CINXE.COM

Richard Tuckett | University of Birmingham - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Richard Tuckett | University of Birmingham - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="CLP0utqc1Ya0SFAUiEu5UU4387GoLeDjZ5Wr6QZUd7iQTihQHmskin2Bb1SmK/s5t5ud8qdmdQ6TPMDQdfGKcg==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="richard tuckett" /> <meta name="description" content="Richard Tuckett, University of Birmingham: 6 Followers, 6 Following, 149 Research papers. Research interests: Mood Disorders (Psychology), Bipolar Disorder,…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '39314d9bcf4522f48eeb027cf31da0a13496d2ce'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15250,"monthly_visitors":"31 million","monthly_visitor_count":31300000,"monthly_visitor_count_in_millions":31,"user_count":278536194,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1733907073000); window.Aedu.timeDifference = new Date().getTime() - 1733907073000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-0fb6fc03c471832908791ad7ddba619b6165b3ccf7ae0f65cf933f34b0b660a7.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-d5854328bc91ab2b28af9c6857c9f49cfdbb149be89e12296a993fabf6dcef2e.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-700c857c6fb770c5546959fb228388932166f478d0a341d5e1b83fefe9642caf.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://bham.academia.edu/RichardTuckett" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-7440ccdb9a947f5b431b894f0a50b54810878a59feb1410ac6dba853a257ca90.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett","photo":"/images/s65_no_pic.png","has_photo":false,"department":{"id":626748,"name":"School of Chemistry","url":"https://bham.academia.edu/Departments/School_of_Chemistry/Documents","university":{"id":53195,"name":"University of Birmingham","url":"https://bham.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":1313,"name":"Mood Disorders (Psychology)","url":"https://www.academia.edu/Documents/in/Mood_Disorders_Psychology_"},{"id":3230,"name":"Bipolar Disorder","url":"https://www.academia.edu/Documents/in/Bipolar_Disorder"},{"id":1059,"name":"Early Intervention","url":"https://www.academia.edu/Documents/in/Early_Intervention"},{"id":8973,"name":"Diagnosis \u0026 Detection of Mental Illness","url":"https://www.academia.edu/Documents/in/Diagnosis_and_Detection_of_Mental_Illness"},{"id":1312,"name":"Psychosis","url":"https://www.academia.edu/Documents/in/Psychosis"},{"id":12424,"name":"Philosophy of Chemistry","url":"https://www.academia.edu/Documents/in/Philosophy_of_Chemistry"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://bham.academia.edu/RichardTuckett&quot;,&quot;location&quot;:&quot;/RichardTuckett&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;bham.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/RichardTuckett&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-a4014c2a-d570-4132-88c2-22e514128f33"></div> <div id="ProfileCheckPaperUpdate-react-component-a4014c2a-d570-4132-88c2-22e514128f33"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Richard Tuckett</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://bham.academia.edu/">University of Birmingham</a>, <a class="u-tcGrayDarker" href="https://bham.academia.edu/Departments/School_of_Chemistry/Documents">School of Chemistry</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Richard" data-follow-user-id="32346837" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="32346837"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">6</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">6</p></div></a><a href="/RichardTuckett/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="32346837">View All (6)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32346837" href="https://www.academia.edu/Documents/in/Mood_Disorders_Psychology_"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://bham.academia.edu/RichardTuckett&quot;,&quot;location&quot;:&quot;/RichardTuckett&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;bham.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/RichardTuckett&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Mood Disorders (Psychology)&quot;]}" data-trace="false" data-dom-id="Pill-react-component-5e41ff6b-7681-4bae-aeb7-8ec2a0e55a6d"></div> <div id="Pill-react-component-5e41ff6b-7681-4bae-aeb7-8ec2a0e55a6d"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32346837" href="https://www.academia.edu/Documents/in/Bipolar_Disorder"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Bipolar Disorder&quot;]}" data-trace="false" data-dom-id="Pill-react-component-5d475f40-addf-4fdd-b299-c28b344d078e"></div> <div id="Pill-react-component-5d475f40-addf-4fdd-b299-c28b344d078e"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32346837" href="https://www.academia.edu/Documents/in/Early_Intervention"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Early Intervention&quot;]}" data-trace="false" data-dom-id="Pill-react-component-0198e239-ae2c-4058-9551-219643b9a5be"></div> <div id="Pill-react-component-0198e239-ae2c-4058-9551-219643b9a5be"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32346837" href="https://www.academia.edu/Documents/in/Diagnosis_and_Detection_of_Mental_Illness"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Diagnosis \u0026 Detection of Mental Illness&quot;]}" data-trace="false" data-dom-id="Pill-react-component-04a45f33-d462-4930-aeae-5ba2e8330051"></div> <div id="Pill-react-component-04a45f33-d462-4930-aeae-5ba2e8330051"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="32346837" href="https://www.academia.edu/Documents/in/Psychosis"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Psychosis&quot;]}" data-trace="false" data-dom-id="Pill-react-component-bcf3d926-e9eb-42e1-9810-f8270e94bccc"></div> <div id="Pill-react-component-bcf3d926-e9eb-42e1-9810-f8270e94bccc"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Richard Tuckett</h3></div><div class="js-work-strip profile--work_container" data-work-id="125490149"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490149/The_near_infra_red_emission_band_of_DO_sub_2_sub_determination_of_the_molecular_geometry"><img alt="Research paper thumbnail of The near infra-red emission band of DO&lt;sub&gt;2&lt;/sub&gt;: determination of the molecular geometry" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490149/The_near_infra_red_emission_band_of_DO_sub_2_sub_determination_of_the_molecular_geometry">The near infra-red emission band of DO&lt;sub&gt;2&lt;/sub&gt;: determination of the molecular geometry</a></div><div class="wp-workCard_item"><span>Molecular Physics</span><span>, Feb 1, 1979</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The 2A&amp;amp;amp;#x27; --&amp;amp;amp;amp;gt;2A&amp;amp;amp;#x27;&amp;amp;amp;#x27; spectrum of DO2 has been re...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The 2A&amp;amp;amp;#x27; --&amp;amp;amp;amp;gt;2A&amp;amp;amp;#x27;&amp;amp;amp;#x27; spectrum of DO2 has been recorded at high resolution in order to determine the geometry of HO2 in these two electronic states. The results obtained are: The HOO bond angle shows little change between the two states.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490149"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490149"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490149; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490149]").text(description); $(".js-view-count[data-work-id=125490149]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490149; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490149']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490149, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125490149]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490149,"title":"The near infra-red emission band of DO\u003csub\u003e2\u003c/sub\u003e: determination of the molecular geometry","translated_title":"","metadata":{"abstract":"The 2A\u0026amp;amp;#x27; --\u0026amp;amp;amp;gt;2A\u0026amp;amp;#x27;\u0026amp;amp;#x27; spectrum of DO2 has been recorded at high resolution in order to determine the geometry of HO2 in these two electronic states. The results obtained are: The HOO bond angle shows little change between the two states.","publisher":"Taylor \u0026 Francis","publication_date":{"day":1,"month":2,"year":1979,"errors":{}},"publication_name":"Molecular Physics"},"translated_abstract":"The 2A\u0026amp;amp;#x27; --\u0026amp;amp;amp;gt;2A\u0026amp;amp;#x27;\u0026amp;amp;#x27; spectrum of DO2 has been recorded at high resolution in order to determine the geometry of HO2 in these two electronic states. The results obtained are: The HOO bond angle shows little change between the two states.","internal_url":"https://www.academia.edu/125490149/The_near_infra_red_emission_band_of_DO_sub_2_sub_determination_of_the_molecular_geometry","translated_internal_url":"","created_at":"2024-11-12T08:56:48.561-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_near_infra_red_emission_band_of_DO_sub_2_sub_determination_of_the_molecular_geometry","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The 2A\u0026amp;amp;#x27; --\u0026amp;amp;amp;gt;2A\u0026amp;amp;#x27;\u0026amp;amp;#x27; spectrum of DO2 has been recorded at high resolution in order to determine the geometry of HO2 in these two electronic states. The results obtained are: The HOO bond angle shows little change between the two states.","owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[],"research_interests":[{"id":513,"name":"Molecular Physics","url":"https://www.academia.edu/Documents/in/Molecular_Physics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":54418,"name":"Geometry","url":"https://www.academia.edu/Documents/in/Geometry"},{"id":116193,"name":"Solid State electronic devices","url":"https://www.academia.edu/Documents/in/Solid_State_electronic_devices"},{"id":309086,"name":"High Resolution","url":"https://www.academia.edu/Documents/in/High_Resolution"},{"id":321836,"name":"Spectrum","url":"https://www.academia.edu/Documents/in/Spectrum"},{"id":645605,"name":"THEORETICAL AND COMPUTATIONAL CHEMISTRY","url":"https://www.academia.edu/Documents/in/THEORETICAL_AND_COMPUTATIONAL_CHEMISTRY"},{"id":1666284,"name":"Molecular Geometry","url":"https://www.academia.edu/Documents/in/Molecular_Geometry"},{"id":4452431,"name":"Bond Length","url":"https://www.academia.edu/Documents/in/Bond_Length"}],"urls":[{"id":45586983,"url":"https://doi.org/10.1080/00268977900100341"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490147"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490147/Use_of_threshold_electron_and_fluorescence_coincidence_techniques_to_probe_the_decay_dynamics_of_the_valence_states_of_CF_sup_sup_sub_4_sub_SiF_sup_sup_sub_4_sub_SiCl_sup_sup_sub_4_sub_and_GeCl_sup_sup_sub_4_sub_"><img alt="Research paper thumbnail of Use of threshold electron and fluorescence coincidence techniques to probe the decay dynamics of the valence states of CF&lt;sup&gt;+&lt;/sup&gt;&lt;sub&gt;4&lt;/sub&gt;, SiF&lt;sup&gt;+&lt;/sup&gt;&lt;sub&gt;4&lt;/sub&gt;, SiCl&lt;sup&gt;+&lt;/sup&gt;&lt;sub&gt;4&lt;/sub&gt;, and GeCl&lt;sup&gt;+&lt;/sup&gt;&lt;sub&gt;4&lt;/sub&gt;" class="work-thumbnail" src="https://attachments.academia-assets.com/119523598/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490147/Use_of_threshold_electron_and_fluorescence_coincidence_techniques_to_probe_the_decay_dynamics_of_the_valence_states_of_CF_sup_sup_sub_4_sub_SiF_sup_sup_sub_4_sub_SiCl_sup_sup_sub_4_sub_and_GeCl_sup_sup_sub_4_sub_">Use of threshold electron and fluorescence coincidence techniques to probe the decay dynamics of the valence states of CF&lt;sup&gt;+&lt;/sup&gt;&lt;sub&gt;4&lt;/sub&gt;, SiF&lt;sup&gt;+&lt;/sup&gt;&lt;sub&gt;4&lt;/sub&gt;, SiCl&lt;sup&gt;+&lt;/sup&gt;&lt;sub&gt;4&lt;/sub&gt;, and GeCl&lt;sup&gt;+&lt;/sup&gt;&lt;sub&gt;4&lt;/sub&gt;</a></div><div class="wp-workCard_item"><span>Journal of Chemical Physics</span><span>, Dec 15, 1994</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ce92eec9ee2586ccd9c3069a593105bb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119523598,&quot;asset_id&quot;:125490147,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119523598/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490147"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490147"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490147; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490147]").text(description); $(".js-view-count[data-work-id=125490147]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490147; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490147']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490147, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ce92eec9ee2586ccd9c3069a593105bb" } } $('.js-work-strip[data-work-id=125490147]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490147,"title":"Use of threshold electron and fluorescence coincidence techniques to probe the decay dynamics of the valence states of CF\u003csup\u003e+\u003c/sup\u003e\u003csub\u003e4\u003c/sub\u003e, SiF\u003csup\u003e+\u003c/sup\u003e\u003csub\u003e4\u003c/sub\u003e, SiCl\u003csup\u003e+\u003c/sup\u003e\u003csub\u003e4\u003c/sub\u003e, and GeCl\u003csup\u003e+\u003c/sup\u003e\u003csub\u003e4\u003c/sub\u003e","translated_title":"","metadata":{"publisher":"American Institute of Physics","publication_date":{"day":15,"month":12,"year":1994,"errors":{}},"publication_name":"Journal of Chemical Physics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125490147/Use_of_threshold_electron_and_fluorescence_coincidence_techniques_to_probe_the_decay_dynamics_of_the_valence_states_of_CF_sup_sup_sub_4_sub_SiF_sup_sup_sub_4_sub_SiCl_sup_sup_sub_4_sub_and_GeCl_sup_sup_sub_4_sub_","translated_internal_url":"","created_at":"2024-11-12T08:56:48.314-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119523598,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523598/thumbnails/1.jpg","file_name":"paper16.pdf","download_url":"https://www.academia.edu/attachments/119523598/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Use_of_threshold_electron_and_fluorescen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523598/paper16-libre.pdf?1731431139=\u0026response-content-disposition=attachment%3B+filename%3DUse_of_threshold_electron_and_fluorescen.pdf\u0026Expires=1733910672\u0026Signature=ZvFAU3AbJ3IHEIItAiN2hGslomQCfPjX~BqM0OPkZTLmkYa75T7~JFuRJApRZL6C7IEFbOGjhRmemePCexcLA0vhPomq5pnrk6mGY-J8eDXbLsyFE9E8Mahzz6LKU-arLeAIqS9SLsaMJ8ejXoc0UuLLzSq81dJS~swGtU5R1xmp~A7eaTycHNMA4YfVG5nztzFCMt8ZyKPibHBXXDoeW3T5xBzkM~Q9euiCosfFSkyK0EaWnWUtdHsgfkSJqSWGCpNxxxBXs4aCc6mLtJi-Ava1pwg6F8hPd-ZEiUDaYwaRvn2pDxEBcJZN1eU9Pc6bZONyYJPOzxQcndGCkNMBZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Use_of_threshold_electron_and_fluorescence_coincidence_techniques_to_probe_the_decay_dynamics_of_the_valence_states_of_CF_sup_sup_sub_4_sub_SiF_sup_sup_sub_4_sub_SiCl_sup_sup_sub_4_sub_and_GeCl_sup_sup_sub_4_sub_","translated_slug":"","page_count":18,"language":"en","content_type":"Work","summary":null,"owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":119523598,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523598/thumbnails/1.jpg","file_name":"paper16.pdf","download_url":"https://www.academia.edu/attachments/119523598/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Use_of_threshold_electron_and_fluorescen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523598/paper16-libre.pdf?1731431139=\u0026response-content-disposition=attachment%3B+filename%3DUse_of_threshold_electron_and_fluorescen.pdf\u0026Expires=1733910672\u0026Signature=ZvFAU3AbJ3IHEIItAiN2hGslomQCfPjX~BqM0OPkZTLmkYa75T7~JFuRJApRZL6C7IEFbOGjhRmemePCexcLA0vhPomq5pnrk6mGY-J8eDXbLsyFE9E8Mahzz6LKU-arLeAIqS9SLsaMJ8ejXoc0UuLLzSq81dJS~swGtU5R1xmp~A7eaTycHNMA4YfVG5nztzFCMt8ZyKPibHBXXDoeW3T5xBzkM~Q9euiCosfFSkyK0EaWnWUtdHsgfkSJqSWGCpNxxxBXs4aCc6mLtJi-Ava1pwg6F8hPd-ZEiUDaYwaRvn2pDxEBcJZN1eU9Pc6bZONyYJPOzxQcndGCkNMBZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":29617,"name":"Synchrotron Radiation","url":"https://www.academia.edu/Documents/in/Synchrotron_Radiation"},{"id":30208,"name":"Time-of-flight mass spectrometry","url":"https://www.academia.edu/Documents/in/Time-of-flight_mass_spectrometry"},{"id":112063,"name":"Uv Radiation","url":"https://www.academia.edu/Documents/in/Uv_Radiation"},{"id":116193,"name":"Solid State electronic devices","url":"https://www.academia.edu/Documents/in/Solid_State_electronic_devices"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":321836,"name":"Spectrum","url":"https://www.academia.edu/Documents/in/Spectrum"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":393410,"name":"Excited states","url":"https://www.academia.edu/Documents/in/Excited_states"},{"id":413295,"name":"Kinetic Energy","url":"https://www.academia.edu/Documents/in/Kinetic_Energy"},{"id":563389,"name":"Photoemission","url":"https://www.academia.edu/Documents/in/Photoemission"},{"id":882081,"name":"Ultraviolet Radiation","url":"https://www.academia.edu/Documents/in/Ultraviolet_Radiation"},{"id":990774,"name":"Quantum Yield","url":"https://www.academia.edu/Documents/in/Quantum_Yield"}],"urls":[{"id":45586982,"url":"http://pure-oai.bham.ac.uk/ws/files/39722210/paper16.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490146"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490146/Near_infra_red_emission_studies_using_a_SISAM_spectrometer"><img alt="Research paper thumbnail of Near infra-red emission studies using a SISAM spectrometer" class="work-thumbnail" src="https://attachments.academia-assets.com/119523624/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490146/Near_infra_red_emission_studies_using_a_SISAM_spectrometer">Near infra-red emission studies using a SISAM spectrometer</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="34a62bab6f19fa48b8eaddda8a35d773" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119523624,&quot;asset_id&quot;:125490146,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119523624/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490146"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490146"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490146; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490146]").text(description); $(".js-view-count[data-work-id=125490146]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490146; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490146']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490146, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "34a62bab6f19fa48b8eaddda8a35d773" } } $('.js-work-strip[data-work-id=125490146]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490146,"title":"Near infra-red emission studies using a SISAM spectrometer","translated_title":"","metadata":{"publication_date":{"day":1,"month":3,"year":1979,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/125490146/Near_infra_red_emission_studies_using_a_SISAM_spectrometer","translated_internal_url":"","created_at":"2024-11-12T08:56:48.031-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119523624,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523624/thumbnails/1.jpg","file_name":"144579243.pdf","download_url":"https://www.academia.edu/attachments/119523624/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Near_infra_red_emission_studies_using_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523624/144579243-libre.pdf?1731431338=\u0026response-content-disposition=attachment%3B+filename%3DNear_infra_red_emission_studies_using_a.pdf\u0026Expires=1733910672\u0026Signature=ZZiqDJsj6-C1IpPTbEW~ROqiWCqY75kBC8GNsQ~NWDK1UTIi2Ibe9qjVnTHepe-xd1w7mPlfAfzJBK-twUrmdPjUHBXqeJCo7XWrmzKEpoIhG5BFCNL8ndAoEz8WRAEcRS5SsoNynWY-Bn76hzWQ-sZfXISjnedCbCLa7PhgMaeS0m5lZ5HtEi7Bi~wnvCoLF2J6Ubp7Eh~EDB68Etzgl98QshY3cI0rhIaTAInUCrJdBBhElSIJvseggKifohcIYz9v8yajGQebw5ls7JvUi7m3ThVsX7PNQIoxaLdvoiWAndZsBAT2pyLMb3~Ww1xhV0OV-7xuhsZ3NOtZiFDgMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Near_infra_red_emission_studies_using_a_SISAM_spectrometer","translated_slug":"","page_count":167,"language":"en","content_type":"Work","summary":null,"owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":119523624,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523624/thumbnails/1.jpg","file_name":"144579243.pdf","download_url":"https://www.academia.edu/attachments/119523624/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Near_infra_red_emission_studies_using_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523624/144579243-libre.pdf?1731431338=\u0026response-content-disposition=attachment%3B+filename%3DNear_infra_red_emission_studies_using_a.pdf\u0026Expires=1733910672\u0026Signature=ZZiqDJsj6-C1IpPTbEW~ROqiWCqY75kBC8GNsQ~NWDK1UTIi2Ibe9qjVnTHepe-xd1w7mPlfAfzJBK-twUrmdPjUHBXqeJCo7XWrmzKEpoIhG5BFCNL8ndAoEz8WRAEcRS5SsoNynWY-Bn76hzWQ-sZfXISjnedCbCLa7PhgMaeS0m5lZ5HtEi7Bi~wnvCoLF2J6Ubp7Eh~EDB68Etzgl98QshY3cI0rhIaTAInUCrJdBBhElSIJvseggKifohcIYz9v8yajGQebw5ls7JvUi7m3ThVsX7PNQIoxaLdvoiWAndZsBAT2pyLMb3~Ww1xhV0OV-7xuhsZ3NOtZiFDgMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":1442002,"name":"Spectrometer","url":"https://www.academia.edu/Documents/in/Spectrometer"}],"urls":[{"id":45586981,"url":"https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.475628"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490145"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490145/PHOTOELECTRON_PHOTOION_COINCIDENCE_STUDY_OF_THE_FRAGMENTATION_OF_VALENCE_STATES_OF_CHF2_CH3_IN_THE_RANGE_12_25_eV"><img alt="Research paper thumbnail of PHOTOELECTRON PHOTOION COINCIDENCE STUDY OF THE FRAGMENTATION OF VALENCE STATES OF CHF2–CH3+ IN THE RANGE 12–25 eV" class="work-thumbnail" src="https://attachments.academia-assets.com/119523597/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490145/PHOTOELECTRON_PHOTOION_COINCIDENCE_STUDY_OF_THE_FRAGMENTATION_OF_VALENCE_STATES_OF_CHF2_CH3_IN_THE_RANGE_12_25_eV">PHOTOELECTRON PHOTOION COINCIDENCE STUDY OF THE FRAGMENTATION OF VALENCE STATES OF CHF2–CH3+ IN THE RANGE 12–25 eV</a></div><div class="wp-workCard_item"><span>International Journal of Modern Physics B</span><span>, Jun 10, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ca4bffcdc91fdc08a5c3c6acc67cbf23" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119523597,&quot;asset_id&quot;:125490145,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119523597/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490145"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490145"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490145; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490145]").text(description); $(".js-view-count[data-work-id=125490145]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490145; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490145']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490145, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ca4bffcdc91fdc08a5c3c6acc67cbf23" } } $('.js-work-strip[data-work-id=125490145]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490145,"title":"PHOTOELECTRON PHOTOION COINCIDENCE STUDY OF THE FRAGMENTATION OF VALENCE STATES OF CHF2–CH3+ IN THE RANGE 12–25 eV","translated_title":"","metadata":{"publisher":"World Scientific","publication_date":{"day":10,"month":6,"year":2009,"errors":{}},"publication_name":"International Journal of Modern Physics B"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125490145/PHOTOELECTRON_PHOTOION_COINCIDENCE_STUDY_OF_THE_FRAGMENTATION_OF_VALENCE_STATES_OF_CHF2_CH3_IN_THE_RANGE_12_25_eV","translated_internal_url":"","created_at":"2024-11-12T08:56:47.738-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119523597,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523597/thumbnails/1.jpg","file_name":"Tuckett39IntJModPhysB2008.pdf","download_url":"https://www.academia.edu/attachments/119523597/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"PHOTOELECTRON_PHOTOION_COINCIDENCE_STUDY.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523597/Tuckett39IntJModPhysB2008-libre.pdf?1731431134=\u0026response-content-disposition=attachment%3B+filename%3DPHOTOELECTRON_PHOTOION_COINCIDENCE_STUDY.pdf\u0026Expires=1733910672\u0026Signature=g-AatlnvPZlu2uS~RqgYpYeF6CIm7liZetfqPvkVzAaZNdc6LJIqlqTKtGWgrvv78sHi3dOYgI7GZsfxMmwP2kq5eaWOMxK86oPtNRgdy0~Ol1S381GJMJ1muwWhHkVQZhrpexgWK2UkKEtGwO-vZuVFl~Mi8pGoowS8pfDjH~CW4hGSXltM1YFath~W00Z2pUTBYOwdnOLDDYlqbFQqh8~nkACjwNXgdXoHkPg8StBMbmfMixzqxM7BXseMOeGaJMtmIk6zSasy-Y3khrhGNooCd812~2m6sAy~B-US7JlPQ2WU0ZDUlDGXYbktgze3PQuF7eE4AfYIOQ-od3cDJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"PHOTOELECTRON_PHOTOION_COINCIDENCE_STUDY_OF_THE_FRAGMENTATION_OF_VALENCE_STATES_OF_CHF2_CH3_IN_THE_RANGE_12_25_eV","translated_slug":"","page_count":21,"language":"en","content_type":"Work","summary":null,"owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":119523597,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523597/thumbnails/1.jpg","file_name":"Tuckett39IntJModPhysB2008.pdf","download_url":"https://www.academia.edu/attachments/119523597/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"PHOTOELECTRON_PHOTOION_COINCIDENCE_STUDY.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523597/Tuckett39IntJModPhysB2008-libre.pdf?1731431134=\u0026response-content-disposition=attachment%3B+filename%3DPHOTOELECTRON_PHOTOION_COINCIDENCE_STUDY.pdf\u0026Expires=1733910672\u0026Signature=g-AatlnvPZlu2uS~RqgYpYeF6CIm7liZetfqPvkVzAaZNdc6LJIqlqTKtGWgrvv78sHi3dOYgI7GZsfxMmwP2kq5eaWOMxK86oPtNRgdy0~Ol1S381GJMJ1muwWhHkVQZhrpexgWK2UkKEtGwO-vZuVFl~Mi8pGoowS8pfDjH~CW4hGSXltM1YFath~W00Z2pUTBYOwdnOLDDYlqbFQqh8~nkACjwNXgdXoHkPg8StBMbmfMixzqxM7BXseMOeGaJMtmIk6zSasy-Y3khrhGNooCd812~2m6sAy~B-US7JlPQ2WU0ZDUlDGXYbktgze3PQuF7eE4AfYIOQ-od3cDJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":15902,"name":"Photoionization","url":"https://www.academia.edu/Documents/in/Photoionization"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":151848,"name":"Fragmentation","url":"https://www.academia.edu/Documents/in/Fragmentation"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":413295,"name":"Kinetic Energy","url":"https://www.academia.edu/Documents/in/Kinetic_Energy"},{"id":882081,"name":"Ultraviolet Radiation","url":"https://www.academia.edu/Documents/in/Ultraviolet_Radiation"},{"id":973013,"name":"Yield Curve","url":"https://www.academia.edu/Documents/in/Yield_Curve"},{"id":2620537,"name":"Physical chemistry and chemical physics","url":"https://www.academia.edu/Documents/in/Physical_chemistry_and_chemical_physics"}],"urls":[{"id":45586980,"url":"http://pure-oai.bham.ac.uk/ws/files/2922178/Tuckett39IntJModPhysB2008.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490144"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490144/Electronic_Fluorescence_Spectra_of_Gas_Phase_Positive_Ions"><img alt="Research paper thumbnail of Electronic Fluorescence Spectra of Gas-Phase Positive Ions" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490144/Electronic_Fluorescence_Spectra_of_Gas_Phase_Positive_Ions">Electronic Fluorescence Spectra of Gas-Phase Positive Ions</a></div><div class="wp-workCard_item"><span>Springer eBooks</span><span>, 1983</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We describe here a novel technique to observe electronic spectra of gas-phase positive ions. The ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We describe here a novel technique to observe electronic spectra of gas-phase positive ions. The ions are formed by electron impact on a supersonic beam of neutral molecules, and the fluorescent radiation from the ions is dispersed. The two particu­lar properties of supersonic beams that we exploit are: (a.) The density of molecules in a beam can be high, yet they all travel in the same direction in a collision-free environment. Collisional deactivation of the ion by fast ion-molecule re­actions is therefore absent. (b.) In the expansion, random motion of the molecules is converted into forward directed flow, producing a beam of internally cold molecules; the rotational temperature can be less than 1°K.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490144"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490144"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490144; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490144]").text(description); $(".js-view-count[data-work-id=125490144]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490144; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490144']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490144, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125490144]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490144,"title":"Electronic Fluorescence Spectra of Gas-Phase Positive Ions","translated_title":"","metadata":{"abstract":"We describe here a novel technique to observe electronic spectra of gas-phase positive ions. The ions are formed by electron impact on a supersonic beam of neutral molecules, and the fluorescent radiation from the ions is dispersed. The two particu­lar properties of supersonic beams that we exploit are: (a.) The density of molecules in a beam can be high, yet they all travel in the same direction in a collision-free environment. Collisional deactivation of the ion by fast ion-molecule re­actions is therefore absent. (b.) In the expansion, random motion of the molecules is converted into forward directed flow, producing a beam of internally cold molecules; the rotational temperature can be less than 1°K.","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":1983,"errors":{}},"publication_name":"Springer eBooks"},"translated_abstract":"We describe here a novel technique to observe electronic spectra of gas-phase positive ions. The ions are formed by electron impact on a supersonic beam of neutral molecules, and the fluorescent radiation from the ions is dispersed. The two particu­lar properties of supersonic beams that we exploit are: (a.) The density of molecules in a beam can be high, yet they all travel in the same direction in a collision-free environment. Collisional deactivation of the ion by fast ion-molecule re­actions is therefore absent. (b.) In the expansion, random motion of the molecules is converted into forward directed flow, producing a beam of internally cold molecules; the rotational temperature can be less than 1°K.","internal_url":"https://www.academia.edu/125490144/Electronic_Fluorescence_Spectra_of_Gas_Phase_Positive_Ions","translated_internal_url":"","created_at":"2024-11-12T08:56:47.453-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Electronic_Fluorescence_Spectra_of_Gas_Phase_Positive_Ions","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We describe here a novel technique to observe electronic spectra of gas-phase positive ions. The ions are formed by electron impact on a supersonic beam of neutral molecules, and the fluorescent radiation from the ions is dispersed. The two particu­lar properties of supersonic beams that we exploit are: (a.) The density of molecules in a beam can be high, yet they all travel in the same direction in a collision-free environment. Collisional deactivation of the ion by fast ion-molecule re­actions is therefore absent. (b.) In the expansion, random motion of the molecules is converted into forward directed flow, producing a beam of internally cold molecules; the rotational temperature can be less than 1°K.","owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":7698,"name":"Fluorescence","url":"https://www.academia.edu/Documents/in/Fluorescence"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":883316,"name":"Gas Phase","url":"https://www.academia.edu/Documents/in/Gas_Phase"},{"id":1029023,"name":"Molecule","url":"https://www.academia.edu/Documents/in/Molecule"},{"id":2778229,"name":"Supersonic speed","url":"https://www.academia.edu/Documents/in/Supersonic_speed"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"}],"urls":[{"id":45586979,"url":"https://doi.org/10.1007/978-1-4613-3664-8_13"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490143"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490143/Vacuum_UV_fluorescence_excitation_spectroscopy_of_BCl3in_the_range_35_140_nm"><img alt="Research paper thumbnail of Vacuum UV fluorescence excitation spectroscopy of BCl3in the range 35–140 nm" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490143/Vacuum_UV_fluorescence_excitation_spectroscopy_of_BCl3in_the_range_35_140_nm">Vacuum UV fluorescence excitation spectroscopy of BCl3in the range 35–140 nm</a></div><div class="wp-workCard_item"><span>Molecular Physics</span><span>, Jun 10, 1993</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The fluorescence following excitation of BF3 is studied using two techniques: (a) He* (23S) metas...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The fluorescence following excitation of BF3 is studied using two techniques: (a) He* (23S) metastable excitation with dispersed fluorescence detection, (b) photon excitation using tunable vacuum UV radiation from a synchrotron source with undispersed detection. The He* experiment gives an extensive spectrum between 200 and 300 nm with two long progressions, each of separation 525 ± 30 cm-1. They are assigned to transitions to the v 2 bending mode of BF2 [Xtilde] 2A1, probably from the first excited state A 2B1. Using photons in the energy range 10–28 eV two different fluorescence decay channels are observed: (1) BF2 fluorescence for photon energies below 17eV, (2) BF3 + fluorescence for energies &amp;gt; 21·5eV. The shapes of the excitation functions confirm that (1) is a resonant process via Rydberg states of BF3, whereas (2) is a non-resonant photoionization process. The emitting state in BF3 + is the [Etilde]2A′1 state with a vertical ionization potential of 21·5eV. The two strongest resonant peaks at 13·1 a...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490143"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490143"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490143; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490143]").text(description); $(".js-view-count[data-work-id=125490143]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490143; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490143']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490143, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125490143]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490143,"title":"Vacuum UV fluorescence excitation spectroscopy of BCl3in the range 35–140 nm","translated_title":"","metadata":{"abstract":"The fluorescence following excitation of BF3 is studied using two techniques: (a) He* (23S) metastable excitation with dispersed fluorescence detection, (b) photon excitation using tunable vacuum UV radiation from a synchrotron source with undispersed detection. The He* experiment gives an extensive spectrum between 200 and 300 nm with two long progressions, each of separation 525 ± 30 cm-1. They are assigned to transitions to the v 2 bending mode of BF2 [Xtilde] 2A1, probably from the first excited state A 2B1. Using photons in the energy range 10–28 eV two different fluorescence decay channels are observed: (1) BF2 fluorescence for photon energies below 17eV, (2) BF3 + fluorescence for energies \u0026gt; 21·5eV. The shapes of the excitation functions confirm that (1) is a resonant process via Rydberg states of BF3, whereas (2) is a non-resonant photoionization process. The emitting state in BF3 + is the [Etilde]2A′1 state with a vertical ionization potential of 21·5eV. The two strongest resonant peaks at 13·1 a...","publisher":"Taylor \u0026 Francis","publication_date":{"day":10,"month":6,"year":1993,"errors":{}},"publication_name":"Molecular Physics"},"translated_abstract":"The fluorescence following excitation of BF3 is studied using two techniques: (a) He* (23S) metastable excitation with dispersed fluorescence detection, (b) photon excitation using tunable vacuum UV radiation from a synchrotron source with undispersed detection. The He* experiment gives an extensive spectrum between 200 and 300 nm with two long progressions, each of separation 525 ± 30 cm-1. They are assigned to transitions to the v 2 bending mode of BF2 [Xtilde] 2A1, probably from the first excited state A 2B1. Using photons in the energy range 10–28 eV two different fluorescence decay channels are observed: (1) BF2 fluorescence for photon energies below 17eV, (2) BF3 + fluorescence for energies \u0026gt; 21·5eV. The shapes of the excitation functions confirm that (1) is a resonant process via Rydberg states of BF3, whereas (2) is a non-resonant photoionization process. The emitting state in BF3 + is the [Etilde]2A′1 state with a vertical ionization potential of 21·5eV. The two strongest resonant peaks at 13·1 a...","internal_url":"https://www.academia.edu/125490143/Vacuum_UV_fluorescence_excitation_spectroscopy_of_BCl3in_the_range_35_140_nm","translated_internal_url":"","created_at":"2024-11-12T08:56:47.091-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Vacuum_UV_fluorescence_excitation_spectroscopy_of_BCl3in_the_range_35_140_nm","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The fluorescence following excitation of BF3 is studied using two techniques: (a) He* (23S) metastable excitation with dispersed fluorescence detection, (b) photon excitation using tunable vacuum UV radiation from a synchrotron source with undispersed detection. The He* experiment gives an extensive spectrum between 200 and 300 nm with two long progressions, each of separation 525 ± 30 cm-1. They are assigned to transitions to the v 2 bending mode of BF2 [Xtilde] 2A1, probably from the first excited state A 2B1. Using photons in the energy range 10–28 eV two different fluorescence decay channels are observed: (1) BF2 fluorescence for photon energies below 17eV, (2) BF3 + fluorescence for energies \u0026gt; 21·5eV. The shapes of the excitation functions confirm that (1) is a resonant process via Rydberg states of BF3, whereas (2) is a non-resonant photoionization process. The emitting state in BF3 + is the [Etilde]2A′1 state with a vertical ionization potential of 21·5eV. The two strongest resonant peaks at 13·1 a...","owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[],"research_interests":[{"id":513,"name":"Molecular Physics","url":"https://www.academia.edu/Documents/in/Molecular_Physics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology"},{"id":1525,"name":"Fluorescence Spectroscopy","url":"https://www.academia.edu/Documents/in/Fluorescence_Spectroscopy"},{"id":5427,"name":"Spectroscopy","url":"https://www.academia.edu/Documents/in/Spectroscopy"},{"id":7698,"name":"Fluorescence","url":"https://www.academia.edu/Documents/in/Fluorescence"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":15902,"name":"Photoionization","url":"https://www.academia.edu/Documents/in/Photoionization"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":329196,"name":"Ionization","url":"https://www.academia.edu/Documents/in/Ionization"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":645605,"name":"THEORETICAL AND COMPUTATIONAL CHEMISTRY","url":"https://www.academia.edu/Documents/in/THEORETICAL_AND_COMPUTATIONAL_CHEMISTRY"},{"id":3296502,"name":"Excitation","url":"https://www.academia.edu/Documents/in/Excitation"}],"urls":[{"id":45586978,"url":"https://doi.org/10.1080/00268979300101311"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490142"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490142/The_vacuum_ultraviolet_photoelectron_spectra_of_CH2F2_and_CH2Cl2_revisited"><img alt="Research paper thumbnail of The vacuum-ultraviolet photoelectron spectra of CH2F2 and CH2Cl2 revisited" class="work-thumbnail" src="https://attachments.academia-assets.com/119526016/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490142/The_vacuum_ultraviolet_photoelectron_spectra_of_CH2F2_and_CH2Cl2_revisited">The vacuum-ultraviolet photoelectron spectra of CH2F2 and CH2Cl2 revisited</a></div><div class="wp-workCard_item"><span>Journal of Molecular Spectroscopy</span><span>, Sep 1, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1701d856fdf544bd1686b24d6893f789" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119526016,&quot;asset_id&quot;:125490142,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119526016/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490142"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490142"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490142; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490142]").text(description); $(".js-view-count[data-work-id=125490142]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490142; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490142']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490142, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1701d856fdf544bd1686b24d6893f789" } } $('.js-work-strip[data-work-id=125490142]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490142,"title":"The vacuum-ultraviolet photoelectron spectra of CH2F2 and CH2Cl2 revisited","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":1,"month":9,"year":2015,"errors":{}},"publication_name":"Journal of Molecular Spectroscopy"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125490142/The_vacuum_ultraviolet_photoelectron_spectra_of_CH2F2_and_CH2Cl2_revisited","translated_internal_url":"","created_at":"2024-11-12T08:56:46.755-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119526016,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119526016/thumbnails/1.jpg","file_name":"Tuckett_FinalPaperOnlineSupplMat_250315.pdf","download_url":"https://www.academia.edu/attachments/119526016/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_vacuum_ultraviolet_photoelectron_spe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119526016/Tuckett_FinalPaperOnlineSupplMat_250315-libre.pdf?1731442965=\u0026response-content-disposition=attachment%3B+filename%3DThe_vacuum_ultraviolet_photoelectron_spe.pdf\u0026Expires=1733910672\u0026Signature=bxhbB9HBjquBp7munNUtU2kGeRZVs8AF4lRCg~yEs6sfByI9rjgTJqxmjd0TJ8TxVN-bx9cfbjbxO18g66CRgq5-i8Dscgja41LxRxbrISz5rWEWlxsDtxvrNwx5OMww4WbZYbQQtEQ3zn~DvdcPa6hi4Ncz~FjKfjLsqRHvZWc-BxRYItpB7nhuoI4qKCpA0HM4j7ad1XGY090E2Tq8LgDYpOs5WjLZ17hivoOWkubYpUGwFV0lOAlbp7Uoqlzw1WXId1FSiBF0NOZ8NiNzPvCz3zndctRGfnkZEGCKOXg0futTqDS08pOQqsJoIa2G97KDoWsv2OVxZ5RaFlYaZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_vacuum_ultraviolet_photoelectron_spectra_of_CH2F2_and_CH2Cl2_revisited","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":null,"owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":119526016,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119526016/thumbnails/1.jpg","file_name":"Tuckett_FinalPaperOnlineSupplMat_250315.pdf","download_url":"https://www.academia.edu/attachments/119526016/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_vacuum_ultraviolet_photoelectron_spe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119526016/Tuckett_FinalPaperOnlineSupplMat_250315-libre.pdf?1731442965=\u0026response-content-disposition=attachment%3B+filename%3DThe_vacuum_ultraviolet_photoelectron_spe.pdf\u0026Expires=1733910672\u0026Signature=bxhbB9HBjquBp7munNUtU2kGeRZVs8AF4lRCg~yEs6sfByI9rjgTJqxmjd0TJ8TxVN-bx9cfbjbxO18g66CRgq5-i8Dscgja41LxRxbrISz5rWEWlxsDtxvrNwx5OMww4WbZYbQQtEQ3zn~DvdcPa6hi4Ncz~FjKfjLsqRHvZWc-BxRYItpB7nhuoI4qKCpA0HM4j7ad1XGY090E2Tq8LgDYpOs5WjLZ17hivoOWkubYpUGwFV0lOAlbp7Uoqlzw1WXId1FSiBF0NOZ8NiNzPvCz3zndctRGfnkZEGCKOXg0futTqDS08pOQqsJoIa2G97KDoWsv2OVxZ5RaFlYaZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":15910,"name":"Molecular Spectroscopy","url":"https://www.academia.edu/Documents/in/Molecular_Spectroscopy"}],"urls":[{"id":45586977,"url":"https://doi.org/10.1016/j.jms.2015.02.012"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490141"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490141/Fragmentation_of_valence_electronic_states_of_CF_sub_3_sub_CH_sub_2_sub_F_sup_sup_and_CHF_sub_2_sub_CHF_sub_2_sub_sup_sup_in_the_range_12_25_eV"><img alt="Research paper thumbnail of Fragmentation of valence electronic states of CF&lt;sub&gt;3&lt;/sub&gt;–CH&lt;sub&gt;2&lt;/sub&gt;F&lt;sup&gt;+&lt;/sup&gt;and CHF&lt;sub&gt;2&lt;/sub&gt;–CHF&lt;sub&gt;2&lt;/sub&gt;&lt;sup&gt;+&lt;/sup&gt;in the range 12–25 eV" class="work-thumbnail" src="https://attachments.academia-assets.com/119523593/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490141/Fragmentation_of_valence_electronic_states_of_CF_sub_3_sub_CH_sub_2_sub_F_sup_sup_and_CHF_sub_2_sub_CHF_sub_2_sub_sup_sup_in_the_range_12_25_eV">Fragmentation of valence electronic states of CF&lt;sub&gt;3&lt;/sub&gt;–CH&lt;sub&gt;2&lt;/sub&gt;F&lt;sup&gt;+&lt;/sup&gt;and CHF&lt;sub&gt;2&lt;/sub&gt;–CHF&lt;sub&gt;2&lt;/sub&gt;&lt;sup&gt;+&lt;/sup&gt;in the range 12–25 eV</a></div><div class="wp-workCard_item"><span>Physical Chemistry Chemical Physics</span><span>, 2002</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="78172433ba7fd98872e2bb9e3c426702" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119523593,&quot;asset_id&quot;:125490141,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119523593/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490141"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490141"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490141; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490141]").text(description); $(".js-view-count[data-work-id=125490141]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490141; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490141']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490141, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "78172433ba7fd98872e2bb9e3c426702" } } $('.js-work-strip[data-work-id=125490141]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490141,"title":"Fragmentation of valence electronic states of CF\u003csub\u003e3\u003c/sub\u003e–CH\u003csub\u003e2\u003c/sub\u003eF\u003csup\u003e+\u003c/sup\u003eand CHF\u003csub\u003e2\u003c/sub\u003e–CHF\u003csub\u003e2\u003c/sub\u003e\u003csup\u003e+\u003c/sup\u003ein the range 12–25 eV","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Physical Chemistry Chemical Physics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125490141/Fragmentation_of_valence_electronic_states_of_CF_sub_3_sub_CH_sub_2_sub_F_sup_sup_and_CHF_sub_2_sub_CHF_sub_2_sub_sup_sup_in_the_range_12_25_eV","translated_internal_url":"","created_at":"2024-11-12T08:56:45.262-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119523593,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523593/thumbnails/1.jpg","file_name":"Tuckett15PhysChemChemPhys2002.pdf","download_url":"https://www.academia.edu/attachments/119523593/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fragmentation_of_valence_electronic_stat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523593/Tuckett15PhysChemChemPhys2002-libre.pdf?1731431147=\u0026response-content-disposition=attachment%3B+filename%3DFragmentation_of_valence_electronic_stat.pdf\u0026Expires=1733910672\u0026Signature=YxjS7tlrrtnB8djcRv1n3p4DgKenW0d8Jyn~JLlAbh9XpsXdiL1mE5l9c5RWUrnyUAbFscQHm9UCYNso76G1FzIePyaKB-eHbsPJHJojYQKSseYFx2HDznjSUmqDFbGwFbiVYyAjWY72q73aCa5Ae9w-5WiI8d99-dKA-vL92EDAs~SUmd0lzNQk0zBq8E-8rdJH26JS9g3j~Mq3ol17HxsfCRtWWAUNgC4GlP74gwI~fxCasGNHkBe4ylH2KDxTBsKwvg4hs2niZMIJOcilAIXlBknYMCGD-IDHhEol91iIoFAvPWDQ~iLwrtkb~9A~l7c~EcHZr3H3PDEW-EJhqg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fragmentation_of_valence_electronic_states_of_CF_sub_3_sub_CH_sub_2_sub_F_sup_sup_and_CHF_sub_2_sub_CHF_sub_2_sub_sup_sup_in_the_range_12_25_eV","translated_slug":"","page_count":35,"language":"en","content_type":"Work","summary":null,"owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":119523593,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523593/thumbnails/1.jpg","file_name":"Tuckett15PhysChemChemPhys2002.pdf","download_url":"https://www.academia.edu/attachments/119523593/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fragmentation_of_valence_electronic_stat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523593/Tuckett15PhysChemChemPhys2002-libre.pdf?1731431147=\u0026response-content-disposition=attachment%3B+filename%3DFragmentation_of_valence_electronic_stat.pdf\u0026Expires=1733910672\u0026Signature=YxjS7tlrrtnB8djcRv1n3p4DgKenW0d8Jyn~JLlAbh9XpsXdiL1mE5l9c5RWUrnyUAbFscQHm9UCYNso76G1FzIePyaKB-eHbsPJHJojYQKSseYFx2HDznjSUmqDFbGwFbiVYyAjWY72q73aCa5Ae9w-5WiI8d99-dKA-vL92EDAs~SUmd0lzNQk0zBq8E-8rdJH26JS9g3j~Mq3ol17HxsfCRtWWAUNgC4GlP74gwI~fxCasGNHkBe4ylH2KDxTBsKwvg4hs2niZMIJOcilAIXlBknYMCGD-IDHhEol91iIoFAvPWDQ~iLwrtkb~9A~l7c~EcHZr3H3PDEW-EJhqg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119523594,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523594/thumbnails/1.jpg","file_name":"Tuckett15PhysChemChemPhys2002.pdf","download_url":"https://www.academia.edu/attachments/119523594/download_file","bulk_download_file_name":"Fragmentation_of_valence_electronic_stat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523594/Tuckett15PhysChemChemPhys2002-libre.pdf?1731431158=\u0026response-content-disposition=attachment%3B+filename%3DFragmentation_of_valence_electronic_stat.pdf\u0026Expires=1733910672\u0026Signature=ERAz5z~EDOyKJJ-fqw74XR2RWWyiDpm4nRN~HyXR4sF2OgQ3VRpDmWd2CLbyyp44VH6xmGAWWbWtUixCH4~MdhBH2V-KFWenxFrnIfFHE16l0Sg~g2kigBU4d0Lao9Z7Zz5~RMEDCIlUGTQEZooeJqO4XKpcXdMJ2d0rE3~NWWO9XewHaJTUB5rQnxqvJFORCSiPmgEuvcHOawx6B-YFMBJe3TKrPncIzWuF1bF-IlxRquMDNGqdpv7-fwAJ0ecKZ07TUtcDOsjmqLZjLVmm2jYZ3ECPF0HQwn6KoKjjlW9vy4E8SRt4jpCUmyyT5OIla21tRuojO8xud3VkWsmr6A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":2620537,"name":"Physical chemistry and chemical physics","url":"https://www.academia.edu/Documents/in/Physical_chemistry_and_chemical_physics"}],"urls":[{"id":45586976,"url":"http://pure-oai.bham.ac.uk/ws/files/2922101/Tuckett15PhysChemChemPhys2002.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490140"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490140/Vacuum_UV_fluorescence_excitation_spectroscopy_of_BF3in_the_range_45_125_nm"><img alt="Research paper thumbnail of Vacuum UV fluorescence excitation spectroscopy of BF3in the range 45–125 nm" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490140/Vacuum_UV_fluorescence_excitation_spectroscopy_of_BF3in_the_range_45_125_nm">Vacuum UV fluorescence excitation spectroscopy of BF3in the range 45–125 nm</a></div><div class="wp-workCard_item"><span>Molecular Physics</span><span>, Mar 1, 1993</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The fluorescence following excitation of BF3 is studied using two techniques: (a) He* (23S) metas...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The fluorescence following excitation of BF3 is studied using two techniques: (a) He* (23S) metastable excitation with dispersed fluorescence detection, (b) photon excitation using tunable vacuum UV radiation from a synchrotron source with undispersed detection. The He* experiment gives an extensive spectrum between 200 and 300 nm with two long progressions, each of separation 525 ± 30 cm-1. They are assigned to transitions to the v 2 bending mode of BF2 [Xtilde] 2A1, probably from the first excited state A 2B1. Using photons in the energy range 10–28 eV two different fluorescence decay channels are observed: (1) BF2 fluorescence for photon energies below 17eV, (2) BF3 + fluorescence for energies &amp;gt; 21·5eV. The shapes of the excitation functions confirm that (1) is a resonant process via Rydberg states of BF3, whereas (2) is a non-resonant photoionization process. The emitting state in BF3 + is the [Etilde]2A′1 state with a vertical ionization potential of 21·5eV. The two strongest resonant peaks at 13·1 a...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490140"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490140"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490140; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490140]").text(description); $(".js-view-count[data-work-id=125490140]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490140; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490140']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490140, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125490140]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490140,"title":"Vacuum UV fluorescence excitation spectroscopy of BF3in the range 45–125 nm","translated_title":"","metadata":{"abstract":"The fluorescence following excitation of BF3 is studied using two techniques: (a) He* (23S) metastable excitation with dispersed fluorescence detection, (b) photon excitation using tunable vacuum UV radiation from a synchrotron source with undispersed detection. The He* experiment gives an extensive spectrum between 200 and 300 nm with two long progressions, each of separation 525 ± 30 cm-1. They are assigned to transitions to the v 2 bending mode of BF2 [Xtilde] 2A1, probably from the first excited state A 2B1. Using photons in the energy range 10–28 eV two different fluorescence decay channels are observed: (1) BF2 fluorescence for photon energies below 17eV, (2) BF3 + fluorescence for energies \u0026gt; 21·5eV. The shapes of the excitation functions confirm that (1) is a resonant process via Rydberg states of BF3, whereas (2) is a non-resonant photoionization process. The emitting state in BF3 + is the [Etilde]2A′1 state with a vertical ionization potential of 21·5eV. The two strongest resonant peaks at 13·1 a...","publisher":"Taylor \u0026 Francis","publication_date":{"day":1,"month":3,"year":1993,"errors":{}},"publication_name":"Molecular Physics"},"translated_abstract":"The fluorescence following excitation of BF3 is studied using two techniques: (a) He* (23S) metastable excitation with dispersed fluorescence detection, (b) photon excitation using tunable vacuum UV radiation from a synchrotron source with undispersed detection. The He* experiment gives an extensive spectrum between 200 and 300 nm with two long progressions, each of separation 525 ± 30 cm-1. They are assigned to transitions to the v 2 bending mode of BF2 [Xtilde] 2A1, probably from the first excited state A 2B1. Using photons in the energy range 10–28 eV two different fluorescence decay channels are observed: (1) BF2 fluorescence for photon energies below 17eV, (2) BF3 + fluorescence for energies \u0026gt; 21·5eV. The shapes of the excitation functions confirm that (1) is a resonant process via Rydberg states of BF3, whereas (2) is a non-resonant photoionization process. The emitting state in BF3 + is the [Etilde]2A′1 state with a vertical ionization potential of 21·5eV. The two strongest resonant peaks at 13·1 a...","internal_url":"https://www.academia.edu/125490140/Vacuum_UV_fluorescence_excitation_spectroscopy_of_BF3in_the_range_45_125_nm","translated_internal_url":"","created_at":"2024-11-12T08:56:44.799-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Vacuum_UV_fluorescence_excitation_spectroscopy_of_BF3in_the_range_45_125_nm","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The fluorescence following excitation of BF3 is studied using two techniques: (a) He* (23S) metastable excitation with dispersed fluorescence detection, (b) photon excitation using tunable vacuum UV radiation from a synchrotron source with undispersed detection. The He* experiment gives an extensive spectrum between 200 and 300 nm with two long progressions, each of separation 525 ± 30 cm-1. They are assigned to transitions to the v 2 bending mode of BF2 [Xtilde] 2A1, probably from the first excited state A 2B1. Using photons in the energy range 10–28 eV two different fluorescence decay channels are observed: (1) BF2 fluorescence for photon energies below 17eV, (2) BF3 + fluorescence for energies \u0026gt; 21·5eV. The shapes of the excitation functions confirm that (1) is a resonant process via Rydberg states of BF3, whereas (2) is a non-resonant photoionization process. The emitting state in BF3 + is the [Etilde]2A′1 state with a vertical ionization potential of 21·5eV. The two strongest resonant peaks at 13·1 a...","owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[],"research_interests":[{"id":513,"name":"Molecular Physics","url":"https://www.academia.edu/Documents/in/Molecular_Physics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology"},{"id":1525,"name":"Fluorescence Spectroscopy","url":"https://www.academia.edu/Documents/in/Fluorescence_Spectroscopy"},{"id":5427,"name":"Spectroscopy","url":"https://www.academia.edu/Documents/in/Spectroscopy"},{"id":7698,"name":"Fluorescence","url":"https://www.academia.edu/Documents/in/Fluorescence"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":15902,"name":"Photoionization","url":"https://www.academia.edu/Documents/in/Photoionization"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":645605,"name":"THEORETICAL AND COMPUTATIONAL CHEMISTRY","url":"https://www.academia.edu/Documents/in/THEORETICAL_AND_COMPUTATIONAL_CHEMISTRY"},{"id":3296502,"name":"Excitation","url":"https://www.academia.edu/Documents/in/Excitation"}],"urls":[{"id":45586975,"url":"https://doi.org/10.1080/00268979300100571"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490138"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490138/Measurement_of_the_state_specific_differential_cross_section_for_the_H_D_sub_2_sub_HD_i_v_i_4_i_J_i_3_D_reaction_at_a_collision_energy_of_2_2_eV"><img alt="Research paper thumbnail of Measurement of the state‐specific differential cross section for the H+D&lt;sub&gt;2&lt;/sub&gt;→HD(&lt;i&gt;v&lt;/i&gt;′=4, &lt;i&gt;J&lt;/i&gt;′=3)+D reaction at a collision energy of 2.2 eV" class="work-thumbnail" src="https://attachments.academia-assets.com/119523623/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490138/Measurement_of_the_state_specific_differential_cross_section_for_the_H_D_sub_2_sub_HD_i_v_i_4_i_J_i_3_D_reaction_at_a_collision_energy_of_2_2_eV">Measurement of the state‐specific differential cross section for the H+D&lt;sub&gt;2&lt;/sub&gt;→HD(&lt;i&gt;v&lt;/i&gt;′=4, &lt;i&gt;J&lt;/i&gt;′=3)+D reaction at a collision energy of 2.2 eV</a></div><div class="wp-workCard_item"><span>Journal of Chemical Physics</span><span>, Sep 22, 1995</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3d975b7bc6107d22294c562da9318fc1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119523623,&quot;asset_id&quot;:125490138,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119523623/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490138"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490138"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490138; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490138]").text(description); $(".js-view-count[data-work-id=125490138]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490138; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490138']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490138, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3d975b7bc6107d22294c562da9318fc1" } } $('.js-work-strip[data-work-id=125490138]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490138,"title":"Measurement of the state‐specific differential cross section for the H+D\u003csub\u003e2\u003c/sub\u003e→HD(\u003ci\u003ev\u003c/i\u003e′=4, \u003ci\u003eJ\u003c/i\u003e′=3)+D reaction at a collision energy of 2.2 eV","translated_title":"","metadata":{"publisher":"American Institute of Physics","publication_date":{"day":22,"month":9,"year":1995,"errors":{}},"publication_name":"Journal of Chemical Physics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125490138/Measurement_of_the_state_specific_differential_cross_section_for_the_H_D_sub_2_sub_HD_i_v_i_4_i_J_i_3_D_reaction_at_a_collision_energy_of_2_2_eV","translated_internal_url":"","created_at":"2024-11-12T08:56:44.538-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119523623,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523623/thumbnails/1.jpg","file_name":"XuShaferMerktTuckett_JCP1995.pdf","download_url":"https://www.academia.edu/attachments/119523623/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Measurement_of_the_state_specific_differ.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523623/XuShaferMerktTuckett_JCP1995-libre.pdf?1731431118=\u0026response-content-disposition=attachment%3B+filename%3DMeasurement_of_the_state_specific_differ.pdf\u0026Expires=1733910672\u0026Signature=IYIz9ZdzDPYgLRXnFSDwoz36te99pUM5zWsB04nXq-g7f5AEjuiFixakLOjekXFW9QJS9imSuqa6juMoHkZHU290jRhEDv6rHbO2-Fe-yAxo7uJ3Ma-NKTkVtSMHHBkMa3v2Jmm1QnyOrCuE-IEH786bMyOLI79QCt~5HQWZRH4NU~g7RTdl18dRiwlUwINDdFkuOeoNMYyjb4Ie9txJueq5u9lt04vFzVWFM5Fmpm0zwIASaNr2jGEBK411yqD5MFJHhd8kEPz0wQNWgd7Q4VmbIfz82bKkkeZR1jM-7CplDqC7OKBRgRCsk-4vKTjzFG8ruDV~BJU8wRevSRd5Vw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Measurement_of_the_state_specific_differential_cross_section_for_the_H_D_sub_2_sub_HD_i_v_i_4_i_J_i_3_D_reaction_at_a_collision_energy_of_2_2_eV","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":null,"owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":119523623,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523623/thumbnails/1.jpg","file_name":"XuShaferMerktTuckett_JCP1995.pdf","download_url":"https://www.academia.edu/attachments/119523623/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Measurement_of_the_state_specific_differ.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523623/XuShaferMerktTuckett_JCP1995-libre.pdf?1731431118=\u0026response-content-disposition=attachment%3B+filename%3DMeasurement_of_the_state_specific_differ.pdf\u0026Expires=1733910672\u0026Signature=IYIz9ZdzDPYgLRXnFSDwoz36te99pUM5zWsB04nXq-g7f5AEjuiFixakLOjekXFW9QJS9imSuqa6juMoHkZHU290jRhEDv6rHbO2-Fe-yAxo7uJ3Ma-NKTkVtSMHHBkMa3v2Jmm1QnyOrCuE-IEH786bMyOLI79QCt~5HQWZRH4NU~g7RTdl18dRiwlUwINDdFkuOeoNMYyjb4Ie9txJueq5u9lt04vFzVWFM5Fmpm0zwIASaNr2jGEBK411yqD5MFJHhd8kEPz0wQNWgd7Q4VmbIfz82bKkkeZR1jM-7CplDqC7OKBRgRCsk-4vKTjzFG8ruDV~BJU8wRevSRd5Vw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":14054,"name":"Chemical","url":"https://www.academia.edu/Documents/in/Chemical"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":112619,"name":"Time of Flight","url":"https://www.academia.edu/Documents/in/Time_of_Flight"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":329196,"name":"Ionization","url":"https://www.academia.edu/Documents/in/Ionization"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":404000,"name":"Cross Section","url":"https://www.academia.edu/Documents/in/Cross_Section"},{"id":539878,"name":"Chemical Reaction","url":"https://www.academia.edu/Documents/in/Chemical_Reaction"},{"id":755720,"name":"Potential Energy Surface","url":"https://www.academia.edu/Documents/in/Potential_Energy_Surface"},{"id":767760,"name":"Angular Distribution","url":"https://www.academia.edu/Documents/in/Angular_Distribution"},{"id":1121984,"name":"Photodissociation","url":"https://www.academia.edu/Documents/in/Photodissociation"},{"id":3364406,"name":"Velocity Distribution","url":"https://www.academia.edu/Documents/in/Velocity_Distribution"}],"urls":[{"id":45586974,"url":"https://pubs.aip.org/aip/jcp/article-pdf/103/12/5157/10777599/5157_1_online.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490137"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490137/ChemInform_Abstract_Vacuum_UV_Fluorescence_Spectroscopy_of_PX3_X_Cl_Br_in_the_Range_9_25_eV"><img alt="Research paper thumbnail of ChemInform Abstract: Vacuum-UV Fluorescence Spectroscopy of PX3 (X: Cl, Br) in the Range 9-25 eV" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490137/ChemInform_Abstract_Vacuum_UV_Fluorescence_Spectroscopy_of_PX3_X_Cl_Br_in_the_Range_9_25_eV">ChemInform Abstract: Vacuum-UV Fluorescence Spectroscopy of PX3 (X: Cl, Br) in the Range 9-25 eV</a></div><div class="wp-workCard_item"><span>ChemInform</span><span>, Jun 19, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT ChemInform is a weekly Abstracting Service, delivering concise information at a glance t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490137"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490137"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490137; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490137]").text(description); $(".js-view-count[data-work-id=125490137]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490137; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490137']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490137, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125490137]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490137,"title":"ChemInform Abstract: Vacuum-UV Fluorescence Spectroscopy of PX3 (X: Cl, Br) in the Range 9-25 eV","translated_title":"","metadata":{"abstract":"ABSTRACT ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.","publisher":"Wiley","publication_date":{"day":19,"month":6,"year":2010,"errors":{}},"publication_name":"ChemInform"},"translated_abstract":"ABSTRACT ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.","internal_url":"https://www.academia.edu/125490137/ChemInform_Abstract_Vacuum_UV_Fluorescence_Spectroscopy_of_PX3_X_Cl_Br_in_the_Range_9_25_eV","translated_internal_url":"","created_at":"2024-11-12T08:56:44.262-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"ChemInform_Abstract_Vacuum_UV_Fluorescence_Spectroscopy_of_PX3_X_Cl_Br_in_the_Range_9_25_eV","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.","owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1525,"name":"Fluorescence Spectroscopy","url":"https://www.academia.edu/Documents/in/Fluorescence_Spectroscopy"},{"id":5427,"name":"Spectroscopy","url":"https://www.academia.edu/Documents/in/Spectroscopy"},{"id":7698,"name":"Fluorescence","url":"https://www.academia.edu/Documents/in/Fluorescence"}],"urls":[{"id":45586973,"url":"https://doi.org/10.1002/chin.199841012"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490136"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490136/Threshold_photoelectron_photoion_coincidence_study_of_the_fragmentation_of_valence_states_of_CH2F_CH3_"><img alt="Research paper thumbnail of Threshold photoelectron–photoion coincidence study of the fragmentation of valence states of CH2F–CH3+" class="work-thumbnail" src="https://attachments.academia-assets.com/119523807/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490136/Threshold_photoelectron_photoion_coincidence_study_of_the_fragmentation_of_valence_states_of_CH2F_CH3_">Threshold photoelectron–photoion coincidence study of the fragmentation of valence states of CH2F–CH3+</a></div><div class="wp-workCard_item"><span>New Journal of Physics</span><span>, Apr 26, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="768c8332277738d34e812f2dbfa388cd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119523807,&quot;asset_id&quot;:125490136,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119523807/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490136"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490136"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490136; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490136]").text(description); $(".js-view-count[data-work-id=125490136]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490136; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490136']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490136, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "768c8332277738d34e812f2dbfa388cd" } } $('.js-work-strip[data-work-id=125490136]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490136,"title":"Threshold photoelectron–photoion coincidence study of the fragmentation of valence states of CH2F–CH3+","translated_title":"","metadata":{"publisher":"IOP Publishing","publication_date":{"day":26,"month":4,"year":2007,"errors":{}},"publication_name":"New Journal of Physics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125490136/Threshold_photoelectron_photoion_coincidence_study_of_the_fragmentation_of_valence_states_of_CH2F_CH3_","translated_internal_url":"","created_at":"2024-11-12T08:56:43.976-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119523807,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523807/thumbnails/1.jpg","file_name":"1631239.pdf","download_url":"https://www.academia.edu/attachments/119523807/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Threshold_photoelectron_photoion_coincid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523807/1631239-libre.pdf?1731439495=\u0026response-content-disposition=attachment%3B+filename%3DThreshold_photoelectron_photoion_coincid.pdf\u0026Expires=1733910672\u0026Signature=EAovIt2YULj16sjxuaYVRkegjsws9lIbqM6RZPEjVIjdWKq7KkmPdG9PyEKdQeC4MAec-a8va~oMGuVaD~ms0cyuuQItjYPtp6awIs9GIt0unXaR12o7ACe~IPIgzzy9KcSCuDZQEHLpfYikX1sgXdSIMguaQtJbAegO-oj-cJ0ZwdZbRyTqg1mrnjzbm6iT8Q-2-vrSCuGTSkizkZUKWaPg7aYf43R8xqz6-SCd5IqwjHJpYWm3jgiAJCCcy2Qu0XdPxCVGZ0t-sUKNPwquzKRbY2Pz~XiEgyoSf7UO5Sy2U-9rPqWrdWvyBOCgAX4LxFfbR~WvYc7pvY4imCEtnw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Threshold_photoelectron_photoion_coincidence_study_of_the_fragmentation_of_valence_states_of_CH2F_CH3_","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":null,"owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":119523807,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523807/thumbnails/1.jpg","file_name":"1631239.pdf","download_url":"https://www.academia.edu/attachments/119523807/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Threshold_photoelectron_photoion_coincid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523807/1631239-libre.pdf?1731439495=\u0026response-content-disposition=attachment%3B+filename%3DThreshold_photoelectron_photoion_coincid.pdf\u0026Expires=1733910672\u0026Signature=EAovIt2YULj16sjxuaYVRkegjsws9lIbqM6RZPEjVIjdWKq7KkmPdG9PyEKdQeC4MAec-a8va~oMGuVaD~ms0cyuuQItjYPtp6awIs9GIt0unXaR12o7ACe~IPIgzzy9KcSCuDZQEHLpfYikX1sgXdSIMguaQtJbAegO-oj-cJ0ZwdZbRyTqg1mrnjzbm6iT8Q-2-vrSCuGTSkizkZUKWaPg7aYf43R8xqz6-SCd5IqwjHJpYWm3jgiAJCCcy2Qu0XdPxCVGZ0t-sUKNPwquzKRbY2Pz~XiEgyoSf7UO5Sy2U-9rPqWrdWvyBOCgAX4LxFfbR~WvYc7pvY4imCEtnw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":11108,"name":"PHOTOELECTRON SPECTROSCOPY","url":"https://www.academia.edu/Documents/in/PHOTOELECTRON_SPECTROSCOPY"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":29617,"name":"Synchrotron Radiation","url":"https://www.academia.edu/Documents/in/Synchrotron_Radiation"},{"id":87546,"name":"Ultraviolet","url":"https://www.academia.edu/Documents/in/Ultraviolet"},{"id":101354,"name":"Coincidence","url":"https://www.academia.edu/Documents/in/Coincidence"},{"id":116193,"name":"Solid State electronic devices","url":"https://www.academia.edu/Documents/in/Solid_State_electronic_devices"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":413295,"name":"Kinetic Energy","url":"https://www.academia.edu/Documents/in/Kinetic_Energy"},{"id":701253,"name":"New Physics","url":"https://www.academia.edu/Documents/in/New_Physics"},{"id":973013,"name":"Yield Curve","url":"https://www.academia.edu/Documents/in/Yield_Curve"}],"urls":[{"id":45586972,"url":"https://doi.org/10.1088/1367-2630/9/4/104"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490135"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490135/Threshold_photoelectron_photoion_coincidence_study_of_the_fragmentation_of_valence_states_of_CF3_CH3_and_CHF2_CH2F_in_the_range_12_24_eV"><img alt="Research paper thumbnail of Threshold photoelectron photoion coincidence study of the fragmentation of valence states of CF3–CH3+and CHF2–CH2F+in the range 12–24 eV" class="work-thumbnail" src="https://attachments.academia-assets.com/119523589/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490135/Threshold_photoelectron_photoion_coincidence_study_of_the_fragmentation_of_valence_states_of_CF3_CH3_and_CHF2_CH2F_in_the_range_12_24_eV">Threshold photoelectron photoion coincidence study of the fragmentation of valence states of CF3–CH3+and CHF2–CH2F+in the range 12–24 eV</a></div><div class="wp-workCard_item"><span>Physical Chemistry Chemical Physics</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="19e5892c22f30461fb5fcc30b6f2ac2e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119523589,&quot;asset_id&quot;:125490135,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119523589/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490135"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490135"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490135; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490135]").text(description); $(".js-view-count[data-work-id=125490135]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490135; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490135']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490135, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "19e5892c22f30461fb5fcc30b6f2ac2e" } } $('.js-work-strip[data-work-id=125490135]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490135,"title":"Threshold photoelectron photoion coincidence study of the fragmentation of valence states of CF3–CH3+and CHF2–CH2F+in the range 12–24 eV","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Physical Chemistry Chemical Physics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125490135/Threshold_photoelectron_photoion_coincidence_study_of_the_fragmentation_of_valence_states_of_CF3_CH3_and_CHF2_CH2F_in_the_range_12_24_eV","translated_internal_url":"","created_at":"2024-11-12T08:56:43.702-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119523589,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523589/thumbnails/1.jpg","file_name":"Tuckett19hysChemChemPhys2004.pdf","download_url":"https://www.academia.edu/attachments/119523589/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Threshold_photoelectron_photoion_coincid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523589/Tuckett19hysChemChemPhys2004-libre.pdf?1731431135=\u0026response-content-disposition=attachment%3B+filename%3DThreshold_photoelectron_photoion_coincid.pdf\u0026Expires=1733910672\u0026Signature=feawyl~9dBGMGdQ-bkalJlt3Ho2aihonyww4ZaGCpGkd2~dUGyuC53lxrU7ruMpEIqqjdOqZlowaHQf~odXVcoMaMfTnQqBbgPdLtClUpvwZu-Xz2pP7fQfqTD5x7Lz7-3HK0B45Otc3Mtzpgogt5zg5wSb5JnA1JG7FJLptZ20RelbIqFQBzq5Jixy98HA9oUFqlfJXxW6Q6hKUSWAwsQMiOsOgfXxCHEQ3nTmeT65SERN~IG5HXPc~srHsOdnCSZk1iJxcgcS8~AEUMec1W5elBmUa11yTVRLn1pSbWM1Pg1~duPQaAxvFmTtyY4xYJVszmODBesN~-yU2PBtjug__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Threshold_photoelectron_photoion_coincidence_study_of_the_fragmentation_of_valence_states_of_CF3_CH3_and_CHF2_CH2F_in_the_range_12_24_eV","translated_slug":"","page_count":35,"language":"en","content_type":"Work","summary":null,"owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":119523589,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523589/thumbnails/1.jpg","file_name":"Tuckett19hysChemChemPhys2004.pdf","download_url":"https://www.academia.edu/attachments/119523589/download_file?st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Threshold_photoelectron_photoion_coincid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523589/Tuckett19hysChemChemPhys2004-libre.pdf?1731431135=\u0026response-content-disposition=attachment%3B+filename%3DThreshold_photoelectron_photoion_coincid.pdf\u0026Expires=1733910672\u0026Signature=feawyl~9dBGMGdQ-bkalJlt3Ho2aihonyww4ZaGCpGkd2~dUGyuC53lxrU7ruMpEIqqjdOqZlowaHQf~odXVcoMaMfTnQqBbgPdLtClUpvwZu-Xz2pP7fQfqTD5x7Lz7-3HK0B45Otc3Mtzpgogt5zg5wSb5JnA1JG7FJLptZ20RelbIqFQBzq5Jixy98HA9oUFqlfJXxW6Q6hKUSWAwsQMiOsOgfXxCHEQ3nTmeT65SERN~IG5HXPc~srHsOdnCSZk1iJxcgcS8~AEUMec1W5elBmUa11yTVRLn1pSbWM1Pg1~duPQaAxvFmTtyY4xYJVszmODBesN~-yU2PBtjug__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":2620537,"name":"Physical chemistry and chemical physics","url":"https://www.academia.edu/Documents/in/Physical_chemistry_and_chemical_physics"}],"urls":[{"id":45586971,"url":"http://pure-oai.bham.ac.uk/ws/files/2921859/Tuckett19hysChemChemPhys2004.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490134"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490134/The_use_of_threshold_photoelectron_fluorescence_photon_coincidence_spectroscopy_for_the_measurement_of_the_radiative_lifetimes_of_emitting_states_of_CF3X_X_F_H_Cl_Br_ions"><img alt="Research paper thumbnail of The use of threshold photoelectron - fluorescence photon coincidence spectroscopy for the measurement of the radiative lifetimes of emitting states of CF3X+ (X = F, H, Cl, Br) ions" class="work-thumbnail" src="https://attachments.academia-assets.com/119523622/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490134/The_use_of_threshold_photoelectron_fluorescence_photon_coincidence_spectroscopy_for_the_measurement_of_the_radiative_lifetimes_of_emitting_states_of_CF3X_X_F_H_Cl_Br_ions">The use of threshold photoelectron - fluorescence photon coincidence spectroscopy for the measurement of the radiative lifetimes of emitting states of CF3X+ (X = F, H, Cl, Br) ions</a></div><div class="wp-workCard_item"><span>Chemical Physics</span><span>, 1997</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9e823f1a0685f016e9dc239722777000" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119523622,&quot;asset_id&quot;:125490134,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119523622/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490134"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490134"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490134; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490134]").text(description); $(".js-view-count[data-work-id=125490134]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490134; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490134']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490134, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9e823f1a0685f016e9dc239722777000" } } $('.js-work-strip[data-work-id=125490134]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490134,"title":"The use of threshold photoelectron - fluorescence photon coincidence spectroscopy for the measurement of the radiative lifetimes of emitting states of CF3X+ (X = F, H, Cl, Br) ions","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Chemical Physics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125490134/The_use_of_threshold_photoelectron_fluorescence_photon_coincidence_spectroscopy_for_the_measurement_of_the_radiative_lifetimes_of_emitting_states_of_CF3X_X_F_H_Cl_Br_ions","translated_internal_url":"","created_at":"2024-11-12T08:56:42.998-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119523622,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523622/thumbnails/1.jpg","file_name":"cp214-357-97.pdf","download_url":"https://www.academia.edu/attachments/119523622/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_use_of_threshold_photoelectron_fluor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523622/cp214-357-97-libre.pdf?1731431121=\u0026response-content-disposition=attachment%3B+filename%3DThe_use_of_threshold_photoelectron_fluor.pdf\u0026Expires=1733910672\u0026Signature=XASHZNA~ABre7vS-N0zuEM0ZaJi1IEm0WP0AwptPtKtHvaEV3CYsn2O7wjvuzMx0MxeS9Ldiv1q4dY9tGWwa3ZCqD47KkfMhKWsruRPjGL02RBcnczvHGwG~ctbUqDIkBwv7KIIqcPc5fu9LKS5w6u7taAxvdC3z70uI2TO5jKMOODbrUEUpBcXls~KObuX1Acx4s4yqM5ahOc03yYVJeRc3-aLPc8UJ0Se8kbhtZaXDZMHVSkbrdd3XepiVoCBoCp-3zR~lOU2apLUHrVUivLoUob0aAazLTu52ZmV3xUjMe4GaWQwRye6Y8fZwSbpgQpm-fokXv7e1dILm9hZBVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_use_of_threshold_photoelectron_fluorescence_photon_coincidence_spectroscopy_for_the_measurement_of_the_radiative_lifetimes_of_emitting_states_of_CF3X_X_F_H_Cl_Br_ions","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":null,"owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":119523622,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523622/thumbnails/1.jpg","file_name":"cp214-357-97.pdf","download_url":"https://www.academia.edu/attachments/119523622/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_use_of_threshold_photoelectron_fluor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523622/cp214-357-97-libre.pdf?1731431121=\u0026response-content-disposition=attachment%3B+filename%3DThe_use_of_threshold_photoelectron_fluor.pdf\u0026Expires=1733910672\u0026Signature=XASHZNA~ABre7vS-N0zuEM0ZaJi1IEm0WP0AwptPtKtHvaEV3CYsn2O7wjvuzMx0MxeS9Ldiv1q4dY9tGWwa3ZCqD47KkfMhKWsruRPjGL02RBcnczvHGwG~ctbUqDIkBwv7KIIqcPc5fu9LKS5w6u7taAxvdC3z70uI2TO5jKMOODbrUEUpBcXls~KObuX1Acx4s4yqM5ahOc03yYVJeRc3-aLPc8UJ0Se8kbhtZaXDZMHVSkbrdd3XepiVoCBoCp-3zR~lOU2apLUHrVUivLoUob0aAazLTu52ZmV3xUjMe4GaWQwRye6Y8fZwSbpgQpm-fokXv7e1dILm9hZBVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":5427,"name":"Spectroscopy","url":"https://www.academia.edu/Documents/in/Spectroscopy"},{"id":7698,"name":"Fluorescence","url":"https://www.academia.edu/Documents/in/Fluorescence"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":101354,"name":"Coincidence","url":"https://www.academia.edu/Documents/in/Coincidence"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":442314,"name":"Radiative Transfer","url":"https://www.academia.edu/Documents/in/Radiative_Transfer"},{"id":670466,"name":"Photon","url":"https://www.academia.edu/Documents/in/Photon"}],"urls":[{"id":45586970,"url":"https://doi.org/10.1016/s0301-0104(96)00325-4"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490133"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490133/The_A_2%CE%A0u_X_2%CE%A0g_emission_spectrum_of_I2_"><img alt="Research paper thumbnail of The A 2Πu-X 2Πg emission spectrum of I2+" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490133/The_A_2%CE%A0u_X_2%CE%A0g_emission_spectrum_of_I2_">The A 2Πu-X 2Πg emission spectrum of I2+</a></div><div class="wp-workCard_item"><span>Chemical Physics Letters</span><span>, Aug 1, 1989</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract The A 2Πu-X 2Πg electronic emission spectrum of I2+ has been recorded at a low rotationa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract The A 2Πu-X 2Πg electronic emission spectrum of I2+ has been recorded at a low rotational temperature in a crossed molecular beam/electron beam apparatus. Six vibrational sequences with five or more members have been assigned to progressions in ν′, giving ω′e = 122±8 cm−1, but a full vibrational analysis has not been possible. It is not known whether this is due to the relatively poor resolution (≈5 cm−1) at which the spectrum has been recorded or because the A 2Πu state is perturbed in one or both spin-orbit components. Existing data on the A state of I2+ are reviewed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490133"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490133"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490133; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490133]").text(description); $(".js-view-count[data-work-id=125490133]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490133; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490133']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490133, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125490133]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490133,"title":"The A 2Πu-X 2Πg emission spectrum of I2+","translated_title":"","metadata":{"abstract":"Abstract The A 2Πu-X 2Πg electronic emission spectrum of I2+ has been recorded at a low rotational temperature in a crossed molecular beam/electron beam apparatus. Six vibrational sequences with five or more members have been assigned to progressions in ν′, giving ω′e = 122±8 cm−1, but a full vibrational analysis has not been possible. It is not known whether this is due to the relatively poor resolution (≈5 cm−1) at which the spectrum has been recorded or because the A 2Πu state is perturbed in one or both spin-orbit components. Existing data on the A state of I2+ are reviewed.","publisher":"Elsevier BV","publication_date":{"day":1,"month":8,"year":1989,"errors":{}},"publication_name":"Chemical Physics Letters"},"translated_abstract":"Abstract The A 2Πu-X 2Πg electronic emission spectrum of I2+ has been recorded at a low rotational temperature in a crossed molecular beam/electron beam apparatus. Six vibrational sequences with five or more members have been assigned to progressions in ν′, giving ω′e = 122±8 cm−1, but a full vibrational analysis has not been possible. It is not known whether this is due to the relatively poor resolution (≈5 cm−1) at which the spectrum has been recorded or because the A 2Πu state is perturbed in one or both spin-orbit components. Existing data on the A state of I2+ are reviewed.","internal_url":"https://www.academia.edu/125490133/The_A_2%CE%A0u_X_2%CE%A0g_emission_spectrum_of_I2_","translated_internal_url":"","created_at":"2024-11-12T08:56:42.670-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_A_2Πu_X_2Πg_emission_spectrum_of_I2_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract The A 2Πu-X 2Πg electronic emission spectrum of I2+ has been recorded at a low rotational temperature in a crossed molecular beam/electron beam apparatus. Six vibrational sequences with five or more members have been assigned to progressions in ν′, giving ω′e = 122±8 cm−1, but a full vibrational analysis has not been possible. It is not known whether this is due to the relatively poor resolution (≈5 cm−1) at which the spectrum has been recorded or because the A 2Πu state is perturbed in one or both spin-orbit components. Existing data on the A state of I2+ are reviewed.","owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":39585,"name":"Molecular beam epitaxy","url":"https://www.academia.edu/Documents/in/Molecular_beam_epitaxy"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[{"id":45586969,"url":"https://doi.org/10.1016/0009-2614(89)80066-1"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490132"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490132/Vacuum_UV_negative_photoion_spectroscopy_of_CH3F_CH3Cl_and_CH3Br"><img alt="Research paper thumbnail of Vacuum-UV negative photoion spectroscopy of CH3F, CH3Cl and CH3Br" class="work-thumbnail" src="https://attachments.academia-assets.com/119523588/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490132/Vacuum_UV_negative_photoion_spectroscopy_of_CH3F_CH3Cl_and_CH3Br">Vacuum-UV negative photoion spectroscopy of CH3F, CH3Cl and CH3Br</a></div><div class="wp-workCard_item"><span>Physical Chemistry Chemical Physics</span><span>, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="535769d99166c98505f915a9d0206df7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119523588,&quot;asset_id&quot;:125490132,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119523588/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490132"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490132"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490132; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490132]").text(description); $(".js-view-count[data-work-id=125490132]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490132; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490132']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490132, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "535769d99166c98505f915a9d0206df7" } } $('.js-work-strip[data-work-id=125490132]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490132,"title":"Vacuum-UV negative photoion spectroscopy of CH3F, CH3Cl and CH3Br","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Physical Chemistry Chemical Physics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125490132/Vacuum_UV_negative_photoion_spectroscopy_of_CH3F_CH3Cl_and_CH3Br","translated_internal_url":"","created_at":"2024-11-12T08:56:41.234-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119523588,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523588/thumbnails/1.jpg","file_name":"Tuckett42PhysChemChemPhys2010.pdf","download_url":"https://www.academia.edu/attachments/119523588/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Vacuum_UV_negative_photoion_spectroscopy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523588/Tuckett42PhysChemChemPhys2010-libre.pdf?1731431140=\u0026response-content-disposition=attachment%3B+filename%3DVacuum_UV_negative_photoion_spectroscopy.pdf\u0026Expires=1733910673\u0026Signature=F4DUs06pIjhqwGAkW3qeTAPSV0OIBpDLQEE34mT2u25rflwu40brpx3zX06kl5b7WHx8gFQu8XkIrP5Z6iMCLwS-79tF5UasRvSxcNsFkYhW3afsPT3t85~GLMos9coj3wqMoHlmsk323GvhcyHDEM8~-KqqgF6fK7lATA~7~22d7HIX70EgRECiC2vL9m4wZp4mNDv0KYAFOquJLeI8ho4GIXkVfZBv0DAfOZYPH7E60KudhWc1-gBBIynzlcSL4Sjx14ufCMECBXqaYQ0prxKbCTaeWKA-1Yd3FybfXc2-p8OO7MqrotXLUlY3BNfOmw1ldEa6P23WNvxDpK7xjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Vacuum_UV_negative_photoion_spectroscopy_of_CH3F_CH3Cl_and_CH3Br","translated_slug":"","page_count":29,"language":"en","content_type":"Work","summary":null,"owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":119523588,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523588/thumbnails/1.jpg","file_name":"Tuckett42PhysChemChemPhys2010.pdf","download_url":"https://www.academia.edu/attachments/119523588/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Vacuum_UV_negative_photoion_spectroscopy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523588/Tuckett42PhysChemChemPhys2010-libre.pdf?1731431140=\u0026response-content-disposition=attachment%3B+filename%3DVacuum_UV_negative_photoion_spectroscopy.pdf\u0026Expires=1733910673\u0026Signature=F4DUs06pIjhqwGAkW3qeTAPSV0OIBpDLQEE34mT2u25rflwu40brpx3zX06kl5b7WHx8gFQu8XkIrP5Z6iMCLwS-79tF5UasRvSxcNsFkYhW3afsPT3t85~GLMos9coj3wqMoHlmsk323GvhcyHDEM8~-KqqgF6fK7lATA~7~22d7HIX70EgRECiC2vL9m4wZp4mNDv0KYAFOquJLeI8ho4GIXkVfZBv0DAfOZYPH7E60KudhWc1-gBBIynzlcSL4Sjx14ufCMECBXqaYQ0prxKbCTaeWKA-1Yd3FybfXc2-p8OO7MqrotXLUlY3BNfOmw1ldEa6P23WNvxDpK7xjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119523587,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523587/thumbnails/1.jpg","file_name":"Tuckett42PhysChemChemPhys2010.pdf","download_url":"https://www.academia.edu/attachments/119523587/download_file","bulk_download_file_name":"Vacuum_UV_negative_photoion_spectroscopy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523587/Tuckett42PhysChemChemPhys2010-libre.pdf?1731431141=\u0026response-content-disposition=attachment%3B+filename%3DVacuum_UV_negative_photoion_spectroscopy.pdf\u0026Expires=1733910673\u0026Signature=aYPb4qgGkQHxrMfQV3SuREcb-dV5BiL5O-jXn6YSSY-8OYhwNTk6-LuDzgKTtAWqkLptusvH6JlyZQDYWLJ6C~bYimkHXEn7ktzy695-eBwPp-PZKnTKAglNvnTm~gnKYkA1kiX5BFQAqUhK6S4ZWU4TMDPRnUih2zkpoejlmPCZK-upy2-4tnDFUs~iHi0Fh3wBRJ~x3scLI2blvWPHK8eUWYgGvIAQ-O4hOYOtGZbq8mEB1~P3OJt69RRJdX5IOPAovMMrAoJllDatscEkcLQajwAmB-kXVLCZa~G1WSyxaHc7dw8mlKq4aLVw-1aZDApsWS21H4XZmPKy2z9xKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":5427,"name":"Spectroscopy","url":"https://www.academia.edu/Documents/in/Spectroscopy"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":50157,"name":"Molecular","url":"https://www.academia.edu/Documents/in/Molecular"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":219840,"name":"Bond Dissociation Energy","url":"https://www.academia.edu/Documents/in/Bond_Dissociation_Energy"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":2376080,"name":"Photoexcitation","url":"https://www.academia.edu/Documents/in/Photoexcitation"},{"id":2620537,"name":"Physical chemistry and chemical physics","url":"https://www.academia.edu/Documents/in/Physical_chemistry_and_chemical_physics"}],"urls":[{"id":45586968,"url":"http://pure-oai.bham.ac.uk/ws/files/2922193/Tuckett42PhysChemChemPhys2010.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490076"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490076/Vacuum_UV_fluorescence_spectroscopy_of_CCl3F_CCl3H_and_CCl3Br_in_the_range_8_30_eV"><img alt="Research paper thumbnail of Vacuum-UV fluorescence spectroscopy of CCl3F, CCl3H and CCl3Br in the range 8–30 eV" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490076/Vacuum_UV_fluorescence_spectroscopy_of_CCl3F_CCl3H_and_CCl3Br_in_the_range_8_30_eV">Vacuum-UV fluorescence spectroscopy of CCl3F, CCl3H and CCl3Br in the range 8–30 eV</a></div><div class="wp-workCard_item"><span>Physical Chemistry Chemical Physics</span><span>, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The fluorescence spectroscopy of CCl3X (X=F, H, Br) in the range 200–700 nm is reported, using va...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The fluorescence spectroscopy of CCl3X (X=F, H, Br) in the range 200–700 nm is reported, using vacuum-UV radiation in the range 8–30 eV from a synchrotron as a tunable photoexcitation source. Excitation spectra, with undispersed detection of the fluorescence, have been recorded at the Daresbury UK source with a resolution of 0.1 nm, corresponding to an average energy resolution of ca. 0.015 eV. Dispersed emission spectra in the range 200–700 nm have been recorded at the BESSY 1 Germany source with an optical resolution of 8 nm, following photoexcitation at the energies of the peaks in the excitation spectra. Action spectra, in which the vacuum-UV energy is scanned with detection of the fluorescence at a specific wavelength, have also been recorded at BESSY 1 with a resolution of 0.3 nm; thresholds for production of a particular excited state of a fragment are then obtained. Using single-bunch mode, lifetimes of all the emitting states that fall in the range ca. 3–100 ns have been measured. For photon energies in the range 8–12 eV, emission is due to both CCl2 A1B1–1A1 and CXCl A1A″–1A′. These products form by photodissociation of low-lying Rydberg states of CCl3X, and the thresholds for their production therefore relate to energies of the Rydberg states of the parent molecule. It is not possible to say whether the other products form as two halogen atoms or a diatomic molecule. For energies in the range 13–17 eV, emission is due to diatomic fragments; CCl A2Δ, CF B2Δ, CH B2Σ- and A2Δ, CBr A2Δ, and Cl2 D′ 23Πg. From their threshold energies, there is now accumulated evidence that the excited state of CCl or CX forms in association with three isolated atoms. Our results yield no information on whether the three bonds in CCl3X* break simultaneously or sequentially. In the range 13–17 eV, Cl2* almost certainly forms in conjunction with ground-state CX+Cl. This ion-pair state of Cl2 also forms at higher excitation energies around 20 eV, probably with atomic products C+X+Cl. In no cases is emission observed from excited states of either the CCl3 radical or the parent molecular ion, CCl3X+.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490076"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490076"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490076; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490076]").text(description); $(".js-view-count[data-work-id=125490076]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490076; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490076']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490076, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125490076]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490076,"title":"Vacuum-UV fluorescence spectroscopy of CCl3F, CCl3H and CCl3Br in the range 8–30 eV","translated_title":"","metadata":{"abstract":"The fluorescence spectroscopy of CCl3X (X=F, H, Br) in the range 200–700 nm is reported, using vacuum-UV radiation in the range 8–30 eV from a synchrotron as a tunable photoexcitation source. Excitation spectra, with undispersed detection of the fluorescence, have been recorded at the Daresbury UK source with a resolution of 0.1 nm, corresponding to an average energy resolution of ca. 0.015 eV. Dispersed emission spectra in the range 200–700 nm have been recorded at the BESSY 1 Germany source with an optical resolution of 8 nm, following photoexcitation at the energies of the peaks in the excitation spectra. Action spectra, in which the vacuum-UV energy is scanned with detection of the fluorescence at a specific wavelength, have also been recorded at BESSY 1 with a resolution of 0.3 nm; thresholds for production of a particular excited state of a fragment are then obtained. Using single-bunch mode, lifetimes of all the emitting states that fall in the range ca. 3–100 ns have been measured. For photon energies in the range 8–12 eV, emission is due to both CCl2 A1B1–1A1 and CXCl A1A″–1A′. These products form by photodissociation of low-lying Rydberg states of CCl3X, and the thresholds for their production therefore relate to energies of the Rydberg states of the parent molecule. It is not possible to say whether the other products form as two halogen atoms or a diatomic molecule. For energies in the range 13–17 eV, emission is due to diatomic fragments; CCl A2Δ, CF B2Δ, CH B2Σ- and A2Δ, CBr A2Δ, and Cl2 D′ 23Πg. From their threshold energies, there is now accumulated evidence that the excited state of CCl or CX forms in association with three isolated atoms. Our results yield no information on whether the three bonds in CCl3X* break simultaneously or sequentially. In the range 13–17 eV, Cl2* almost certainly forms in conjunction with ground-state CX+Cl. This ion-pair state of Cl2 also forms at higher excitation energies around 20 eV, probably with atomic products C+X+Cl. In no cases is emission observed from excited states of either the CCl3 radical or the parent molecular ion, CCl3X+.","publisher":"Royal Society of Chemistry","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Physical Chemistry Chemical Physics"},"translated_abstract":"The fluorescence spectroscopy of CCl3X (X=F, H, Br) in the range 200–700 nm is reported, using vacuum-UV radiation in the range 8–30 eV from a synchrotron as a tunable photoexcitation source. Excitation spectra, with undispersed detection of the fluorescence, have been recorded at the Daresbury UK source with a resolution of 0.1 nm, corresponding to an average energy resolution of ca. 0.015 eV. Dispersed emission spectra in the range 200–700 nm have been recorded at the BESSY 1 Germany source with an optical resolution of 8 nm, following photoexcitation at the energies of the peaks in the excitation spectra. Action spectra, in which the vacuum-UV energy is scanned with detection of the fluorescence at a specific wavelength, have also been recorded at BESSY 1 with a resolution of 0.3 nm; thresholds for production of a particular excited state of a fragment are then obtained. Using single-bunch mode, lifetimes of all the emitting states that fall in the range ca. 3–100 ns have been measured. For photon energies in the range 8–12 eV, emission is due to both CCl2 A1B1–1A1 and CXCl A1A″–1A′. These products form by photodissociation of low-lying Rydberg states of CCl3X, and the thresholds for their production therefore relate to energies of the Rydberg states of the parent molecule. It is not possible to say whether the other products form as two halogen atoms or a diatomic molecule. For energies in the range 13–17 eV, emission is due to diatomic fragments; CCl A2Δ, CF B2Δ, CH B2Σ- and A2Δ, CBr A2Δ, and Cl2 D′ 23Πg. From their threshold energies, there is now accumulated evidence that the excited state of CCl or CX forms in association with three isolated atoms. Our results yield no information on whether the three bonds in CCl3X* break simultaneously or sequentially. In the range 13–17 eV, Cl2* almost certainly forms in conjunction with ground-state CX+Cl. This ion-pair state of Cl2 also forms at higher excitation energies around 20 eV, probably with atomic products C+X+Cl. In no cases is emission observed from excited states of either the CCl3 radical or the parent molecular ion, CCl3X+.","internal_url":"https://www.academia.edu/125490076/Vacuum_UV_fluorescence_spectroscopy_of_CCl3F_CCl3H_and_CCl3Br_in_the_range_8_30_eV","translated_internal_url":"","created_at":"2024-11-12T08:55:42.919-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Vacuum_UV_fluorescence_spectroscopy_of_CCl3F_CCl3H_and_CCl3Br_in_the_range_8_30_eV","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The fluorescence spectroscopy of CCl3X (X=F, H, Br) in the range 200–700 nm is reported, using vacuum-UV radiation in the range 8–30 eV from a synchrotron as a tunable photoexcitation source. Excitation spectra, with undispersed detection of the fluorescence, have been recorded at the Daresbury UK source with a resolution of 0.1 nm, corresponding to an average energy resolution of ca. 0.015 eV. Dispersed emission spectra in the range 200–700 nm have been recorded at the BESSY 1 Germany source with an optical resolution of 8 nm, following photoexcitation at the energies of the peaks in the excitation spectra. Action spectra, in which the vacuum-UV energy is scanned with detection of the fluorescence at a specific wavelength, have also been recorded at BESSY 1 with a resolution of 0.3 nm; thresholds for production of a particular excited state of a fragment are then obtained. Using single-bunch mode, lifetimes of all the emitting states that fall in the range ca. 3–100 ns have been measured. For photon energies in the range 8–12 eV, emission is due to both CCl2 A1B1–1A1 and CXCl A1A″–1A′. These products form by photodissociation of low-lying Rydberg states of CCl3X, and the thresholds for their production therefore relate to energies of the Rydberg states of the parent molecule. It is not possible to say whether the other products form as two halogen atoms or a diatomic molecule. For energies in the range 13–17 eV, emission is due to diatomic fragments; CCl A2Δ, CF B2Δ, CH B2Σ- and A2Δ, CBr A2Δ, and Cl2 D′ 23Πg. From their threshold energies, there is now accumulated evidence that the excited state of CCl or CX forms in association with three isolated atoms. Our results yield no information on whether the three bonds in CCl3X* break simultaneously or sequentially. In the range 13–17 eV, Cl2* almost certainly forms in conjunction with ground-state CX+Cl. This ion-pair state of Cl2 also forms at higher excitation energies around 20 eV, probably with atomic products C+X+Cl. In no cases is emission observed from excited states of either the CCl3 radical or the parent molecular ion, CCl3X+.","owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":5427,"name":"Spectroscopy","url":"https://www.academia.edu/Documents/in/Spectroscopy"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":2376080,"name":"Photoexcitation","url":"https://www.academia.edu/Documents/in/Photoexcitation"},{"id":2620537,"name":"Physical chemistry and chemical physics","url":"https://www.academia.edu/Documents/in/Physical_chemistry_and_chemical_physics"}],"urls":[{"id":45586923,"url":"https://doi.org/10.1039/a809422e"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121518323"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121518323/The_i_Dtilde_i_sup_2_sup_i_A_i_sub_1_sub_i_Ctilde_i_sup_2_sup_i_T_i_sub_2_sub_emission_band_system_of_SiF_sup_sup_sub_4_sub_"><img alt="Research paper thumbnail of The&lt;i&gt;[Dtilde]&lt;/i&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;i&gt;A&lt;/i&gt;&lt;sub&gt;1&lt;/sub&gt;-&lt;i&gt;[Ctilde]&lt;/i&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;i&gt;T&lt;/i&gt;&lt;sub&gt;2&lt;/sub&gt;emission band system of SiF&lt;sup&gt;+&lt;/sup&gt;&lt;sub&gt;4&lt;/sub&gt;" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121518323/The_i_Dtilde_i_sup_2_sup_i_A_i_sub_1_sub_i_Ctilde_i_sup_2_sup_i_T_i_sub_2_sub_emission_band_system_of_SiF_sup_sup_sub_4_sub_">The&lt;i&gt;[Dtilde]&lt;/i&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;i&gt;A&lt;/i&gt;&lt;sub&gt;1&lt;/sub&gt;-&lt;i&gt;[Ctilde]&lt;/i&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;i&gt;T&lt;/i&gt;&lt;sub&gt;2&lt;/sub&gt;emission band system of SiF&lt;sup&gt;+&lt;/sup&gt;&lt;sub&gt;4&lt;/sub&gt;</a></div><div class="wp-workCard_item"><span>Molecular Physics</span><span>, Mar 1, 1987</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The [Dtilde] 2 A 1-[Ctilde] 2 T 2 emission spectrum of SiF+ 4 is observed at a low rotational tem...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The [Dtilde] 2 A 1-[Ctilde] 2 T 2 emission spectrum of SiF+ 4 is observed at a low rotational temperature in a crossed molecular beam/electron beam apparatus. The narrow rotational envelope of the bands confirms the assignment of the emitter as the parent molecular ion of SiF4. The spectrum is analysed, and the results compare excellently with photoelectron data for SiF4. Spin-orbit splitting and Jahn-Teller distortion are observed in the [Ctilde] 2 T 2 state, with both v 2(e) and v 4(t 2) being Jahn-Teller active vibrations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121518323"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121518323"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121518323; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121518323]").text(description); $(".js-view-count[data-work-id=121518323]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121518323; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121518323']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121518323, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=121518323]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121518323,"title":"The\u003ci\u003e[Dtilde]\u003c/i\u003e\u003csup\u003e2\u003c/sup\u003e\u003ci\u003eA\u003c/i\u003e\u003csub\u003e1\u003c/sub\u003e-\u003ci\u003e[Ctilde]\u003c/i\u003e\u003csup\u003e2\u003c/sup\u003e\u003ci\u003eT\u003c/i\u003e\u003csub\u003e2\u003c/sub\u003eemission band system of SiF\u003csup\u003e+\u003c/sup\u003e\u003csub\u003e4\u003c/sub\u003e","translated_title":"","metadata":{"abstract":"The [Dtilde] 2 A 1-[Ctilde] 2 T 2 emission spectrum of SiF+ 4 is observed at a low rotational temperature in a crossed molecular beam/electron beam apparatus. The narrow rotational envelope of the bands confirms the assignment of the emitter as the parent molecular ion of SiF4. The spectrum is analysed, and the results compare excellently with photoelectron data for SiF4. Spin-orbit splitting and Jahn-Teller distortion are observed in the [Ctilde] 2 T 2 state, with both v 2(e) and v 4(t 2) being Jahn-Teller active vibrations.","publisher":"Taylor \u0026 Francis","publication_date":{"day":1,"month":3,"year":1987,"errors":{}},"publication_name":"Molecular Physics"},"translated_abstract":"The [Dtilde] 2 A 1-[Ctilde] 2 T 2 emission spectrum of SiF+ 4 is observed at a low rotational temperature in a crossed molecular beam/electron beam apparatus. The narrow rotational envelope of the bands confirms the assignment of the emitter as the parent molecular ion of SiF4. The spectrum is analysed, and the results compare excellently with photoelectron data for SiF4. Spin-orbit splitting and Jahn-Teller distortion are observed in the [Ctilde] 2 T 2 state, with both v 2(e) and v 4(t 2) being Jahn-Teller active vibrations.","internal_url":"https://www.academia.edu/121518323/The_i_Dtilde_i_sup_2_sup_i_A_i_sub_1_sub_i_Ctilde_i_sup_2_sup_i_T_i_sub_2_sub_emission_band_system_of_SiF_sup_sup_sub_4_sub_","translated_internal_url":"","created_at":"2024-06-25T23:56:56.667-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_i_Dtilde_i_sup_2_sup_i_A_i_sub_1_sub_i_Ctilde_i_sup_2_sup_i_T_i_sub_2_sub_emission_band_system_of_SiF_sup_sup_sub_4_sub_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The [Dtilde] 2 A 1-[Ctilde] 2 T 2 emission spectrum of SiF+ 4 is observed at a low rotational temperature in a crossed molecular beam/electron beam apparatus. The narrow rotational envelope of the bands confirms the assignment of the emitter as the parent molecular ion of SiF4. The spectrum is analysed, and the results compare excellently with photoelectron data for SiF4. Spin-orbit splitting and Jahn-Teller distortion are observed in the [Ctilde] 2 T 2 state, with both v 2(e) and v 4(t 2) being Jahn-Teller active vibrations.","owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[],"research_interests":[{"id":513,"name":"Molecular Physics","url":"https://www.academia.edu/Documents/in/Molecular_Physics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":645605,"name":"THEORETICAL AND COMPUTATIONAL CHEMISTRY","url":"https://www.academia.edu/Documents/in/THEORETICAL_AND_COMPUTATIONAL_CHEMISTRY"},{"id":1213686,"name":"Jahn Teller Effect","url":"https://www.academia.edu/Documents/in/Jahn_Teller_Effect"}],"urls":[{"id":43238747,"url":"https://doi.org/10.1080/00268978700100531"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121518322"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121518322/Fragmentation_of_Energy_Selected_SF5CF3_Probed_by_Threshold_Photoelectron_Photoion_Coincidence_Spectroscopy_Bond_Dissociation_Energy_of_SF5_CF3_and_Its_Atmospheric_Implications"><img alt="Research paper thumbnail of Fragmentation of Energy-Selected SF5CF3+ Probed by Threshold Photoelectron Photoion Coincidence Spectroscopy: Bond Dissociation Energy of SF5-CF3 and Its Atmospheric Implications" class="work-thumbnail" src="https://attachments.academia-assets.com/116371908/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121518322/Fragmentation_of_Energy_Selected_SF5CF3_Probed_by_Threshold_Photoelectron_Photoion_Coincidence_Spectroscopy_Bond_Dissociation_Energy_of_SF5_CF3_and_Its_Atmospheric_Implications">Fragmentation of Energy-Selected SF5CF3+ Probed by Threshold Photoelectron Photoion Coincidence Spectroscopy: Bond Dissociation Energy of SF5-CF3 and Its Atmospheric Implications</a></div><div class="wp-workCard_item"><span>Journal of Physical Chemistry A</span><span>, Aug 24, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Where a licence is displayed above, please note the terms and conditions of the licence govern yo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c0b035e053c424a9c1803e0dabd86417" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116371908,&quot;asset_id&quot;:121518322,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116371908/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121518322"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121518322"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121518322; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121518322]").text(description); $(".js-view-count[data-work-id=121518322]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121518322; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121518322']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121518322, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c0b035e053c424a9c1803e0dabd86417" } } $('.js-work-strip[data-work-id=121518322]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121518322,"title":"Fragmentation of Energy-Selected SF5CF3+ Probed by Threshold Photoelectron Photoion Coincidence Spectroscopy: Bond Dissociation Energy of SF5-CF3 and Its Atmospheric Implications","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.","publication_date":{"day":24,"month":8,"year":2001,"errors":{}},"publication_name":"Journal of Physical Chemistry A","grobid_abstract_attachment_id":116371908},"translated_abstract":null,"internal_url":"https://www.academia.edu/121518322/Fragmentation_of_Energy_Selected_SF5CF3_Probed_by_Threshold_Photoelectron_Photoion_Coincidence_Spectroscopy_Bond_Dissociation_Energy_of_SF5_CF3_and_Its_Atmospheric_Implications","translated_internal_url":"","created_at":"2024-06-25T23:56:56.456-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116371908,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116371908/thumbnails/1.jpg","file_name":"Tuckett8JPhysChemA2001.pdf","download_url":"https://www.academia.edu/attachments/116371908/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fragmentation_of_Energy_Selected_SF5CF3.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116371908/Tuckett8JPhysChemA2001-libre.pdf?1719392273=\u0026response-content-disposition=attachment%3B+filename%3DFragmentation_of_Energy_Selected_SF5CF3.pdf\u0026Expires=1733910673\u0026Signature=Z-ZHF08tt4EPbenORT4dlfeylfcW5b0FToxmzzhcjRqFENNj4KsEizHkn5SH2XYExLII4OCetAfYvXH9tFSIl59LoKq~VGp38FgVSqz5xb7roatxUXedVxE7MiMp2ubmsGKesWo9www~9JFDyBeY9NEobg9fHPFP-cXoUEypWUwcPQcVlxiH28FN-Po~Isw2~vVk350ER2Rswp8HiGFc11LGQA34vwmE2IVflrPC~5dxlmJJX7GT7sZXyEOAC8U4R6siBjfFwPEcYD72ke5enCwPu6xBt907hGchqMIiazoXu3SWpTEBzlq2zdUYs0D-CWn28LurJO3R0XD~3GupDQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fragmentation_of_Energy_Selected_SF5CF3_Probed_by_Threshold_Photoelectron_Photoion_Coincidence_Spectroscopy_Bond_Dissociation_Energy_of_SF5_CF3_and_Its_Atmospheric_Implications","translated_slug":"","page_count":32,"language":"en","content_type":"Work","summary":"Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.","owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":116371908,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116371908/thumbnails/1.jpg","file_name":"Tuckett8JPhysChemA2001.pdf","download_url":"https://www.academia.edu/attachments/116371908/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fragmentation_of_Energy_Selected_SF5CF3.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116371908/Tuckett8JPhysChemA2001-libre.pdf?1719392273=\u0026response-content-disposition=attachment%3B+filename%3DFragmentation_of_Energy_Selected_SF5CF3.pdf\u0026Expires=1733910673\u0026Signature=Z-ZHF08tt4EPbenORT4dlfeylfcW5b0FToxmzzhcjRqFENNj4KsEizHkn5SH2XYExLII4OCetAfYvXH9tFSIl59LoKq~VGp38FgVSqz5xb7roatxUXedVxE7MiMp2ubmsGKesWo9www~9JFDyBeY9NEobg9fHPFP-cXoUEypWUwcPQcVlxiH28FN-Po~Isw2~vVk350ER2Rswp8HiGFc11LGQA34vwmE2IVflrPC~5dxlmJJX7GT7sZXyEOAC8U4R6siBjfFwPEcYD72ke5enCwPu6xBt907hGchqMIiazoXu3SWpTEBzlq2zdUYs0D-CWn28LurJO3R0XD~3GupDQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":116371907,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116371907/thumbnails/1.jpg","file_name":"Tuckett8JPhysChemA2001.pdf","download_url":"https://www.academia.edu/attachments/116371907/download_file","bulk_download_file_name":"Fragmentation_of_Energy_Selected_SF5CF3.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116371907/Tuckett8JPhysChemA2001-libre.pdf?1719392268=\u0026response-content-disposition=attachment%3B+filename%3DFragmentation_of_Energy_Selected_SF5CF3.pdf\u0026Expires=1733910673\u0026Signature=A159fjrVfAit0~4u~uRBcsEqX1fqDZfQYu9YOkLi~9pagb8V9qSR0CnyK1W95SLzXv2iRagKFHDm0kEVE-fpEOmkdgyOzYuJs221JChpmrp3toxp3DB-aJwL3HEwfmO9N1wWIiJRdnm5ilZoAn52CKteNVARtyLQAzIjfiC61tjpNti7DoPi9dsDYH7srWXfzsurIpd3QkZWDLLEYTNrCypXPyin49ubsBp2PzO80fmMEb67GPmKCHuVz9EMQYaJFikrS6EMPOG37zT3NtLceVF5gY-o36EzhAsM5~FmaipfS6OeImHhCpNkfdXjBtN8XvAkg2SNyD5jxLx7nkyBVg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":5427,"name":"Spectroscopy","url":"https://www.academia.edu/Documents/in/Spectroscopy"},{"id":645605,"name":"THEORETICAL AND COMPUTATIONAL CHEMISTRY","url":"https://www.academia.edu/Documents/in/THEORETICAL_AND_COMPUTATIONAL_CHEMISTRY"}],"urls":[{"id":43238746,"url":"http://pure-oai.bham.ac.uk/ws/files/4605832/Tuckett8JPhysChemA2001.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121518321"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121518321/Electronic_fluorescence_spectra_of_gas_phase_positive_molecular_ions"><img alt="Research paper thumbnail of Electronic fluorescence spectra of gas-phase positive molecular ions" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121518321/Electronic_fluorescence_spectra_of_gas_phase_positive_molecular_ions">Electronic fluorescence spectra of gas-phase positive molecular ions</a></div><div class="wp-workCard_item"><span>Chemical Physics Letters</span><span>, Aug 1, 1980</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract A new technique for observing electronic spectra of gas-phase positive molecular ions is...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract A new technique for observing electronic spectra of gas-phase positive molecular ions is described. The ions are produced by electron impact on a supersonic molecular beam, and the resulting fluorescent radiation is dispersed. Some results on N 2 , N 2 O and CO 2 are presented. They suggest that this technique could be most productive for studying large polyatomic cations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121518321"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121518321"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121518321; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121518321]").text(description); $(".js-view-count[data-work-id=121518321]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121518321; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121518321']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121518321, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=121518321]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121518321,"title":"Electronic fluorescence spectra of gas-phase positive molecular ions","translated_title":"","metadata":{"abstract":"Abstract A new technique for observing electronic spectra of gas-phase positive molecular ions is described. The ions are produced by electron impact on a supersonic molecular beam, and the resulting fluorescent radiation is dispersed. Some results on N 2 , N 2 O and CO 2 are presented. They suggest that this technique could be most productive for studying large polyatomic cations.","publisher":"Elsevier BV","publication_date":{"day":1,"month":8,"year":1980,"errors":{}},"publication_name":"Chemical Physics Letters"},"translated_abstract":"Abstract A new technique for observing electronic spectra of gas-phase positive molecular ions is described. The ions are produced by electron impact on a supersonic molecular beam, and the resulting fluorescent radiation is dispersed. Some results on N 2 , N 2 O and CO 2 are presented. They suggest that this technique could be most productive for studying large polyatomic cations.","internal_url":"https://www.academia.edu/121518321/Electronic_fluorescence_spectra_of_gas_phase_positive_molecular_ions","translated_internal_url":"","created_at":"2024-06-25T23:56:55.842-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Electronic_fluorescence_spectra_of_gas_phase_positive_molecular_ions","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract A new technique for observing electronic spectra of gas-phase positive molecular ions is described. The ions are produced by electron impact on a supersonic molecular beam, and the resulting fluorescent radiation is dispersed. Some results on N 2 , N 2 O and CO 2 are presented. They suggest that this technique could be most productive for studying large polyatomic cations.","owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology"},{"id":7698,"name":"Fluorescence","url":"https://www.academia.edu/Documents/in/Fluorescence"},{"id":39585,"name":"Molecular beam epitaxy","url":"https://www.academia.edu/Documents/in/Molecular_beam_epitaxy"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":883316,"name":"Gas Phase","url":"https://www.academia.edu/Documents/in/Gas_Phase"},{"id":2778229,"name":"Supersonic speed","url":"https://www.academia.edu/Documents/in/Supersonic_speed"}],"urls":[{"id":43238745,"url":"https://doi.org/10.1016/0009-2614(80)85005-6"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="12423179" id="papers"><div class="js-work-strip profile--work_container" data-work-id="125490149"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490149/The_near_infra_red_emission_band_of_DO_sub_2_sub_determination_of_the_molecular_geometry"><img alt="Research paper thumbnail of The near infra-red emission band of DO&lt;sub&gt;2&lt;/sub&gt;: determination of the molecular geometry" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490149/The_near_infra_red_emission_band_of_DO_sub_2_sub_determination_of_the_molecular_geometry">The near infra-red emission band of DO&lt;sub&gt;2&lt;/sub&gt;: determination of the molecular geometry</a></div><div class="wp-workCard_item"><span>Molecular Physics</span><span>, Feb 1, 1979</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The 2A&amp;amp;amp;#x27; --&amp;amp;amp;amp;gt;2A&amp;amp;amp;#x27;&amp;amp;amp;#x27; spectrum of DO2 has been re...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The 2A&amp;amp;amp;#x27; --&amp;amp;amp;amp;gt;2A&amp;amp;amp;#x27;&amp;amp;amp;#x27; spectrum of DO2 has been recorded at high resolution in order to determine the geometry of HO2 in these two electronic states. The results obtained are: The HOO bond angle shows little change between the two states.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490149"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490149"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490149; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490149]").text(description); $(".js-view-count[data-work-id=125490149]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490149; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490149']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490149, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125490149]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490149,"title":"The near infra-red emission band of DO\u003csub\u003e2\u003c/sub\u003e: determination of the molecular geometry","translated_title":"","metadata":{"abstract":"The 2A\u0026amp;amp;#x27; --\u0026amp;amp;amp;gt;2A\u0026amp;amp;#x27;\u0026amp;amp;#x27; spectrum of DO2 has been recorded at high resolution in order to determine the geometry of HO2 in these two electronic states. The results obtained are: The HOO bond angle shows little change between the two states.","publisher":"Taylor \u0026 Francis","publication_date":{"day":1,"month":2,"year":1979,"errors":{}},"publication_name":"Molecular Physics"},"translated_abstract":"The 2A\u0026amp;amp;#x27; --\u0026amp;amp;amp;gt;2A\u0026amp;amp;#x27;\u0026amp;amp;#x27; spectrum of DO2 has been recorded at high resolution in order to determine the geometry of HO2 in these two electronic states. The results obtained are: The HOO bond angle shows little change between the two states.","internal_url":"https://www.academia.edu/125490149/The_near_infra_red_emission_band_of_DO_sub_2_sub_determination_of_the_molecular_geometry","translated_internal_url":"","created_at":"2024-11-12T08:56:48.561-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_near_infra_red_emission_band_of_DO_sub_2_sub_determination_of_the_molecular_geometry","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The 2A\u0026amp;amp;#x27; --\u0026amp;amp;amp;gt;2A\u0026amp;amp;#x27;\u0026amp;amp;#x27; spectrum of DO2 has been recorded at high resolution in order to determine the geometry of HO2 in these two electronic states. The results obtained are: The HOO bond angle shows little change between the two states.","owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[],"research_interests":[{"id":513,"name":"Molecular Physics","url":"https://www.academia.edu/Documents/in/Molecular_Physics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":54418,"name":"Geometry","url":"https://www.academia.edu/Documents/in/Geometry"},{"id":116193,"name":"Solid State electronic devices","url":"https://www.academia.edu/Documents/in/Solid_State_electronic_devices"},{"id":309086,"name":"High Resolution","url":"https://www.academia.edu/Documents/in/High_Resolution"},{"id":321836,"name":"Spectrum","url":"https://www.academia.edu/Documents/in/Spectrum"},{"id":645605,"name":"THEORETICAL AND COMPUTATIONAL CHEMISTRY","url":"https://www.academia.edu/Documents/in/THEORETICAL_AND_COMPUTATIONAL_CHEMISTRY"},{"id":1666284,"name":"Molecular Geometry","url":"https://www.academia.edu/Documents/in/Molecular_Geometry"},{"id":4452431,"name":"Bond Length","url":"https://www.academia.edu/Documents/in/Bond_Length"}],"urls":[{"id":45586983,"url":"https://doi.org/10.1080/00268977900100341"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490147"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490147/Use_of_threshold_electron_and_fluorescence_coincidence_techniques_to_probe_the_decay_dynamics_of_the_valence_states_of_CF_sup_sup_sub_4_sub_SiF_sup_sup_sub_4_sub_SiCl_sup_sup_sub_4_sub_and_GeCl_sup_sup_sub_4_sub_"><img alt="Research paper thumbnail of Use of threshold electron and fluorescence coincidence techniques to probe the decay dynamics of the valence states of CF&lt;sup&gt;+&lt;/sup&gt;&lt;sub&gt;4&lt;/sub&gt;, SiF&lt;sup&gt;+&lt;/sup&gt;&lt;sub&gt;4&lt;/sub&gt;, SiCl&lt;sup&gt;+&lt;/sup&gt;&lt;sub&gt;4&lt;/sub&gt;, and GeCl&lt;sup&gt;+&lt;/sup&gt;&lt;sub&gt;4&lt;/sub&gt;" class="work-thumbnail" src="https://attachments.academia-assets.com/119523598/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490147/Use_of_threshold_electron_and_fluorescence_coincidence_techniques_to_probe_the_decay_dynamics_of_the_valence_states_of_CF_sup_sup_sub_4_sub_SiF_sup_sup_sub_4_sub_SiCl_sup_sup_sub_4_sub_and_GeCl_sup_sup_sub_4_sub_">Use of threshold electron and fluorescence coincidence techniques to probe the decay dynamics of the valence states of CF&lt;sup&gt;+&lt;/sup&gt;&lt;sub&gt;4&lt;/sub&gt;, SiF&lt;sup&gt;+&lt;/sup&gt;&lt;sub&gt;4&lt;/sub&gt;, SiCl&lt;sup&gt;+&lt;/sup&gt;&lt;sub&gt;4&lt;/sub&gt;, and GeCl&lt;sup&gt;+&lt;/sup&gt;&lt;sub&gt;4&lt;/sub&gt;</a></div><div class="wp-workCard_item"><span>Journal of Chemical Physics</span><span>, Dec 15, 1994</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ce92eec9ee2586ccd9c3069a593105bb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119523598,&quot;asset_id&quot;:125490147,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119523598/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490147"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490147"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490147; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490147]").text(description); $(".js-view-count[data-work-id=125490147]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490147; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490147']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490147, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ce92eec9ee2586ccd9c3069a593105bb" } } $('.js-work-strip[data-work-id=125490147]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490147,"title":"Use of threshold electron and fluorescence coincidence techniques to probe the decay dynamics of the valence states of CF\u003csup\u003e+\u003c/sup\u003e\u003csub\u003e4\u003c/sub\u003e, SiF\u003csup\u003e+\u003c/sup\u003e\u003csub\u003e4\u003c/sub\u003e, SiCl\u003csup\u003e+\u003c/sup\u003e\u003csub\u003e4\u003c/sub\u003e, and GeCl\u003csup\u003e+\u003c/sup\u003e\u003csub\u003e4\u003c/sub\u003e","translated_title":"","metadata":{"publisher":"American Institute of Physics","publication_date":{"day":15,"month":12,"year":1994,"errors":{}},"publication_name":"Journal of Chemical Physics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125490147/Use_of_threshold_electron_and_fluorescence_coincidence_techniques_to_probe_the_decay_dynamics_of_the_valence_states_of_CF_sup_sup_sub_4_sub_SiF_sup_sup_sub_4_sub_SiCl_sup_sup_sub_4_sub_and_GeCl_sup_sup_sub_4_sub_","translated_internal_url":"","created_at":"2024-11-12T08:56:48.314-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119523598,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523598/thumbnails/1.jpg","file_name":"paper16.pdf","download_url":"https://www.academia.edu/attachments/119523598/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Use_of_threshold_electron_and_fluorescen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523598/paper16-libre.pdf?1731431139=\u0026response-content-disposition=attachment%3B+filename%3DUse_of_threshold_electron_and_fluorescen.pdf\u0026Expires=1733910672\u0026Signature=ZvFAU3AbJ3IHEIItAiN2hGslomQCfPjX~BqM0OPkZTLmkYa75T7~JFuRJApRZL6C7IEFbOGjhRmemePCexcLA0vhPomq5pnrk6mGY-J8eDXbLsyFE9E8Mahzz6LKU-arLeAIqS9SLsaMJ8ejXoc0UuLLzSq81dJS~swGtU5R1xmp~A7eaTycHNMA4YfVG5nztzFCMt8ZyKPibHBXXDoeW3T5xBzkM~Q9euiCosfFSkyK0EaWnWUtdHsgfkSJqSWGCpNxxxBXs4aCc6mLtJi-Ava1pwg6F8hPd-ZEiUDaYwaRvn2pDxEBcJZN1eU9Pc6bZONyYJPOzxQcndGCkNMBZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Use_of_threshold_electron_and_fluorescence_coincidence_techniques_to_probe_the_decay_dynamics_of_the_valence_states_of_CF_sup_sup_sub_4_sub_SiF_sup_sup_sub_4_sub_SiCl_sup_sup_sub_4_sub_and_GeCl_sup_sup_sub_4_sub_","translated_slug":"","page_count":18,"language":"en","content_type":"Work","summary":null,"owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":119523598,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523598/thumbnails/1.jpg","file_name":"paper16.pdf","download_url":"https://www.academia.edu/attachments/119523598/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Use_of_threshold_electron_and_fluorescen.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523598/paper16-libre.pdf?1731431139=\u0026response-content-disposition=attachment%3B+filename%3DUse_of_threshold_electron_and_fluorescen.pdf\u0026Expires=1733910672\u0026Signature=ZvFAU3AbJ3IHEIItAiN2hGslomQCfPjX~BqM0OPkZTLmkYa75T7~JFuRJApRZL6C7IEFbOGjhRmemePCexcLA0vhPomq5pnrk6mGY-J8eDXbLsyFE9E8Mahzz6LKU-arLeAIqS9SLsaMJ8ejXoc0UuLLzSq81dJS~swGtU5R1xmp~A7eaTycHNMA4YfVG5nztzFCMt8ZyKPibHBXXDoeW3T5xBzkM~Q9euiCosfFSkyK0EaWnWUtdHsgfkSJqSWGCpNxxxBXs4aCc6mLtJi-Ava1pwg6F8hPd-ZEiUDaYwaRvn2pDxEBcJZN1eU9Pc6bZONyYJPOzxQcndGCkNMBZQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":29617,"name":"Synchrotron Radiation","url":"https://www.academia.edu/Documents/in/Synchrotron_Radiation"},{"id":30208,"name":"Time-of-flight mass spectrometry","url":"https://www.academia.edu/Documents/in/Time-of-flight_mass_spectrometry"},{"id":112063,"name":"Uv Radiation","url":"https://www.academia.edu/Documents/in/Uv_Radiation"},{"id":116193,"name":"Solid State electronic devices","url":"https://www.academia.edu/Documents/in/Solid_State_electronic_devices"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":321836,"name":"Spectrum","url":"https://www.academia.edu/Documents/in/Spectrum"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":393410,"name":"Excited states","url":"https://www.academia.edu/Documents/in/Excited_states"},{"id":413295,"name":"Kinetic Energy","url":"https://www.academia.edu/Documents/in/Kinetic_Energy"},{"id":563389,"name":"Photoemission","url":"https://www.academia.edu/Documents/in/Photoemission"},{"id":882081,"name":"Ultraviolet Radiation","url":"https://www.academia.edu/Documents/in/Ultraviolet_Radiation"},{"id":990774,"name":"Quantum Yield","url":"https://www.academia.edu/Documents/in/Quantum_Yield"}],"urls":[{"id":45586982,"url":"http://pure-oai.bham.ac.uk/ws/files/39722210/paper16.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490146"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490146/Near_infra_red_emission_studies_using_a_SISAM_spectrometer"><img alt="Research paper thumbnail of Near infra-red emission studies using a SISAM spectrometer" class="work-thumbnail" src="https://attachments.academia-assets.com/119523624/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490146/Near_infra_red_emission_studies_using_a_SISAM_spectrometer">Near infra-red emission studies using a SISAM spectrometer</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="34a62bab6f19fa48b8eaddda8a35d773" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119523624,&quot;asset_id&quot;:125490146,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119523624/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490146"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490146"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490146; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490146]").text(description); $(".js-view-count[data-work-id=125490146]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490146; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490146']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490146, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "34a62bab6f19fa48b8eaddda8a35d773" } } $('.js-work-strip[data-work-id=125490146]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490146,"title":"Near infra-red emission studies using a SISAM spectrometer","translated_title":"","metadata":{"publication_date":{"day":1,"month":3,"year":1979,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/125490146/Near_infra_red_emission_studies_using_a_SISAM_spectrometer","translated_internal_url":"","created_at":"2024-11-12T08:56:48.031-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119523624,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523624/thumbnails/1.jpg","file_name":"144579243.pdf","download_url":"https://www.academia.edu/attachments/119523624/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Near_infra_red_emission_studies_using_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523624/144579243-libre.pdf?1731431338=\u0026response-content-disposition=attachment%3B+filename%3DNear_infra_red_emission_studies_using_a.pdf\u0026Expires=1733910672\u0026Signature=ZZiqDJsj6-C1IpPTbEW~ROqiWCqY75kBC8GNsQ~NWDK1UTIi2Ibe9qjVnTHepe-xd1w7mPlfAfzJBK-twUrmdPjUHBXqeJCo7XWrmzKEpoIhG5BFCNL8ndAoEz8WRAEcRS5SsoNynWY-Bn76hzWQ-sZfXISjnedCbCLa7PhgMaeS0m5lZ5HtEi7Bi~wnvCoLF2J6Ubp7Eh~EDB68Etzgl98QshY3cI0rhIaTAInUCrJdBBhElSIJvseggKifohcIYz9v8yajGQebw5ls7JvUi7m3ThVsX7PNQIoxaLdvoiWAndZsBAT2pyLMb3~Ww1xhV0OV-7xuhsZ3NOtZiFDgMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Near_infra_red_emission_studies_using_a_SISAM_spectrometer","translated_slug":"","page_count":167,"language":"en","content_type":"Work","summary":null,"owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":119523624,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523624/thumbnails/1.jpg","file_name":"144579243.pdf","download_url":"https://www.academia.edu/attachments/119523624/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Near_infra_red_emission_studies_using_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523624/144579243-libre.pdf?1731431338=\u0026response-content-disposition=attachment%3B+filename%3DNear_infra_red_emission_studies_using_a.pdf\u0026Expires=1733910672\u0026Signature=ZZiqDJsj6-C1IpPTbEW~ROqiWCqY75kBC8GNsQ~NWDK1UTIi2Ibe9qjVnTHepe-xd1w7mPlfAfzJBK-twUrmdPjUHBXqeJCo7XWrmzKEpoIhG5BFCNL8ndAoEz8WRAEcRS5SsoNynWY-Bn76hzWQ-sZfXISjnedCbCLa7PhgMaeS0m5lZ5HtEi7Bi~wnvCoLF2J6Ubp7Eh~EDB68Etzgl98QshY3cI0rhIaTAInUCrJdBBhElSIJvseggKifohcIYz9v8yajGQebw5ls7JvUi7m3ThVsX7PNQIoxaLdvoiWAndZsBAT2pyLMb3~Ww1xhV0OV-7xuhsZ3NOtZiFDgMg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":1442002,"name":"Spectrometer","url":"https://www.academia.edu/Documents/in/Spectrometer"}],"urls":[{"id":45586981,"url":"https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.475628"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490145"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490145/PHOTOELECTRON_PHOTOION_COINCIDENCE_STUDY_OF_THE_FRAGMENTATION_OF_VALENCE_STATES_OF_CHF2_CH3_IN_THE_RANGE_12_25_eV"><img alt="Research paper thumbnail of PHOTOELECTRON PHOTOION COINCIDENCE STUDY OF THE FRAGMENTATION OF VALENCE STATES OF CHF2–CH3+ IN THE RANGE 12–25 eV" class="work-thumbnail" src="https://attachments.academia-assets.com/119523597/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490145/PHOTOELECTRON_PHOTOION_COINCIDENCE_STUDY_OF_THE_FRAGMENTATION_OF_VALENCE_STATES_OF_CHF2_CH3_IN_THE_RANGE_12_25_eV">PHOTOELECTRON PHOTOION COINCIDENCE STUDY OF THE FRAGMENTATION OF VALENCE STATES OF CHF2–CH3+ IN THE RANGE 12–25 eV</a></div><div class="wp-workCard_item"><span>International Journal of Modern Physics B</span><span>, Jun 10, 2009</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ca4bffcdc91fdc08a5c3c6acc67cbf23" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119523597,&quot;asset_id&quot;:125490145,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119523597/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490145"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490145"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490145; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490145]").text(description); $(".js-view-count[data-work-id=125490145]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490145; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490145']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490145, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ca4bffcdc91fdc08a5c3c6acc67cbf23" } } $('.js-work-strip[data-work-id=125490145]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490145,"title":"PHOTOELECTRON PHOTOION COINCIDENCE STUDY OF THE FRAGMENTATION OF VALENCE STATES OF CHF2–CH3+ IN THE RANGE 12–25 eV","translated_title":"","metadata":{"publisher":"World Scientific","publication_date":{"day":10,"month":6,"year":2009,"errors":{}},"publication_name":"International Journal of Modern Physics B"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125490145/PHOTOELECTRON_PHOTOION_COINCIDENCE_STUDY_OF_THE_FRAGMENTATION_OF_VALENCE_STATES_OF_CHF2_CH3_IN_THE_RANGE_12_25_eV","translated_internal_url":"","created_at":"2024-11-12T08:56:47.738-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119523597,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523597/thumbnails/1.jpg","file_name":"Tuckett39IntJModPhysB2008.pdf","download_url":"https://www.academia.edu/attachments/119523597/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"PHOTOELECTRON_PHOTOION_COINCIDENCE_STUDY.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523597/Tuckett39IntJModPhysB2008-libre.pdf?1731431134=\u0026response-content-disposition=attachment%3B+filename%3DPHOTOELECTRON_PHOTOION_COINCIDENCE_STUDY.pdf\u0026Expires=1733910672\u0026Signature=g-AatlnvPZlu2uS~RqgYpYeF6CIm7liZetfqPvkVzAaZNdc6LJIqlqTKtGWgrvv78sHi3dOYgI7GZsfxMmwP2kq5eaWOMxK86oPtNRgdy0~Ol1S381GJMJ1muwWhHkVQZhrpexgWK2UkKEtGwO-vZuVFl~Mi8pGoowS8pfDjH~CW4hGSXltM1YFath~W00Z2pUTBYOwdnOLDDYlqbFQqh8~nkACjwNXgdXoHkPg8StBMbmfMixzqxM7BXseMOeGaJMtmIk6zSasy-Y3khrhGNooCd812~2m6sAy~B-US7JlPQ2WU0ZDUlDGXYbktgze3PQuF7eE4AfYIOQ-od3cDJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"PHOTOELECTRON_PHOTOION_COINCIDENCE_STUDY_OF_THE_FRAGMENTATION_OF_VALENCE_STATES_OF_CHF2_CH3_IN_THE_RANGE_12_25_eV","translated_slug":"","page_count":21,"language":"en","content_type":"Work","summary":null,"owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":119523597,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523597/thumbnails/1.jpg","file_name":"Tuckett39IntJModPhysB2008.pdf","download_url":"https://www.academia.edu/attachments/119523597/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"PHOTOELECTRON_PHOTOION_COINCIDENCE_STUDY.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523597/Tuckett39IntJModPhysB2008-libre.pdf?1731431134=\u0026response-content-disposition=attachment%3B+filename%3DPHOTOELECTRON_PHOTOION_COINCIDENCE_STUDY.pdf\u0026Expires=1733910672\u0026Signature=g-AatlnvPZlu2uS~RqgYpYeF6CIm7liZetfqPvkVzAaZNdc6LJIqlqTKtGWgrvv78sHi3dOYgI7GZsfxMmwP2kq5eaWOMxK86oPtNRgdy0~Ol1S381GJMJ1muwWhHkVQZhrpexgWK2UkKEtGwO-vZuVFl~Mi8pGoowS8pfDjH~CW4hGSXltM1YFath~W00Z2pUTBYOwdnOLDDYlqbFQqh8~nkACjwNXgdXoHkPg8StBMbmfMixzqxM7BXseMOeGaJMtmIk6zSasy-Y3khrhGNooCd812~2m6sAy~B-US7JlPQ2WU0ZDUlDGXYbktgze3PQuF7eE4AfYIOQ-od3cDJA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":520,"name":"Statistical Mechanics","url":"https://www.academia.edu/Documents/in/Statistical_Mechanics"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":15902,"name":"Photoionization","url":"https://www.academia.edu/Documents/in/Photoionization"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":151848,"name":"Fragmentation","url":"https://www.academia.edu/Documents/in/Fragmentation"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":413295,"name":"Kinetic Energy","url":"https://www.academia.edu/Documents/in/Kinetic_Energy"},{"id":882081,"name":"Ultraviolet Radiation","url":"https://www.academia.edu/Documents/in/Ultraviolet_Radiation"},{"id":973013,"name":"Yield Curve","url":"https://www.academia.edu/Documents/in/Yield_Curve"},{"id":2620537,"name":"Physical chemistry and chemical physics","url":"https://www.academia.edu/Documents/in/Physical_chemistry_and_chemical_physics"}],"urls":[{"id":45586980,"url":"http://pure-oai.bham.ac.uk/ws/files/2922178/Tuckett39IntJModPhysB2008.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490144"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490144/Electronic_Fluorescence_Spectra_of_Gas_Phase_Positive_Ions"><img alt="Research paper thumbnail of Electronic Fluorescence Spectra of Gas-Phase Positive Ions" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490144/Electronic_Fluorescence_Spectra_of_Gas_Phase_Positive_Ions">Electronic Fluorescence Spectra of Gas-Phase Positive Ions</a></div><div class="wp-workCard_item"><span>Springer eBooks</span><span>, 1983</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We describe here a novel technique to observe electronic spectra of gas-phase positive ions. The ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We describe here a novel technique to observe electronic spectra of gas-phase positive ions. The ions are formed by electron impact on a supersonic beam of neutral molecules, and the fluorescent radiation from the ions is dispersed. The two particu­lar properties of supersonic beams that we exploit are: (a.) The density of molecules in a beam can be high, yet they all travel in the same direction in a collision-free environment. Collisional deactivation of the ion by fast ion-molecule re­actions is therefore absent. (b.) In the expansion, random motion of the molecules is converted into forward directed flow, producing a beam of internally cold molecules; the rotational temperature can be less than 1°K.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490144"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490144"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490144; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490144]").text(description); $(".js-view-count[data-work-id=125490144]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490144; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490144']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490144, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125490144]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490144,"title":"Electronic Fluorescence Spectra of Gas-Phase Positive Ions","translated_title":"","metadata":{"abstract":"We describe here a novel technique to observe electronic spectra of gas-phase positive ions. The ions are formed by electron impact on a supersonic beam of neutral molecules, and the fluorescent radiation from the ions is dispersed. The two particu­lar properties of supersonic beams that we exploit are: (a.) The density of molecules in a beam can be high, yet they all travel in the same direction in a collision-free environment. Collisional deactivation of the ion by fast ion-molecule re­actions is therefore absent. (b.) In the expansion, random motion of the molecules is converted into forward directed flow, producing a beam of internally cold molecules; the rotational temperature can be less than 1°K.","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":1983,"errors":{}},"publication_name":"Springer eBooks"},"translated_abstract":"We describe here a novel technique to observe electronic spectra of gas-phase positive ions. The ions are formed by electron impact on a supersonic beam of neutral molecules, and the fluorescent radiation from the ions is dispersed. The two particu­lar properties of supersonic beams that we exploit are: (a.) The density of molecules in a beam can be high, yet they all travel in the same direction in a collision-free environment. Collisional deactivation of the ion by fast ion-molecule re­actions is therefore absent. (b.) In the expansion, random motion of the molecules is converted into forward directed flow, producing a beam of internally cold molecules; the rotational temperature can be less than 1°K.","internal_url":"https://www.academia.edu/125490144/Electronic_Fluorescence_Spectra_of_Gas_Phase_Positive_Ions","translated_internal_url":"","created_at":"2024-11-12T08:56:47.453-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Electronic_Fluorescence_Spectra_of_Gas_Phase_Positive_Ions","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"We describe here a novel technique to observe electronic spectra of gas-phase positive ions. The ions are formed by electron impact on a supersonic beam of neutral molecules, and the fluorescent radiation from the ions is dispersed. The two particu­lar properties of supersonic beams that we exploit are: (a.) The density of molecules in a beam can be high, yet they all travel in the same direction in a collision-free environment. Collisional deactivation of the ion by fast ion-molecule re­actions is therefore absent. (b.) In the expansion, random motion of the molecules is converted into forward directed flow, producing a beam of internally cold molecules; the rotational temperature can be less than 1°K.","owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":7698,"name":"Fluorescence","url":"https://www.academia.edu/Documents/in/Fluorescence"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":883316,"name":"Gas Phase","url":"https://www.academia.edu/Documents/in/Gas_Phase"},{"id":1029023,"name":"Molecule","url":"https://www.academia.edu/Documents/in/Molecule"},{"id":2778229,"name":"Supersonic speed","url":"https://www.academia.edu/Documents/in/Supersonic_speed"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"}],"urls":[{"id":45586979,"url":"https://doi.org/10.1007/978-1-4613-3664-8_13"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490143"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490143/Vacuum_UV_fluorescence_excitation_spectroscopy_of_BCl3in_the_range_35_140_nm"><img alt="Research paper thumbnail of Vacuum UV fluorescence excitation spectroscopy of BCl3in the range 35–140 nm" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490143/Vacuum_UV_fluorescence_excitation_spectroscopy_of_BCl3in_the_range_35_140_nm">Vacuum UV fluorescence excitation spectroscopy of BCl3in the range 35–140 nm</a></div><div class="wp-workCard_item"><span>Molecular Physics</span><span>, Jun 10, 1993</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The fluorescence following excitation of BF3 is studied using two techniques: (a) He* (23S) metas...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The fluorescence following excitation of BF3 is studied using two techniques: (a) He* (23S) metastable excitation with dispersed fluorescence detection, (b) photon excitation using tunable vacuum UV radiation from a synchrotron source with undispersed detection. The He* experiment gives an extensive spectrum between 200 and 300 nm with two long progressions, each of separation 525 ± 30 cm-1. They are assigned to transitions to the v 2 bending mode of BF2 [Xtilde] 2A1, probably from the first excited state A 2B1. Using photons in the energy range 10–28 eV two different fluorescence decay channels are observed: (1) BF2 fluorescence for photon energies below 17eV, (2) BF3 + fluorescence for energies &amp;gt; 21·5eV. The shapes of the excitation functions confirm that (1) is a resonant process via Rydberg states of BF3, whereas (2) is a non-resonant photoionization process. The emitting state in BF3 + is the [Etilde]2A′1 state with a vertical ionization potential of 21·5eV. The two strongest resonant peaks at 13·1 a...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490143"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490143"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490143; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490143]").text(description); $(".js-view-count[data-work-id=125490143]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490143; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490143']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490143, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125490143]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490143,"title":"Vacuum UV fluorescence excitation spectroscopy of BCl3in the range 35–140 nm","translated_title":"","metadata":{"abstract":"The fluorescence following excitation of BF3 is studied using two techniques: (a) He* (23S) metastable excitation with dispersed fluorescence detection, (b) photon excitation using tunable vacuum UV radiation from a synchrotron source with undispersed detection. The He* experiment gives an extensive spectrum between 200 and 300 nm with two long progressions, each of separation 525 ± 30 cm-1. They are assigned to transitions to the v 2 bending mode of BF2 [Xtilde] 2A1, probably from the first excited state A 2B1. Using photons in the energy range 10–28 eV two different fluorescence decay channels are observed: (1) BF2 fluorescence for photon energies below 17eV, (2) BF3 + fluorescence for energies \u0026gt; 21·5eV. The shapes of the excitation functions confirm that (1) is a resonant process via Rydberg states of BF3, whereas (2) is a non-resonant photoionization process. The emitting state in BF3 + is the [Etilde]2A′1 state with a vertical ionization potential of 21·5eV. The two strongest resonant peaks at 13·1 a...","publisher":"Taylor \u0026 Francis","publication_date":{"day":10,"month":6,"year":1993,"errors":{}},"publication_name":"Molecular Physics"},"translated_abstract":"The fluorescence following excitation of BF3 is studied using two techniques: (a) He* (23S) metastable excitation with dispersed fluorescence detection, (b) photon excitation using tunable vacuum UV radiation from a synchrotron source with undispersed detection. The He* experiment gives an extensive spectrum between 200 and 300 nm with two long progressions, each of separation 525 ± 30 cm-1. They are assigned to transitions to the v 2 bending mode of BF2 [Xtilde] 2A1, probably from the first excited state A 2B1. Using photons in the energy range 10–28 eV two different fluorescence decay channels are observed: (1) BF2 fluorescence for photon energies below 17eV, (2) BF3 + fluorescence for energies \u0026gt; 21·5eV. The shapes of the excitation functions confirm that (1) is a resonant process via Rydberg states of BF3, whereas (2) is a non-resonant photoionization process. The emitting state in BF3 + is the [Etilde]2A′1 state with a vertical ionization potential of 21·5eV. The two strongest resonant peaks at 13·1 a...","internal_url":"https://www.academia.edu/125490143/Vacuum_UV_fluorescence_excitation_spectroscopy_of_BCl3in_the_range_35_140_nm","translated_internal_url":"","created_at":"2024-11-12T08:56:47.091-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Vacuum_UV_fluorescence_excitation_spectroscopy_of_BCl3in_the_range_35_140_nm","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The fluorescence following excitation of BF3 is studied using two techniques: (a) He* (23S) metastable excitation with dispersed fluorescence detection, (b) photon excitation using tunable vacuum UV radiation from a synchrotron source with undispersed detection. The He* experiment gives an extensive spectrum between 200 and 300 nm with two long progressions, each of separation 525 ± 30 cm-1. They are assigned to transitions to the v 2 bending mode of BF2 [Xtilde] 2A1, probably from the first excited state A 2B1. Using photons in the energy range 10–28 eV two different fluorescence decay channels are observed: (1) BF2 fluorescence for photon energies below 17eV, (2) BF3 + fluorescence for energies \u0026gt; 21·5eV. The shapes of the excitation functions confirm that (1) is a resonant process via Rydberg states of BF3, whereas (2) is a non-resonant photoionization process. The emitting state in BF3 + is the [Etilde]2A′1 state with a vertical ionization potential of 21·5eV. The two strongest resonant peaks at 13·1 a...","owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[],"research_interests":[{"id":513,"name":"Molecular Physics","url":"https://www.academia.edu/Documents/in/Molecular_Physics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology"},{"id":1525,"name":"Fluorescence Spectroscopy","url":"https://www.academia.edu/Documents/in/Fluorescence_Spectroscopy"},{"id":5427,"name":"Spectroscopy","url":"https://www.academia.edu/Documents/in/Spectroscopy"},{"id":7698,"name":"Fluorescence","url":"https://www.academia.edu/Documents/in/Fluorescence"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":15902,"name":"Photoionization","url":"https://www.academia.edu/Documents/in/Photoionization"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":329196,"name":"Ionization","url":"https://www.academia.edu/Documents/in/Ionization"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":645605,"name":"THEORETICAL AND COMPUTATIONAL CHEMISTRY","url":"https://www.academia.edu/Documents/in/THEORETICAL_AND_COMPUTATIONAL_CHEMISTRY"},{"id":3296502,"name":"Excitation","url":"https://www.academia.edu/Documents/in/Excitation"}],"urls":[{"id":45586978,"url":"https://doi.org/10.1080/00268979300101311"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490142"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490142/The_vacuum_ultraviolet_photoelectron_spectra_of_CH2F2_and_CH2Cl2_revisited"><img alt="Research paper thumbnail of The vacuum-ultraviolet photoelectron spectra of CH2F2 and CH2Cl2 revisited" class="work-thumbnail" src="https://attachments.academia-assets.com/119526016/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490142/The_vacuum_ultraviolet_photoelectron_spectra_of_CH2F2_and_CH2Cl2_revisited">The vacuum-ultraviolet photoelectron spectra of CH2F2 and CH2Cl2 revisited</a></div><div class="wp-workCard_item"><span>Journal of Molecular Spectroscopy</span><span>, Sep 1, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1701d856fdf544bd1686b24d6893f789" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119526016,&quot;asset_id&quot;:125490142,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119526016/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490142"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490142"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490142; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490142]").text(description); $(".js-view-count[data-work-id=125490142]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490142; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490142']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490142, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1701d856fdf544bd1686b24d6893f789" } } $('.js-work-strip[data-work-id=125490142]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490142,"title":"The vacuum-ultraviolet photoelectron spectra of CH2F2 and CH2Cl2 revisited","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":1,"month":9,"year":2015,"errors":{}},"publication_name":"Journal of Molecular Spectroscopy"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125490142/The_vacuum_ultraviolet_photoelectron_spectra_of_CH2F2_and_CH2Cl2_revisited","translated_internal_url":"","created_at":"2024-11-12T08:56:46.755-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119526016,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119526016/thumbnails/1.jpg","file_name":"Tuckett_FinalPaperOnlineSupplMat_250315.pdf","download_url":"https://www.academia.edu/attachments/119526016/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_vacuum_ultraviolet_photoelectron_spe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119526016/Tuckett_FinalPaperOnlineSupplMat_250315-libre.pdf?1731442965=\u0026response-content-disposition=attachment%3B+filename%3DThe_vacuum_ultraviolet_photoelectron_spe.pdf\u0026Expires=1733910672\u0026Signature=bxhbB9HBjquBp7munNUtU2kGeRZVs8AF4lRCg~yEs6sfByI9rjgTJqxmjd0TJ8TxVN-bx9cfbjbxO18g66CRgq5-i8Dscgja41LxRxbrISz5rWEWlxsDtxvrNwx5OMww4WbZYbQQtEQ3zn~DvdcPa6hi4Ncz~FjKfjLsqRHvZWc-BxRYItpB7nhuoI4qKCpA0HM4j7ad1XGY090E2Tq8LgDYpOs5WjLZ17hivoOWkubYpUGwFV0lOAlbp7Uoqlzw1WXId1FSiBF0NOZ8NiNzPvCz3zndctRGfnkZEGCKOXg0futTqDS08pOQqsJoIa2G97KDoWsv2OVxZ5RaFlYaZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_vacuum_ultraviolet_photoelectron_spectra_of_CH2F2_and_CH2Cl2_revisited","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":null,"owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":119526016,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119526016/thumbnails/1.jpg","file_name":"Tuckett_FinalPaperOnlineSupplMat_250315.pdf","download_url":"https://www.academia.edu/attachments/119526016/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_vacuum_ultraviolet_photoelectron_spe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119526016/Tuckett_FinalPaperOnlineSupplMat_250315-libre.pdf?1731442965=\u0026response-content-disposition=attachment%3B+filename%3DThe_vacuum_ultraviolet_photoelectron_spe.pdf\u0026Expires=1733910672\u0026Signature=bxhbB9HBjquBp7munNUtU2kGeRZVs8AF4lRCg~yEs6sfByI9rjgTJqxmjd0TJ8TxVN-bx9cfbjbxO18g66CRgq5-i8Dscgja41LxRxbrISz5rWEWlxsDtxvrNwx5OMww4WbZYbQQtEQ3zn~DvdcPa6hi4Ncz~FjKfjLsqRHvZWc-BxRYItpB7nhuoI4qKCpA0HM4j7ad1XGY090E2Tq8LgDYpOs5WjLZ17hivoOWkubYpUGwFV0lOAlbp7Uoqlzw1WXId1FSiBF0NOZ8NiNzPvCz3zndctRGfnkZEGCKOXg0futTqDS08pOQqsJoIa2G97KDoWsv2OVxZ5RaFlYaZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":15910,"name":"Molecular Spectroscopy","url":"https://www.academia.edu/Documents/in/Molecular_Spectroscopy"}],"urls":[{"id":45586977,"url":"https://doi.org/10.1016/j.jms.2015.02.012"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490141"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490141/Fragmentation_of_valence_electronic_states_of_CF_sub_3_sub_CH_sub_2_sub_F_sup_sup_and_CHF_sub_2_sub_CHF_sub_2_sub_sup_sup_in_the_range_12_25_eV"><img alt="Research paper thumbnail of Fragmentation of valence electronic states of CF&lt;sub&gt;3&lt;/sub&gt;–CH&lt;sub&gt;2&lt;/sub&gt;F&lt;sup&gt;+&lt;/sup&gt;and CHF&lt;sub&gt;2&lt;/sub&gt;–CHF&lt;sub&gt;2&lt;/sub&gt;&lt;sup&gt;+&lt;/sup&gt;in the range 12–25 eV" class="work-thumbnail" src="https://attachments.academia-assets.com/119523593/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490141/Fragmentation_of_valence_electronic_states_of_CF_sub_3_sub_CH_sub_2_sub_F_sup_sup_and_CHF_sub_2_sub_CHF_sub_2_sub_sup_sup_in_the_range_12_25_eV">Fragmentation of valence electronic states of CF&lt;sub&gt;3&lt;/sub&gt;–CH&lt;sub&gt;2&lt;/sub&gt;F&lt;sup&gt;+&lt;/sup&gt;and CHF&lt;sub&gt;2&lt;/sub&gt;–CHF&lt;sub&gt;2&lt;/sub&gt;&lt;sup&gt;+&lt;/sup&gt;in the range 12–25 eV</a></div><div class="wp-workCard_item"><span>Physical Chemistry Chemical Physics</span><span>, 2002</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="78172433ba7fd98872e2bb9e3c426702" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119523593,&quot;asset_id&quot;:125490141,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119523593/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490141"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490141"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490141; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490141]").text(description); $(".js-view-count[data-work-id=125490141]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490141; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490141']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490141, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "78172433ba7fd98872e2bb9e3c426702" } } $('.js-work-strip[data-work-id=125490141]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490141,"title":"Fragmentation of valence electronic states of CF\u003csub\u003e3\u003c/sub\u003e–CH\u003csub\u003e2\u003c/sub\u003eF\u003csup\u003e+\u003c/sup\u003eand CHF\u003csub\u003e2\u003c/sub\u003e–CHF\u003csub\u003e2\u003c/sub\u003e\u003csup\u003e+\u003c/sup\u003ein the range 12–25 eV","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry","publication_date":{"day":null,"month":null,"year":2002,"errors":{}},"publication_name":"Physical Chemistry Chemical Physics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125490141/Fragmentation_of_valence_electronic_states_of_CF_sub_3_sub_CH_sub_2_sub_F_sup_sup_and_CHF_sub_2_sub_CHF_sub_2_sub_sup_sup_in_the_range_12_25_eV","translated_internal_url":"","created_at":"2024-11-12T08:56:45.262-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119523593,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523593/thumbnails/1.jpg","file_name":"Tuckett15PhysChemChemPhys2002.pdf","download_url":"https://www.academia.edu/attachments/119523593/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fragmentation_of_valence_electronic_stat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523593/Tuckett15PhysChemChemPhys2002-libre.pdf?1731431147=\u0026response-content-disposition=attachment%3B+filename%3DFragmentation_of_valence_electronic_stat.pdf\u0026Expires=1733910672\u0026Signature=YxjS7tlrrtnB8djcRv1n3p4DgKenW0d8Jyn~JLlAbh9XpsXdiL1mE5l9c5RWUrnyUAbFscQHm9UCYNso76G1FzIePyaKB-eHbsPJHJojYQKSseYFx2HDznjSUmqDFbGwFbiVYyAjWY72q73aCa5Ae9w-5WiI8d99-dKA-vL92EDAs~SUmd0lzNQk0zBq8E-8rdJH26JS9g3j~Mq3ol17HxsfCRtWWAUNgC4GlP74gwI~fxCasGNHkBe4ylH2KDxTBsKwvg4hs2niZMIJOcilAIXlBknYMCGD-IDHhEol91iIoFAvPWDQ~iLwrtkb~9A~l7c~EcHZr3H3PDEW-EJhqg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fragmentation_of_valence_electronic_states_of_CF_sub_3_sub_CH_sub_2_sub_F_sup_sup_and_CHF_sub_2_sub_CHF_sub_2_sub_sup_sup_in_the_range_12_25_eV","translated_slug":"","page_count":35,"language":"en","content_type":"Work","summary":null,"owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":119523593,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523593/thumbnails/1.jpg","file_name":"Tuckett15PhysChemChemPhys2002.pdf","download_url":"https://www.academia.edu/attachments/119523593/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fragmentation_of_valence_electronic_stat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523593/Tuckett15PhysChemChemPhys2002-libre.pdf?1731431147=\u0026response-content-disposition=attachment%3B+filename%3DFragmentation_of_valence_electronic_stat.pdf\u0026Expires=1733910672\u0026Signature=YxjS7tlrrtnB8djcRv1n3p4DgKenW0d8Jyn~JLlAbh9XpsXdiL1mE5l9c5RWUrnyUAbFscQHm9UCYNso76G1FzIePyaKB-eHbsPJHJojYQKSseYFx2HDznjSUmqDFbGwFbiVYyAjWY72q73aCa5Ae9w-5WiI8d99-dKA-vL92EDAs~SUmd0lzNQk0zBq8E-8rdJH26JS9g3j~Mq3ol17HxsfCRtWWAUNgC4GlP74gwI~fxCasGNHkBe4ylH2KDxTBsKwvg4hs2niZMIJOcilAIXlBknYMCGD-IDHhEol91iIoFAvPWDQ~iLwrtkb~9A~l7c~EcHZr3H3PDEW-EJhqg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119523594,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523594/thumbnails/1.jpg","file_name":"Tuckett15PhysChemChemPhys2002.pdf","download_url":"https://www.academia.edu/attachments/119523594/download_file","bulk_download_file_name":"Fragmentation_of_valence_electronic_stat.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523594/Tuckett15PhysChemChemPhys2002-libre.pdf?1731431158=\u0026response-content-disposition=attachment%3B+filename%3DFragmentation_of_valence_electronic_stat.pdf\u0026Expires=1733910672\u0026Signature=ERAz5z~EDOyKJJ-fqw74XR2RWWyiDpm4nRN~HyXR4sF2OgQ3VRpDmWd2CLbyyp44VH6xmGAWWbWtUixCH4~MdhBH2V-KFWenxFrnIfFHE16l0Sg~g2kigBU4d0Lao9Z7Zz5~RMEDCIlUGTQEZooeJqO4XKpcXdMJ2d0rE3~NWWO9XewHaJTUB5rQnxqvJFORCSiPmgEuvcHOawx6B-YFMBJe3TKrPncIzWuF1bF-IlxRquMDNGqdpv7-fwAJ0ecKZ07TUtcDOsjmqLZjLVmm2jYZ3ECPF0HQwn6KoKjjlW9vy4E8SRt4jpCUmyyT5OIla21tRuojO8xud3VkWsmr6A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":2620537,"name":"Physical chemistry and chemical physics","url":"https://www.academia.edu/Documents/in/Physical_chemistry_and_chemical_physics"}],"urls":[{"id":45586976,"url":"http://pure-oai.bham.ac.uk/ws/files/2922101/Tuckett15PhysChemChemPhys2002.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490140"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490140/Vacuum_UV_fluorescence_excitation_spectroscopy_of_BF3in_the_range_45_125_nm"><img alt="Research paper thumbnail of Vacuum UV fluorescence excitation spectroscopy of BF3in the range 45–125 nm" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490140/Vacuum_UV_fluorescence_excitation_spectroscopy_of_BF3in_the_range_45_125_nm">Vacuum UV fluorescence excitation spectroscopy of BF3in the range 45–125 nm</a></div><div class="wp-workCard_item"><span>Molecular Physics</span><span>, Mar 1, 1993</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The fluorescence following excitation of BF3 is studied using two techniques: (a) He* (23S) metas...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The fluorescence following excitation of BF3 is studied using two techniques: (a) He* (23S) metastable excitation with dispersed fluorescence detection, (b) photon excitation using tunable vacuum UV radiation from a synchrotron source with undispersed detection. The He* experiment gives an extensive spectrum between 200 and 300 nm with two long progressions, each of separation 525 ± 30 cm-1. They are assigned to transitions to the v 2 bending mode of BF2 [Xtilde] 2A1, probably from the first excited state A 2B1. Using photons in the energy range 10–28 eV two different fluorescence decay channels are observed: (1) BF2 fluorescence for photon energies below 17eV, (2) BF3 + fluorescence for energies &amp;gt; 21·5eV. The shapes of the excitation functions confirm that (1) is a resonant process via Rydberg states of BF3, whereas (2) is a non-resonant photoionization process. The emitting state in BF3 + is the [Etilde]2A′1 state with a vertical ionization potential of 21·5eV. The two strongest resonant peaks at 13·1 a...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490140"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490140"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490140; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490140]").text(description); $(".js-view-count[data-work-id=125490140]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490140; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490140']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490140, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125490140]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490140,"title":"Vacuum UV fluorescence excitation spectroscopy of BF3in the range 45–125 nm","translated_title":"","metadata":{"abstract":"The fluorescence following excitation of BF3 is studied using two techniques: (a) He* (23S) metastable excitation with dispersed fluorescence detection, (b) photon excitation using tunable vacuum UV radiation from a synchrotron source with undispersed detection. The He* experiment gives an extensive spectrum between 200 and 300 nm with two long progressions, each of separation 525 ± 30 cm-1. They are assigned to transitions to the v 2 bending mode of BF2 [Xtilde] 2A1, probably from the first excited state A 2B1. Using photons in the energy range 10–28 eV two different fluorescence decay channels are observed: (1) BF2 fluorescence for photon energies below 17eV, (2) BF3 + fluorescence for energies \u0026gt; 21·5eV. The shapes of the excitation functions confirm that (1) is a resonant process via Rydberg states of BF3, whereas (2) is a non-resonant photoionization process. The emitting state in BF3 + is the [Etilde]2A′1 state with a vertical ionization potential of 21·5eV. The two strongest resonant peaks at 13·1 a...","publisher":"Taylor \u0026 Francis","publication_date":{"day":1,"month":3,"year":1993,"errors":{}},"publication_name":"Molecular Physics"},"translated_abstract":"The fluorescence following excitation of BF3 is studied using two techniques: (a) He* (23S) metastable excitation with dispersed fluorescence detection, (b) photon excitation using tunable vacuum UV radiation from a synchrotron source with undispersed detection. The He* experiment gives an extensive spectrum between 200 and 300 nm with two long progressions, each of separation 525 ± 30 cm-1. They are assigned to transitions to the v 2 bending mode of BF2 [Xtilde] 2A1, probably from the first excited state A 2B1. Using photons in the energy range 10–28 eV two different fluorescence decay channels are observed: (1) BF2 fluorescence for photon energies below 17eV, (2) BF3 + fluorescence for energies \u0026gt; 21·5eV. The shapes of the excitation functions confirm that (1) is a resonant process via Rydberg states of BF3, whereas (2) is a non-resonant photoionization process. The emitting state in BF3 + is the [Etilde]2A′1 state with a vertical ionization potential of 21·5eV. The two strongest resonant peaks at 13·1 a...","internal_url":"https://www.academia.edu/125490140/Vacuum_UV_fluorescence_excitation_spectroscopy_of_BF3in_the_range_45_125_nm","translated_internal_url":"","created_at":"2024-11-12T08:56:44.799-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Vacuum_UV_fluorescence_excitation_spectroscopy_of_BF3in_the_range_45_125_nm","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The fluorescence following excitation of BF3 is studied using two techniques: (a) He* (23S) metastable excitation with dispersed fluorescence detection, (b) photon excitation using tunable vacuum UV radiation from a synchrotron source with undispersed detection. The He* experiment gives an extensive spectrum between 200 and 300 nm with two long progressions, each of separation 525 ± 30 cm-1. They are assigned to transitions to the v 2 bending mode of BF2 [Xtilde] 2A1, probably from the first excited state A 2B1. Using photons in the energy range 10–28 eV two different fluorescence decay channels are observed: (1) BF2 fluorescence for photon energies below 17eV, (2) BF3 + fluorescence for energies \u0026gt; 21·5eV. The shapes of the excitation functions confirm that (1) is a resonant process via Rydberg states of BF3, whereas (2) is a non-resonant photoionization process. The emitting state in BF3 + is the [Etilde]2A′1 state with a vertical ionization potential of 21·5eV. The two strongest resonant peaks at 13·1 a...","owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[],"research_interests":[{"id":513,"name":"Molecular Physics","url":"https://www.academia.edu/Documents/in/Molecular_Physics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology"},{"id":1525,"name":"Fluorescence Spectroscopy","url":"https://www.academia.edu/Documents/in/Fluorescence_Spectroscopy"},{"id":5427,"name":"Spectroscopy","url":"https://www.academia.edu/Documents/in/Spectroscopy"},{"id":7698,"name":"Fluorescence","url":"https://www.academia.edu/Documents/in/Fluorescence"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":15902,"name":"Photoionization","url":"https://www.academia.edu/Documents/in/Photoionization"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":645605,"name":"THEORETICAL AND COMPUTATIONAL CHEMISTRY","url":"https://www.academia.edu/Documents/in/THEORETICAL_AND_COMPUTATIONAL_CHEMISTRY"},{"id":3296502,"name":"Excitation","url":"https://www.academia.edu/Documents/in/Excitation"}],"urls":[{"id":45586975,"url":"https://doi.org/10.1080/00268979300100571"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490138"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490138/Measurement_of_the_state_specific_differential_cross_section_for_the_H_D_sub_2_sub_HD_i_v_i_4_i_J_i_3_D_reaction_at_a_collision_energy_of_2_2_eV"><img alt="Research paper thumbnail of Measurement of the state‐specific differential cross section for the H+D&lt;sub&gt;2&lt;/sub&gt;→HD(&lt;i&gt;v&lt;/i&gt;′=4, &lt;i&gt;J&lt;/i&gt;′=3)+D reaction at a collision energy of 2.2 eV" class="work-thumbnail" src="https://attachments.academia-assets.com/119523623/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490138/Measurement_of_the_state_specific_differential_cross_section_for_the_H_D_sub_2_sub_HD_i_v_i_4_i_J_i_3_D_reaction_at_a_collision_energy_of_2_2_eV">Measurement of the state‐specific differential cross section for the H+D&lt;sub&gt;2&lt;/sub&gt;→HD(&lt;i&gt;v&lt;/i&gt;′=4, &lt;i&gt;J&lt;/i&gt;′=3)+D reaction at a collision energy of 2.2 eV</a></div><div class="wp-workCard_item"><span>Journal of Chemical Physics</span><span>, Sep 22, 1995</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3d975b7bc6107d22294c562da9318fc1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119523623,&quot;asset_id&quot;:125490138,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119523623/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490138"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490138"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490138; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490138]").text(description); $(".js-view-count[data-work-id=125490138]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490138; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490138']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490138, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3d975b7bc6107d22294c562da9318fc1" } } $('.js-work-strip[data-work-id=125490138]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490138,"title":"Measurement of the state‐specific differential cross section for the H+D\u003csub\u003e2\u003c/sub\u003e→HD(\u003ci\u003ev\u003c/i\u003e′=4, \u003ci\u003eJ\u003c/i\u003e′=3)+D reaction at a collision energy of 2.2 eV","translated_title":"","metadata":{"publisher":"American Institute of Physics","publication_date":{"day":22,"month":9,"year":1995,"errors":{}},"publication_name":"Journal of Chemical Physics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125490138/Measurement_of_the_state_specific_differential_cross_section_for_the_H_D_sub_2_sub_HD_i_v_i_4_i_J_i_3_D_reaction_at_a_collision_energy_of_2_2_eV","translated_internal_url":"","created_at":"2024-11-12T08:56:44.538-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119523623,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523623/thumbnails/1.jpg","file_name":"XuShaferMerktTuckett_JCP1995.pdf","download_url":"https://www.academia.edu/attachments/119523623/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Measurement_of_the_state_specific_differ.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523623/XuShaferMerktTuckett_JCP1995-libre.pdf?1731431118=\u0026response-content-disposition=attachment%3B+filename%3DMeasurement_of_the_state_specific_differ.pdf\u0026Expires=1733910672\u0026Signature=IYIz9ZdzDPYgLRXnFSDwoz36te99pUM5zWsB04nXq-g7f5AEjuiFixakLOjekXFW9QJS9imSuqa6juMoHkZHU290jRhEDv6rHbO2-Fe-yAxo7uJ3Ma-NKTkVtSMHHBkMa3v2Jmm1QnyOrCuE-IEH786bMyOLI79QCt~5HQWZRH4NU~g7RTdl18dRiwlUwINDdFkuOeoNMYyjb4Ie9txJueq5u9lt04vFzVWFM5Fmpm0zwIASaNr2jGEBK411yqD5MFJHhd8kEPz0wQNWgd7Q4VmbIfz82bKkkeZR1jM-7CplDqC7OKBRgRCsk-4vKTjzFG8ruDV~BJU8wRevSRd5Vw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Measurement_of_the_state_specific_differential_cross_section_for_the_H_D_sub_2_sub_HD_i_v_i_4_i_J_i_3_D_reaction_at_a_collision_energy_of_2_2_eV","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":null,"owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":119523623,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523623/thumbnails/1.jpg","file_name":"XuShaferMerktTuckett_JCP1995.pdf","download_url":"https://www.academia.edu/attachments/119523623/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Measurement_of_the_state_specific_differ.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523623/XuShaferMerktTuckett_JCP1995-libre.pdf?1731431118=\u0026response-content-disposition=attachment%3B+filename%3DMeasurement_of_the_state_specific_differ.pdf\u0026Expires=1733910672\u0026Signature=IYIz9ZdzDPYgLRXnFSDwoz36te99pUM5zWsB04nXq-g7f5AEjuiFixakLOjekXFW9QJS9imSuqa6juMoHkZHU290jRhEDv6rHbO2-Fe-yAxo7uJ3Ma-NKTkVtSMHHBkMa3v2Jmm1QnyOrCuE-IEH786bMyOLI79QCt~5HQWZRH4NU~g7RTdl18dRiwlUwINDdFkuOeoNMYyjb4Ie9txJueq5u9lt04vFzVWFM5Fmpm0zwIASaNr2jGEBK411yqD5MFJHhd8kEPz0wQNWgd7Q4VmbIfz82bKkkeZR1jM-7CplDqC7OKBRgRCsk-4vKTjzFG8ruDV~BJU8wRevSRd5Vw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":14054,"name":"Chemical","url":"https://www.academia.edu/Documents/in/Chemical"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":112619,"name":"Time of Flight","url":"https://www.academia.edu/Documents/in/Time_of_Flight"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":329196,"name":"Ionization","url":"https://www.academia.edu/Documents/in/Ionization"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":404000,"name":"Cross Section","url":"https://www.academia.edu/Documents/in/Cross_Section"},{"id":539878,"name":"Chemical Reaction","url":"https://www.academia.edu/Documents/in/Chemical_Reaction"},{"id":755720,"name":"Potential Energy Surface","url":"https://www.academia.edu/Documents/in/Potential_Energy_Surface"},{"id":767760,"name":"Angular Distribution","url":"https://www.academia.edu/Documents/in/Angular_Distribution"},{"id":1121984,"name":"Photodissociation","url":"https://www.academia.edu/Documents/in/Photodissociation"},{"id":3364406,"name":"Velocity Distribution","url":"https://www.academia.edu/Documents/in/Velocity_Distribution"}],"urls":[{"id":45586974,"url":"https://pubs.aip.org/aip/jcp/article-pdf/103/12/5157/10777599/5157_1_online.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490137"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490137/ChemInform_Abstract_Vacuum_UV_Fluorescence_Spectroscopy_of_PX3_X_Cl_Br_in_the_Range_9_25_eV"><img alt="Research paper thumbnail of ChemInform Abstract: Vacuum-UV Fluorescence Spectroscopy of PX3 (X: Cl, Br) in the Range 9-25 eV" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490137/ChemInform_Abstract_Vacuum_UV_Fluorescence_Spectroscopy_of_PX3_X_Cl_Br_in_the_Range_9_25_eV">ChemInform Abstract: Vacuum-UV Fluorescence Spectroscopy of PX3 (X: Cl, Br) in the Range 9-25 eV</a></div><div class="wp-workCard_item"><span>ChemInform</span><span>, Jun 19, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT ChemInform is a weekly Abstracting Service, delivering concise information at a glance t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490137"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490137"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490137; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490137]").text(description); $(".js-view-count[data-work-id=125490137]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490137; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490137']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490137, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125490137]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490137,"title":"ChemInform Abstract: Vacuum-UV Fluorescence Spectroscopy of PX3 (X: Cl, Br) in the Range 9-25 eV","translated_title":"","metadata":{"abstract":"ABSTRACT ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.","publisher":"Wiley","publication_date":{"day":19,"month":6,"year":2010,"errors":{}},"publication_name":"ChemInform"},"translated_abstract":"ABSTRACT ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.","internal_url":"https://www.academia.edu/125490137/ChemInform_Abstract_Vacuum_UV_Fluorescence_Spectroscopy_of_PX3_X_Cl_Br_in_the_Range_9_25_eV","translated_internal_url":"","created_at":"2024-11-12T08:56:44.262-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"ChemInform_Abstract_Vacuum_UV_Fluorescence_Spectroscopy_of_PX3_X_Cl_Br_in_the_Range_9_25_eV","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.","owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1525,"name":"Fluorescence Spectroscopy","url":"https://www.academia.edu/Documents/in/Fluorescence_Spectroscopy"},{"id":5427,"name":"Spectroscopy","url":"https://www.academia.edu/Documents/in/Spectroscopy"},{"id":7698,"name":"Fluorescence","url":"https://www.academia.edu/Documents/in/Fluorescence"}],"urls":[{"id":45586973,"url":"https://doi.org/10.1002/chin.199841012"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490136"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490136/Threshold_photoelectron_photoion_coincidence_study_of_the_fragmentation_of_valence_states_of_CH2F_CH3_"><img alt="Research paper thumbnail of Threshold photoelectron–photoion coincidence study of the fragmentation of valence states of CH2F–CH3+" class="work-thumbnail" src="https://attachments.academia-assets.com/119523807/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490136/Threshold_photoelectron_photoion_coincidence_study_of_the_fragmentation_of_valence_states_of_CH2F_CH3_">Threshold photoelectron–photoion coincidence study of the fragmentation of valence states of CH2F–CH3+</a></div><div class="wp-workCard_item"><span>New Journal of Physics</span><span>, Apr 26, 2007</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="768c8332277738d34e812f2dbfa388cd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119523807,&quot;asset_id&quot;:125490136,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119523807/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490136"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490136"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490136; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490136]").text(description); $(".js-view-count[data-work-id=125490136]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490136; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490136']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490136, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "768c8332277738d34e812f2dbfa388cd" } } $('.js-work-strip[data-work-id=125490136]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490136,"title":"Threshold photoelectron–photoion coincidence study of the fragmentation of valence states of CH2F–CH3+","translated_title":"","metadata":{"publisher":"IOP Publishing","publication_date":{"day":26,"month":4,"year":2007,"errors":{}},"publication_name":"New Journal of Physics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125490136/Threshold_photoelectron_photoion_coincidence_study_of_the_fragmentation_of_valence_states_of_CH2F_CH3_","translated_internal_url":"","created_at":"2024-11-12T08:56:43.976-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119523807,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523807/thumbnails/1.jpg","file_name":"1631239.pdf","download_url":"https://www.academia.edu/attachments/119523807/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Threshold_photoelectron_photoion_coincid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523807/1631239-libre.pdf?1731439495=\u0026response-content-disposition=attachment%3B+filename%3DThreshold_photoelectron_photoion_coincid.pdf\u0026Expires=1733910672\u0026Signature=EAovIt2YULj16sjxuaYVRkegjsws9lIbqM6RZPEjVIjdWKq7KkmPdG9PyEKdQeC4MAec-a8va~oMGuVaD~ms0cyuuQItjYPtp6awIs9GIt0unXaR12o7ACe~IPIgzzy9KcSCuDZQEHLpfYikX1sgXdSIMguaQtJbAegO-oj-cJ0ZwdZbRyTqg1mrnjzbm6iT8Q-2-vrSCuGTSkizkZUKWaPg7aYf43R8xqz6-SCd5IqwjHJpYWm3jgiAJCCcy2Qu0XdPxCVGZ0t-sUKNPwquzKRbY2Pz~XiEgyoSf7UO5Sy2U-9rPqWrdWvyBOCgAX4LxFfbR~WvYc7pvY4imCEtnw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Threshold_photoelectron_photoion_coincidence_study_of_the_fragmentation_of_valence_states_of_CH2F_CH3_","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":null,"owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":119523807,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523807/thumbnails/1.jpg","file_name":"1631239.pdf","download_url":"https://www.academia.edu/attachments/119523807/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Threshold_photoelectron_photoion_coincid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523807/1631239-libre.pdf?1731439495=\u0026response-content-disposition=attachment%3B+filename%3DThreshold_photoelectron_photoion_coincid.pdf\u0026Expires=1733910672\u0026Signature=EAovIt2YULj16sjxuaYVRkegjsws9lIbqM6RZPEjVIjdWKq7KkmPdG9PyEKdQeC4MAec-a8va~oMGuVaD~ms0cyuuQItjYPtp6awIs9GIt0unXaR12o7ACe~IPIgzzy9KcSCuDZQEHLpfYikX1sgXdSIMguaQtJbAegO-oj-cJ0ZwdZbRyTqg1mrnjzbm6iT8Q-2-vrSCuGTSkizkZUKWaPg7aYf43R8xqz6-SCd5IqwjHJpYWm3jgiAJCCcy2Qu0XdPxCVGZ0t-sUKNPwquzKRbY2Pz~XiEgyoSf7UO5Sy2U-9rPqWrdWvyBOCgAX4LxFfbR~WvYc7pvY4imCEtnw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"},{"id":11108,"name":"PHOTOELECTRON SPECTROSCOPY","url":"https://www.academia.edu/Documents/in/PHOTOELECTRON_SPECTROSCOPY"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":29617,"name":"Synchrotron Radiation","url":"https://www.academia.edu/Documents/in/Synchrotron_Radiation"},{"id":87546,"name":"Ultraviolet","url":"https://www.academia.edu/Documents/in/Ultraviolet"},{"id":101354,"name":"Coincidence","url":"https://www.academia.edu/Documents/in/Coincidence"},{"id":116193,"name":"Solid State electronic devices","url":"https://www.academia.edu/Documents/in/Solid_State_electronic_devices"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":413295,"name":"Kinetic Energy","url":"https://www.academia.edu/Documents/in/Kinetic_Energy"},{"id":701253,"name":"New Physics","url":"https://www.academia.edu/Documents/in/New_Physics"},{"id":973013,"name":"Yield Curve","url":"https://www.academia.edu/Documents/in/Yield_Curve"}],"urls":[{"id":45586972,"url":"https://doi.org/10.1088/1367-2630/9/4/104"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490135"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490135/Threshold_photoelectron_photoion_coincidence_study_of_the_fragmentation_of_valence_states_of_CF3_CH3_and_CHF2_CH2F_in_the_range_12_24_eV"><img alt="Research paper thumbnail of Threshold photoelectron photoion coincidence study of the fragmentation of valence states of CF3–CH3+and CHF2–CH2F+in the range 12–24 eV" class="work-thumbnail" src="https://attachments.academia-assets.com/119523589/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490135/Threshold_photoelectron_photoion_coincidence_study_of_the_fragmentation_of_valence_states_of_CF3_CH3_and_CHF2_CH2F_in_the_range_12_24_eV">Threshold photoelectron photoion coincidence study of the fragmentation of valence states of CF3–CH3+and CHF2–CH2F+in the range 12–24 eV</a></div><div class="wp-workCard_item"><span>Physical Chemistry Chemical Physics</span><span>, 2004</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="19e5892c22f30461fb5fcc30b6f2ac2e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119523589,&quot;asset_id&quot;:125490135,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119523589/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490135"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490135"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490135; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490135]").text(description); $(".js-view-count[data-work-id=125490135]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490135; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490135']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490135, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "19e5892c22f30461fb5fcc30b6f2ac2e" } } $('.js-work-strip[data-work-id=125490135]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490135,"title":"Threshold photoelectron photoion coincidence study of the fragmentation of valence states of CF3–CH3+and CHF2–CH2F+in the range 12–24 eV","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Physical Chemistry Chemical Physics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125490135/Threshold_photoelectron_photoion_coincidence_study_of_the_fragmentation_of_valence_states_of_CF3_CH3_and_CHF2_CH2F_in_the_range_12_24_eV","translated_internal_url":"","created_at":"2024-11-12T08:56:43.702-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119523589,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523589/thumbnails/1.jpg","file_name":"Tuckett19hysChemChemPhys2004.pdf","download_url":"https://www.academia.edu/attachments/119523589/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Threshold_photoelectron_photoion_coincid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523589/Tuckett19hysChemChemPhys2004-libre.pdf?1731431135=\u0026response-content-disposition=attachment%3B+filename%3DThreshold_photoelectron_photoion_coincid.pdf\u0026Expires=1733910672\u0026Signature=feawyl~9dBGMGdQ-bkalJlt3Ho2aihonyww4ZaGCpGkd2~dUGyuC53lxrU7ruMpEIqqjdOqZlowaHQf~odXVcoMaMfTnQqBbgPdLtClUpvwZu-Xz2pP7fQfqTD5x7Lz7-3HK0B45Otc3Mtzpgogt5zg5wSb5JnA1JG7FJLptZ20RelbIqFQBzq5Jixy98HA9oUFqlfJXxW6Q6hKUSWAwsQMiOsOgfXxCHEQ3nTmeT65SERN~IG5HXPc~srHsOdnCSZk1iJxcgcS8~AEUMec1W5elBmUa11yTVRLn1pSbWM1Pg1~duPQaAxvFmTtyY4xYJVszmODBesN~-yU2PBtjug__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Threshold_photoelectron_photoion_coincidence_study_of_the_fragmentation_of_valence_states_of_CF3_CH3_and_CHF2_CH2F_in_the_range_12_24_eV","translated_slug":"","page_count":35,"language":"en","content_type":"Work","summary":null,"owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":119523589,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523589/thumbnails/1.jpg","file_name":"Tuckett19hysChemChemPhys2004.pdf","download_url":"https://www.academia.edu/attachments/119523589/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Threshold_photoelectron_photoion_coincid.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523589/Tuckett19hysChemChemPhys2004-libre.pdf?1731431135=\u0026response-content-disposition=attachment%3B+filename%3DThreshold_photoelectron_photoion_coincid.pdf\u0026Expires=1733910672\u0026Signature=feawyl~9dBGMGdQ-bkalJlt3Ho2aihonyww4ZaGCpGkd2~dUGyuC53lxrU7ruMpEIqqjdOqZlowaHQf~odXVcoMaMfTnQqBbgPdLtClUpvwZu-Xz2pP7fQfqTD5x7Lz7-3HK0B45Otc3Mtzpgogt5zg5wSb5JnA1JG7FJLptZ20RelbIqFQBzq5Jixy98HA9oUFqlfJXxW6Q6hKUSWAwsQMiOsOgfXxCHEQ3nTmeT65SERN~IG5HXPc~srHsOdnCSZk1iJxcgcS8~AEUMec1W5elBmUa11yTVRLn1pSbWM1Pg1~duPQaAxvFmTtyY4xYJVszmODBesN~-yU2PBtjug__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":2620537,"name":"Physical chemistry and chemical physics","url":"https://www.academia.edu/Documents/in/Physical_chemistry_and_chemical_physics"}],"urls":[{"id":45586971,"url":"http://pure-oai.bham.ac.uk/ws/files/2921859/Tuckett19hysChemChemPhys2004.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490134"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490134/The_use_of_threshold_photoelectron_fluorescence_photon_coincidence_spectroscopy_for_the_measurement_of_the_radiative_lifetimes_of_emitting_states_of_CF3X_X_F_H_Cl_Br_ions"><img alt="Research paper thumbnail of The use of threshold photoelectron - fluorescence photon coincidence spectroscopy for the measurement of the radiative lifetimes of emitting states of CF3X+ (X = F, H, Cl, Br) ions" class="work-thumbnail" src="https://attachments.academia-assets.com/119523622/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490134/The_use_of_threshold_photoelectron_fluorescence_photon_coincidence_spectroscopy_for_the_measurement_of_the_radiative_lifetimes_of_emitting_states_of_CF3X_X_F_H_Cl_Br_ions">The use of threshold photoelectron - fluorescence photon coincidence spectroscopy for the measurement of the radiative lifetimes of emitting states of CF3X+ (X = F, H, Cl, Br) ions</a></div><div class="wp-workCard_item"><span>Chemical Physics</span><span>, 1997</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9e823f1a0685f016e9dc239722777000" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119523622,&quot;asset_id&quot;:125490134,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119523622/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490134"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490134"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490134; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490134]").text(description); $(".js-view-count[data-work-id=125490134]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490134; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490134']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490134, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9e823f1a0685f016e9dc239722777000" } } $('.js-work-strip[data-work-id=125490134]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490134,"title":"The use of threshold photoelectron - fluorescence photon coincidence spectroscopy for the measurement of the radiative lifetimes of emitting states of CF3X+ (X = F, H, Cl, Br) ions","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Chemical Physics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125490134/The_use_of_threshold_photoelectron_fluorescence_photon_coincidence_spectroscopy_for_the_measurement_of_the_radiative_lifetimes_of_emitting_states_of_CF3X_X_F_H_Cl_Br_ions","translated_internal_url":"","created_at":"2024-11-12T08:56:42.998-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119523622,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523622/thumbnails/1.jpg","file_name":"cp214-357-97.pdf","download_url":"https://www.academia.edu/attachments/119523622/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_use_of_threshold_photoelectron_fluor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523622/cp214-357-97-libre.pdf?1731431121=\u0026response-content-disposition=attachment%3B+filename%3DThe_use_of_threshold_photoelectron_fluor.pdf\u0026Expires=1733910672\u0026Signature=XASHZNA~ABre7vS-N0zuEM0ZaJi1IEm0WP0AwptPtKtHvaEV3CYsn2O7wjvuzMx0MxeS9Ldiv1q4dY9tGWwa3ZCqD47KkfMhKWsruRPjGL02RBcnczvHGwG~ctbUqDIkBwv7KIIqcPc5fu9LKS5w6u7taAxvdC3z70uI2TO5jKMOODbrUEUpBcXls~KObuX1Acx4s4yqM5ahOc03yYVJeRc3-aLPc8UJ0Se8kbhtZaXDZMHVSkbrdd3XepiVoCBoCp-3zR~lOU2apLUHrVUivLoUob0aAazLTu52ZmV3xUjMe4GaWQwRye6Y8fZwSbpgQpm-fokXv7e1dILm9hZBVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_use_of_threshold_photoelectron_fluorescence_photon_coincidence_spectroscopy_for_the_measurement_of_the_radiative_lifetimes_of_emitting_states_of_CF3X_X_F_H_Cl_Br_ions","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":null,"owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":119523622,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523622/thumbnails/1.jpg","file_name":"cp214-357-97.pdf","download_url":"https://www.academia.edu/attachments/119523622/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_use_of_threshold_photoelectron_fluor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523622/cp214-357-97-libre.pdf?1731431121=\u0026response-content-disposition=attachment%3B+filename%3DThe_use_of_threshold_photoelectron_fluor.pdf\u0026Expires=1733910672\u0026Signature=XASHZNA~ABre7vS-N0zuEM0ZaJi1IEm0WP0AwptPtKtHvaEV3CYsn2O7wjvuzMx0MxeS9Ldiv1q4dY9tGWwa3ZCqD47KkfMhKWsruRPjGL02RBcnczvHGwG~ctbUqDIkBwv7KIIqcPc5fu9LKS5w6u7taAxvdC3z70uI2TO5jKMOODbrUEUpBcXls~KObuX1Acx4s4yqM5ahOc03yYVJeRc3-aLPc8UJ0Se8kbhtZaXDZMHVSkbrdd3XepiVoCBoCp-3zR~lOU2apLUHrVUivLoUob0aAazLTu52ZmV3xUjMe4GaWQwRye6Y8fZwSbpgQpm-fokXv7e1dILm9hZBVw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":5427,"name":"Spectroscopy","url":"https://www.academia.edu/Documents/in/Spectroscopy"},{"id":7698,"name":"Fluorescence","url":"https://www.academia.edu/Documents/in/Fluorescence"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":22300,"name":"Chemical Physics","url":"https://www.academia.edu/Documents/in/Chemical_Physics"},{"id":101354,"name":"Coincidence","url":"https://www.academia.edu/Documents/in/Coincidence"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":442314,"name":"Radiative Transfer","url":"https://www.academia.edu/Documents/in/Radiative_Transfer"},{"id":670466,"name":"Photon","url":"https://www.academia.edu/Documents/in/Photon"}],"urls":[{"id":45586970,"url":"https://doi.org/10.1016/s0301-0104(96)00325-4"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490133"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490133/The_A_2%CE%A0u_X_2%CE%A0g_emission_spectrum_of_I2_"><img alt="Research paper thumbnail of The A 2Πu-X 2Πg emission spectrum of I2+" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490133/The_A_2%CE%A0u_X_2%CE%A0g_emission_spectrum_of_I2_">The A 2Πu-X 2Πg emission spectrum of I2+</a></div><div class="wp-workCard_item"><span>Chemical Physics Letters</span><span>, Aug 1, 1989</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract The A 2Πu-X 2Πg electronic emission spectrum of I2+ has been recorded at a low rotationa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract The A 2Πu-X 2Πg electronic emission spectrum of I2+ has been recorded at a low rotational temperature in a crossed molecular beam/electron beam apparatus. Six vibrational sequences with five or more members have been assigned to progressions in ν′, giving ω′e = 122±8 cm−1, but a full vibrational analysis has not been possible. It is not known whether this is due to the relatively poor resolution (≈5 cm−1) at which the spectrum has been recorded or because the A 2Πu state is perturbed in one or both spin-orbit components. Existing data on the A state of I2+ are reviewed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490133"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490133"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490133; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490133]").text(description); $(".js-view-count[data-work-id=125490133]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490133; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490133']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490133, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125490133]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490133,"title":"The A 2Πu-X 2Πg emission spectrum of I2+","translated_title":"","metadata":{"abstract":"Abstract The A 2Πu-X 2Πg electronic emission spectrum of I2+ has been recorded at a low rotational temperature in a crossed molecular beam/electron beam apparatus. Six vibrational sequences with five or more members have been assigned to progressions in ν′, giving ω′e = 122±8 cm−1, but a full vibrational analysis has not been possible. It is not known whether this is due to the relatively poor resolution (≈5 cm−1) at which the spectrum has been recorded or because the A 2Πu state is perturbed in one or both spin-orbit components. Existing data on the A state of I2+ are reviewed.","publisher":"Elsevier BV","publication_date":{"day":1,"month":8,"year":1989,"errors":{}},"publication_name":"Chemical Physics Letters"},"translated_abstract":"Abstract The A 2Πu-X 2Πg electronic emission spectrum of I2+ has been recorded at a low rotational temperature in a crossed molecular beam/electron beam apparatus. Six vibrational sequences with five or more members have been assigned to progressions in ν′, giving ω′e = 122±8 cm−1, but a full vibrational analysis has not been possible. It is not known whether this is due to the relatively poor resolution (≈5 cm−1) at which the spectrum has been recorded or because the A 2Πu state is perturbed in one or both spin-orbit components. Existing data on the A state of I2+ are reviewed.","internal_url":"https://www.academia.edu/125490133/The_A_2%CE%A0u_X_2%CE%A0g_emission_spectrum_of_I2_","translated_internal_url":"","created_at":"2024-11-12T08:56:42.670-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_A_2Πu_X_2Πg_emission_spectrum_of_I2_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract The A 2Πu-X 2Πg electronic emission spectrum of I2+ has been recorded at a low rotational temperature in a crossed molecular beam/electron beam apparatus. Six vibrational sequences with five or more members have been assigned to progressions in ν′, giving ω′e = 122±8 cm−1, but a full vibrational analysis has not been possible. It is not known whether this is due to the relatively poor resolution (≈5 cm−1) at which the spectrum has been recorded or because the A 2Πu state is perturbed in one or both spin-orbit components. Existing data on the A state of I2+ are reviewed.","owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":39585,"name":"Molecular beam epitaxy","url":"https://www.academia.edu/Documents/in/Molecular_beam_epitaxy"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"}],"urls":[{"id":45586969,"url":"https://doi.org/10.1016/0009-2614(89)80066-1"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490132"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490132/Vacuum_UV_negative_photoion_spectroscopy_of_CH3F_CH3Cl_and_CH3Br"><img alt="Research paper thumbnail of Vacuum-UV negative photoion spectroscopy of CH3F, CH3Cl and CH3Br" class="work-thumbnail" src="https://attachments.academia-assets.com/119523588/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490132/Vacuum_UV_negative_photoion_spectroscopy_of_CH3F_CH3Cl_and_CH3Br">Vacuum-UV negative photoion spectroscopy of CH3F, CH3Cl and CH3Br</a></div><div class="wp-workCard_item"><span>Physical Chemistry Chemical Physics</span><span>, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="535769d99166c98505f915a9d0206df7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119523588,&quot;asset_id&quot;:125490132,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119523588/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490132"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490132"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490132; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490132]").text(description); $(".js-view-count[data-work-id=125490132]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490132; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490132']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490132, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "535769d99166c98505f915a9d0206df7" } } $('.js-work-strip[data-work-id=125490132]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490132,"title":"Vacuum-UV negative photoion spectroscopy of CH3F, CH3Cl and CH3Br","translated_title":"","metadata":{"publisher":"Royal Society of Chemistry","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Physical Chemistry Chemical Physics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125490132/Vacuum_UV_negative_photoion_spectroscopy_of_CH3F_CH3Cl_and_CH3Br","translated_internal_url":"","created_at":"2024-11-12T08:56:41.234-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119523588,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523588/thumbnails/1.jpg","file_name":"Tuckett42PhysChemChemPhys2010.pdf","download_url":"https://www.academia.edu/attachments/119523588/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Vacuum_UV_negative_photoion_spectroscopy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523588/Tuckett42PhysChemChemPhys2010-libre.pdf?1731431140=\u0026response-content-disposition=attachment%3B+filename%3DVacuum_UV_negative_photoion_spectroscopy.pdf\u0026Expires=1733910673\u0026Signature=F4DUs06pIjhqwGAkW3qeTAPSV0OIBpDLQEE34mT2u25rflwu40brpx3zX06kl5b7WHx8gFQu8XkIrP5Z6iMCLwS-79tF5UasRvSxcNsFkYhW3afsPT3t85~GLMos9coj3wqMoHlmsk323GvhcyHDEM8~-KqqgF6fK7lATA~7~22d7HIX70EgRECiC2vL9m4wZp4mNDv0KYAFOquJLeI8ho4GIXkVfZBv0DAfOZYPH7E60KudhWc1-gBBIynzlcSL4Sjx14ufCMECBXqaYQ0prxKbCTaeWKA-1Yd3FybfXc2-p8OO7MqrotXLUlY3BNfOmw1ldEa6P23WNvxDpK7xjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Vacuum_UV_negative_photoion_spectroscopy_of_CH3F_CH3Cl_and_CH3Br","translated_slug":"","page_count":29,"language":"en","content_type":"Work","summary":null,"owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":119523588,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523588/thumbnails/1.jpg","file_name":"Tuckett42PhysChemChemPhys2010.pdf","download_url":"https://www.academia.edu/attachments/119523588/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Vacuum_UV_negative_photoion_spectroscopy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523588/Tuckett42PhysChemChemPhys2010-libre.pdf?1731431140=\u0026response-content-disposition=attachment%3B+filename%3DVacuum_UV_negative_photoion_spectroscopy.pdf\u0026Expires=1733910673\u0026Signature=F4DUs06pIjhqwGAkW3qeTAPSV0OIBpDLQEE34mT2u25rflwu40brpx3zX06kl5b7WHx8gFQu8XkIrP5Z6iMCLwS-79tF5UasRvSxcNsFkYhW3afsPT3t85~GLMos9coj3wqMoHlmsk323GvhcyHDEM8~-KqqgF6fK7lATA~7~22d7HIX70EgRECiC2vL9m4wZp4mNDv0KYAFOquJLeI8ho4GIXkVfZBv0DAfOZYPH7E60KudhWc1-gBBIynzlcSL4Sjx14ufCMECBXqaYQ0prxKbCTaeWKA-1Yd3FybfXc2-p8OO7MqrotXLUlY3BNfOmw1ldEa6P23WNvxDpK7xjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119523587,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119523587/thumbnails/1.jpg","file_name":"Tuckett42PhysChemChemPhys2010.pdf","download_url":"https://www.academia.edu/attachments/119523587/download_file","bulk_download_file_name":"Vacuum_UV_negative_photoion_spectroscopy.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119523587/Tuckett42PhysChemChemPhys2010-libre.pdf?1731431141=\u0026response-content-disposition=attachment%3B+filename%3DVacuum_UV_negative_photoion_spectroscopy.pdf\u0026Expires=1733910673\u0026Signature=aYPb4qgGkQHxrMfQV3SuREcb-dV5BiL5O-jXn6YSSY-8OYhwNTk6-LuDzgKTtAWqkLptusvH6JlyZQDYWLJ6C~bYimkHXEn7ktzy695-eBwPp-PZKnTKAglNvnTm~gnKYkA1kiX5BFQAqUhK6S4ZWU4TMDPRnUih2zkpoejlmPCZK-upy2-4tnDFUs~iHi0Fh3wBRJ~x3scLI2blvWPHK8eUWYgGvIAQ-O4hOYOtGZbq8mEB1~P3OJt69RRJdX5IOPAovMMrAoJllDatscEkcLQajwAmB-kXVLCZa~G1WSyxaHc7dw8mlKq4aLVw-1aZDApsWS21H4XZmPKy2z9xKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":5427,"name":"Spectroscopy","url":"https://www.academia.edu/Documents/in/Spectroscopy"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":50157,"name":"Molecular","url":"https://www.academia.edu/Documents/in/Molecular"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":219840,"name":"Bond Dissociation Energy","url":"https://www.academia.edu/Documents/in/Bond_Dissociation_Energy"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":2376080,"name":"Photoexcitation","url":"https://www.academia.edu/Documents/in/Photoexcitation"},{"id":2620537,"name":"Physical chemistry and chemical physics","url":"https://www.academia.edu/Documents/in/Physical_chemistry_and_chemical_physics"}],"urls":[{"id":45586968,"url":"http://pure-oai.bham.ac.uk/ws/files/2922193/Tuckett42PhysChemChemPhys2010.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125490076"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125490076/Vacuum_UV_fluorescence_spectroscopy_of_CCl3F_CCl3H_and_CCl3Br_in_the_range_8_30_eV"><img alt="Research paper thumbnail of Vacuum-UV fluorescence spectroscopy of CCl3F, CCl3H and CCl3Br in the range 8–30 eV" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125490076/Vacuum_UV_fluorescence_spectroscopy_of_CCl3F_CCl3H_and_CCl3Br_in_the_range_8_30_eV">Vacuum-UV fluorescence spectroscopy of CCl3F, CCl3H and CCl3Br in the range 8–30 eV</a></div><div class="wp-workCard_item"><span>Physical Chemistry Chemical Physics</span><span>, 1999</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The fluorescence spectroscopy of CCl3X (X=F, H, Br) in the range 200–700 nm is reported, using va...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The fluorescence spectroscopy of CCl3X (X=F, H, Br) in the range 200–700 nm is reported, using vacuum-UV radiation in the range 8–30 eV from a synchrotron as a tunable photoexcitation source. Excitation spectra, with undispersed detection of the fluorescence, have been recorded at the Daresbury UK source with a resolution of 0.1 nm, corresponding to an average energy resolution of ca. 0.015 eV. Dispersed emission spectra in the range 200–700 nm have been recorded at the BESSY 1 Germany source with an optical resolution of 8 nm, following photoexcitation at the energies of the peaks in the excitation spectra. Action spectra, in which the vacuum-UV energy is scanned with detection of the fluorescence at a specific wavelength, have also been recorded at BESSY 1 with a resolution of 0.3 nm; thresholds for production of a particular excited state of a fragment are then obtained. Using single-bunch mode, lifetimes of all the emitting states that fall in the range ca. 3–100 ns have been measured. For photon energies in the range 8–12 eV, emission is due to both CCl2 A1B1–1A1 and CXCl A1A″–1A′. These products form by photodissociation of low-lying Rydberg states of CCl3X, and the thresholds for their production therefore relate to energies of the Rydberg states of the parent molecule. It is not possible to say whether the other products form as two halogen atoms or a diatomic molecule. For energies in the range 13–17 eV, emission is due to diatomic fragments; CCl A2Δ, CF B2Δ, CH B2Σ- and A2Δ, CBr A2Δ, and Cl2 D′ 23Πg. From their threshold energies, there is now accumulated evidence that the excited state of CCl or CX forms in association with three isolated atoms. Our results yield no information on whether the three bonds in CCl3X* break simultaneously or sequentially. In the range 13–17 eV, Cl2* almost certainly forms in conjunction with ground-state CX+Cl. This ion-pair state of Cl2 also forms at higher excitation energies around 20 eV, probably with atomic products C+X+Cl. In no cases is emission observed from excited states of either the CCl3 radical or the parent molecular ion, CCl3X+.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125490076"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125490076"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125490076; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125490076]").text(description); $(".js-view-count[data-work-id=125490076]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125490076; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125490076']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125490076, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125490076]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125490076,"title":"Vacuum-UV fluorescence spectroscopy of CCl3F, CCl3H and CCl3Br in the range 8–30 eV","translated_title":"","metadata":{"abstract":"The fluorescence spectroscopy of CCl3X (X=F, H, Br) in the range 200–700 nm is reported, using vacuum-UV radiation in the range 8–30 eV from a synchrotron as a tunable photoexcitation source. Excitation spectra, with undispersed detection of the fluorescence, have been recorded at the Daresbury UK source with a resolution of 0.1 nm, corresponding to an average energy resolution of ca. 0.015 eV. Dispersed emission spectra in the range 200–700 nm have been recorded at the BESSY 1 Germany source with an optical resolution of 8 nm, following photoexcitation at the energies of the peaks in the excitation spectra. Action spectra, in which the vacuum-UV energy is scanned with detection of the fluorescence at a specific wavelength, have also been recorded at BESSY 1 with a resolution of 0.3 nm; thresholds for production of a particular excited state of a fragment are then obtained. Using single-bunch mode, lifetimes of all the emitting states that fall in the range ca. 3–100 ns have been measured. For photon energies in the range 8–12 eV, emission is due to both CCl2 A1B1–1A1 and CXCl A1A″–1A′. These products form by photodissociation of low-lying Rydberg states of CCl3X, and the thresholds for their production therefore relate to energies of the Rydberg states of the parent molecule. It is not possible to say whether the other products form as two halogen atoms or a diatomic molecule. For energies in the range 13–17 eV, emission is due to diatomic fragments; CCl A2Δ, CF B2Δ, CH B2Σ- and A2Δ, CBr A2Δ, and Cl2 D′ 23Πg. From their threshold energies, there is now accumulated evidence that the excited state of CCl or CX forms in association with three isolated atoms. Our results yield no information on whether the three bonds in CCl3X* break simultaneously or sequentially. In the range 13–17 eV, Cl2* almost certainly forms in conjunction with ground-state CX+Cl. This ion-pair state of Cl2 also forms at higher excitation energies around 20 eV, probably with atomic products C+X+Cl. In no cases is emission observed from excited states of either the CCl3 radical or the parent molecular ion, CCl3X+.","publisher":"Royal Society of Chemistry","publication_date":{"day":null,"month":null,"year":1999,"errors":{}},"publication_name":"Physical Chemistry Chemical Physics"},"translated_abstract":"The fluorescence spectroscopy of CCl3X (X=F, H, Br) in the range 200–700 nm is reported, using vacuum-UV radiation in the range 8–30 eV from a synchrotron as a tunable photoexcitation source. Excitation spectra, with undispersed detection of the fluorescence, have been recorded at the Daresbury UK source with a resolution of 0.1 nm, corresponding to an average energy resolution of ca. 0.015 eV. Dispersed emission spectra in the range 200–700 nm have been recorded at the BESSY 1 Germany source with an optical resolution of 8 nm, following photoexcitation at the energies of the peaks in the excitation spectra. Action spectra, in which the vacuum-UV energy is scanned with detection of the fluorescence at a specific wavelength, have also been recorded at BESSY 1 with a resolution of 0.3 nm; thresholds for production of a particular excited state of a fragment are then obtained. Using single-bunch mode, lifetimes of all the emitting states that fall in the range ca. 3–100 ns have been measured. For photon energies in the range 8–12 eV, emission is due to both CCl2 A1B1–1A1 and CXCl A1A″–1A′. These products form by photodissociation of low-lying Rydberg states of CCl3X, and the thresholds for their production therefore relate to energies of the Rydberg states of the parent molecule. It is not possible to say whether the other products form as two halogen atoms or a diatomic molecule. For energies in the range 13–17 eV, emission is due to diatomic fragments; CCl A2Δ, CF B2Δ, CH B2Σ- and A2Δ, CBr A2Δ, and Cl2 D′ 23Πg. From their threshold energies, there is now accumulated evidence that the excited state of CCl or CX forms in association with three isolated atoms. Our results yield no information on whether the three bonds in CCl3X* break simultaneously or sequentially. In the range 13–17 eV, Cl2* almost certainly forms in conjunction with ground-state CX+Cl. This ion-pair state of Cl2 also forms at higher excitation energies around 20 eV, probably with atomic products C+X+Cl. In no cases is emission observed from excited states of either the CCl3 radical or the parent molecular ion, CCl3X+.","internal_url":"https://www.academia.edu/125490076/Vacuum_UV_fluorescence_spectroscopy_of_CCl3F_CCl3H_and_CCl3Br_in_the_range_8_30_eV","translated_internal_url":"","created_at":"2024-11-12T08:55:42.919-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Vacuum_UV_fluorescence_spectroscopy_of_CCl3F_CCl3H_and_CCl3Br_in_the_range_8_30_eV","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The fluorescence spectroscopy of CCl3X (X=F, H, Br) in the range 200–700 nm is reported, using vacuum-UV radiation in the range 8–30 eV from a synchrotron as a tunable photoexcitation source. Excitation spectra, with undispersed detection of the fluorescence, have been recorded at the Daresbury UK source with a resolution of 0.1 nm, corresponding to an average energy resolution of ca. 0.015 eV. Dispersed emission spectra in the range 200–700 nm have been recorded at the BESSY 1 Germany source with an optical resolution of 8 nm, following photoexcitation at the energies of the peaks in the excitation spectra. Action spectra, in which the vacuum-UV energy is scanned with detection of the fluorescence at a specific wavelength, have also been recorded at BESSY 1 with a resolution of 0.3 nm; thresholds for production of a particular excited state of a fragment are then obtained. Using single-bunch mode, lifetimes of all the emitting states that fall in the range ca. 3–100 ns have been measured. For photon energies in the range 8–12 eV, emission is due to both CCl2 A1B1–1A1 and CXCl A1A″–1A′. These products form by photodissociation of low-lying Rydberg states of CCl3X, and the thresholds for their production therefore relate to energies of the Rydberg states of the parent molecule. It is not possible to say whether the other products form as two halogen atoms or a diatomic molecule. For energies in the range 13–17 eV, emission is due to diatomic fragments; CCl A2Δ, CF B2Δ, CH B2Σ- and A2Δ, CBr A2Δ, and Cl2 D′ 23Πg. From their threshold energies, there is now accumulated evidence that the excited state of CCl or CX forms in association with three isolated atoms. Our results yield no information on whether the three bonds in CCl3X* break simultaneously or sequentially. In the range 13–17 eV, Cl2* almost certainly forms in conjunction with ground-state CX+Cl. This ion-pair state of Cl2 also forms at higher excitation energies around 20 eV, probably with atomic products C+X+Cl. In no cases is emission observed from excited states of either the CCl3 radical or the parent molecular ion, CCl3X+.","owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":5427,"name":"Spectroscopy","url":"https://www.academia.edu/Documents/in/Spectroscopy"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":2376080,"name":"Photoexcitation","url":"https://www.academia.edu/Documents/in/Photoexcitation"},{"id":2620537,"name":"Physical chemistry and chemical physics","url":"https://www.academia.edu/Documents/in/Physical_chemistry_and_chemical_physics"}],"urls":[{"id":45586923,"url":"https://doi.org/10.1039/a809422e"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121518323"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121518323/The_i_Dtilde_i_sup_2_sup_i_A_i_sub_1_sub_i_Ctilde_i_sup_2_sup_i_T_i_sub_2_sub_emission_band_system_of_SiF_sup_sup_sub_4_sub_"><img alt="Research paper thumbnail of The&lt;i&gt;[Dtilde]&lt;/i&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;i&gt;A&lt;/i&gt;&lt;sub&gt;1&lt;/sub&gt;-&lt;i&gt;[Ctilde]&lt;/i&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;i&gt;T&lt;/i&gt;&lt;sub&gt;2&lt;/sub&gt;emission band system of SiF&lt;sup&gt;+&lt;/sup&gt;&lt;sub&gt;4&lt;/sub&gt;" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121518323/The_i_Dtilde_i_sup_2_sup_i_A_i_sub_1_sub_i_Ctilde_i_sup_2_sup_i_T_i_sub_2_sub_emission_band_system_of_SiF_sup_sup_sub_4_sub_">The&lt;i&gt;[Dtilde]&lt;/i&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;i&gt;A&lt;/i&gt;&lt;sub&gt;1&lt;/sub&gt;-&lt;i&gt;[Ctilde]&lt;/i&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;i&gt;T&lt;/i&gt;&lt;sub&gt;2&lt;/sub&gt;emission band system of SiF&lt;sup&gt;+&lt;/sup&gt;&lt;sub&gt;4&lt;/sub&gt;</a></div><div class="wp-workCard_item"><span>Molecular Physics</span><span>, Mar 1, 1987</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The [Dtilde] 2 A 1-[Ctilde] 2 T 2 emission spectrum of SiF+ 4 is observed at a low rotational tem...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The [Dtilde] 2 A 1-[Ctilde] 2 T 2 emission spectrum of SiF+ 4 is observed at a low rotational temperature in a crossed molecular beam/electron beam apparatus. The narrow rotational envelope of the bands confirms the assignment of the emitter as the parent molecular ion of SiF4. The spectrum is analysed, and the results compare excellently with photoelectron data for SiF4. Spin-orbit splitting and Jahn-Teller distortion are observed in the [Ctilde] 2 T 2 state, with both v 2(e) and v 4(t 2) being Jahn-Teller active vibrations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121518323"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121518323"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121518323; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121518323]").text(description); $(".js-view-count[data-work-id=121518323]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121518323; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121518323']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121518323, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=121518323]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121518323,"title":"The\u003ci\u003e[Dtilde]\u003c/i\u003e\u003csup\u003e2\u003c/sup\u003e\u003ci\u003eA\u003c/i\u003e\u003csub\u003e1\u003c/sub\u003e-\u003ci\u003e[Ctilde]\u003c/i\u003e\u003csup\u003e2\u003c/sup\u003e\u003ci\u003eT\u003c/i\u003e\u003csub\u003e2\u003c/sub\u003eemission band system of SiF\u003csup\u003e+\u003c/sup\u003e\u003csub\u003e4\u003c/sub\u003e","translated_title":"","metadata":{"abstract":"The [Dtilde] 2 A 1-[Ctilde] 2 T 2 emission spectrum of SiF+ 4 is observed at a low rotational temperature in a crossed molecular beam/electron beam apparatus. The narrow rotational envelope of the bands confirms the assignment of the emitter as the parent molecular ion of SiF4. The spectrum is analysed, and the results compare excellently with photoelectron data for SiF4. Spin-orbit splitting and Jahn-Teller distortion are observed in the [Ctilde] 2 T 2 state, with both v 2(e) and v 4(t 2) being Jahn-Teller active vibrations.","publisher":"Taylor \u0026 Francis","publication_date":{"day":1,"month":3,"year":1987,"errors":{}},"publication_name":"Molecular Physics"},"translated_abstract":"The [Dtilde] 2 A 1-[Ctilde] 2 T 2 emission spectrum of SiF+ 4 is observed at a low rotational temperature in a crossed molecular beam/electron beam apparatus. The narrow rotational envelope of the bands confirms the assignment of the emitter as the parent molecular ion of SiF4. The spectrum is analysed, and the results compare excellently with photoelectron data for SiF4. Spin-orbit splitting and Jahn-Teller distortion are observed in the [Ctilde] 2 T 2 state, with both v 2(e) and v 4(t 2) being Jahn-Teller active vibrations.","internal_url":"https://www.academia.edu/121518323/The_i_Dtilde_i_sup_2_sup_i_A_i_sub_1_sub_i_Ctilde_i_sup_2_sup_i_T_i_sub_2_sub_emission_band_system_of_SiF_sup_sup_sub_4_sub_","translated_internal_url":"","created_at":"2024-06-25T23:56:56.667-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_i_Dtilde_i_sup_2_sup_i_A_i_sub_1_sub_i_Ctilde_i_sup_2_sup_i_T_i_sub_2_sub_emission_band_system_of_SiF_sup_sup_sub_4_sub_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The [Dtilde] 2 A 1-[Ctilde] 2 T 2 emission spectrum of SiF+ 4 is observed at a low rotational temperature in a crossed molecular beam/electron beam apparatus. The narrow rotational envelope of the bands confirms the assignment of the emitter as the parent molecular ion of SiF4. The spectrum is analysed, and the results compare excellently with photoelectron data for SiF4. Spin-orbit splitting and Jahn-Teller distortion are observed in the [Ctilde] 2 T 2 state, with both v 2(e) and v 4(t 2) being Jahn-Teller active vibrations.","owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[],"research_interests":[{"id":513,"name":"Molecular Physics","url":"https://www.academia.edu/Documents/in/Molecular_Physics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":11740,"name":"Atomic Physics","url":"https://www.academia.edu/Documents/in/Atomic_Physics"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":645605,"name":"THEORETICAL AND COMPUTATIONAL CHEMISTRY","url":"https://www.academia.edu/Documents/in/THEORETICAL_AND_COMPUTATIONAL_CHEMISTRY"},{"id":1213686,"name":"Jahn Teller Effect","url":"https://www.academia.edu/Documents/in/Jahn_Teller_Effect"}],"urls":[{"id":43238747,"url":"https://doi.org/10.1080/00268978700100531"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121518322"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121518322/Fragmentation_of_Energy_Selected_SF5CF3_Probed_by_Threshold_Photoelectron_Photoion_Coincidence_Spectroscopy_Bond_Dissociation_Energy_of_SF5_CF3_and_Its_Atmospheric_Implications"><img alt="Research paper thumbnail of Fragmentation of Energy-Selected SF5CF3+ Probed by Threshold Photoelectron Photoion Coincidence Spectroscopy: Bond Dissociation Energy of SF5-CF3 and Its Atmospheric Implications" class="work-thumbnail" src="https://attachments.academia-assets.com/116371908/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121518322/Fragmentation_of_Energy_Selected_SF5CF3_Probed_by_Threshold_Photoelectron_Photoion_Coincidence_Spectroscopy_Bond_Dissociation_Energy_of_SF5_CF3_and_Its_Atmospheric_Implications">Fragmentation of Energy-Selected SF5CF3+ Probed by Threshold Photoelectron Photoion Coincidence Spectroscopy: Bond Dissociation Energy of SF5-CF3 and Its Atmospheric Implications</a></div><div class="wp-workCard_item"><span>Journal of Physical Chemistry A</span><span>, Aug 24, 2001</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Where a licence is displayed above, please note the terms and conditions of the licence govern yo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c0b035e053c424a9c1803e0dabd86417" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:116371908,&quot;asset_id&quot;:121518322,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/116371908/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121518322"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121518322"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121518322; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121518322]").text(description); $(".js-view-count[data-work-id=121518322]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121518322; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121518322']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121518322, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c0b035e053c424a9c1803e0dabd86417" } } $('.js-work-strip[data-work-id=121518322]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121518322,"title":"Fragmentation of Energy-Selected SF5CF3+ Probed by Threshold Photoelectron Photoion Coincidence Spectroscopy: Bond Dissociation Energy of SF5-CF3 and Its Atmospheric Implications","translated_title":"","metadata":{"publisher":"American Chemical Society","grobid_abstract":"Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.","publication_date":{"day":24,"month":8,"year":2001,"errors":{}},"publication_name":"Journal of Physical Chemistry A","grobid_abstract_attachment_id":116371908},"translated_abstract":null,"internal_url":"https://www.academia.edu/121518322/Fragmentation_of_Energy_Selected_SF5CF3_Probed_by_Threshold_Photoelectron_Photoion_Coincidence_Spectroscopy_Bond_Dissociation_Energy_of_SF5_CF3_and_Its_Atmospheric_Implications","translated_internal_url":"","created_at":"2024-06-25T23:56:56.456-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":116371908,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116371908/thumbnails/1.jpg","file_name":"Tuckett8JPhysChemA2001.pdf","download_url":"https://www.academia.edu/attachments/116371908/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fragmentation_of_Energy_Selected_SF5CF3.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116371908/Tuckett8JPhysChemA2001-libre.pdf?1719392273=\u0026response-content-disposition=attachment%3B+filename%3DFragmentation_of_Energy_Selected_SF5CF3.pdf\u0026Expires=1733910673\u0026Signature=Z-ZHF08tt4EPbenORT4dlfeylfcW5b0FToxmzzhcjRqFENNj4KsEizHkn5SH2XYExLII4OCetAfYvXH9tFSIl59LoKq~VGp38FgVSqz5xb7roatxUXedVxE7MiMp2ubmsGKesWo9www~9JFDyBeY9NEobg9fHPFP-cXoUEypWUwcPQcVlxiH28FN-Po~Isw2~vVk350ER2Rswp8HiGFc11LGQA34vwmE2IVflrPC~5dxlmJJX7GT7sZXyEOAC8U4R6siBjfFwPEcYD72ke5enCwPu6xBt907hGchqMIiazoXu3SWpTEBzlq2zdUYs0D-CWn28LurJO3R0XD~3GupDQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fragmentation_of_Energy_Selected_SF5CF3_Probed_by_Threshold_Photoelectron_Photoion_Coincidence_Spectroscopy_Bond_Dissociation_Energy_of_SF5_CF3_and_Its_Atmospheric_Implications","translated_slug":"","page_count":32,"language":"en","content_type":"Work","summary":"Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.","owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[{"id":116371908,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116371908/thumbnails/1.jpg","file_name":"Tuckett8JPhysChemA2001.pdf","download_url":"https://www.academia.edu/attachments/116371908/download_file?st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&st=MTczMzkwNzA3Myw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fragmentation_of_Energy_Selected_SF5CF3.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116371908/Tuckett8JPhysChemA2001-libre.pdf?1719392273=\u0026response-content-disposition=attachment%3B+filename%3DFragmentation_of_Energy_Selected_SF5CF3.pdf\u0026Expires=1733910673\u0026Signature=Z-ZHF08tt4EPbenORT4dlfeylfcW5b0FToxmzzhcjRqFENNj4KsEizHkn5SH2XYExLII4OCetAfYvXH9tFSIl59LoKq~VGp38FgVSqz5xb7roatxUXedVxE7MiMp2ubmsGKesWo9www~9JFDyBeY9NEobg9fHPFP-cXoUEypWUwcPQcVlxiH28FN-Po~Isw2~vVk350ER2Rswp8HiGFc11LGQA34vwmE2IVflrPC~5dxlmJJX7GT7sZXyEOAC8U4R6siBjfFwPEcYD72ke5enCwPu6xBt907hGchqMIiazoXu3SWpTEBzlq2zdUYs0D-CWn28LurJO3R0XD~3GupDQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":116371907,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/116371907/thumbnails/1.jpg","file_name":"Tuckett8JPhysChemA2001.pdf","download_url":"https://www.academia.edu/attachments/116371907/download_file","bulk_download_file_name":"Fragmentation_of_Energy_Selected_SF5CF3.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/116371907/Tuckett8JPhysChemA2001-libre.pdf?1719392268=\u0026response-content-disposition=attachment%3B+filename%3DFragmentation_of_Energy_Selected_SF5CF3.pdf\u0026Expires=1733910673\u0026Signature=A159fjrVfAit0~4u~uRBcsEqX1fqDZfQYu9YOkLi~9pagb8V9qSR0CnyK1W95SLzXv2iRagKFHDm0kEVE-fpEOmkdgyOzYuJs221JChpmrp3toxp3DB-aJwL3HEwfmO9N1wWIiJRdnm5ilZoAn52CKteNVARtyLQAzIjfiC61tjpNti7DoPi9dsDYH7srWXfzsurIpd3QkZWDLLEYTNrCypXPyin49ubsBp2PzO80fmMEb67GPmKCHuVz9EMQYaJFikrS6EMPOG37zT3NtLceVF5gY-o36EzhAsM5~FmaipfS6OeImHhCpNkfdXjBtN8XvAkg2SNyD5jxLx7nkyBVg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":5427,"name":"Spectroscopy","url":"https://www.academia.edu/Documents/in/Spectroscopy"},{"id":645605,"name":"THEORETICAL AND COMPUTATIONAL CHEMISTRY","url":"https://www.academia.edu/Documents/in/THEORETICAL_AND_COMPUTATIONAL_CHEMISTRY"}],"urls":[{"id":43238746,"url":"http://pure-oai.bham.ac.uk/ws/files/4605832/Tuckett8JPhysChemA2001.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="121518321"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/121518321/Electronic_fluorescence_spectra_of_gas_phase_positive_molecular_ions"><img alt="Research paper thumbnail of Electronic fluorescence spectra of gas-phase positive molecular ions" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/121518321/Electronic_fluorescence_spectra_of_gas_phase_positive_molecular_ions">Electronic fluorescence spectra of gas-phase positive molecular ions</a></div><div class="wp-workCard_item"><span>Chemical Physics Letters</span><span>, Aug 1, 1980</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract A new technique for observing electronic spectra of gas-phase positive molecular ions is...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract A new technique for observing electronic spectra of gas-phase positive molecular ions is described. The ions are produced by electron impact on a supersonic molecular beam, and the resulting fluorescent radiation is dispersed. Some results on N 2 , N 2 O and CO 2 are presented. They suggest that this technique could be most productive for studying large polyatomic cations.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="121518321"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="121518321"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 121518321; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=121518321]").text(description); $(".js-view-count[data-work-id=121518321]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 121518321; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='121518321']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 121518321, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=121518321]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":121518321,"title":"Electronic fluorescence spectra of gas-phase positive molecular ions","translated_title":"","metadata":{"abstract":"Abstract A new technique for observing electronic spectra of gas-phase positive molecular ions is described. The ions are produced by electron impact on a supersonic molecular beam, and the resulting fluorescent radiation is dispersed. Some results on N 2 , N 2 O and CO 2 are presented. They suggest that this technique could be most productive for studying large polyatomic cations.","publisher":"Elsevier BV","publication_date":{"day":1,"month":8,"year":1980,"errors":{}},"publication_name":"Chemical Physics Letters"},"translated_abstract":"Abstract A new technique for observing electronic spectra of gas-phase positive molecular ions is described. The ions are produced by electron impact on a supersonic molecular beam, and the resulting fluorescent radiation is dispersed. Some results on N 2 , N 2 O and CO 2 are presented. They suggest that this technique could be most productive for studying large polyatomic cations.","internal_url":"https://www.academia.edu/121518321/Electronic_fluorescence_spectra_of_gas_phase_positive_molecular_ions","translated_internal_url":"","created_at":"2024-06-25T23:56:55.842-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":32346837,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Electronic_fluorescence_spectra_of_gas_phase_positive_molecular_ions","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract A new technique for observing electronic spectra of gas-phase positive molecular ions is described. The ions are produced by electron impact on a supersonic molecular beam, and the resulting fluorescent radiation is dispersed. Some results on N 2 , N 2 O and CO 2 are presented. They suggest that this technique could be most productive for studying large polyatomic cations.","owner":{"id":32346837,"first_name":"Richard","middle_initials":null,"last_name":"Tuckett","page_name":"RichardTuckett","domain_name":"bham","created_at":"2015-06-19T03:00:24.265-07:00","display_name":"Richard Tuckett","url":"https://bham.academia.edu/RichardTuckett"},"attachments":[],"research_interests":[{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":923,"name":"Technology","url":"https://www.academia.edu/Documents/in/Technology"},{"id":7698,"name":"Fluorescence","url":"https://www.academia.edu/Documents/in/Fluorescence"},{"id":39585,"name":"Molecular beam epitaxy","url":"https://www.academia.edu/Documents/in/Molecular_beam_epitaxy"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":348756,"name":"Ion","url":"https://www.academia.edu/Documents/in/Ion"},{"id":883316,"name":"Gas Phase","url":"https://www.academia.edu/Documents/in/Gas_Phase"},{"id":2778229,"name":"Supersonic speed","url":"https://www.academia.edu/Documents/in/Supersonic_speed"}],"urls":[{"id":43238745,"url":"https://doi.org/10.1016/0009-2614(80)85005-6"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "c4c3e682ed5a1621a4c8e262730093fafe3c9be49a5fbf91d1c627d6033e7c82", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="Uf4zc8IDyDVABuOLyER/BSN3wuJTYl5w+/VPSFrAIoDJA++ZBvQ5OYnP3MvmJD1t2tusoVwpy50PXCRxKWXfSg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://bham.academia.edu/RichardTuckett" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="2EwPZYtZiPhJBju0Luw/p8GlgOM71y6bIy4LbXuznBVAsdOPT6559IDPBPQAjH3POAnuoDScu3bXh2BUCBZh3w==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10