CINXE.COM
Search results for: microwave absorbing properties
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: microwave absorbing properties</title> <meta name="description" content="Search results for: microwave absorbing properties"> <meta name="keywords" content="microwave absorbing properties"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="microwave absorbing properties" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="microwave absorbing properties"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9406</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: microwave absorbing properties</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9406</span> Synthesis and Electromagnetic Property of Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄ Grafted with Polyaniline Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jintang%20Zhou">Jintang Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhengjun%20Yao"> Zhengjun Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Tiantian%20Yao"> Tiantian Yao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄(LZFO) grafted with polyaniline (PANI) fibers was synthesized by in situ polymerization. FTIR, XRD, SEM, and vector network analyzer were used to investigate chemical composition, micro-morphology, electromagnetic properties and microwave absorbing properties of the composite. The results show that PANI fibers were grafted on the surfaces of LZFO particles. The reflection loss exceeds 10 dB in the frequency range from 2.5 to 5 GHz and from 15 to 17GHz, and the maximum reflection loss reaches -33 dB at 15.9GHz. The enhanced microwave absorption properties of LZFO/PANI-fiber composites are mainly ascribed to the combined effect of both dielectric loss and magnetic loss and the improved impedance matching. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%E2%82%80.%E2%82%83%E2%82%85Zn%E2%82%80.%E2%82%83Fe%E2%82%82.%E2%82%83%E2%82%85O%E2%82%84" title="Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄">Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline" title=" polyaniline"> polyaniline</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20properties" title=" electromagnetic properties"> electromagnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20absorbing%20properties" title=" microwave absorbing properties"> microwave absorbing properties</a> </p> <a href="https://publications.waset.org/abstracts/60781/synthesis-and-electromagnetic-property-of-li035zn03fe235o4-grafted-with-polyaniline-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9405</span> Fabricating an Infrared-Radar Compatible Stealth Surface with Frequency Selective Surface and Structured Radar-Absorbing Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qingtao%20Yu">Qingtao Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Guojia%20Ma"> Guojia Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Approaches to microwave absorption and low infrared emissivity are often conflicting, as the low-emissivity layer, usually consisting of metals, increases the reflection of microwaves, especially in high frequency. In this study, an infrared-radar compatible stealth surface was fabricated by first depositing a layer of low-emissivity metal film on the surface of a layer of radar-absorbing material. Then, ultrafast laser was used to generate patterns on the metal film, forming a frequency selective surface. With proper pattern design, while the majority of the frequency selective surface is covered by the metal film, it has relatively little influence on the reflection of microwaves between 2 to 18 GHz. At last, structures on the radar-absorbing layer were fabricated by ultra-fast laser to further improve the absorbing bandwidth of the microwave. This study demonstrates that the compatibility between microwave absorption and low infrared emissivity can be achieved by properly designing patterns and structures on the metal film and the radar-absorbing layer accordingly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20selective%20surface" title="frequency selective surface">frequency selective surface</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared-radar%20compatible" title=" infrared-radar compatible"> infrared-radar compatible</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20infrared%20emissivity" title=" low infrared emissivity"> low infrared emissivity</a>, <a href="https://publications.waset.org/abstracts/search?q=radar-absorbing%20material" title=" radar-absorbing material"> radar-absorbing material</a>, <a href="https://publications.waset.org/abstracts/search?q=patterns" title=" patterns"> patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=structures" title=" structures"> structures</a> </p> <a href="https://publications.waset.org/abstracts/115550/fabricating-an-infrared-radar-compatible-stealth-surface-with-frequency-selective-surface-and-structured-radar-absorbing-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9404</span> MWCNT/CuFe10Al2O19/Polyanilie Nanocomposite for Microwave Absorbing Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pallab%20Bhattacharya">Pallab Bhattacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20K.%20Das"> C. K. Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Development of microwave absorbing material is a growing field of research in both the commercial and defense sector, and also to enrich the field of stealth technology. The recent work is attentive to the preparation of nanocomposite based on acid modified MWCNT, hexagonal shaped magnetic M-type hexaferrite (CuFe10Al2O19) and polyaniline. CuFe10Al2O19 was prepared by a facile chemical co-precipitation method. An in-situ approach was employed for the coating of polyaniline on MWCNT/CuFe10Al2O19 nanocomposite. The final fabrication of this nanocomposite for microwave measurements was done suitably in the matrix of thermoplastic polyurethane with 10% filler content. The nanocomposites showed the maximum reflection loss of -60.2 dB (in X-band) at the thickness of 2.5 mm with a broad absorption range in contrast to the pristine MWCNT and CuFe10Al2O19. Addition of PANI improves the microwave absorption property of the nanocomposites. The thermal stability of the prepared nanocomposites is also very high. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20materials" title="magnetic materials">magnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20absorption" title=" microwave absorption"> microwave absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=MWCNT" title=" MWCNT"> MWCNT</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/13923/mwcntcufe10al2o19polyanilie-nanocomposite-for-microwave-absorbing-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9403</span> Microwave-Assisted Eradication of Wool </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Salama">M. Salama</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Haggag"> K. Haggag</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20El-Sayed"> H. El-Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An environmentally and ecologically acceptable method for eradication of wool fabrics based on microwave irradiation (MWI) was described. The process would be a suitable alternative for mothproofing of wool using toxic degradative chemical or biological methods. The effect of microwave irradiation and exposure time on the extent of eradication of wool fabrics from moth larvae was monitored. The inherent properties of the MW-irradiated wool fabrics; viz. tensile properties, alkali solubility, and yellowing index, were not adversely altered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave" title="microwave">microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=wool" title=" wool"> wool</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric" title=" fabric"> fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=moth" title=" moth"> moth</a>, <a href="https://publications.waset.org/abstracts/search?q=eradication" title=" eradication"> eradication</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/8504/microwave-assisted-eradication-of-wool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9402</span> Graphene Transistors Based Microwave Amplifiers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pejman%20Hosseinioun">Pejman Hosseinioun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Safari"> Ali Safari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Sarbazi"> Hamed Sarbazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene is a one-atom-thick sheet of carbon with numerous impressive properties. It is a promising material for future high-speed nanoelectronics due to its intrinsic superior carrier mobility and very high saturation velocity. These exceptional carrier transport properties suggest that graphene field effect transistors (G-FETs) can potentially outperform other FET technologies. In this paper, detailed discussions are introduced for Graphene Transistors Based Microwave Amplifiers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20FETs" title=" microwave FETs"> microwave FETs</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20amplifiers" title=" microwave amplifiers"> microwave amplifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=transistors" title=" transistors "> transistors </a> </p> <a href="https://publications.waset.org/abstracts/20419/graphene-transistors-based-microwave-amplifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9401</span> Simulation of Reflection Loss for Carbon and Nickel-Carbon Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Emami">M. Emami</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Tarighi"> R. Tarighi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Goodarzi"> R. Goodarzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maximal radar wave absorbing cannot be achieved by shaping alone. We have to focus on the parameters of absorbing materials such as permittivity, permeability, and thickness so that best absorbing according to our necessity can happen. The real and imaginary parts of the relative complex permittivity (ε<sub>r</sub>' and ε<sub>r</sub>") and permeability (µ<sub>r</sub>' and µ<sub>r</sub>") were obtained by simulation. The microwave absorbing property of carbon and Ni(C) is simulated in this study by MATLAB software; the simulation was in the frequency range between 2 to 12 GHz for carbon black (C), and carbon coated nickel (Ni(C)) with different thicknesses. In fact, we draw reflection loss (RL) for C and Ni-C via frequency. We have compared their absorption for 3-mm thickness and predicted for other thicknesses by using of electromagnetic wave transmission theory. The results showed that reflection loss position changes in low frequency with increasing of thickness. We found out that, in all cases, using nanocomposites as absorbance cannot get better results relative to pure nanoparticles. The frequency where absorption is maximum can determine the best choice between nanocomposites and pure nanoparticles. Also, we could find an optimal thickness for long wavelength absorbing in order to utilize them in protecting shields and covering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbing" title="absorbing">absorbing</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nickel" title=" carbon nickel"> carbon nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=thicknesses" title=" thicknesses"> thicknesses</a> </p> <a href="https://publications.waset.org/abstracts/80056/simulation-of-reflection-loss-for-carbon-and-nickel-carbon-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9400</span> Overview of the Various Factors Affecting the Properties of Microwave and Millimeterwave Dielectric Ceramics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Manan">Abdul Manan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dielectric Resonators (DRs) have revolutionized the microwave wireless communication industry globally. There are three directions for research in ceramics for application in telecommunication industry Three key properties of ceramic dielectrics that determine their functionality at microwave and millimetrewave frequencies include relative permittivity (εr), unloaded quality factor Qu- the inverse of the dielectric loss (tanδ) and temperature coefficient of resonant frequency (τf). Each direction requires specific properties. These dielectric properties are affected by a number of factors. These includes tolerance factor, onset of structural phase transitions, dark core formation, processing conditions, raw materials and impurities, order/disorder behavior, compositional ordering, porosity, humidity, grain size, orientation of the crystallites, and grain boundaries. The data related to these factors is scattered. The main purpose of this review is to bring these together and present the effects of these factors on the microwave dielectric properties. Control of these factors is important for improvement in the microwave properties. This review would be very helpful to the novice researchers and technologists in the field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=order%20disorder" title="order disorder">order disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=defect" title=" defect"> defect</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20boundaries" title=" grain boundaries "> grain boundaries </a> </p> <a href="https://publications.waset.org/abstracts/39818/overview-of-the-various-factors-affecting-the-properties-of-microwave-and-millimeterwave-dielectric-ceramics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9399</span> Aluminum Based Hexaferrite and Reduced Graphene Oxide a Suitable Microwave Absorber for Microwave Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanghamitra%20Acharya">Sanghamitra Acharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Suwarna%20Datar"> Suwarna Datar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extensive use of digital and smart communication createsprolong expose of unwanted electromagnetic (EM) radiations. This harmful radiation creates not only malfunctioning of nearby electronic gadgets but also severely affects a human being. So, a suitable microwave absorbing material (MAM) becomes a necessary urge in the field of stealth and radar technology. Initially, Aluminum based hexa ferrite was prepared by sol-gel technique and for carbon derived composite was prepared by the simple one port chemical reduction method. Finally, composite films of Poly (Vinylidene) Fluoride (PVDF) are prepared by simple gel casting technique. Present work demands that aluminum-based hexaferrite phase conjugated with graphene in PVDF matrix becomes a suitable candidate both in commercially important X and Ku band. The structural and morphological nature was characterized by X-Ray diffraction (XRD), Field emission-scanning electron microscope (FESEM) and Raman spectra which conforms that 30-40 nm particles are well decorated over graphene sheet. Magnetic force microscopy (MFM) and conducting force microscopy (CFM) study further conforms the magnetic and conducting nature of composite. Finally, shielding effectiveness (SE) of the composite film was studied by using Vector network analyzer (VNA) both in X band and Ku band frequency range and found to be more than 30 dB and 40 dB, respectively. As prepared composite films are excellent microwave absorbers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanocomposite" title="carbon nanocomposite">carbon nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20absorbing%20material" title=" microwave absorbing material"> microwave absorbing material</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20shielding" title=" electromagnetic shielding"> electromagnetic shielding</a>, <a href="https://publications.waset.org/abstracts/search?q=hexaferrite" title=" hexaferrite"> hexaferrite</a> </p> <a href="https://publications.waset.org/abstracts/92209/aluminum-based-hexaferrite-and-reduced-graphene-oxide-a-suitable-microwave-absorber-for-microwave-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9398</span> Acoustic Performance and Application of Three Personalized Sound-Absorbing Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fangying%20Wang">Fangying Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Sanming"> Zhang Sanming</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%20Qian"> Ni Qian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, more and more personalized sound absorbing materials have entered the Chinese room acoustical decoration market. The acoustic performance of three kinds of personalized sound-absorbing materials: Flame-retardant Flax Fiber Sound-absorbing Cotton, Eco-Friendly Sand Acoustic Panel and Transparent Micro-perforated Panel (Film) are tested by Reverberation Room Method. The sound absorption characteristic curves show that their performance match for or even exceed the traditional sound absorbing material. Through the application in the actual projects, these personalized sound-absorbing materials also proved their sound absorption ability and unique decorative effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20performance" title="acoustic performance">acoustic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=application%20prospect%20personalized%20sound-absorbing%20materials" title=" application prospect personalized sound-absorbing materials"> application prospect personalized sound-absorbing materials</a> </p> <a href="https://publications.waset.org/abstracts/88980/acoustic-performance-and-application-of-three-personalized-sound-absorbing-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9397</span> Microwave Sintering and Its Application on Cemented Carbides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rumman%20M.%20D.%20Raihanuzzaman">Rumman M. D. Raihanuzzaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Chang%20Chuan"> Lee Chang Chuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zonghan%20Xie"> Zonghan Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ghomashchi"> Reza Ghomashchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cemented carbides, owing to their excellent mechanical properties, have been of immense interest in the field of hard materials for the past few decades. A number of processing techniques have been developed to obtain high quality carbide tools, with a wide range of grain size depending on the application and requirements. Microwave sintering is one of the heating processes, which has been used on a wide range of materials including ceramics. The complete understanding of microwave sintering and its contribution towards control of grain growth and on deformation of the resulting carbide materials needs further studies and attention. In addition, the effect of binder materials and their behaviour as a function of microwave sintering is another area that requires clear understanding. This review aims to focus on microwave sintering, providing information of how the process works and what type of materials it is best suited for. In addition, a closer look at some microwave sintered Tungsten Carbide-Cobalt samples will be taken and discussed, addressing some of the key issues and challenges faced in the research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cemented%20carbides" title="cemented carbides">cemented carbides</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20sintering" title=" microwave sintering"> microwave sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties "> mechanical properties </a> </p> <a href="https://publications.waset.org/abstracts/32637/microwave-sintering-and-its-application-on-cemented-carbides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">596</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9396</span> Dielectric Properties of La2MoO6 Ceramics at Microwave Frequency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yih-Chien%20Chen">Yih-Chien Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Cheng%20You"> Yu-Cheng You</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The microwave dielectric properties of La2MoO6 ceramics were investigated with a view to their application in mobile communication. La2MoO6 ceramics were prepared by the conventional solid-state method with various sintering conditions. The X-ray diffraction peaks of La2MoO6 ceramic did not vary significantly with sintering conditions. The average grain size of La2MoO6 ceramics increased as the temperature and time of sintering increased. A maximum density of 5.67 g/cm3, a dielectric constants (εr) of 14.1, a quality factor (Q×f) of 68,000 GHz, and a temperature coefficient of resonant frequency (τf) of -56 ppm/℃ were obtained when La2MoO6 ceramics that were sintered at 1300 ℃ for 4h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramics" title="ceramics">ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20dielectric%20properties" title=" microwave dielectric properties"> microwave dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=La2MoO6" title=" La2MoO6"> La2MoO6</a> </p> <a href="https://publications.waset.org/abstracts/69632/dielectric-properties-of-la2moo6-ceramics-at-microwave-frequency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9395</span> Computer Simulation to Investigate Magnetic and Wave-Absorbing Properties of Iron Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chuan-Wen%20Liu">Chuan-Wen Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Hsien%20Liu"> Min-Hsien Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung-Chieh%20Tai"> Chung-Chieh Tai</a>, <a href="https://publications.waset.org/abstracts/search?q=Bing-Cheng%20Kuo"> Bing-Cheng Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Lung%20Chen"> Cheng-Lung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Huazhen%20Shen"> Huazhen Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A recent surge in research on magnetic radar absorbing materials (RAMs) has presented researchers with new opportunities and challenges. This study was performed to gain a better understanding of the wave-absorbing phenomenon of magnetic RAMs. First, we hypothesized that the absorbing phenomenon is dependent on the particle shape. Using the Material Studio program and the micro-dot magnetic dipoles (MDMD) method, we obtained results from magnetic RAMs to support this hypothesis. The total MDMD energy of disk-like iron particles was greater than that of spherical iron particles. In addition, the particulate aggregation phenomenon decreases the wave-absorbance, according to both experiments and computational data. To conclude, this study may be of importance in terms of explaining the wave- absorbing characteristic of magnetic RAMs. Combining molecular dynamics simulation results and the theory of magnetization of magnetic dots, we investigated the magnetic properties of iron materials with different particle shapes and degrees of aggregation under external magnetic fields. The MDMD of the materials under magnetic fields of various strengths were simulated. Our results suggested that disk-like iron particles had a better magnetization than spherical iron particles. This result could be correlated with the magnetic wave- absorbing property of iron material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wave-absorbing%20property" title="wave-absorbing property">wave-absorbing property</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20material" title=" magnetic material"> magnetic material</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-dot%20magnetic%20dipole" title=" micro-dot magnetic dipole"> micro-dot magnetic dipole</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20aggregation" title=" particulate aggregation"> particulate aggregation</a> </p> <a href="https://publications.waset.org/abstracts/78242/computer-simulation-to-investigate-magnetic-and-wave-absorbing-properties-of-iron-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9394</span> Recent Development on Application of Microwave Energy on Process Metallurgy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mamdouh%20Omran">Mamdouh Omran</a>, <a href="https://publications.waset.org/abstracts/search?q=Timo%20Fabritius"> Timo Fabritius</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A growing interest in microwave heating has emerged recently. Many researchers have begun to pay attention to microwave energy as an alternative technique for processing various primary and secondary raw materials. Compared to conventional methods, microwave processing offers several advantages, such as selective heating, rapid heating, and volumetric heating. The present study gives a summary on our recent works related to the use of microwave energy for the recovery of valuable metals from primary and secondary raw materials. The research is mainly focusing on: Application of microwave for the recovery and recycling of metals from different metallurgical industries wastes (i.e. electric arc furnace (EAF) dust, blast furnace (BF), basic oxygen furnace (BOF) sludge). Application of microwave for upgrading and recovery of valuable metals from primary raw materials (i.e. iron ore). The results indicated that microwave heating is a promising and effective technique for processing primary and secondary steelmaking wastes. After microwave treatment of iron ore for 60 s and 900 W, about a 28.30% increase in grindability.Wet high intensity magnetic separation (WHIMS) indicated that the magnetic separation increased from 34% to 98% after microwave treatment for 90 s and 900 W. In the case of EAF dust, after microwave processing at 1100 W for 20 min, Zinc removal from 64 % to ~ 97 %, depending on mixture ratio and treatment time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title="dielectric properties">dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20heating" title=" microwave heating"> microwave heating</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20materials" title=" raw materials"> raw materials</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20raw%20materials" title=" secondary raw materials"> secondary raw materials</a> </p> <a href="https://publications.waset.org/abstracts/156829/recent-development-on-application-of-microwave-energy-on-process-metallurgy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9393</span> Effect of Ba Addition on the Dielectric Properties and Microstructure of (Ca₀.₆Sr₀.₄)ZrO₃</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying-Chieh%20Lee">Ying-Chieh Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Huei-Jyun%20Shih"> Huei-Jyun Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=Ting-Yang%20Wang"> Ting-Yang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Pithan"> Christian Pithan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the synthesis and characterization of Ca₀.₆Sr₀.₄₋ₓBaₓZrO₃ (x = 0.01, 0.04, 0.07, and 0.10) ceramics prepared via the solid-state method and sintered at 1450 °C. The impact of Sr substitution by Ba at the A-site of the perovskite structure on crystalline properties and microwave dielectric performance was investigated. The experimental results show the formation of a single-phase structure, Ca₀.₆₁₂Sr₀.₃₈₈ZrO₃(CSZ), across the entire range of x values. It is evident that the Ca₀.₆Sr₀.₃₉Ba₀.₀₁ZrO₃ ceramics exhibit the highest sintering density and the lowest porosity. These ceramics exhibit impressive dielectric properties, including a high permittivity of 28.38, low dielectric loss of 4.0×10⁻⁴, and a Q factor value of 22988 at 9~10GHz. The research reveals that the influences of Sr substitution by Ba in enhancing the microwave dielectric properties of Ca₀.₆₁₂Sr₀.₃₈₈ZrO₃ ceramics and the impedance curves clearly showed effects on the electrical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NPO%20dielectric%20material" title="NPO dielectric material">NPO dielectric material</a>, <a href="https://publications.waset.org/abstracts/search?q=%28Ca%E2%82%80.%E2%82%86Sr%E2%82%80.%E2%82%84%29ZrO%E2%82%83" title=" (Ca₀.₆Sr₀.₄)ZrO₃"> (Ca₀.₆Sr₀.₄)ZrO₃</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20dielectric%20properties" title=" microwave dielectric properties"> microwave dielectric properties</a> </p> <a href="https://publications.waset.org/abstracts/182552/effect-of-ba-addition-on-the-dielectric-properties-and-microstructure-of-ca06sr04zro3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9392</span> Ultra-Low Loss Dielectric Properties of (Mg1-xNix)2(Ti0.95Sn0.05)O4 Microwave Ceramics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bing-Jing%20Li">Bing-Jing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Sih-Yin%20Wang"> Sih-Yin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tse-Chun%20Yeh"> Tse-Chun Yeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Bin%20Chen"> Yuan-Bin Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microwave dielectric ceramic materials of (Mg1-xNix)2(Ti0.95Sn0.05)O4 for x = 0.01, 0.03, 0.05, 0.07 and 0.09 were prepared and sintered at 1250–1400ºC. The microstructure and microwave dielectric properties of the ceramic materials were examined and measured. The observations shows that the content of Ni2+ ions has little effect on the crystal structure, dielectric constant, temperature coefficient of resonant frequency (τf) and sintering temperatures of the ceramics. However, the quality values (Q×f) are greatly improved due to the addition of Ni2+ ions. The present study showed that the ceramic material prepared for x = 0.05 and sintered at 1325ºC had the best Q×f value of 392,000 GHz, about 23% improvement compared with that of Mg2(Ti0.95Sn0.05)O4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%28Mg1-xNix%292%28Ti0.95Sn0.05%29O4" title="(Mg1-xNix)2(Ti0.95Sn0.05)O4">(Mg1-xNix)2(Ti0.95Sn0.05)O4</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20dielectric%20ceramics" title=" microwave dielectric ceramics"> microwave dielectric ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20quality%20factor" title=" high quality factor"> high quality factor</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20frequency%20wireless%20communication" title=" high frequency wireless communication"> high frequency wireless communication</a> </p> <a href="https://publications.waset.org/abstracts/13221/ultra-low-loss-dielectric-properties-of-mg1-xnix2ti095sn005o4-microwave-ceramics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9391</span> Microwave Assisted Growth of Varied Phases and Morphologies of Vanadium Oxides Nanostructures: Structural and Optoelectronic Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Issam%20Derkaoui">Issam Derkaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Khenfouch"> Mohammed Khenfouch</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakang%20M.%20Mothudi"> Bakang M. Mothudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Malik%20Maaza"> Malik Maaza</a>, <a href="https://publications.waset.org/abstracts/search?q=Izeddine%20Zorkani"> Izeddine Zorkani</a>, <a href="https://publications.waset.org/abstracts/search?q=Anouar%20%20Jorio"> Anouar Jorio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transition metal oxides nanoparticles with different morphologies have attracted a lot of attention recently owning to their distinctive geometries, and demonstrated promising electrical properties for various applications. In this paper, we discuss the time and annealing effects on the structural and electrical properties of vanadium oxides nanoparticles (VO-NPs) prepared by microwave method. In this sense, transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman Spectroscopy, Ultraviolet-visible absorbance spectra (Uv-Vis) and electrical conductivity were investigated. Hence, the annealing state and the time are two crucial parameters for the improvement of the optoelectronic properties. The use of these nanostructures is promising way for the development of technological applications especially for energy storage devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vanadium%20oxide" title="Vanadium oxide">Vanadium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=Microwave" title=" Microwave"> Microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=Electrical%20conductivity" title=" Electrical conductivity"> Electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Optoelectronic%20properties" title=" Optoelectronic properties"> Optoelectronic properties</a> </p> <a href="https://publications.waset.org/abstracts/80672/microwave-assisted-growth-of-varied-phases-and-morphologies-of-vanadium-oxides-nanostructures-structural-and-optoelectronic-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9390</span> The Optimization Design of Sound Absorbing for Automotive Interior Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Un-Hwan%20Park">Un-Hwan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Hyeok%20Heo"> Jun-Hyeok Heo</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Sung%20Lee"> In-Sung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Hyeon%20Oh"> Tae-Hyeon Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Gyu%20Park"> Dae-Gyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonwoven fabric such as an automobile interior material becomes consists of several material layers required for the sound-absorbing function. Because several material layers, many experimental tuning is required to achieve the target of sound absorption. Therefore, a lot of time and money is spent in the development of the car interior materials. In this study, we present the method to predict the sound-absorbing performance of the various layers with physical properties of each material. and we will verify it with the measured value of a prototype. If the sound absorption can be estimated, it can be optimized without a number of tuning tests of the interiors. So, it can reduce the development cost and time during development <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20interior%20material" title="automotive interior material">automotive interior material</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20absorbing" title=" sound absorbing"> sound absorbing</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20design" title=" optimization design"> optimization design</a>, <a href="https://publications.waset.org/abstracts/search?q=nonwoven%20fabric" title=" nonwoven fabric"> nonwoven fabric</a> </p> <a href="https://publications.waset.org/abstracts/51023/the-optimization-design-of-sound-absorbing-for-automotive-interior-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">837</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9389</span> Microwave Tomography: The Analytical Treatment for Detecting Malignant Tumor Inside Human Body</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hassan%20Khalil">Muhammad Hassan Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Jiadong"> Xu Jiadong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Early detection through screening is the best tool short of a perfect treatment against the malignant tumor inside the breast of a woman. By detecting cancer in its early stages, it can be recognized and treated before it has the opportunity to spread and change into potentially dangerous. Microwave tomography is a new imaging method based on contrast in dielectric properties of materials. The mathematical theory of microwave tomography involves solving an inverse problem for Maxwell’s equations. In this paper, we present designed antenna for breast cancer detection, which will use in microwave tomography configuration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20imaging" title="microwave imaging">microwave imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20scattering" title=" inverse scattering"> inverse scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=malignant%20tumor%20detection" title=" malignant tumor detection"> malignant tumor detection</a> </p> <a href="https://publications.waset.org/abstracts/2719/microwave-tomography-the-analytical-treatment-for-detecting-malignant-tumor-inside-human-body" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9388</span> The Prediction of Sound Absorbing Coefficient for Multi-Layer Non-Woven</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Un-Hwan%20Park">Un-Hwan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Hyeok%20Heo"> Jun-Hyeok Heo</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Sung%20Lee"> In-Sung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Hyeon%20Oh"> Tae-Hyeon Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Gyu%20Park"> Dae-Gyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automotive interior material consisting of several material layers has the sound-absorbing function. It is difficult to predict sound absorbing coefficient because of several material layers. So, many experimental tunings are required to achieve the target of sound absorption. Therefore, while the car interior materials are developed, so much time and money is spent. In this study, we present a method to predict the sound absorbing performance of the material with multi-layer using physical properties of each material. The properties are predicted by Foam-X software using the sound absorption coefficient data measured by impedance tube. Then, we will compare and analyze the predicted sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If the method is used instead of experimental tuning in the development of car interior material, the time and money can be saved, and then, the development effort can be reduced because it can be optimized by simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20nonwoven" title="multi-layer nonwoven">multi-layer nonwoven</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20absorption%20coefficient" title=" sound absorption coefficient"> sound absorption coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=scaled%20reverberation%20chamber" title=" scaled reverberation chamber"> scaled reverberation chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20tubes" title=" impedance tubes"> impedance tubes</a> </p> <a href="https://publications.waset.org/abstracts/60069/the-prediction-of-sound-absorbing-coefficient-for-multi-layer-non-woven" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9387</span> Microwave Sanitization of Polyester Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Haggag">K. Haggag</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Salama"> M. Salama</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20El-Sayed"> H. El-Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyester fabrics were sanitized by exposing them to vaporized water under the influence of conventional heating or microwave irradiation. Hydrogen peroxide was added the humid sanitizing environment as a disinfectant. The said sanitization process was found to be effective towards two types of bacteria, namely Escherichia coli ATCC 2666 (G –ve) and Staphylococcus aureus ATCC 6538 (G +ve). The effect of the sanitization process on some of the inherent properties of polyester fabrics was monitored. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyester" title="polyester">polyester</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric" title=" fabric"> fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=sanitization" title=" sanitization"> sanitization</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a> </p> <a href="https://publications.waset.org/abstracts/13030/microwave-sanitization-of-polyester-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9386</span> Synthesis and Characterization of CaZrTi2O7 from Tartrate Precursor Employing Microwave Heating Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Patil">B. M. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Dharwadkar"> S. R. Dharwadkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zirconolite (CaZrTi2O7) is one of the three major phases in the synthetic ceramic 'SYNROC' which is used for immobilization of high-level nuclear waste and also acts as photocatalytic and photophysical properties. In the present work the nanocrystalline CaZrTi2O7 was synthesized from Calcium Zirconyl Titanate tartrate precursor (CZTT) employing two different heating techniques such as Conventional heating (Muffle furnace) and Microwave heating (Microwave Oven). Thermal decomposition of the CZTT precursors in air yielded nanocrystalline CaZrTi2O7 powder as the end product. The products obtained by annealing the CZTT precursor using both heating method were characterized using simultaneous TG-DTA, FTIR, XRD, SEM, TEM, NTA and thermodilatometric study. The physical characteristics such as crystallinity, morphology and particle size of the product obtained by heating the CZTT precursor at the different temperatures in a Muffle furnace and Microwave oven were found to be significantly different. The microwave heating technique considerably lowered the synthesis temperature of CaZrTi2O7. The influence of microwave heating was more pronounced as compared to Muffle furnace heating. The details of the synthesis of CaZrTi2O7 from CZTT precursor are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CZTT" title="CZTT">CZTT</a>, <a href="https://publications.waset.org/abstracts/search?q=CaZrTi2O7" title=" CaZrTi2O7"> CaZrTi2O7</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=SYNROC" title=" SYNROC"> SYNROC</a>, <a href="https://publications.waset.org/abstracts/search?q=zirconolite" title=" zirconolite "> zirconolite </a> </p> <a href="https://publications.waset.org/abstracts/79296/synthesis-and-characterization-of-cazrti2o7-from-tartrate-precursor-employing-microwave-heating-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9385</span> Effect of Laminating Sequence of MWCNTs and Fe₂O₃ Filled Nanocomposites on Emi Shielding Effectiveness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javeria%20Ahmad">Javeria Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayesha%20Maryam"> Ayesha Maryam</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahid%20Rizwan"> Zahid Rizwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadeem%20Nasir"> Nadeem Nasir</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasir%20Nawab"> Yasir Nawab</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Shehbaz%20Ahmad"> Hafiz Shehbaz Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mitigation of electromagnetic interference (EMI) through thin, lightweight, and cost-effective materials is critical for electronic appliances as well as human health. The present research work discusses the design of composites that are suitable to minimize EMI through various stacking sequences. The carbon fibers reinforced composite structures impregnated with dielectric (MWCNTs) and magnetic nanofillers (Fe₂O₃) were developed to investigate their microwave absorption properties. The composite structure comprising a single type of nanofillers, each of MWCNTs & Fe₂O₃, was developed, and then their layers were stacked over each other with various stacking sequences to investigate the best stacking sequence, which presents good microwave absorption characteristics. A vector network analyzer (VNA) was used to analyze the microwave absorption properties of these developed composite structures. The composite structures impregnated with the layers of a dielectric nanofiller and sandwiched between the layers of a magnetic nanofiller show the highest EMI shielding value of 59 dB and a dielectric conductivity of 35 S/cm in the frequency range of 0.1 to 13.6 GHz. The results also demonstrate that the microwave absorption properties of the developed composite structures were dominant over reflection properties. The absence of an external peak in X-ray diffraction (XRD), marked the purity of the added nanofillers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20absorption" title=" microwave absorption"> microwave absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=EMI%20shielding" title=" EMI shielding"> EMI shielding</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20depth" title=" skin depth"> skin depth</a>, <a href="https://publications.waset.org/abstracts/search?q=reflection%20loss" title=" reflection loss"> reflection loss</a> </p> <a href="https://publications.waset.org/abstracts/183146/effect-of-laminating-sequence-of-mwcnts-and-fe2o3-filled-nanocomposites-on-emi-shielding-effectiveness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9384</span> Electrostatic and Dielectric Measurements for Hair Building Fibers from DC to Microwave Frequencies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Y.%20You">K. Y. You</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Then"> Y. L. Then</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent years, the hair building fiber has become popular, in other words, it is an effective method which helps people who suffer hair loss or sparse hair since the hair building fiber is capable to create a natural look of simulated hair rapidly. In the markets, there are a lot of hair fiber brands that have been designed to formulate an intense bond with hair strands and make the hair appear more voluminous instantly. However, those products have their own set of properties. Thus, in this report, some measurement techniques are proposed to identify those products. Up to five different brands of hair fiber are tested. The electrostatic and dielectric properties of the hair fibers are macroscopically tested using design DC and high-frequency microwave techniques. Besides, the hair fibers are microscopically analysis by magnifying the structures of the fiber using scanning electron microscope (SEM). From the SEM photos, the comparison of the uniformly shaped and broken rate of the hair fibers in the different bulk samples can be observed respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hair%20fiber" title="hair fiber">hair fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=electrostatic" title=" electrostatic"> electrostatic</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title=" dielectric properties"> dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=broken%20rate" title=" broken rate"> broken rate</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20techniques" title=" microwave techniques"> microwave techniques</a> </p> <a href="https://publications.waset.org/abstracts/25761/electrostatic-and-dielectric-measurements-for-hair-building-fibers-from-dc-to-microwave-frequencies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9383</span> The Effect of the Reaction Time on the Microwave Synthesis of Magnesium Borates from MgCl2.6H2O, MgO and H3BO3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Moroydor%20Derun">E. Moroydor Derun</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Gurses"> P. Gurses</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Yildirim"> M. Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Kipcak"> A. S. Kipcak</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Ibroska"> T. Ibroska</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Piskin"> S. Piskin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to their strong mechanical and thermal properties magnesium borates have a wide usage area such as ceramic industry, detergent production, friction reducing additive and grease production. In this study, microwave synthesis of magnesium borates from MgCl2.6H2O (Magnesium chloride hexahydrate), MgO (Magnesium oxide) and H3BO3 (Boric acid) for different reaction times is researched. X-ray Diffraction (XRD) and Fourier Transform Infrared (FT-IR) Spectroscopy are used to find out how the reaction time sways on the products. The superficial properties are investigated with Scanning Electron Microscopy (SEM). According to XRD analysis, the synthesized compounds are 00-041-1407 pdf coded Shabinite (Mg5(BO3)4Cl2(OH)5.4(H2O)) and 01-073-2158 pdf coded Karlite (Mg7(BO3)3(OH,Cl)5). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnesium%20borate" title="magnesium borate">magnesium borate</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20synthesis" title=" microwave synthesis"> microwave synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/8727/the-effect-of-the-reaction-time-on-the-microwave-synthesis-of-magnesium-borates-from-mgcl26h2o-mgo-and-h3bo3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9382</span> Dielectric Properties of NdTi₍₀.₅₋ₓ₎GeₓMo₀.₅O₄ Ceramics at Microwave Frequency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yih-Chien%20Chen">Yih-Chien Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Tse-Lung%20Lin"> Tse-Lung Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The microwave characteristics of NdTi₍₀.₅₋ₓ₎GeₓMo₀.₅O₄ are studied to determine the feasibility of their use in the liquid sensor. The microwave characteristics of NdTi₍₀.₅₋ₓ₎GeₓMo₀.₅O₄ are determined using X-ray diffraction (XRD) patterns. The permittivity (𝜀r) of NdTi₍₀.₄₉₎Ge₀.₀₁Mo₀.₅O₄ that is sintered at 1425 ℃ for 4 h is 17.6, the unloaded quality factor (Qu×f) is 33,400 GHz, and it has a temperature coefficient at the resonance frequency (TCF) of -30.7 ppm/℃. The proposed liquid sensor is at the 5G FR1 bands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NdTi%E2%82%8D%E2%82%80.%E2%82%85%E2%82%8B%E2%82%93%E2%82%8EGe%E2%82%93Mo%E2%82%80.%E2%82%85O%E2%82%84" title="NdTi₍₀.₅₋ₓ₎GeₓMo₀.₅O₄">NdTi₍₀.₅₋ₓ₎GeₓMo₀.₅O₄</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction%20pattern" title=" X-ray diffraction pattern"> X-ray diffraction pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=permittivity" title=" permittivity"> permittivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Unloaded%20quality%20factor" title=" Unloaded quality factor"> Unloaded quality factor</a> </p> <a href="https://publications.waset.org/abstracts/170409/dielectric-properties-of-ndti05gemo05o4-ceramics-at-microwave-frequency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9381</span> Microwave-Assisted Torrefaction of Teakwood Biomass Residues: The Effect of Power Level and Fluid Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lukas%20Kano%20Mangalla">Lukas Kano Mangalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Raden%20Rinova%20Sisworo"> Raden Rinova Sisworo</a>, <a href="https://publications.waset.org/abstracts/search?q=Luther%20Pagiling"> Luther Pagiling</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Torrefaction is an emerging thermo-chemical treatment process that aims to improve the quality of biomass fuels. This study focused on upgrading the waste teakwood through microwave torrefaction processes and investigating the key operating parameters to improve energy density for the quality of biochar production. The experiments were carried out in a 250 mL reactor placed in a microwave cavity on two different media, inert and non-inert. The microwave was operated at a frequency of 2.45GHz with power level variations of 540W, 720W, and 900W, respectively. During torrefaction processes, the nitrogen gas flows into the reactor at a rate of 0.125 mL/min, and the air flows naturally. The temperature inside the reactor was observed every 0.5 minutes for 20 minutes using a K-Type thermocouple. Changes in the mass and the properties of the torrefied products were analyzed to predict the correlation between calorific value, mass yield, and level power of the microwave. The results showed that with the increase in the operating power of microwave torrefaction, the calorific value and energy density of the product increased significantly, while mass and energy yield tended to decrease. Air can be a great potential media for substituting the expensive nitrogen to perform the microwave torrefaction for teakwood biomass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=torrefaction" title="torrefaction">torrefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20heating" title=" microwave heating"> microwave heating</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20enhancement" title=" energy enhancement"> energy enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20and%20energy%20yield" title=" mass and energy yield"> mass and energy yield</a> </p> <a href="https://publications.waset.org/abstracts/161314/microwave-assisted-torrefaction-of-teakwood-biomass-residues-the-effect-of-power-level-and-fluid-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9380</span> Characteristics of Aerosols Properties Over Different Desert-Influenced Aeronet Sites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abou%20Bakr%20Merdji">Abou Bakr Merdji</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Mhawish"> Alaa Mhawish</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaofeng%20Xu"> Xiaofeng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunsong%20Lu"> Chunsong Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The characteristics of optical and microphysical properties of aerosols near deserts are analyzed using 11 AErosol RObotic NETwork (AERONET) sites located in 6 major desert areas (the Sahara, Arabia, Thar, Karakum, Taklamakan, and Gobi) between 1998 and 2021. The regional mean of Aerosol Optical Depth (AOD) (coarse AOD (CAOD)) are 0.44 (0.187), 0.38 (0.26), 0.35 (0.24), 0.23 (0.11), 0.20 (0.14), 0.10 (0.05) in the Thar, Arabian, Sahara, Karakum, Taklamakan and Gobi Deserts respectively, while an opposite for AE and Fine Mode Fraction (FMF). Higher extinctions are associated with larger particles (dust) over all the main desert regions. This is shown by the almost inversely proportional variations of AOD and CAOD compared with AE and FMF. Coarse particles contribute the most to the total AOD over the Sahara Desert compared to those in the other deserts all year round. Related to the seasonality of dust events, the maximum AOD (CAOD) generally appears in summer and spring, while the minimum is in winter. The mean values of absorbing AOD (AAOD), Absorbing AE (AAE), and the Single Scattering Albedo (SSA) for all sites ranged from 0.017 to 0.037, from 1.16 to 2.81 and from 0.844 to 0.944, respectively. Generally, the highest absorbing aerosol load are observed over the Thar, followed by the Karakum, the Sahara, the Gobi, and then the Taklamakan Deserts, while the largest absorbing particles are observed in the Sahara followed by Arabia, Thar, Karakum, Gobi, and the smallest over the Taklamakan Desert. Similar absorption qualities are observed over the Sahara, Arabia, Thar, and Karakum Deserts, with SSA values varying between 0.90 and 0.91, whereas the most and least absorbing particles are observed at the Taklamakan and the Gobi Deserts, respectively. The seasonal AAODs are distinctly different over the deserts, with parts of Sahara and Arabia, and the Dalanzadgad sites experiencing the maximum in summer, the Southern Sahara, Western Arabia, Jaipur, and Dushanbe in winter, while the Eastern Arabia and the Muztagh Ata in autumn. AAOD and SSA spectra are consistent with dust-dominated conditions that resulted from aerosol typing (dust and polluted dust) at most deserts, with a possible presence of other absorbing particles apart from dust at Arabia, the Taklamakan, and the Gobi Desert sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sahara" title="sahara">sahara</a>, <a href="https://publications.waset.org/abstracts/search?q=AERONET" title=" AERONET"> AERONET</a>, <a href="https://publications.waset.org/abstracts/search?q=desert" title=" desert"> desert</a>, <a href="https://publications.waset.org/abstracts/search?q=dust%20belt" title=" dust belt"> dust belt</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosols" title=" aerosols"> aerosols</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a> </p> <a href="https://publications.waset.org/abstracts/166795/characteristics-of-aerosols-properties-over-different-desert-influenced-aeronet-sites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9379</span> Structural and Electromagnetic Properties of CoFe2O4-ZrO2 Nanocomosites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravinder%20Reddy%20Butreddy">Ravinder Reddy Butreddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadhana%20Katlakunta"> Sadhana Katlakunta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nanocomposites of CoFe2O4-xZrO2 with different loadings of ZrO2 (x = 0.025, 0.05, 0.075, 0.1 and 1.5) were prepared using ball mill method. All the samples were prepared at 980°C/1h using microwave sintering method. The x-ray diffraction patterns show the existence of tetragonal/monoclinic phase of ZrO2 and cubic phase of CoFe2O4. The effects of ZrO2 on structural and microstructural properties of CoFe2O4 composite ceramics were investigated. It is observed that the density of the composite decreases and porosity increases with x. The magnetic properties such as saturation magnetization (Ms), and Coercive field were calculated at room temperature. The Ms is decreased with x while coercive field is increased with x. The dielectric parameters exhibit the relaxation behavior in high-frequency region and showing increasing trend with ZrO2 concentration, showing suitable <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title="dielectric properties">dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20sintering" title=" microwave sintering"> microwave sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/68302/structural-and-electromagnetic-properties-of-cofe2o4-zro2-nanocomosites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9378</span> Reflection Performance of Truncated Pyramidal and Truncated Wedge Microwave Absorber Using Sugarcane Bagasse (SCB) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liyana%20Zahid">Liyana Zahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Fareq%20Abd%20Malek"> Mohd Fareq Abd Malek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ee%20Meng%20Cheng"> Ee Meng Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Wen%20Liu"> Wei Wen Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeng%20Seng%20Lee"> Yeng Seng Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nadeem%20Iqbal"> Muhammad Nadeem Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Fwen%20Hoon%20Wee"> Fwen Hoon Wee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the parameters that affect the performance of microwave absorbers is the shape of the absorbers. This paper shows the performance (reflection loss) of truncated pyramidal and truncated wedge microwave absorbers in the range frequency between 8.2 to 12.4 GHz (X-Band) in simulation. The material used is sugarcane bagasse (SCB) which is one of the new materials that used to fabricate the microwave absorber. The complex permittivity was measured using Agilent dielectric probe technique. The designs were simulated using CST Microwave Studio Software. The reflection losses between these two shapes were compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20absorber" title="microwave absorber">microwave absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=reflection%20loss" title=" reflection loss"> reflection loss</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane%20bagasse%20%28SCB%29" title=" sugarcane bagasse (SCB)"> sugarcane bagasse (SCB)</a>, <a href="https://publications.waset.org/abstracts/search?q=X-Band" title=" X-Band"> X-Band</a> </p> <a href="https://publications.waset.org/abstracts/1457/reflection-performance-of-truncated-pyramidal-and-truncated-wedge-microwave-absorber-using-sugarcane-bagasse-scb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9377</span> The Effects of Drying Technology on Rehydration Time and Quality of Mung Bean Vermicelli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20P.%20Tien">N. P. Tien</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Songsermpong"> S. Songsermpong</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Quan"> T. H. Quan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mung bean vermicelli is a popular food in Asian countries and is made from mung bean starch. The preparation process involves several steps, including drying, which affects the structure and quality of the vermicelli. This study aims to examine the effects of different drying technologies on the rehydration time and quality of mung bean vermicelli. Three drying technologies, namely hot air drying, microwave continuous drying, and microwave vacuum drying, were used for the drying process. The vermicelli strands were dried at 45°C for 12h in a hot air dryer, at 70 Hz of conveyor belt speed inverter in a microwave continuous dryer, and at 30 W.g⁻¹ of microwave power density in a microwave vacuum dryer. The results showed that mung bean vermicelli dried using hot air drying had the longest rehydration time of 12.69 minutes. On the other hand, vermicelli dried through microwave continuous drying and microwave vacuum drying had shorter rehydration times of 2.79 minutes and 2.14 minutes, respectively. Microwave vacuum drying also resulted in larger porosity, higher water absorption, and cooking loss. The tensile strength and elasticity of vermicelli dried using hot air drying were higher compared to microwave drying technologies. The sensory evaluation did not reveal significant differences in most attributes among the vermicelli treatments. Overall, microwave drying technology proved to be effective in reducing rehydration time and producing good-quality mung bean vermicelli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mung%20bean%20vermicelli" title="mung bean vermicelli">mung bean vermicelli</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20air" title=" hot air"> hot air</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20continuous" title=" microwave continuous"> microwave continuous</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20vacuum" title=" microwave vacuum"> microwave vacuum</a> </p> <a href="https://publications.waset.org/abstracts/170532/the-effects-of-drying-technology-on-rehydration-time-and-quality-of-mung-bean-vermicelli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20absorbing%20properties&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20absorbing%20properties&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20absorbing%20properties&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20absorbing%20properties&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20absorbing%20properties&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20absorbing%20properties&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20absorbing%20properties&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20absorbing%20properties&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20absorbing%20properties&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20absorbing%20properties&page=313">313</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20absorbing%20properties&page=314">314</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microwave%20absorbing%20properties&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>