CINXE.COM
Search results for: pipeline inspection
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: pipeline inspection</title> <meta name="description" content="Search results for: pipeline inspection"> <meta name="keywords" content="pipeline inspection"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="pipeline inspection" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="pipeline inspection"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 672</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: pipeline inspection</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">672</span> Gas Transmission Pipeline Integrity Management System Through Corrosion Mitigation and Inspection Strategy: A Case Study of Natural Gas Transmission Pipeline from Wafa Field to Mellitah Gas Plant in Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osama%20Sassi">Osama Sassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Manal%20Eltorki"> Manal Eltorki</a>, <a href="https://publications.waset.org/abstracts/search?q=Iftikhar%20Ahmad"> Iftikhar Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poor integrity is one of the major causes of leaks and accidents in gas transmission pipelines. To ensure safe operation, it is must to have efficient and effective pipeline integrity management (PIM) system. The corrosion management is one of the important aspects of successful pipeline integrity management program together design, material selection, operations, risk evaluation and communication aspects to maintain pipelines in a fit-for-service condition. The objective of a corrosion management plan is to design corrosion mitigation, monitoring, and inspection strategy, and for maintenance in a timely manner. This paper presents the experience of corrosion management of a gas transmission pipeline from Wafa field to Mellitah gas plant in Libya. The pipeline is 525.5 km long and having 32 inches diameter. It is a buried pipeline. External corrosion on pipeline is controlled with a combination of coatings and cathodic protection while internal corrosion is controlled with a combination of chemical inhibitors, periodic cleaning and process control. The monitoring and inspection techniques provide a way to measure the effectiveness of corrosion control systems and provide an early warning when changing conditions may be causing a corrosion problem. This paper describes corrosion management system used in Mellitah Oil & Gas BV for its gas transmission pipeline based on standard practices of corrosion mitigation and inspection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion%20mitigation%20on%20gas%20transmission%20pipelines" title="corrosion mitigation on gas transmission pipelines">corrosion mitigation on gas transmission pipelines</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline%20integrity%20management" title=" pipeline integrity management"> pipeline integrity management</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20management%20of%20gas%20pipelines" title=" corrosion management of gas pipelines"> corrosion management of gas pipelines</a>, <a href="https://publications.waset.org/abstracts/search?q=prevention%20and%20inspection%20of%20corrosion" title=" prevention and inspection of corrosion"> prevention and inspection of corrosion</a> </p> <a href="https://publications.waset.org/abstracts/178928/gas-transmission-pipeline-integrity-management-system-through-corrosion-mitigation-and-inspection-strategy-a-case-study-of-natural-gas-transmission-pipeline-from-wafa-field-to-mellitah-gas-plant-in-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">671</span> Study of Electro Magnetic Acoustic Transducer to Detect Flaw in Pipeline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Lin%20Shen">Yu-Lin Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Kuen%20Chang"> Ming-Kuen Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electro Magnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMAT" title="EMAT">EMAT</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT" title=" NDT"> NDT</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20defect" title=" artificial defect"> artificial defect</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20testing" title=" ultrasonic testing"> ultrasonic testing</a> </p> <a href="https://publications.waset.org/abstracts/23052/study-of-electro-magnetic-acoustic-transducer-to-detect-flaw-in-pipeline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">670</span> Robotics and Embedded Systems Applied to the Buried Pipeline Inspection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robson%20C.%20Santos">Robson C. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Julio%20C.%20P.%20Ribeiro"> Julio C. P. Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Iorran%20M.%20de%20Castro"> Iorran M. de Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=Luan%20C.%20F.%20Rodrigues"> Luan C. F. Rodrigues</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandro%20R.%20L.%20Silva"> Sandro R. L. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20M.%20Quesada"> Diego M. Quesada </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work aims to develop a robot in the form of autonomous vehicle to detect, inspection and mapping of underground pipelines through the ATmega328 Arduino platform. Hardware prototyping very similar to C / C ++ language that facilitates its use in robotics open source, resembles PLC used in large industrial processes. The robot will traverse the surface independently of direct human action, in order to automate the process of detecting buried pipes, guided by electromagnetic induction. The induction comes from coils that sends the signal to the Arduino microcontroller contained in that will make the difference in intensity and the treatment of the information, then this determines actions to electrical components such as relays and motors, allowing the prototype to move on the surface and getting the necessary information. The robot was developed by electrical and electronic assemblies that allowed test your application. The assembly is made up of metal detector coils, circuit boards and microprocessor, which interconnected circuits previously developed can determine, process control and mechanical actions for a robot (autonomous car) that will make the detection and mapping of buried pipelines plates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robotic" title="robotic">robotic</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20detector" title=" metal detector"> metal detector</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20system" title=" embedded system"> embedded system</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline%20inspection" title=" pipeline inspection"> pipeline inspection</a> </p> <a href="https://publications.waset.org/abstracts/17042/robotics-and-embedded-systems-applied-to-the-buried-pipeline-inspection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">614</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">669</span> Modeling of Digital and Settlement Consolidation of Soil under Oedomete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Lin%20Shen">Yu-Lin Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Kuen%20Chang"> Ming-Kuen Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electromagnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMAT" title="EMAT">EMAT</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20defect" title=" artificial defect"> artificial defect</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT" title=" NDT"> NDT</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20testing" title=" ultrasonic testing"> ultrasonic testing</a> </p> <a href="https://publications.waset.org/abstracts/28196/modeling-of-digital-and-settlement-consolidation-of-soil-under-oedomete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">668</span> Design Study for the Rehabilitation of a Retaining Structure and Water Intake on Site</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Lin%20Shen">Yu-Lin Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Kuen%20Chang"> Ming-Kuen Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electromagnetic Acoustic Transducer testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMAT" title="EMAT">EMAT</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20defect" title=" artificial defect"> artificial defect</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT" title=" NDT"> NDT</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20testing" title=" ultrasonic testing "> ultrasonic testing </a> </p> <a href="https://publications.waset.org/abstracts/27833/design-study-for-the-rehabilitation-of-a-retaining-structure-and-water-intake-on-site" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">667</span> 3-D Numerical Model for Wave-Induced Seabed Response around an Offshore Pipeline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zuodong%20Liang">Zuodong Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Sheng%20Jeng"> Dong-Sheng Jeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seabed instability around an offshore pipeline is one of key factors that need to be considered in the design of offshore infrastructures. Unlike previous investigations, a three-dimensional numerical model for the wave-induced soil response around an offshore pipeline is proposed in this paper. The numerical model was first validated with 2-D experimental data available in the literature. Then, a parametric study will be carried out to examine the effects of wave, seabed characteristics and confirmation of pipeline. Numerical examples demonstrate significant influence of wave obliquity on the wave-induced pore pressures and the resultant seabed liquefaction around the pipeline, which cannot be observed in 2-D numerical simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pore%20pressure" title="pore pressure">pore pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20wave%20model" title=" 3D wave model"> 3D wave model</a>, <a href="https://publications.waset.org/abstracts/search?q=seabed%20liquefaction" title=" seabed liquefaction"> seabed liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline" title=" pipeline"> pipeline</a> </p> <a href="https://publications.waset.org/abstracts/76992/3-d-numerical-model-for-wave-induced-seabed-response-around-an-offshore-pipeline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">666</span> Investigation into Varied Inspection Utilization for Mass Customization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trishen%20Naidoo">Trishen Naidoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Walker"> Anthony Walker</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaniel%20Davrajh"> Shaniel Davrajh</a>, <a href="https://publications.waset.org/abstracts/search?q=Glen%20Bright"> Glen Bright</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation into on-line inspection was performed where research is focused on the use of varied inspection (as opposed to 100% inspection) for mass customization (MC). Manufacturers need new methods for quality control in mass customization, and these methods need to address some of the old problems such as over-inspection and bottlenecking. Due to the risks of varied inspection, many manufacturers do not implement it and rather opt for sampling methods. However, there are many advantages of varied inspection and can have applications in mass customization. A control system incorporating fuzzy logic (FL) control is used to perform the variations in inspection usage in a simulated environment. The proposed system can have a key impact in appraisal costs reduction and possibly work-in-process reduction in high variety environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=appraisal%20costs" title="appraisal costs">appraisal costs</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=work-in-process" title=" work-in-process"> work-in-process</a> </p> <a href="https://publications.waset.org/abstracts/55474/investigation-into-varied-inspection-utilization-for-mass-customization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">665</span> The Use of Geographic Information System Technologies for Geotechnical Monitoring of Pipeline Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Akhundov">A. G. Akhundov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Issues of obtaining unbiased data on the status of pipeline systems of oil- and oil product transportation become especially important when laying and operating pipelines under severe nature and climatic conditions. The essential attention is paid here to researching exogenous processes and their impact on linear facilities of the pipeline system. Reliable operation of pipelines under severe nature and climatic conditions, timely planning and implementation of compensating measures are only possible if operation conditions of pipeline systems are regularly monitored, and changes of permafrost soil and hydrological operation conditions are accounted for. One of the main reasons for emergency situations to appear is the geodynamic factor. Emergency situations are proved by the experience to occur within areas characterized by certain conditions of the environment and to develop according to similar scenarios depending on active processes. The analysis of natural and technical systems of main pipelines at different stages of monitoring gives a possibility of making a forecast of the change dynamics. The integration of GIS technologies, traditional means of geotechnical monitoring (in-line inspection, geodetic methods, field observations), and remote methods (aero-visual inspection, aero photo shooting, air and ground laser scanning) provides the most efficient solution of the problem. The united environment of geo information system (GIS) is a comfortable way to implement the monitoring system on the main pipelines since it provides means to describe a complex natural and technical system and every element thereof with any set of parameters. Such GIS enables a comfortable simulation of main pipelines (both in 2D and 3D), the analysis of situations and selection of recommendations to prevent negative natural or man-made processes and to mitigate their consequences. The specifics of such systems include: a multi-dimensions simulation of facilities in the pipeline system, math modelling of the processes to be observed, and the use of efficient numeric algorithms and software packets for forecasting and analyzing. We see one of the most interesting possibilities of using the monitoring results as generating of up-to-date 3D models of a facility and the surrounding area on the basis of aero laser scanning, data of aerophotoshooting, and data of in-line inspection and instrument measurements. The resulting 3D model shall be the basis of the information system providing means to store and process data of geotechnical observations with references to the facilities of the main pipeline; to plan compensating measures, and to control their implementation. The use of GISs for geotechnical monitoring of pipeline systems is aimed at improving the reliability of their operation, reducing the probability of negative events (accidents and disasters), and at mitigation of consequences thereof if they still are to occur. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=databases" title="databases">databases</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20GIS" title=" 3D GIS"> 3D GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20monitoring" title=" geotechnical monitoring"> geotechnical monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=pipelines" title=" pipelines"> pipelines</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20scaning" title=" laser scaning"> laser scaning</a> </p> <a href="https://publications.waset.org/abstracts/90336/the-use-of-geographic-information-system-technologies-for-geotechnical-monitoring-of-pipeline-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">664</span> An Application of Path Planning Algorithms for Autonomous Inspection of Buried Pipes with Swarm Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20Molyneux">Richard Molyneux</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Parrott"> Christopher Parrott</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirill%20Horoshenkov"> Kirill Horoshenkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to demonstrate how various algorithms can be implemented within swarms of autonomous robots to provide continuous inspection within underground pipeline networks. Current methods of fault detection within pipes are costly, time consuming and inefficient. As such, solutions tend toward a more reactive approach, repairing faults, as opposed to proactively seeking leaks and blockages. The paper presents an efficient inspection method, showing that autonomous swarm robotics is a viable way of monitoring underground infrastructure. Tailored adaptations of various Vehicle Routing Problems (VRP) and path-planning algorithms provide a customised inspection procedure for complicated networks of underground pipes. The performance of multiple algorithms is compared to determine their effectiveness and feasibility. Notable inspirations come from ant colonies and <em>stigmergy</em>, graph theory, the k-Chinese Postman Problem ( -CPP) and traffic theory. Unlike most swarm behaviours which rely on fast communication between agents, underground pipe networks are a highly challenging communication environment with extremely limited communication ranges. This is due to the extreme variability in the pipe conditions and relatively high attenuation of acoustic and radio waves with which robots would usually communicate. This paper illustrates how to optimise the inspection process and how to increase the frequency with which the robots pass each other, without compromising the routes they are able to take to cover the whole network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20inspection" title="autonomous inspection">autonomous inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=buried%20pipes" title=" buried pipes"> buried pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=stigmergy" title=" stigmergy"> stigmergy</a>, <a href="https://publications.waset.org/abstracts/search?q=swarm%20intelligence" title=" swarm intelligence"> swarm intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20routing%20problem" title=" vehicle routing problem"> vehicle routing problem</a> </p> <a href="https://publications.waset.org/abstracts/101625/an-application-of-path-planning-algorithms-for-autonomous-inspection-of-buried-pipes-with-swarm-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">663</span> Enhancing Rupture Pressure Prediction for Corroded Pipes Through Finite Element Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benkouiten%20Imene">Benkouiten Imene</a>, <a href="https://publications.waset.org/abstracts/search?q=Chabli%20Ouerdia"> Chabli Ouerdia</a>, <a href="https://publications.waset.org/abstracts/search?q=Boutoutaou%20Hamid"> Boutoutaou Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadri%20Nesrine"> Kadri Nesrine</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouledroua%20Omar"> Bouledroua Omar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Algeria is actively enhancing gas productivity by augmenting the supply flow. However, this effort has led to increased internal pressure, posing a potential risk to the pipeline's integrity, particularly in the presence of corrosion defects. Sonatrach relies on a vast network of pipelines spanning 24,000 kilometers for the transportation of gas and oil. The aging of these pipelines raises the likelihood of corrosion both internally and externally, heightening the risk of ruptures. To address this issue, a comprehensive inspection is imperative, utilizing specialized scraping tools. These advanced tools furnish a detailed assessment of all pipeline defects. It is essential to recalculate the pressure parameters to safeguard the corroded pipeline's integrity while ensuring the continuity of production. In this context, Sonatrach employs symbolic pressure limit calculations, such as ASME B31G (2009) and the modified ASME B31G (2012). The aim of this study is to perform a comparative analysis of various limit pressure calculation methods documented in the literature, namely DNV RP F-101, SHELL, P-CORRC, NETTO, and CSA Z662. This comparative assessment will be based on a dataset comprising 329 burst tests published in the literature. Ultimately, we intend to introduce a novel approach grounded in the finite element method, employing ANSYS software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pipeline%20burst%20pressure" title="pipeline burst pressure">pipeline burst pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=burst%20test" title=" burst test"> burst test</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20defect" title=" corrosion defect"> corrosion defect</a>, <a href="https://publications.waset.org/abstracts/search?q=corroded%20pipeline" title=" corroded pipeline"> corroded pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/179892/enhancing-rupture-pressure-prediction-for-corroded-pipes-through-finite-element-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">662</span> Exploring Hydrogen Embrittlement and Fatigue Crack Growth in API 5L X52 Steel Pipeline Under Cyclic Internal Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Bouledroua">Omar Bouledroua</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Zelmati"> Djamel Zelmati</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahreddine%20Hafsi"> Zahreddine Hafsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Milos%20B.%20Djukic"> Milos B. Djukic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transporting hydrogen gas through the existing natural gas pipeline network offers an efficient solution for energy storage and conveyance. Hydrogen generated from excess renewable electricity can be conveyed through the API 5L steel-made pipelines that already exist. In recent years, there has been a growing demand for the transportation of hydrogen through existing gas pipelines. Therefore, numerical and experimental tests are required to verify and ensure the mechanical integrity of the API 5L steel pipelines that will be used for pressurized hydrogen transportation. Internal pressure loading is likely to accelerate hydrogen diffusion through the internal pipe wall and consequently accentuate the hydrogen embrittlement of steel pipelines. Furthermore, pre-cracked pipelines are susceptible to quick failure, mainly under a time-dependent cyclic pressure loading that drives fatigue crack propagation. Meanwhile, after several loading cycles, the initial cracks will propagate to a critical size. At this point, the remaining service life of the pipeline can be estimated, and inspection intervals can be determined. This paper focuses on the hydrogen embrittlement of API 5L steel-made pipeline under cyclic pressure loading. Pressurized hydrogen gas is transported through a network of pipelines where demands at consumption nodes vary periodically. The resulting pressure profile over time is considered a cyclic loading on the internal wall of a pre-cracked pipeline made of API 5L steel-grade material. Numerical modeling has allowed the prediction of fatigue crack evolution and estimation of the remaining service life of the pipeline. The developed methodology in this paper is based on the ASME B31.12 standard, which outlines the guidelines for hydrogen pipelines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20embrittlement" title="hydrogen embrittlement">hydrogen embrittlement</a>, <a href="https://publications.waset.org/abstracts/search?q=pipelines" title=" pipelines"> pipelines</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20flow" title=" transient flow"> transient flow</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20pressure" title=" cyclic pressure"> cyclic pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20crack%20growth" title=" fatigue crack growth"> fatigue crack growth</a> </p> <a href="https://publications.waset.org/abstracts/178022/exploring-hydrogen-embrittlement-and-fatigue-crack-growth-in-api-5l-x52-steel-pipeline-under-cyclic-internal-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">661</span> Non-Destructive Inspection for Tunnel Lining Concrete with Small Void by Using Ultrasonic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasuyuki%20Nabeshima">Yasuyuki Nabeshima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many tunnels which have been constructed since more than 50 years were existing in Japan. Lining concrete in these tunnels have many problems such as crack, flacking and void. Inner void between lining concrete and rock was very hard to find by outside visual check and hammering test. In this paper, non-destructive inspection by using ultrasonic was applied to investigate inner void. A model concrete with inner void was used as specimen and ultrasonic inspection was applied to specify the location and the size of void. As a result, ultrasonic inspection could accurately find the inner void. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tunnel" title="tunnel">tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=lining%20concrete" title=" lining concrete"> lining concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=void" title=" void"> void</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20inspection" title=" non-destructive inspection"> non-destructive inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic" title=" ultrasonic"> ultrasonic</a> </p> <a href="https://publications.waset.org/abstracts/74615/non-destructive-inspection-for-tunnel-lining-concrete-with-small-void-by-using-ultrasonic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">660</span> Self-Propelled Intelligent Robotic Vehicle Based on Octahedral Dodekapod to Move in Active Branched Pipelines with Variable Cross-Sections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergey%20N.%20Sayapin">Sergey N. Sayapin</a>, <a href="https://publications.waset.org/abstracts/search?q=Anatoly%20P.%20Karpenko"> Anatoly P. Karpenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Suan%20H.%20Dang"> Suan H. Dang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comparative analysis of robotic vehicles for pipe inspection is presented in this paper. The promising concept of self-propelled intelligent robotic vehicle (SPIRV) based on octahedral dodekapod for inspection and operation in active branched pipelines with variable cross-sections is reasoned. SPIRV is able to move in pipeline, regardless of its spatial orientation. SPIRV can also be used to move along the outside of the pipelines as well as in space between surfaces of annular tubes. Every one of faces of the octahedral dodekapod can clamp/unclamp a thing with a closed loop surface of various forms as well as put pressure on environmental surface of contact. These properties open new possibilities for its applications in SPIRV. We examine design principles of octahedral dodekapod as future intelligent building blocks for various robotic vehicles that can self-move and self-reconfigure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Modular%20robot" title="Modular robot">Modular robot</a>, <a href="https://publications.waset.org/abstracts/search?q=octahedral%20dodekapod" title=" octahedral dodekapod"> octahedral dodekapod</a>, <a href="https://publications.waset.org/abstracts/search?q=pipe%20inspection%20robot" title=" pipe inspection robot"> pipe inspection robot</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20parallel%20structure" title=" spatial parallel structure"> spatial parallel structure</a> </p> <a href="https://publications.waset.org/abstracts/32718/self-propelled-intelligent-robotic-vehicle-based-on-octahedral-dodekapod-to-move-in-active-branched-pipelines-with-variable-cross-sections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">659</span> Uncertainty Quantification of Corrosion Anomaly Length of Oil and Gas Steel Pipelines Based on Inline Inspection and Field Data </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tammeen%20Siraj">Tammeen Siraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenxing%20Zhou"> Wenxing Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Terry%20Huang"> Terry Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Al-Amin"> Mohammad Al-Amin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high resolution inline inspection (ILI) tool is used extensively in the pipeline industry to identify, locate, and measure metal-loss corrosion anomalies on buried oil and gas steel pipelines. Corrosion anomalies may occur singly (i.e. individual anomalies) or as clusters (i.e. a colony of corrosion anomalies). Although the ILI technology has advanced immensely, there are measurement errors associated with the sizes of corrosion anomalies reported by ILI tools due limitations of the tools and associated sizing algorithms, and detection threshold of the tools (i.e. the minimum detectable feature dimension). Quantifying the measurement error in the ILI data is crucial for corrosion management and developing maintenance strategies that satisfy the safety and economic constraints. Studies on the measurement error associated with the length of the corrosion anomalies (in the longitudinal direction of the pipeline) has been scarcely reported in the literature and will be investigated in the present study. Limitations in the ILI tool and clustering process can sometimes cause clustering error, which is defined as the error introduced during the clustering process by including or excluding a single or group of anomalies in or from a cluster. Clustering error has been found to be one of the biggest contributory factors for relatively high uncertainties associated with ILI reported anomaly length. As such, this study focuses on developing a consistent and comprehensive framework to quantify the measurement errors in the ILI-reported anomaly length by comparing the ILI data and corresponding field measurements for individual and clustered corrosion anomalies. The analysis carried out in this study is based on the ILI and field measurement data for a set of anomalies collected from two segments of a buried natural gas pipeline currently in service in Alberta, Canada. Data analyses showed that the measurement error associated with the ILI-reported length of the anomalies without clustering error, denoted as Type I anomalies is markedly less than that for anomalies with clustering error, denoted as Type II anomalies. A methodology employing data mining techniques is further proposed to classify the Type I and Type II anomalies based on the ILI-reported corrosion anomaly information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustered%20corrosion%20anomaly" title="clustered corrosion anomaly">clustered corrosion anomaly</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20anomaly%20assessment" title=" corrosion anomaly assessment"> corrosion anomaly assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20anomaly%20length" title=" corrosion anomaly length"> corrosion anomaly length</a>, <a href="https://publications.waset.org/abstracts/search?q=individual%20corrosion%20anomaly" title=" individual corrosion anomaly"> individual corrosion anomaly</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-loss%20corrosion" title=" metal-loss corrosion"> metal-loss corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20and%20gas%20steel%20pipeline" title=" oil and gas steel pipeline"> oil and gas steel pipeline</a> </p> <a href="https://publications.waset.org/abstracts/91086/uncertainty-quantification-of-corrosion-anomaly-length-of-oil-and-gas-steel-pipelines-based-on-inline-inspection-and-field-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">658</span> State-of-the Art Practices in Bridge Inspection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salam%20Yaghi">Salam Yaghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Abu%20Dabous"> Saleh Abu Dabous</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Government reports and published research have flagged and brought to public attention the deteriorating condition of a large percentage of bridges in Canada and the United States. With the increasing number of deteriorated bridges in the US, Canada, and around the globe, condition assessment techniques of concrete bridges are evolving. Investigation for bridges’ defects such as cracks, spalls, and delamination and their level of severity are the main objectives of condition assessment. Inspection and rehabilitation programs are being implemented to monitor and maintain deteriorated bridge infrastructure. This paper highlights the state-of-the art of current practices being performed for concrete bridge inspection. The information is gathered from the literature and through a distributed questionnaire. The current practices in concrete bridge inspection rely on the use of hummer sounding and chain dragging tests. Non-Destructive Testing (NDT) techniques are not being utilized fully in the process. Nonetheless, they are being partially utilized by the recommendation of the bridge inspector after conducting the visual inspection. Lanes are usually closed during the performance of visual inspection and bridge inspection in general. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20inspection" title="bridge inspection">bridge inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=condition%20assessment" title=" condition assessment"> condition assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=questionnaire" title=" questionnaire"> questionnaire</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing" title=" non-destructive testing"> non-destructive testing</a> </p> <a href="https://publications.waset.org/abstracts/32448/state-of-the-art-practices-in-bridge-inspection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">657</span> Behavioral Study Circumferential and Longitudinal Cracks in a Steel Pipeline X65 and Repair Patch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadok%20Aboubakr">Sadok Aboubakr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mechanical behavior of cracks from several manufacturing defect in an oil pipeline, is characterized by the fact that defects'm taking several forms: circumferential, longitudinal and inclined crack that evolve over time. Increased lifetime of the constructions and in particular cylindrical tubes under internal pressure requires knowledge improving these defects during loading. From this study we simulated various forms of cracking and also their pipeline repair patch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title="stress intensity factor">stress intensity factor</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%27s%20modulus" title=" Young's modulus"> Young's modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=Poisson%27s%20ratio" title=" Poisson's ratio"> Poisson's ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=Shear%20modulus" title=" Shear modulus"> Shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=Longueur%20du%20pipeline" title=" Longueur du pipeline"> Longueur du pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20angle%20of%20crack" title=" the angle of crack"> the angle of crack</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20length" title=" crack length"> crack length</a> </p> <a href="https://publications.waset.org/abstracts/17734/behavioral-study-circumferential-and-longitudinal-cracks-in-a-steel-pipeline-x65-and-repair-patch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">656</span> Cu Voids Detection of Electron Beam Inspection at the 5nm Node</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Byungsik%20Moon">Byungsik Moon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electron beam inspection (EBI) has played an important role in detecting defects during the Fab process. The study focused on capturing buried Cu metal voids for 5nm technology nodes in Qualcomm Snapdragon mass production. This paper illustrates a case study where Cu metal voids can be detected without side effects with optimized EBI scanning conditions. The voids were buried in the VIA and not detected effectively by bright field inspection. EBI showed higher detectability, about 10 times that of bright fields, and a lower landing energy of EBI can avoid film damage. A comparison of detectability between EBI and bright field inspection was performed, and TEM confirmed voids that were detected by EBI. Therefore, a much higher detectability of buried Cu metal voids can be achieved without causing film damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20beam%20inspection" title="electron beam inspection">electron beam inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=EBI" title=" EBI"> EBI</a>, <a href="https://publications.waset.org/abstracts/search?q=landing%20energy" title=" landing energy"> landing energy</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu%20metal%20voids" title=" Cu metal voids"> Cu metal voids</a>, <a href="https://publications.waset.org/abstracts/search?q=bright%20field%20inspection" title=" bright field inspection"> bright field inspection</a> </p> <a href="https://publications.waset.org/abstracts/170762/cu-voids-detection-of-electron-beam-inspection-at-the-5nm-node" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">655</span> Stress Corrosion Crack Identification with Direct Assessment Method in Pipeline Downstream from a Compressor Station</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Gholami">H. Gholami</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jalali%20Azizpour"> M. Jalali Azizpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stress Corrosion Crack (SCC) in pipeline is a type of environmentally assisted cracking (EAC), since its discovery in 1965 as a possible cause of failure in pipeline, SCC has caused, on average, one of two failures per year in the U.S, According to the NACE SCC DA a pipe line segment is considered susceptible to SCC if all of the following factors are met: The operating stress exceeds 60% of specified minimum yield strength (SMYS), the operating temperature exceeds 38°C, the segment is less than 32 km downstream from a compressor station, the age of the pipeline is greater than 10 years and the coating type is other than Fusion Bonded Epoxy(FBE). In this paper as a practical experience in NISOC, Direct Assessment (DA) Method is used for identification SCC defect in unpiggable pipeline located downstream of compressor station. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20crack" title="stress corrosion crack">stress corrosion crack</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20assessment" title=" direct assessment"> direct assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=disbondment" title=" disbondment"> disbondment</a>, <a href="https://publications.waset.org/abstracts/search?q=transgranular%20SCC" title=" transgranular SCC"> transgranular SCC</a>, <a href="https://publications.waset.org/abstracts/search?q=compressor%20station" title=" compressor station"> compressor station</a> </p> <a href="https://publications.waset.org/abstracts/20469/stress-corrosion-crack-identification-with-direct-assessment-method-in-pipeline-downstream-from-a-compressor-station" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">654</span> Prison Pipeline or College Pathways: Transforming the Urban Classroom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcia%20J.%20Watson">Marcia J. Watson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The “school-to-prison pipeline” is a widely known phenomenon within education. Although data surrounding this epidemic is daunting, we coin the term “school-to-postsecondary pipeline” to explore proactive strategies that are currently working in K-12 education for African American students. The assumption that high school graduation, postsecondary matriculation, and social success are not the assumed norms for African American youth, positions the term “school-to-postsecondary pipeline” as the newly casted advocacy term for African American educational success. Using secondary data from the Children’s Defense Fund and the U.S. Department of Education’s Office of Civil Rights, we examine current conditions of educational accessibility and attainment for African American students, and provide effective strategies for classroom teachers, administrators, and parents to use for the immediate implementation in schools. These strategies include: (a) engaging instruction, (b) relevant curriculum, and (c) utilizing useful enrichment and community resources. By providing proactive steps towards the school-to-postsecondary pipeline, we hope to counter the docility of the school-to-prison pipeline as the assumed reality for African American youth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=college%20access" title="college access">college access</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20education" title=" higher education"> higher education</a>, <a href="https://publications.waset.org/abstracts/search?q=school-to-prison%20pipeline" title=" school-to-prison pipeline"> school-to-prison pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20education%20reform" title=" urban education reform"> urban education reform</a> </p> <a href="https://publications.waset.org/abstracts/20516/prison-pipeline-or-college-pathways-transforming-the-urban-classroom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">653</span> Need for Standardization of Manual Inspection in Small and Medium-Scale Manufacturing Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adithya%20Nadig">Adithya Nadig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of production, characterization of surface roughness plays a vital role in assessing the quality of a manufactured product. The defined parameters for this assessment, each, have their own drawbacks in describing a profile surface. From the purview of small-scale and medium-scale industries, an increase in time spent for manual inspection of a product for various parameters adds to the cost of the product. In order to reduce this, a uniform and established standard is necessary for quantifying a profile of a manufactured product. The inspection procedure in the small and medium-scale manufacturing units at Jigani Industrial area, Bangalore, was observed. The parameters currently in use in those industries are described in the paper and a change in the inspection method is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency%20of%20quality%20assessment" title="efficiency of quality assessment">efficiency of quality assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=manual%20areal%20profiling%20technique" title=" manual areal profiling technique"> manual areal profiling technique</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20in%20small%20and%20medium-scale%20industries%20product-oriented%20inspection" title=" manufacturing in small and medium-scale industries product-oriented inspection"> manufacturing in small and medium-scale industries product-oriented inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=standardization%20of%20manual%20inspection" title=" standardization of manual inspection"> standardization of manual inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness%20characterization" title=" surface roughness characterization"> surface roughness characterization</a> </p> <a href="https://publications.waset.org/abstracts/16525/need-for-standardization-of-manual-inspection-in-small-and-medium-scale-manufacturing-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">652</span> A CFD Analysis of Flow through a High-Pressure Natural Gas Pipeline with an Undeformed and Deformed Orifice Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ki%C5%A1">R. Kiš</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Malcho"> M. Malcho</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Janovcov%C3%A1"> M. Janovcová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to present a numerical analysis of the natural gas which flows through a high-pressure pipeline and an orifice plate, through the use of CFD methods. The paper contains CFD calculations for the flow of natural gas in a pipe with different geometry used for the orifice plates. One of them has a standard geometry and a shape without any deformation and the other is deformed by the action of the pressure differential. It shows the behaviour of natural gas in a pipeline using the velocity profiles and pressure fields of the gas in both models with their differences. The entire research is based on the elimination of any inaccuracy which should appear in the flow of the natural gas measured in the high-pressure pipelines of the gas industry and which is currently not given in the relevant standard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orifice%20plate" title="orifice plate">orifice plate</a>, <a href="https://publications.waset.org/abstracts/search?q=high-pressure%20pipeline" title=" high-pressure pipeline"> high-pressure pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title=" natural gas"> natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20analysis" title=" CFD analysis"> CFD analysis</a> </p> <a href="https://publications.waset.org/abstracts/6081/a-cfd-analysis-of-flow-through-a-high-pressure-natural-gas-pipeline-with-an-undeformed-and-deformed-orifice-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">651</span> To Determine the Effects of Regulatory Food Safety Inspections on the Grades of Different Categories of Retail Food Establishments across the Dubai Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shugufta%20Mohammad%20Zubair">Shugufta Mohammad Zubair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores the Effect of the new food System Inspection system also called the new inspection color card scheme on reduction of critical & major food safety violations in Dubai. Data was collected from all retail food service establishments located in two zones in the city. Each establishment was visited twice, once before the launch of the new system and one after the launch of the system. In each visit, the Inspection checklist was used as the evaluation tool for observation of the critical and major violations. The old format of the inspection checklist was concerned with scores based on the violations; but the new format of the checklist for the new inspection color card scheme is divided into administrative, general major and critical which gives a better classification for the inspectors to identify the critical and major violations of concerned. The study found that there has been a better and clear marking of violations after the launch of new inspection system wherein the inspectors are able to mark and categories the violations effectively. There had been a 10% decrease in the number of food establishment that was previously given A grade. The B & C grading were also considerably dropped by 5%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20inspection" title="food inspection">food inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20card%20scheme" title=" color card scheme"> color card scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=violations" title=" violations"> violations</a> </p> <a href="https://publications.waset.org/abstracts/71630/to-determine-the-effects-of-regulatory-food-safety-inspections-on-the-grades-of-different-categories-of-retail-food-establishments-across-the-dubai-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">650</span> Rheological and Computational Analysis of Crude Oil Transportation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar">Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Kumar"> Satish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jashanpreet%20Singh"> Jashanpreet Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transportation of unrefined crude oil from the production unit to a refinery or large storage area by a pipeline is difficult due to the different properties of crude in various areas. Thus, the design of a crude oil pipeline is a very complex and time consuming process, when considering all the various parameters. There were three very important parameters that play a significant role in the transportation and processing pipeline design; these are: viscosity profile, temperature profile and the velocity profile of waxy crude oil through the crude oil pipeline. Knowledge of the Rheological computational technique is required for better understanding the flow behavior and predicting the flow profile in a crude oil pipeline. From these profile parameters, the material and the emulsion that is best suited for crude oil transportation can be predicted. Rheological computational fluid dynamic technique is a fast method used for designing flow profile in a crude oil pipeline with the help of computational fluid dynamics and rheological modeling. With this technique, the effect of fluid properties including shear rate range with temperature variation, degree of viscosity, elastic modulus and viscous modulus was evaluated under different conditions in a transport pipeline. In this paper, two crude oil samples was used, as well as a prepared emulsion with natural and synthetic additives, at different concentrations ranging from 1,000 ppm to 3,000 ppm. The rheological properties was then evaluated at a temperature range of 25 to 60 °C and which additive was best suited for transportation of crude oil is determined. Commercial computational fluid dynamics (CFD) has been used to generate the flow, velocity and viscosity profile of the emulsions for flow behavior analysis in crude oil transportation pipeline. This rheological CFD design can be further applied in developing designs of pipeline in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surfactant" title="surfactant">surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=natural" title=" natural"> natural</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title=" crude oil"> crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/57573/rheological-and-computational-analysis-of-crude-oil-transportation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">649</span> A Regression Analysis Study of the Applicability of Side Scan Sonar based Safety Inspection of Underwater Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chul%20Park">Chul Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngseok%20Kim"> Youngseok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangsik%20Choi"> Sangsik Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study developed an electric jig for underwater structure inspection in order to solve the problem of the application of side scan sonar to underwater inspection, and analyzed correlations of empirical data in order to enhance sonar data resolution. For the application of tow-typed sonar to underwater structure inspection, an electric jig was developed. In fact, it was difficult to inspect a cross-section at the time of inspection with tow-typed equipment. With the development of the electric jig for underwater structure inspection, it was possible to shorten an inspection time over 20%, compared to conventional tow-typed side scan sonar, and to inspect a proper cross-section through accurate angle control. The indoor test conducted to enhance sonar data resolution proved that a water depth, the distance from an underwater structure, and a filming angle influenced a resolution and data quality. Based on the data accumulated through field experience, multiple regression analysis was conducted on correlations between three variables. As a result, the relational equation of sonar operation according to a water depth was drawn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=underwater%20structure" title="underwater structure">underwater structure</a>, <a href="https://publications.waset.org/abstracts/search?q=SONAR" title=" SONAR"> SONAR</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20inspection" title=" safety inspection"> safety inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=resolution" title=" resolution"> resolution</a> </p> <a href="https://publications.waset.org/abstracts/42801/a-regression-analysis-study-of-the-applicability-of-side-scan-sonar-based-safety-inspection-of-underwater-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">648</span> Assets Integrity Management in Oil and Gas Production Facilities through Corrosion Mitigation and Inspection Strategy: A Case Study of Sarir Oilfield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iftikhar%20Ahmad">Iftikhar Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Elkezza"> Youssef Elkezza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sarir oilfield is in North Africa. It has facilities for oil and gas production. The assets of the Sarir oilfield can be divided into five following categories, namely: (i) well bore and wellheads; (ii) vessels such as separators, desalters, and gas processing facilities; (iii) pipelines including all flow lines, trunk lines, and shipping lines; (iv) storage tanks; (v) other assets such as turbines and compressors, etc. The nature of the petroleum industry recognizes the potential human, environmental and financial consequences that can result from failing to maintain the integrity of wellheads, vessels, tanks, pipelines, and other assets. The importance of effective asset integrity management increases as the industry infrastructure continues to age. The primary objective of assets integrity management (AIM) is to maintain assets in a fit-for-service condition while extending their remaining life in the most reliable, safe, and cost-effective manner. Corrosion management is one of the important aspects of successful asset integrity management. It covers corrosion mitigation, monitoring, inspection, and risk evaluation. External corrosion on pipelines, well bores, buried assets, and bottoms of tanks is controlled with a combination of coatings by cathodic protection, while the external corrosion on surface equipment, wellheads, and storage tanks is controlled by coatings. The periodic cleaning of the pipeline by pigging helps in the prevention of internal corrosion. Further, internal corrosion of pipelines is prevented by chemical treatment and controlled operations. This paper describes the integrity management system used in the Sarir oil field for its oil and gas production facilities based on standard practices of corrosion mitigation and inspection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assets%20integrity%20management" title="assets integrity management">assets integrity management</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20prevention%20in%20oilfield%20assets" title=" corrosion prevention in oilfield assets"> corrosion prevention in oilfield assets</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20management%20in%20oilfield" title=" corrosion management in oilfield"> corrosion management in oilfield</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20prevention" title=" corrosion prevention"> corrosion prevention</a>, <a href="https://publications.waset.org/abstracts/search?q=inspection%20activities" title=" inspection activities"> inspection activities</a> </p> <a href="https://publications.waset.org/abstracts/157058/assets-integrity-management-in-oil-and-gas-production-facilities-through-corrosion-mitigation-and-inspection-strategy-a-case-study-of-sarir-oilfield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">647</span> Studying Roughness Effects on Flow Regimes in Offshore Pipelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Sadegh%20Narges">Mohammad Sadegh Narges</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Ghadampour"> Zahra Ghadampour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the specific condition, offshore pipelines are given careful consideration and care in both design and operation. Most of the offshore pipeline flows are multi-phase. Multi-phase flows construct different pattern or flow regimes (in simultaneous gas-liquid flow, flow regimes like slug flow, wave and …) under different circumstances. One of the influencing factors on the flow regime is the pipeline roughness value. So far, roughness value influences and the sensitivity of the present models to this parameter have not been taken into consideration. Therefore, roughness value influences on the flow regimes in offshore pipelines are discussed in this paper. Results showed that geometry, absolute pipeline roughness value (materials that the pipeline is made of) and flow phases prevailing the system are of the influential parameters on the flow regimes prevailing multi-phase pipelines in a way that a change in any of these parameters results in a change in flow regimes in all or part of the pipeline system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absolute%20roughness" title="absolute roughness">absolute roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20regime" title=" flow regime"> flow regime</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-phase%20flow" title=" multi-phase flow"> multi-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20pipelines" title=" offshore pipelines"> offshore pipelines</a> </p> <a href="https://publications.waset.org/abstracts/63642/studying-roughness-effects-on-flow-regimes-in-offshore-pipelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">646</span> The Interaction of Adjacent Defects and the Effect on the Failure Pressure of the Corroded Pipeline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Wang">W. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zhang"> Y. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Shuai"> J. Shuai</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Lv"> Z. Lv</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction between defects has an essential influence on the bearing capacity of pipelines. This work developed the finite element model of pipelines containing adjacent defects, which includes longitudinally aligned, circumferentially aligned, and diagonally aligned defects. The relationships between spacing and geometries of defects and the failure pressure of pipelines, and the interaction between defects are investigated. The results show that the orientation of defects is an influential factor in the failure pressure of the pipeline. The influence of defect spacing on the failure pressure of the pipeline is non-linear, and the relationship presents different trends depending on the orientation of defects. The increase of defect geometry will weaken the failure pressure of the pipeline, and for the interaction between defects, the increase of defect depth will enhance it, and the increase of defect length will weaken it. According to the research on the interaction rule between defects with different orientations, the interacting coefficients under different orientations of defects are compared. It is determined that the diagonally aligned defects with the overlap of longitudinal projections are the most obvious arrangement of interaction between defects, and the limited distance of interaction between defects is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pipeline" title="pipeline">pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=adjacent%20defects" title=" adjacent defects"> adjacent defects</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20between%20defects" title=" interaction between defects"> interaction between defects</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20pressure" title=" failure pressure"> failure pressure</a> </p> <a href="https://publications.waset.org/abstracts/155026/the-interaction-of-adjacent-defects-and-the-effect-on-the-failure-pressure-of-the-corroded-pipeline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">645</span> Application of the Mobile Phone for Occupational Self-Inspection Program in Small-Scale Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jia-Sin%20Li">Jia-Sin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying-Fang%20Wang"> Ying-Fang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheing-Tong%20Yan"> Cheing-Tong Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an integrated approach of Google Spreadsheet and QR code which is free internet resources was used to improve the inspection procedure. The mobile phone Application(App)was also designed to combine with a web page to create an automatic checklist in order to provide a new integrated information of inspection management system. By means of client-server model, the client App is developed for Android mobile OS and the back end is a web server. It can set up App accounts including authorized data and store some checklist documents in the website. The checklist document URL could generate QR code first and then print and paste on the machine. The user can scan the QR code by the app and filled the checklist in the factory. In the meanwhile, the checklist data will send to the server, it not only save the filled data but also executes the related functions and charts. On the other hand, it also enables auditors and supervisors to facilitate the prevention and response to hazards, as well as immediate report data checks. Finally, statistics and professional analysis are performed using inspection records and other relevant data to not only improve the reliability, integrity of inspection operations and equipment loss control, but also increase plant safety and personnel performance. Therefore, it suggested that the traditional paper-based inspection method could be replaced by the APP which promotes the promotion of industrial security and reduces human error. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=checklist" title="checklist">checklist</a>, <a href="https://publications.waset.org/abstracts/search?q=Google%20spreadsheet" title=" Google spreadsheet"> Google spreadsheet</a>, <a href="https://publications.waset.org/abstracts/search?q=APP" title=" APP"> APP</a>, <a href="https://publications.waset.org/abstracts/search?q=self-inspection" title=" self-inspection"> self-inspection</a> </p> <a href="https://publications.waset.org/abstracts/96303/application-of-the-mobile-phone-for-occupational-self-inspection-program-in-small-scale-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">644</span> COVID-19 Detection from Computed Tomography Images Using UNet Segmentation, Region Extraction, and Classification Pipeline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kenan%20Morani">Kenan Morani</a>, <a href="https://publications.waset.org/abstracts/search?q=Esra%20Kaya%20Ayana"> Esra Kaya Ayana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to develop a novel pipeline for COVID-19 detection using a large and rigorously annotated database of computed tomography (CT) images. The pipeline consists of UNet-based segmentation, lung extraction, and a classification part, with the addition of optional slice removal techniques following the segmentation part. In this work, a batch normalization was added to the original UNet model to produce lighter and better localization, which is then utilized to build a full pipeline for COVID-19 diagnosis. To evaluate the effectiveness of the proposed pipeline, various segmentation methods were compared in terms of their performance and complexity. The proposed segmentation method with batch normalization outperformed traditional methods and other alternatives, resulting in a higher dice score on a publicly available dataset. Moreover, at the slice level, the proposed pipeline demonstrated high validation accuracy, indicating the efficiency of predicting 2D slices. At the patient level, the full approach exhibited higher validation accuracy and macro F1 score compared to other alternatives, surpassing the baseline. The classification component of the proposed pipeline utilizes a convolutional neural network (CNN) to make final diagnosis decisions. The COV19-CT-DB dataset, which contains a large number of CT scans with various types of slices and rigorously annotated for COVID-19 detection, was utilized for classification. The proposed pipeline outperformed many other alternatives on the dataset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20extraction" title=" lung extraction"> lung extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=macro%20F1%20score" title=" macro F1 score"> macro F1 score</a>, <a href="https://publications.waset.org/abstracts/search?q=UNet%20segmentation" title=" UNet segmentation"> UNet segmentation</a> </p> <a href="https://publications.waset.org/abstracts/169737/covid-19-detection-from-computed-tomography-images-using-unet-segmentation-region-extraction-and-classification-pipeline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">643</span> A Resilience Process Model of Natural Gas Pipeline Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhaoming%20Yang">Zhaoming Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Xiang"> Qi Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20He"> Qian He</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Havbro%20Faber"> Michael Havbro Faber</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrico%20Zio"> Enrico Zio</a>, <a href="https://publications.waset.org/abstracts/search?q=Huai%20Su"> Huai Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinjun%20Zhang"> Jinjun Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Resilience is one of the key factors for system safety assessment and optimization, and resilience studies of natural gas pipeline systems (NGPS), especially in terms of process descriptions, are still being explored. Based on the three main stages, which are function loss process, recovery process, and waiting process, the paper has built functions and models which are according to the practical characteristics of NGPS and mainly analyzes the characteristics of deterministic interruptions. The resilience of NGPS also considers the threshold of the system function or users' satisfaction. The outcomes, which quantify the resilience of NGPS in different evaluation views, can be combined with the max flow and shortest path methods, help with the optimization of extra gas supplies and gas routes as well as pipeline maintenance strategies, the quick analysis of disturbance effects and the improvement of NGPS resilience evaluation accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20gas%20pipeline%20system" title="natural gas pipeline system">natural gas pipeline system</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience" title=" resilience"> resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20modeling" title=" process modeling"> process modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=deterministic%20disturbance" title=" deterministic disturbance"> deterministic disturbance</a> </p> <a href="https://publications.waset.org/abstracts/162218/a-resilience-process-model-of-natural-gas-pipeline-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20inspection&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20inspection&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20inspection&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20inspection&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20inspection&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20inspection&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20inspection&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20inspection&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20inspection&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20inspection&page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20inspection&page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=pipeline%20inspection&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>