href='#examples'>Examples</a></li> <ul> <li><a href='#waldhausen_category_of_a_small_abelian_category'>Waldhausen category of a small abelian category</a></li> <li><a href='#waldhausen_category_of_a_small_exact_category'>Waldhausen category of a small exact category</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>A <em>Waldhausen category</em> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">C'</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/homotopical+category">homotopical category</a> equipped with a bit of extra structure that allows us to consider it as a presentation (via <a class="existingWikiWord" href="/nlab/show/simplicial+localization">simplicial localization</a>) of an <a class="existingWikiWord" href="/nlab/show/%28infinity%2C1%29-category">(infinity,1)-category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> such that the extra structure allows us to conveniently compute the <a class="existingWikiWord" href="/nlab/show/K-theory">K-theory</a> <a class="existingWikiWord" href="/nlab/show/Grothendieck+group">Grothendieck group</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>K</mi></mstyle><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbf{K}(C)</annotation></semantics></math> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>.</p> <p>Notably a Waldhausen category provides the notion of co<a class="existingWikiWord" href="/nlab/show/fibration+sequence">fibration sequence</a>s, which are crucial structures controlling <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>K</mi></mstyle><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathbf{K}(C)</annotation></semantics></math>. Dual to the discussion at <a class="existingWikiWord" href="/nlab/show/homotopy+limit">homotopy limit</a> and <a class="existingWikiWord" href="/nlab/show/homotopy+pullback">homotopy pullback</a>, ordinary <a class="existingWikiWord" href="/nlab/show/pushout">pushout</a>s in Waldhausen categories of the form</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>A</mi></mtd> <mtd><mo>↪</mo></mtd> <mtd><mi>B</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mn>0</mn></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>B</mi><mo stretchy="false">/</mo><mo stretchy="false">/</mo><mi>A</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ A &amp;\hookrightarrow&amp; B \\ \downarrow &amp;&amp; \downarrow \\ 0 &amp;\to&amp; B//A } </annotation></semantics></math></div> <p>with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>↪</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">A \hookrightarrow B</annotation></semantics></math> a special morphism called a Waldhausen cofibration compute <em>homotopy pushout</em>s and hence coexact sequences in the corresponding <a class="existingWikiWord" href="/nlab/show/stable+%28infinity%2C1%29-category">stable (infinity,1)-category</a>.</p> <p>Using this, the <a class="existingWikiWord" href="/nlab/show/Waldhausen+S-construction">Waldhausen S-construction</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">C'</annotation></semantics></math> is an algorithm for computing the <a class="existingWikiWord" href="/nlab/show/K-theory">K-theory</a> spectrum of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>.</p> <h2 id="definition">Definition</h2> <p>Waldhausen in his work in <a class="existingWikiWord" href="/nlab/show/K-theory">K-theory</a> introduced the notion of a category with cofibrations and weak equivalences, nowadays known as <em>Waldhausen category</em>. As the original name suggests, this is a category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> with zero object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math>, equipped with a choice of two classes of maps <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">cof</mi></mrow><annotation encoding="application/x-tex">\mathrm{cof}</annotation></semantics></math> of the cofibrations and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>w</mi><mo>.</mo><mi>e</mi><mo>.</mo></mrow><annotation encoding="application/x-tex">w.e.</annotation></semantics></math> of weak equivalences such that</p> <ul> <li> <p>(C1) all isomorphisms are cofibrations</p> </li> <li> <p>(C2) there is a zero object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math> and for any object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math> the unique morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>→</mo><mi>a</mi></mrow><annotation encoding="application/x-tex">0\to a</annotation></semantics></math> is a cofibration</p> </li> <li> <p>(C3) if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>↪</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a\hookrightarrow b</annotation></semantics></math> is a cofibration and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>→</mo><mi>c</mi></mrow><annotation encoding="application/x-tex">a\to c</annotation></semantics></math> any morphism then the pushout <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>c</mi><mo>→</mo><mi>b</mi><msub><mo>∪</mo> <mi>a</mi></msub><mi>c</mi></mrow><annotation encoding="application/x-tex">c\to b\cup_a c</annotation></semantics></math> is a cofibration</p> </li> <li> <p>(W1) all isomorphisms are weak equivalences</p> </li> <li> <p>(W2) weak equivalences are closed under composition (make a subcategory)</p> </li> <li> <p>(W3) “glueing for weak equivalences”: Given any commutative diagram of the form</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>D</mi></mtd> <mtd><mo>←</mo></mtd> <mtd><mi>A</mi></mtd> <mtd><mo>↪</mo></mtd> <mtd><mi>B</mi></mtd></mtr> <mtr><mtd><msup><mo stretchy="false">↓</mo> <mo>∼</mo></msup></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mo>∼</mo></msup></mtd> <mtd></mtd> <mtd><msup><mo stretchy="false">↓</mo> <mo>∼</mo></msup></mtd></mtr> <mtr><mtd><mi>D</mi><mo>′</mo></mtd> <mtd><mo>←</mo></mtd> <mtd><mi>A</mi><mo>′</mo></mtd> <mtd><mo>↪</mo></mtd> <mtd><mi>B</mi><mo>′</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\array{ D &amp;\leftarrow&amp; A &amp;\hookrightarrow &amp;B\\ \downarrow^\sim&amp;&amp; \downarrow^\sim &amp;&amp;\downarrow^\sim\\ D' &amp;\leftarrow &amp;A' &amp;\hookrightarrow &amp;B' } </annotation></semantics></math></div> <p>in which the vertical arrows are weak equivalences and right horizontal maps cofibrations, the induced map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><msub><mo>∪</mo> <mi>A</mi></msub><mi>D</mi><mo>↪</mo><mi>B</mi><mo>′</mo><msub><mo>∪</mo> <mrow><mi>A</mi><mo>′</mo></mrow></msub><mi>D</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">B\cup_A D\hookrightarrow B'\cup_{A'} D'</annotation></semantics></math> is a weak equivalence.</p> </li> </ul> <p>The axioms imply that for any cofibration <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>↪</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">A\hookrightarrow B</annotation></semantics></math> there is a cofibration sequence <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>↪</mo><mi>B</mi><mo>→</mo><mi>B</mi><mo stretchy="false">/</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">A\hookrightarrow B\to B/A</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><mo stretchy="false">/</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">B/A</annotation></semantics></math> is the choice of the cokernel <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><msub><mo>∪</mo> <mi>A</mi></msub><mn>0</mn></mrow><annotation encoding="application/x-tex">B\cup_A 0</annotation></semantics></math>.</p> <p>Given a Waldhausen category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> whose weak equivalence classes from a set, one defines <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>K</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">K_0(C)</annotation></semantics></math> as an abelian group whose elements are the weak equivalence classes modulo the relation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>A</mi><mo stretchy="false">]</mo><mo>+</mo><mo stretchy="false">[</mo><mi>B</mi><mo stretchy="false">/</mo><mi>A</mi><mo stretchy="false">]</mo><mo>=</mo><mo stretchy="false">[</mo><mi>B</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[A]+[B/A]=[B]</annotation></semantics></math> for any cofibration sequence <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>↪</mo><mi>B</mi><mo>→</mo><mi>B</mi><mo stretchy="false">/</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">A\hookrightarrow B\to B/A</annotation></semantics></math>.</p> <p>Waldhausen then devises the so called S-construction <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>↦</mo><msub><mi>S</mi> <mo>•</mo></msub><mi>C</mi></mrow><annotation encoding="application/x-tex">C\mapsto S_\bullet C</annotation></semantics></math> from Waldhausen categories to simplicial categories with cofibrations and weak equivalences (hence one can iterate the construction producing multisimplicial categories).</p> <p>The <span class="newWikiWord">K-theory space<a href="/nlab/new/K-theory+space">?</a></span> of a Waldhausen construction is given by formula <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Ω</mi><msub><mi mathvariant="normal">hocolim</mi> <mrow><msup><mi>Δ</mi> <mi mathvariant="normal">op</mi></msup></mrow></msub><mo stretchy="false">(</mo><mo stretchy="false">[</mo><mi>n</mi><mo stretchy="false">]</mo><mo>↦</mo><msub><mi>N</mi> <mo>•</mo></msub><mo stretchy="false">(</mo><mi>w</mi><mo>.</mo><mi>e</mi><mo>.</mo><mo stretchy="false">(</mo><msub><mi>S</mi> <mi>n</mi></msub><mi>C</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\Omega\mathrm{hocolim}_{\Delta^{\mathrm{op}}}([n]\mapsto N_\bullet(w.e.(S_n C)))</annotation></semantics></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Ω</mi></mrow><annotation encoding="application/x-tex">\Omega</annotation></semantics></math> is the loop space functor, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">N</annotation></semantics></math> is the simplicial <a class="existingWikiWord" href="/nlab/show/nerve">nerve</a>, w.e. takes the (simplicial) subcategory of weak equivalence and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>n</mi><mo stretchy="false">]</mo><mo>∈</mo><mi>Δ</mi></mrow><annotation encoding="application/x-tex">[n]\in\Delta</annotation></semantics></math>. This construction can be improved (using iterated <a class="existingWikiWord" href="/nlab/show/Waldhausen+S-construction">Waldhausen S-construction</a>) to the <a class="existingWikiWord" href="/nlab/show/K-theory">K-theory</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Ω</mi></mrow><annotation encoding="application/x-tex">\Omega</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>; the K-theory space will be just the one-space of the K-theory spectrum.</p> <p>Then the K-groups are the <a class="existingWikiWord" href="/nlab/show/homotopy+group">homotopy group</a>s of the K-theory space.</p> <h2 id="remarks">Remarks</h2> <ul> <li>The axioms of a Waldhausen category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> are very similar to the axioms of a <a class="existingWikiWord" href="/nlab/show/category+of+fibrant+objects">category of fibrant objects</a> on the <a class="existingWikiWord" href="/nlab/show/opposite+category">opposite category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>C</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">C^{op}</annotation></semantics></math> in which the initial object is also terminal. One difference is that the weak equivalences in a Waldhausen category are not required to satisfy <a class="existingWikiWord" href="/nlab/show/2-out-of-3">2-out-of-3</a>. For example, Waldhausen gives an example of a Waldhausen category where the weak equivalences are <span class="newWikiWord">simple homotopy equivalences<a href="/nlab/new/simple+homotopy+equivalences">?</a></span>. Another difference is in axiom W3, whose analog in a <a class="existingWikiWord" href="/nlab/show/category+of+fibrant+objects">category of fibrant objects</a> is the axioms that every object has a <a class="existingWikiWord" href="/nlab/show/path+object">path object</a>. It still follows that one has fibration sequences in a <a class="existingWikiWord" href="/nlab/show/category+of+fibrant+objects">category of fibrant objects</a>.</li> </ul> <h2 id="examples">Examples</h2> <h3 id="waldhausen_category_of_a_small_abelian_category">Waldhausen category of a small abelian category</h3> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/small+category">small</a> <a class="existingWikiWord" href="/nlab/show/abelian+category">abelian category</a> the <a class="existingWikiWord" href="/nlab/show/category+of+chain+complexes">category of bounded chain complexes</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Ch</mi> <mi>b</mi></msup><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Ch^b(C)</annotation></semantics></math> becomes a Waldhausen category by taking</p> <ul> <li> <p>a <a class="existingWikiWord" href="/nlab/show/weak+equivalence">weak equivalence</a> is a <a class="existingWikiWord" href="/nlab/show/quasi-isomorphism">quasi-isomorphism</a> of chain complexes;</p> </li> <li> <p>a cofibration <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><msub><mi>A</mi> <mo>•</mo></msub><mo>→</mo><msub><mi>X</mi> <mo>•</mo></msub></mrow><annotation encoding="application/x-tex">f : A_\bullet \to X_\bullet</annotation></semantics></math> is a chain morphism that is a <a class="existingWikiWord" href="/nlab/show/monomorphism">monomorphism</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> in each degree <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>f</mi> <mi>n</mi></msub><mo>:</mo><msub><mi>A</mi> <mi>n</mi></msub><mo>→</mo><msub><mi>X</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">f_n : A_n \to X_n</annotation></semantics></math>.</p> </li> </ul> <h3 id="waldhausen_category_of_a_small_exact_category">Waldhausen category of a small exact category</h3> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> just a <a class="existingWikiWord" href="/nlab/show/Quillen+exact+category">Quillen exact category</a> with ambient <a class="existingWikiWord" href="/nlab/show/abelian+category">abelian category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>C</mi><mo stretchy="false">^</mo></mover></mrow><annotation encoding="application/x-tex">\hat C</annotation></semantics></math> there is an analogous, slightly more sophisticated construction of a Waldhausen category structure on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Ch</mi> <mi>b</mi></msup><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Ch^b(C)</annotation></semantics></math>:</p> <ul> <li> <p>weak equivalences are the morphisms that are <a class="existingWikiWord" href="/nlab/show/quasi-isomorphism">quasi-isomorphism</a>s when regarded as morphisms in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>C</mi><mo stretchy="false">^</mo></mover></mrow><annotation encoding="application/x-tex">\hat C</annotation></semantics></math>;</p> </li> <li> <p>the cofibrations are the degreewise <em>admissible morphisms</em>, i.e. those morphisms <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">A \to X</annotation></semantics></math> such that the pushout <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>→</mo><mi>X</mi><mo>→</mo><mi>A</mi><mo stretchy="false">/</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">A \to X \to A/X</annotation></semantics></math> computed in the ambient <a class="existingWikiWord" href="/nlab/show/abelian+category">abelian category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>C</mi><mo stretchy="false">^</mo></mover></mrow><annotation encoding="application/x-tex">\hat C</annotation></semantics></math> is in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>.</p> </li> </ul> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+with+weak+equivalences">category with weak equivalences</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/category+of+fibrant+objects">category of fibrant objects</a>, <a class="existingWikiWord" href="/nlab/show/category+of+cofibrant+objects">category of cofibrant objects</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+category">model category</a></p> </li> </ul> <h2 id="references">References</h2> <p>Waldhausen categories are discussed with an eye towards their application in the computation of <a class="existingWikiWord" href="/nlab/show/Grothendieck+group">Grothendieck group</a>s in <a href="http://www.math.rutgers.edu/~weibel/Kbook/Kbook.II.pdf">chapter 2</a> of</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Charles+Weibel">Charles Weibel</a>, <em>The K-book: An introduction to algebraic K-theory</em> (<a href="http://www.math.rutgers.edu/~weibel/Kbook.html">web</a>)</li> </ul> <p>Section 1 of</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/R.+W.+Thomason">R. W. Thomason</a>, Thomas Trobaugh, <em>Higher algebraic K-theory of schemes and of derived categories</em>, <em>The Grothendieck Festschrift</em>, 1990, 247-435.(<a href="https://www.maths.ed.ac.uk/~v1ranick/papers/tt.pdf">pdf</a>)</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on July 26, 2022 at 18:54:55. See the <a href="/nlab/history/Waldhausen+category" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/Waldhausen+category" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussions/?CategoryID=0">Discuss</a><span class="backintime"><a href="/nlab/revision/Waldhausen+category/18" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/Waldhausen+category" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/Waldhausen+category" accesskey="S" class="navlink" id="history" rel="nofollow">History (18 revisions)</a> <a href="/nlab/show/Waldhausen+category/cite" style="color: black">Cite</a> <a href="/nlab/print/Waldhausen+category" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/Waldhausen+category" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10