CINXE.COM
Search results for: europium
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: europium</title> <meta name="description" content="Search results for: europium"> <meta name="keywords" content="europium"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="europium" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="europium"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 27</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: europium</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Facile Synthesis and Structure Characterization of Europium (III) Tungstate Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Rahimi-Nasrabadi">Mehdi Rahimi-Nasrabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seied%20Mahdi%20Pourmortazavi"> Seied Mahdi Pourmortazavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Taguchi robust design as a statistical method was applied for optimization of the process parameters in order to tunable, simple and fast synthesis of europium (III) tungstate nanoparticles. Europium (III) tungstate nanoparticles were synthesized by a chemical precipitation reaction involving direct addition of europium ion aqueous solution to the tungstate reagent solved in aqueous media. Effects of some synthesis procedure variables i.e., europium and tungstate concentrations, flow rate of cation reagent addition, and temperature of reaction reactor on the particle size of europium (III) tungstate nanoparticles were studied experimentally in order to tune particle size of europium (III) tungstate. Analysis of variance shows the importance of controlling tungstate concentration, cation feeding flow rate and temperature for preparation of europium (III) tungstate nanoparticles by the proposed chemical precipitation reaction. Finally, europium (III) tungstate nanoparticles were synthesized at the optimum conditions of the proposed method and the morphology and chemical composition of the prepared nano-material were characterized by means of X-Ray diffraction, scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy, and fluorescence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=europium%20%28III%29%20tungstate" title="europium (III) tungstate">europium (III) tungstate</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-material" title=" nano-material"> nano-material</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20control" title=" particle size control"> particle size control</a>, <a href="https://publications.waset.org/abstracts/search?q=procedure%20optimization" title=" procedure optimization"> procedure optimization</a> </p> <a href="https://publications.waset.org/abstracts/1684/facile-synthesis-and-structure-characterization-of-europium-iii-tungstate-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Structural and Morphological Study of Europium Doped ZnO</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelhak%20Nouri">Abdelhak Nouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Europium doped zinc oxide nanocolumns (ZnO:Eu) were deposited on indium tin oxide (ITO) substrate from an aqueous solution of 10⁻³M Zn(NO₃)₂ and 0.5M KNO₃ with different concentration of europium ions. The deposition was performed in a classical three-electrode electrochemical cell. The structural, morphology and optical properties have been characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM). The XRD results show high quality of crystallite with preferential orientation along c-axis. SEM images speculate ZnO: Eu has nanocolumnar form with hexagonal shape. The diameter of nanocolumns is around 230 nm. Furthermore, it was found that tail of crystallite, roughness, and band gap energy is highly influenced with increasing Eu ions concentration. The average grain size is about 102 nm to 125 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deterioration%20lattice" title="deterioration lattice">deterioration lattice</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=Eu%3AZnO" title=" Eu:ZnO"> Eu:ZnO</a> </p> <a href="https://publications.waset.org/abstracts/101699/structural-and-morphological-study-of-europium-doped-zno" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Investigation Of Eugan's, Optical Properties With Dft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahieddine.%20Bouabdellah">Bahieddine. Bouabdellah</a>, <a href="https://publications.waset.org/abstracts/search?q=Benameur.%20Amiri"> Benameur. Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader.nouri"> Abdelkader.nouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Europium-doped gallium nitride (EuGaN) is a promising material for optoelectronic and thermoelectric devices. This study investigates its optical properties using density functional theory (DFT) with the FP-LAPW method and MBJ+U correction. The simulation substitutes a gallium atom with europium in a hexagonal GaN lattice (6% doping). Distinct absorption peaks are observed in the optical analysis. These results highlight EuGaN's potential for various applications and pave the way for further research on rare earth-doped materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eugan" title="eugan">eugan</a>, <a href="https://publications.waset.org/abstracts/search?q=fp-lapw" title=" fp-lapw"> fp-lapw</a>, <a href="https://publications.waset.org/abstracts/search?q=dft" title=" dft"> dft</a>, <a href="https://publications.waset.org/abstracts/search?q=wien2k" title=" wien2k"> wien2k</a>, <a href="https://publications.waset.org/abstracts/search?q=mbj%20hubbard" title=" mbj hubbard"> mbj hubbard</a> </p> <a href="https://publications.waset.org/abstracts/185924/investigation-of-eugans-optical-properties-with-dft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Temperature Dependence of Photoluminescence Intensity of Europium Dinuclear Complex</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwedi%20L.%20M.%20Nsah">Kwedi L. M. Nsah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hisao%20Uchiki"> Hisao Uchiki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum computation is a new and exciting field making use of quantum mechanical phenomena. In classical computers, information is represented as bits, with values either 0 or 1, but a quantum computer uses quantum bits in an arbitrary superposition of 0 and 1, enabling it to reach beyond the limits predicted by classical information theory. lanthanide ion quantum computer is an organic crystal, having a lanthanide ion. Europium is a favored lanthanide, since it exhibits nuclear spin coherence times, and Eu(III) is photo-stable and has two stable isotopes. In a europium organic crystal, the key factor is the mutual dipole-dipole interaction between two europium atoms. Crystals of the complex were formed by making a 2 :1 reaction of Eu(fod)3 and bpm. The transparent white crystals formed showed brilliant red luminescence with a 405 nm laser. The photoluminescence spectroscopy was observed both at room and cryogenic temperatures (300-14 K). The luminescence spectrum of [Eu(fod)3(μ-bpm) Eu(fod)3] showed characteristic of Eu(III) emission transitions in the range 570–630 nm, due to the deactivation of 5D0 emissive state to 7Fj. For the application of dinuclear Eu3+ complex to q-bit device, attention was focused on 5D0 -7F0 transition, around 580 nm. The presence of 5D0 -7F0 transition at room temperature revealed that at least one europium symmetry had no inversion center. Since the line was unsplit by the crystal field effect, any multiplicity observed was due to a multiplicity of Eu3+ sites. For q-bit element, more narrow line width of 5D0 → 7F0 PL band in Eu3+ ion was preferable. Cryogenic temperatures (300 K – 14 K) was applicable to reduce inhomogeneous broadening and distinguish between ions. A CCD image sensor was used for low temperature Photoluminescence measurement, and a far better resolved luminescent spectrum was gotten by cooling the complex at 14 K. A red shift by 15 cm-1 in the 5D0 - 7F0 peak position was observed upon cooling, the line shifted towards lower wavenumber. An emission spectrum at the 5D0 - 7F0 transition region was obtained to verify the line width. At this temperature, a peak with magnitude three times that at room temperature was observed. The temperature change of the 5D0 state of Eu(fod)3(μ-bpm)Eu(fod)3 showed a strong dependence in the vicinity of 60 K to 100 K. Thermal quenching was observed at higher temperatures than 100 K, at which point it began to decrease slowly with increasing temperature. The temperature quenching effect of Eu3+ with increase temperature was caused by energy migration. 100 K was the appropriate temperature for the observation of the 5D0 - 7F0 emission peak. Europium dinuclear complex bridged by bpm was successfully prepared and monitored at cryogenic temperatures. At 100 K the Eu3+-dope complex has a good thermal stability and this temperature is appropriate for the observation of the 5D0 - 7F0 emission peak. Sintering the sample above 600o C could also be a method to consider but the Eu3+ ion can be reduced to Eu2+, reasons why cryogenic temperature measurement is preferably over other methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eu%28fod%29%E2%82%83" title="Eu(fod)₃">Eu(fod)₃</a>, <a href="https://publications.waset.org/abstracts/search?q=europium%20dinuclear%20complex" title=" europium dinuclear complex"> europium dinuclear complex</a>, <a href="https://publications.waset.org/abstracts/search?q=europium%20ion" title=" europium ion"> europium ion</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20bit" title=" quantum bit"> quantum bit</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20computer" title=" quantum computer"> quantum computer</a>, <a href="https://publications.waset.org/abstracts/search?q=2" title=" 2"> 2</a>, <a href="https://publications.waset.org/abstracts/search?q=2-bipyrimidine" title="2-bipyrimidine">2-bipyrimidine</a> </p> <a href="https://publications.waset.org/abstracts/89113/temperature-dependence-of-photoluminescence-intensity-of-europium-dinuclear-complex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Study of the Nonlinear Optic Properties of Thin Films of Europium Doped Zinc Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ballouch">Ali Ballouch</a>, <a href="https://publications.waset.org/abstracts/search?q=Nourelhouda%20Choukri"> Nourelhouda Choukri</a>, <a href="https://publications.waset.org/abstracts/search?q=Zouhair%20%20Soufiani"> Zouhair Soufiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20El%20Jouad"> Mohamed El Jouad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Addou"> Mohamed Addou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For several years, significant research has been developed in the areas of applications of semiconductor wide bandgap such as ZnO in optoelectronics. This oxide has the advantage of having a large exciton energy (60 meV) three times higher than that of GaN (21 meV) or ZnS (20 meV). This energy makes zinc oxide resistant for laser irradiations and very interesting for the near UV-visible optic, as well as for studying physical microcavities. A high-energy direct gap at room temperature (Eg > 1 eV) which makes it a potential candidate for emitting devices in the near UV and visible. Our work is to study the nonlinear optical properties, mainly the nonlinear third-order susceptibility of europium doped Zinc oxide thin films. The samples were prepared by chemical vapor spray method (Spray), XRD, SEM technique, THG were used for characterization. In this context, the influence of europium doping on the nonlinear optical response of the Zinc oxide was investigated. The nonlinear third-order properties depend on the physico-chemical parameters (crystallinity, strain, and surface roughness), the nature and the level of doping, temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZnO" title="ZnO">ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20optical%20properties" title=" non-linear optical properties"> non-linear optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronics" title=" optoelectronics"> optoelectronics</a> </p> <a href="https://publications.waset.org/abstracts/3354/study-of-the-nonlinear-optic-properties-of-thin-films-of-europium-doped-zinc-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Elaboration of Sustainable Luminescence Material Based on Rare Earth Complexes for Solar Energy Conversion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othmane%20Essahili">Othmane Essahili</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ilsouk"> Mohamed Ilsouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Carine%20Duhayon"> Carine Duhayon</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Moudam"> Omar Moudam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to their excellent and promising properties, a great deal of attention has recently been devoted to luminescent materials, particularly those utilizing rare earth elements. These materials play an essential role in low-cost energy conversion technology applications, such as luminescent solar concentrators (LSCs). They also have potential applications in Agri-PV systems and smart building windows. Luminescent materials based on europium (III) complexes are known for their high luminescence efficiency, long fluorescence lifetimes, and sharp emission bands. However, they present certain drawbacks related to their limited absorption capacity due to the forbidden 4f-4f electronic transitions. To address these drawbacks, using β-diketonate ligands as sensitizers appears as a promising solution to enhance luminescence intensity through the antenna effect, where the ligand's excited energy is transferred to the europium ions. In this study, we synthesized β-diketonate-based europium complexes with phenanthroline derivatives, modified with various methyl groups, to examine their effects on the complexes' stability in poly(methyl methacrylate) (PMMA) films. Our findings reveal that these complexes exhibit remarkable red emission and high photoluminescence quantum yield. Stability tests under different conditions for 1200 hours showed that complexes with a higher number of methyl substitutions offer improved photoluminescent stability and resistance to degradation, particularly in outdoor settings. This research underscores the potential of chemically tuned phenanthroline ligands in developing stable, efficient luminescent materials for future optoelectronic devices, including efficient and durable LSCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=luminescent%20materials" title="luminescent materials">luminescent materials</a>, <a href="https://publications.waset.org/abstracts/search?q=photochemistry" title=" photochemistry"> photochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescent%20solar%20concentrators" title=" luminescent solar concentrators"> luminescent solar concentrators</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-diketonate-based%20europium%20complexes" title=" β-diketonate-based europium complexes"> β-diketonate-based europium complexes</a> </p> <a href="https://publications.waset.org/abstracts/183297/elaboration-of-sustainable-luminescence-material-based-on-rare-earth-complexes-for-solar-energy-conversion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Europium Chelates as a Platform for Biosensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eiman%20A.%20Al-Enezi">Eiman A. Al-Enezi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gin%20Jose"> Gin Jose</a>, <a href="https://publications.waset.org/abstracts/search?q=Sikha%20Saha"> Sikha Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Millner"> Paul Millner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rare earth nanotechnology has gained a considerable amount of interest in the field of biosensing due to the unique luminescence properties of lanthanides. Chelating rare earth ions plays a significant role in biological labelling applications including medical diagnostics, due to their different excitation and emission wavelengths, variety of their spectral properties, sharp emission peaks and long fluorescence lifetimes. We aimed to develop a platform for biosensors based on Europium (Eu³⁺) chelates against biomarkers of cardiac injury (heart-type fatty acid binding protein; H-FABP3) and stroke (glial fibrillary acidic protein; GFAP). Additional novelty in this project is the use of synthetic binding proteins (Affimers), which could offer an excellent alternative targeting strategy to the existing antibodies. Anti-GFAP and anti-HFABP3 Affimer binders were modified to increase the number of carboxy functionalities. Europium nitrate then incubated with the modified Affimer. The luminescence characteristics of the Eu³⁺ complex with modified Affimers and antibodies against anti-GFAP and anti-HFABP3 were measured against different concentrations of the respective analytes on excitation wavelength of 395nm. Bovine serum albumin (BSA) was used as a control against the IgG/Affimer Eu³⁺ complexes. The emission spectrum of Eu³⁺ complex resulted in 5 emission peaks ranging between 550-750 nm with the highest intensity peaks were at 592 and 698 nm. The fluorescence intensity of Eu³⁺ chelates with the modified Affimer or antibodies increased significantly by 4-7 folder compared to the emission spectrum of Eu³⁺ complex. The fluorescence intensity of the Affimer complex was quenched proportionally with increased analyte concentration, but this did not occur with antibody complex. In contrast, the fluorescence intensity for Eu³⁺ complex increased slightly against increased concentration of BSA. These data demonstrate that modified Affimers Eu³⁺ complexes can function as nanobiosensors with potential diagnostic and analytical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lanthanides" title="lanthanides">lanthanides</a>, <a href="https://publications.waset.org/abstracts/search?q=europium" title=" europium"> europium</a>, <a href="https://publications.waset.org/abstracts/search?q=chelates" title=" chelates"> chelates</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensors" title=" biosensors"> biosensors</a> </p> <a href="https://publications.waset.org/abstracts/73657/europium-chelates-as-a-platform-for-biosensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> The Synthesis and Analysis of Two Long Lasting Phosphorescent Compounds: SrAl2O4: Eu2+, Dy3+</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghayah%20Alsaleem">Ghayah Alsaleem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research project focussed on specific compounds, whereas a literature review was completed on the broader subject of long-lasting phosphorescence. For the review and subsequent laboratory work, long lasting phosphorescence compounds were defined as materials that have an afterglow decay time greater than a few minutes. The decay time is defined as the time between the end of excitation and the moment the light intensity drops below 0.32mcd/m2. This definition is widely used in industry and in most research studies. The experimental work focused on known long-lasting phosphorescence compounds – strontium aluminate (SrAl2O4: Eu2+, Dy3+). At first, preparation was similar to literary methods. Temperature, dopant levels and mixing methods were then varied in order to expose their effects on long-lasting phosphorescence. The effect of temperature was investigated for SrAl2O4: Eu2+, Dy3+, and resulted in the discovery that 1350°C was the only temperature that the compound could be heated to in the Differential scanning calorimetry (DSC) in order to achieve any phosphorescence. However, no temperatures above 1350°C were investigated. The variation of mixing method and co-dopant level in the strontium aluminate compounds resulted in the finding that the dry mixing method using a Turbula mixer resulted in the longest afterglow. It was also found that an increase of europium inclusion, from 1mol% to 2mol% in these compounds, increased the brightest of the phosphorescence. As this increased batch was mixed using sonication, the phosphorescent time was actually reduced which produced green long-lasting phosphorescence for up to 20 minutes following 30 minutes excitation and 50 minutes when the europium content was doubled and mixed using sonication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=long%20lasting" title="long lasting">long lasting</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorescence" title=" phosphorescence"> phosphorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=excitation" title=" excitation"> excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=europium" title=" europium"> europium</a> </p> <a href="https://publications.waset.org/abstracts/86841/the-synthesis-and-analysis-of-two-long-lasting-phosphorescent-compounds-sral2o4-eu2-dy3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Optical Properties of Nanocrystalline Europium-Yttrium Titanate EuYTi2O7 </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Mrazek">J. Mrazek</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Skala"> R. Skala</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bysakh"> S. Bysakh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Kasik"> Ivan Kasik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lanthanide-doped yttrium titanium oxides, which crystallize in a pyrochlore structure with general formula (RExY1-x)2Ti2O7 (RE=rare earth element), have been extensively investigated in recent years for their interesting physical and chemical properties. Despite that the pure pyrochlore structure does not present luminescence ability, the presence of yttrium ions in the pyrochlore structure significantly improves the luminescence properties of the RE. Moreover, the luminescence properties of pyrochlores strongly depend on the size of formed nanocrystals. In this contribution, we present a versatile sol-gel synthesis of nanocrystalline EuYTi2O7pyrochlore. The nanocrystalline powders and thin films were prepared by the condensation of titanium(IV)butoxide with europium(III) chloride followed by the calcination. The introduced method leads to the formation of the highly-homogenous nanocrystalline EuYTi2O7 with tailored grain size ranging from 20 nm to 200 nm. The morphology and the structure of the formed nanocrystals are linked to the luminescence properties of Eu3+ ions incorporated into the pyrochlore lattice. The results of XRD and HRTEM analysis show that the Eu3+ and Y3+ ions are regularly distributed inside the lattice. The lifetime of Eu3+ ions in calcinated powders is regularly decreasing from 140 us to 68 us and the refractive index of prepared thin films regularly increases from 2.0 to 2.45 according to the calcination temperature. The shape of the luminescence spectra and the decrease of the lifetime correspond with the crystallinity of prepared powders. The results present fundamental information about the effect of the size of the nanocrystals to their luminescence properties. The promising application of prepared nanocrystals in the field of lasers and planar optical amplifiers is widely discussed in the contribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=europium" title="europium">europium</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystals" title=" nanocrystals"> nanocrystals</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a> </p> <a href="https://publications.waset.org/abstracts/7471/optical-properties-of-nanocrystalline-europium-yttrium-titanate-euyti2o7" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Application of Laser Spectroscopy for Detection of Actinides and Lanthanides in Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igor%20Izosimov">Igor Izosimov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is devoted to applications of the Time-resolved laser-induced luminescence (TRLIF) spectroscopy and time-resolved laser-induced chemiluminescence spectroscopy for detection of lanthanides and actinides. Results of the experiments on Eu, Sm, U, and Pu detection in solutions are presented. The limit of uranyl detection (LOD) in urine in our TRLIF experiments was up to 5 pg/ml. In blood plasma LOD was 0.1 ng/ml and after mineralization was up to 8pg/ml – 10pg/ml. In pure solution, the limit of detection of europium was 0.005ng/ml and samarium, 0.07ng/ml. After addition urine, the limit of detection of europium was 0.015 ng/ml and samarium, 0.2 ng/ml. Pu, Np, and some U compounds do not produce direct luminescence in solutions, but when excited by laser radiation, they can induce chemiluminescence of some chemiluminogen (luminol in our experiments). It is shown that multi-photon scheme of chemiluminescence excitation makes chemiluminescence not only a highly sensitive but also a highly selective tool for the detection of lanthanides/actinides in solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actinides%2Flanthanides%20detection" title="actinides/lanthanides detection">actinides/lanthanides detection</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20spectroscopy%20with%20time%20resolution" title=" laser spectroscopy with time resolution"> laser spectroscopy with time resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence%2Fchemiluminescence" title=" luminescence/chemiluminescence"> luminescence/chemiluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=solutions" title=" solutions"> solutions</a> </p> <a href="https://publications.waset.org/abstracts/61605/application-of-laser-spectroscopy-for-detection-of-actinides-and-lanthanides-in-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Synthesis and Luminescent Properties of Barium-Europium (III) Silicate Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Isahakyan">A. Isahakyan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Terzyan"> A. Terzyan</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Stepanyan"> V. Stepanyan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Zulumyan"> N. Zulumyan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Beglaryan"> H. Beglaryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The involvement of silica hydrogel derived from serpentine minerals (Mg(Fe))6[Si4O10](OH)8 as a source of silicon dioxide in SiO2–NaOH–BaCl2–H2O system results in precipitating via one-hour stirring of boiling suspension such intermediates that on heating up to 800 °C crystallize into the product composed of barium ortho- Ba2SiO4 and metasilicates BaSiO3. Based on the positive results, this approach has been decided to be adapted to inserting europium (III) ions into the structure of the synthesized compounds. Intermediates previously precipitated in silica hydrogel–NaOH–BaCl2–Eu(NO3)3 system via one-hour stirring at room temperature underwent one-hour heat-treatment at different temperatures (6001200 °C). Prior to calcination, the suspension produced in the mixer was heated on a boiling-water bath until a powder-like sample was obtained. When the silica hydrogel was metered, SiO2 content in the silica hydrogel that is 5.8 % was taken into consideration in order to guaranty the molar ratios of both SiO2 to BaO and SiO2 to Na2O equal to 1:2. BaCl2 and Eu(NO3)3 reagents were weighted so that the formation of appropriate compositions was guaranteed. Samples including various concentrations of Eu3+ ions (1.25, 2.5, 3.75, 5, 6.35, 8.65, 10, 17.5, 18.75 and 20 mol%) were synthesized by the described method. Luminescence excitation, emission spectra of the products were recorded on the Agilent Cary Eclipes fluorescence spectrophotometer using Agilent Xenon flash lamp (80 Hz) as the excitation source (scanning rate=30 nm/min, excitation and emission slits width=5 nm, excitation filter set to auto, emission filter set to auto and PMT detector Voltage=800 V). Prior to optical properties measurements, each of the powder samples was put in the solid sample-holder. X-ray powder diffraction (XRPD) measurements were made on the SmartLab SE diffractometer. Emission spectra recorded for all the samples at an excitation wavelength of 394 nm exhibit peaks centered at around 536, 555, 587, 614, 653, 690 and 702.5 nm. The most intensive emission peak is observed at 614nm due to 5D0→7F2 of europium (III) ions transition. Luminescence intensity achieves its maximum for Eu3+ 17.5 mol% and heat-treatment at 1200 °C. The XRPD patterns revealed that the diffraction peaks recorded for this sample are identical to NaBa6Nd(SiO4)4 reflections. As Nd-containing reagents were not involved into the synthesis, the maximum luminescent intensity is most likely to be conditioned by NaBa6Eu(SiO4)4 formation whose reflections are not available in the ICDD-JCPDS database of crystallographic 2024. Up to Eu3+ 2.5 mol% the samples demonstrate the phases corresponding to Ba2SiO4 and BaSiO3 standards. Subsequent increasing of europium (III) concentration in the system leads to NaBa6Eu(SiO4)4 formation along with Ba2SiO4 and BaSiO3. NaBa6Eu(SiO4)4 share gradually increases and starting from 17.5 mol% and more NaBa6Eu(SiO4)4 phase is only registered. Thus, the variation of europium (III) concentration in silica hydrogel–NaOH–BaCl2–Eu(NO3)3 system allows producing by the precipitation method the products composed of europium (III)-doped Ba2SiO4 and BaSiO3 and/or NaBa6Eu(SiO4)4 distinguished by different luminescent properties. The work was supported by the Science Committee of RA, in the frames of the research projects № 21T-1D131 and № 21SCG-1D013. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=europium%20%28III%29-doped%20barium%20ortho-%20Ba2SiO4%20and%20metasilicates%20BaSiO%E2%82%83" title="europium (III)-doped barium ortho- Ba2SiO4 and metasilicates BaSiO₃">europium (III)-doped barium ortho- Ba2SiO4 and metasilicates BaSiO₃</a>, <a href="https://publications.waset.org/abstracts/search?q=NaBa%E2%82%86Eu%28SiO%E2%82%84%29%E2%82%84" title=" NaBa₆Eu(SiO₄)₄"> NaBa₆Eu(SiO₄)₄</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation%20method" title=" precipitation method"> precipitation method</a> </p> <a href="https://publications.waset.org/abstracts/186556/synthesis-and-luminescent-properties-of-barium-europium-iii-silicate-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">39</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Chemical Sensing Properties of Self-Assembled Film Based on an Amphiphilic Ambipolar Triple-Decker (Phthalocyaninato) (Porphyrinato) Europium Semiconductor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiran%20Abdullah">Kiran Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanli%20Chen"> Yanli Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An amphiphilic mixed (phthalocyaninato) (porphyrinato) europium triple-decker complex Eu₂(Pc)₂(TPyP) has been synthesized and characterized. Introducing electron-withdrawing pyridyl substituents onto the meso-position of porphyrin ring in the triple-decker to ensure the sufficient hydrophilicity and suitable HOMO and LUMO energy levels and thus successfully realize amphiphilic ambipolar organic semiconductor. Importantly, high sensitive, reproducible p-type and n-type responses towards NH₃ andNO₂ respectively, based on the self-assembled film of the Eu₂(Pc)₂(TPyP) fabricated by a simple solution-based Quasi–Langmuir–Shäfer (QLS) method, have been first revealed. The good conductivity and crystallinity for the QLS film of Eu₂(Pc)₂(TPyP) render it excellent sensing property. This complex is sensitive to both electron-donating NH₃ gas in 5–30 ppm range and electron-accepting NO₂ gas 400–900 ppb range. Due to uniform nano particles there exist effective intermolecular interaction between triple decker molecules. This is the best result of Phthalocyanine–based chemical sensors at room temperature. Furthermore, the responses of the QLS film are all linearly correlated to both NH₃ and NO₂ with excellent sensitivity of 0.04% ppm⁻¹ and 31.9 % ppm⁻¹, respectively, indicating the great potential of semiconducting tetrapyrrole rare earth triple-decker compounds in the field of chemical sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambipolar%20semiconductor" title="ambipolar semiconductor">ambipolar semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensing" title=" gas sensing"> gas sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20%28phthalocyaninato%29%20%28porphyrinato%29%20rare%20earth%20complex" title=" mixed (phthalocyaninato) (porphyrinato) rare earth complex"> mixed (phthalocyaninato) (porphyrinato) rare earth complex</a>, <a href="https://publications.waset.org/abstracts/search?q=Self-assemblies" title=" Self-assemblies"> Self-assemblies</a> </p> <a href="https://publications.waset.org/abstracts/80231/chemical-sensing-properties-of-self-assembled-film-based-on-an-amphiphilic-ambipolar-triple-decker-phthalocyaninato-porphyrinato-europium-semiconductor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Thermoluminescence Characteristic of Nanocrystalline BaSO4 Doped with Europium </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanika%20S.%20Raheja">Kanika S. Raheja</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Pandey"> A. Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaila%20Bahl"> Shaila Bahl</a>, <a href="https://publications.waset.org/abstracts/search?q=Pratik%20Kumar"> Pratik Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Lochab"> S. P. Lochab </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subject of undertaking for this paper is the study of BaSO4 nanophosphor doped with Europium in which mainly the concentration of the rare earth impurity Eu (0.05, 0.1, 0.2, 0.5, and 1 mol %) has been varied. A comparative study of the thermoluminescence(TL) properties of the given nanophosphor has also been done using a well-known standard dosimetry material i.e. TLD-100.Firstly, a number of samples were prepared successfully by the chemical co-precipitation method. The whole lot was then compared to a well established standard material (TLD-100) for its TL sensitivity property. BaSO4:Eu ( 0.2 mol%) showed the highest sensitivity out of the lot. It was also found that when compared to the standard TLD-100, BaSo4:Eu (0.2mol%) showed surprisingly high sensitivity for a large range of doses. The TL response curve for all prepared samples has also been studied over a wide range of doses i.e 10Gy to 2kGy for gamma radiation. Almost all the samples of BaSO4:Eu showed a remarkable linearity for a broad range of doses, which is a characteristic feature of a fine TL dosimeter. The graph remained linear even beyond 1kGy for gamma radiation. Thus, the given nanophosphor has been successfully optimised for the concentration of the dopant material to achieve its highest TL sensitivity. Further, the comparative study with the standard material revealed that the current optimised sample shows an astonishingly better TL sensitivity and a phenomenal linear response curve for an incredibly wide range of doses for gamma radiation (Co-60) as compared to the standard TLD-100, which makes the current optimised BaSo4:Eu quite promising as an efficient gamma radiation dosimeter. Lastly, the present phosphor has been optimised for its annealing temperature to acquire the best results while also studying its fading and reusability properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title="gamma radiation">gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20dosimetry" title=" radiation dosimetry"> radiation dosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoluminescence" title=" thermoluminescence "> thermoluminescence </a> </p> <a href="https://publications.waset.org/abstracts/33558/thermoluminescence-characteristic-of-nanocrystalline-baso4-doped-with-europium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Spectroscopic Studies and Reddish Luminescence Enhancement with the Increase in Concentration of Europium Ions in Oxy-Fluoroborate Glasses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahamuda%20Sk">Mahamuda Sk</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Rao%20Allam"> Srinivasa Rao Allam</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Prakash%20G."> Vijaya Prakash G.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The different concentrations of Eu3+ ions doped in Oxy-fluoroborate glasses of composition 60 B2O3-10 BaF2-10 CaF2-15 CaF2- (5-x) Al2O3 -x Eu2O3 where x = 0.1, 0.5, 1.0 and 2.0 mol%, have been prepared by conventional melt quenching technique and are characterized through absorption and photoluminescence (PL), decay, color chromaticity and Confocal measurements. The absorption spectra of all the glasses consists of six peaks corresponding to the transitions 7F0→5D2, 7F0→5D1, 7F1→5D1, 7F1→5D0, 7F0→7F6 and 7F1→7F6 respectively. The experimental oscillator strengths with and without thermal corrections have been evaluated using absorption spectra. Judd-Ofelt (JO) intensity parameters (Ω2 and Ω4) have been evaluated from the photoluminescence spectra of all the glasses. PL spectra of all the glasses have been recorded at excitation wavelengths 395 nm (conventional excitation source) and 410 nm (diode laser) to observe the intensity variation in the PL spectra. All the spectra consists of five emission peaks corresponding to the transitions 5D0→7FJ (J = 0, 1, 2, 3 and 4). Surprisingly no concentration quenching is observed on PL spectra. Among all the glasses the glass with 2.0 mol% of Eu3+ ion concentration possesses maximum intensity for the transition 5D0→7F2 (612 nm) in bright red region. The JO parameters derived from the photoluminescence spectra have been used to evaluate the essential radiative properties such as transition probability (A), radiative lifetime (τR), branching ratio (βR) and peak stimulated emission cross-section (σse) for the 5D0→7FJ (J = 0, 1, 2, 3 and 4) transitions of the Eu3+ ions. The decay rates of the 5D0 fluorescent level of Eu3+ ions in the title glasses are found to be single exponential for all the studied Eu3+ ion concentrations. A marginal increase in lifetime of the 5D0 level has been noticed with increase in Eu3+ ion concentration from 0.1 mol% to 2.0 mol%. Among all the glasses, the glass with 2.0 mol% of Eu3+ ion concentration possesses maximum values of branching ratio, stimulated emission cross-section and quantum efficiency for the transition 5D0→7F2 (612 nm) in bright red region. The color chromaticity coordinates are also evaluated to confirm the reddish luminescence from these glasses. These color coordinates exactly fall in the bright red region. Confocal images also recorded to confirm reddish luminescence from these glasses. From all the obtained results in the present study, it is suggested that the glass with 2.0 mol% of Eu3+ ion concentration is suitable to emit bright red color laser. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Europium" title="Europium">Europium</a>, <a href="https://publications.waset.org/abstracts/search?q=Judd-Ofelt%20parameters" title=" Judd-Ofelt parameters"> Judd-Ofelt parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=laser" title=" laser"> laser</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a> </p> <a href="https://publications.waset.org/abstracts/46830/spectroscopic-studies-and-reddish-luminescence-enhancement-with-the-increase-in-concentration-of-europium-ions-in-oxy-fluoroborate-glasses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Luminescent Enhancement with Morphology Controlled Gd2O3:Eu Phosphors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruby%20Priya">Ruby Priya</a>, <a href="https://publications.waset.org/abstracts/search?q=Om%20Parkash%20Pandey"> Om Parkash Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eu doped Gd₂O₃ phosphors are synthesized via co-precipitation method using ammonia as a precipitating agent. The concentration of the Eu was set as 4 mol% for all the samples. The effect of the surfactants (CTAB, PEG, and SDS) on the structural, morphological and luminescent properties has been studied in details. The as-synthesized phosphors were characterized by X-ray diffraction technique, Field emission scanning electron microscopy, Fourier transformed infrared spectroscopy and photoluminescence technique. It was observed that the surfactants have not changed the crystal structure, but influenced the morphology of as-synthesized phosphors to a great extent. The as-synthesized phosphors are expected to be promising candidates for optoelectronic devices, biosensors, MRI contrast agents and various biomedical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-precipitation" title="co-precipitation">co-precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=Europium" title=" Europium"> Europium</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactants" title=" surfactants"> surfactants</a> </p> <a href="https://publications.waset.org/abstracts/108613/luminescent-enhancement-with-morphology-controlled-gd2o3eu-phosphors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Structural and Luminescent Properties of EU Doped SrY₂O₄ Phosphors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruby%20Priya">Ruby Priya</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20P.%20Pandey"> O. P. Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Herein, we report the structural and luminescent properties of undoped and Eu doped SrY₂O₄ phosphors. The phosphors are synthesized via the combustion synthesis route using glycine as a fuel. The structural, morphological, and optical characterizations are done via X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescent (PL) techniques. The pure phase SrY₂O₄ is obtained at 1100℃, below which impure phases such as Y₂O₃ and SrO were dominant. All the phosphors are excited under UV excitation and exhibited intense emission around 611 nm, which is the typical transition of Eu ions. The phase formation of the synthesized phosphors is studied via analyzing XRD patterns. The as-synthesized phosphors find tremendous applications in optoelectronic devices, light-emitting diodes, and sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion" title="combustion">combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=europium" title=" europium"> europium</a>, <a href="https://publications.waset.org/abstracts/search?q=glycine" title=" glycine"> glycine</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a> </p> <a href="https://publications.waset.org/abstracts/123218/structural-and-luminescent-properties-of-eu-doped-sry2o4-phosphors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Photoluminescence Spectroscopy to Probe Mixed Valence State in Eu-Doped Nanocrystalline Glass-Ceramics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruchika%20Bagga">Ruchika Bagga</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauro%20Falconieri"> Mauro Falconieri</a>, <a href="https://publications.waset.org/abstracts/search?q=Venu%20Gopal%20Achanta"> Venu Gopal Achanta</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20M.%20F.%20Ferreira"> José M. F. Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Goel"> Ashutosh Goel</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopi%20Sharma"> Gopi Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mixed valence Eu-doped nanocrystalline NaAlSiO4/NaY9Si6O26 glass-ceramics have been prepared by controlled crystallization of melt quenched bulk glasses. XRD and SEM techniques were employed to characterize the crystallization process of the precursor glass and their resultant glass-ceramics. Photoluminescence spectroscopy was used to analyze the formation of divalent europium (Eu2+) from Eu3+ ions during high temperature synthesis under ambient atmosphere and is explained on the basis of optical basicity model. The observed luminescence properties of Eu: NaY9Si6O26 are compared with that of well explored Eu: β-PbF2 nanocrystals and their marked differences are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rare%20earth" title="rare earth">rare earth</a>, <a href="https://publications.waset.org/abstracts/search?q=oxyfluoride%20glasses" title=" oxyfluoride glasses"> oxyfluoride glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-crystalline%20glass-ceramics" title=" nano-crystalline glass-ceramics"> nano-crystalline glass-ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence%20spectroscopy" title=" photoluminescence spectroscopy"> photoluminescence spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/44173/photoluminescence-spectroscopy-to-probe-mixed-valence-state-in-eu-doped-nanocrystalline-glass-ceramics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Spectroscopic Study of a Eu-Complex Containing Hybrid Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20A.%20R.%20Oliveira">Y. A. R. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Couto%20dos%20Santos"> M. A. Couto dos Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20B.%20C.%20J%C3%BAnior"> N. B. C. Júnior</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20L.%20Ribeiro"> S. J. L. Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20D.%20Carlos"> L. D. Carlos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Eu(TTA)3(H2O)2 complex (TTA = thenoyltrifluoroacetone) pure (EuTTA) and incorporated in an organicinorganic hybrid material (EuTTA-hyb) are revisited, this time from the crystal field parameters (CFP) and Judd-Ofelt intensity parameters (Ωλ) point of view. A detailed analysis of the emission spectra revealed that the EuTTA phase still remains in the hybrid phase. Sparkle Model calculations of the EuTTA ground state geometry have been performed and satisfactorily compared to the X-ray structure. The observed weaker crystal field strength of the phase generated by the incorporation is promptly interpreted through the existing EXAFS results of the EuTTA-hyb structure. Satisfactory predictions of the CFP, of the 7F1 level splitting and of the Ωλ in all cases were obtained by using the charge factors and polarizabilities as degrees of freedom of non-parametric models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystal%20field%20parameters" title="crystal field parameters">crystal field parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=europium%20complexes" title=" europium complexes"> europium complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=Judd-Ofelt%20intensity%20parameters" title=" Judd-Ofelt intensity parameters"> Judd-Ofelt intensity parameters</a> </p> <a href="https://publications.waset.org/abstracts/13357/spectroscopic-study-of-a-eu-complex-containing-hybrid-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Photoluminescence of Barium and Lithium Silicate Glasses and Glass Ceramics Doped with Rare Earth Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Augustas%20Vaitkevicius">Augustas Vaitkevicius</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20Korjik"> Mikhail Korjik</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Tretyak"> Eugene Tretyak</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20Trusova"> Ekaterina Trusova</a>, <a href="https://publications.waset.org/abstracts/search?q=Gintautas%20Tamulaitis"> Gintautas Tamulaitis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silicate materials are widely used as luminescent materials in amorphous and crystalline phase. Lithium silicate glass is popular for making neutron sensitive scintillation glasses. Cerium-doped single crystalline silicates of rare earth elements and yttrium have been demonstrated to be good scintillation materials. Due to their high thermal and photo-stability, silicate glass ceramics are supposed to be suitable materials for producing light converters for high power white light emitting diodes. In this report, the influence of glass composition and crystallization on photoluminescence (PL) of different silicate glasses was studied. Barium (BaO-2SiO₂) and lithium (Li₂O-2SiO₂) glasses were under study. Cerium, dysprosium, erbium and europium ions as well as their combinations were used for doping. The influence of crystallization was studied after transforming the doped glasses into glass ceramics by heat treatment in the temperature range of 550-850 degrees Celsius for 1 hour. The study was carried out by comparing the photoluminescence (PL) spectra, spatial distributions of PL parameters and quantum efficiency in the samples under study. The PL spectra and spatial distributions of their parameters were obtained by using confocal PL microscopy. A WITec Alpha300 S confocal microscope coupled with an air cooled CCD camera was used. A CW laser diode emitting at 405 nm was exploited for excitation. The spatial resolution was in sub-micrometer domain in plane and ~1 micrometer perpendicularly to the sample surface. An integrating sphere with a xenon lamp coupled with a monochromator was used to measure the external quantum efficiency. All measurements were performed at room temperature. Chromatic properties of the light emission from the glasses and glass ceramics have been evaluated. We observed that the quantum efficiency of the glass ceramics is higher than that of the corresponding glass. The investigation of spatial distributions of PL parameters revealed that heat treatment of the glasses leads to a decrease in sample homogeneity. In the case of BaO-2SiO₂: Eu, 10 micrometer long needle-like objects are formed, when transforming the glass into glass ceramics. The comparison of PL spectra from within and outside the needle-like structure reveals that the ratio between intensities of PL bands associated with Eu²⁺ and Eu³⁺ ions is larger in the bright needle-like structures. This indicates a higher degree of crystallinity in the needle-like objects. We observed that the spectral positions of the PL bands are the same in the background and the needle-like areas, indicating that heat treatment imposes no significant change to the valence state of the europium ions. The evaluation of chromatic properties confirms applicability of the glasses under study for fabrication of white light sources with high thermal stability. The ability to combine barium and lithium glass matrixes and doping by Eu, Ce, Dy, and Tb enables optimization of chromatic properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20ceramics" title="glass ceramics">glass ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphor" title=" phosphor"> phosphor</a>, <a href="https://publications.waset.org/abstracts/search?q=silicate" title=" silicate "> silicate </a> </p> <a href="https://publications.waset.org/abstracts/51777/photoluminescence-of-barium-and-lithium-silicate-glasses-and-glass-ceramics-doped-with-rare-earth-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Synthesis, Characterization and Cytotoxic Effect of Eu2O3-doped ZnO Nanostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Otilia%20R.%20Vasile">Otilia R. Vasile</a>, <a href="https://publications.waset.org/abstracts/search?q=Florina%20C.%20Ilie"> Florina C. Ilie</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20F.%20Nicoara"> Irina F. Nicoara</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristina%20D.%20Ghitulica"> Cristina D. Ghitulica</a>, <a href="https://publications.waset.org/abstracts/search?q=Roxana%20Trusca"> Roxana Trusca</a>, <a href="https://publications.waset.org/abstracts/search?q=Ovidiu%20Oprea"> Ovidiu Oprea</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasile%20A.%20Surdu"> Vasile A. Surdu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bogdan%20S.%20Vasile"> Bogdan S. Vasile</a>, <a href="https://publications.waset.org/abstracts/search?q=Ecaterina%20Adronescu"> Ecaterina Adronescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work ZnO nanostructures (nanopowders and nanostars) have been synthesized via a simple sol-gel method. The used methods for synthesizing the nanostructures involve two steps as follows: (1) precipitation of zinc acetate precursor for the synthesis of ZnO nanopowders and zinc chloride precursor for the synthesis of ZnO nanostars and (2) addition of Eu2O3 in different concentrations (1%, 3%, and 5%) using europium acetate as precursor. Detailed crystalline parameters for each of the synthetized species were analysed using X-ray diffraction. Structural transitions were also discussed. The structure and morphology of the as-prepared ZnO nanopowders and nanostars were investigated by electron microscopy. TEM investigations have shown an average particle size range from 23 to 29 nm and polyhedral and spherical morphology with tendency to form aggregates for nanopowders. For nanostars structures, a star-like morphology could be observed. Cytotoxicity tests on MG-63 cell lines were also performed. Photocatalytic activity of ZnO nanopowders have reached higher values compared to ZnO nanostars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title="cytotoxicity">cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20activity" title=" photocatalytic activity"> photocatalytic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a> </p> <a href="https://publications.waset.org/abstracts/25677/synthesis-characterization-and-cytotoxic-effect-of-eu2o3-doped-zno-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">561</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Rare Earth Doped Alkali Halide Crystals for Thermoluminescence Dosimetry Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Seth">Pooja Seth</a>, <a href="https://publications.waset.org/abstracts/search?q=Shruti%20Aggarwal"> Shruti Aggarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Europium (Eu) doped (0.02-0.1 wt %) lithium fluoride (LiF) crystal in the form of multicrystalline sheet was gown by the edge defined film fed growth (EFG) technique. Crystals were grown in argon gas atmosphere using graphite crucible and stainless steel die. The systematic incorporation of Eu inside the host LiF lattice was confirmed by X-ray diffractometry. Thermoluminescence (TL) glow curve was recorded on annealed (AN) crystals after irradiation with a gamma dose of 15 Gy. The effect of different concentration of Eu in enhancing the thermoluminescence (TL) intensity of LiF was studied. The normalized peak height of the Eu-doped LiF crystal was nearly 12 times that of the LiF crystals. The optimized concentration of Eu in LiF was found to be 0.05wt% at which maximum TL intensity was observed with main TL peak positioned at 185 °C. At higher concentration TL intensity decreases due to the formation of precipitates in the form of clusters or aggregates. The nature of the energy traps in Eu doped LiF was analysed through glow curve deconvolution. The trap depth was found to be in the range of 0.2 – 0.5 eV. These results showed that doping with Eu enhances the TL intensity by creating more defect sites for capturing of electron and holes during irradiation which might be useful for dosimetry application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoluminescence" title="thermoluminescence">thermoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects"> defects</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=crystals" title=" crystals"> crystals</a> </p> <a href="https://publications.waset.org/abstracts/76943/rare-earth-doped-alkali-halide-crystals-for-thermoluminescence-dosimetry-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> White Light Emission through Downconversion of Terbium and Europium Doped CEF3 Nanophosphors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohit%20Kalra">Mohit Kalra</a>, <a href="https://publications.waset.org/abstracts/search?q=Varun%20S."> Varun S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayuri%20Gandhi"> Mayuri Gandhi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> CeF3 nanophosphors has been extensively investigated in the recent years for lighting and numerous bio-applications. Down conversion emissions in CeF3:Eu3+/Tb3+ phosphors were studied with the aim of obtaining a white light emitting composition, by a simple co-precipitation method. The material was characterized by X-ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HR-TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Photoluminescence (PL). Uniformly distributed nanoparticles were obtained with an average particle size 8-10 nm. Different doping concentrations were performed and fluorescence study was carried out to optimize the dopants concentration for maximum luminescence intensity. The steady state and time resolved luminescence studies confirmed efficient energy transfer from the host to activator ions. Different concentrations of Tb 3+, Eu 3+ were doped to achieve a white light emitting phosphor for UV-based Light Emitting Diodes (LEDs). The nanoparticles showed characteristic emission of respective dopants (Eu 3+, Tb3+) when excited at the 4f→5d transition of Ce3+. The chromaticity coordinates for these samples were calculated and the CeF3 doped with Eu 3+ and Tb3+ gave an emission very close to white light. These materials may find its applications in optoelectronics and various bio applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=white%20light%20down-conversion" title="white light down-conversion">white light down-conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=nanophosphors" title=" nanophosphors"> nanophosphors</a>, <a href="https://publications.waset.org/abstracts/search?q=LEDs" title=" LEDs"> LEDs</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth" title=" rare earth"> rare earth</a>, <a href="https://publications.waset.org/abstracts/search?q=cerium%20fluoride" title=" cerium fluoride"> cerium fluoride</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanides" title=" lanthanides"> lanthanides</a> </p> <a href="https://publications.waset.org/abstracts/31682/white-light-emission-through-downconversion-of-terbium-and-europium-doped-cef3-nanophosphors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Novel Correlations for P-Substituted Phenols in NMR Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khodzhaberdi%20Allaberdiev">Khodzhaberdi Allaberdiev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Substituted phenols are widely used for the synthesis of advanced polycondensation polymers. In terms of the structure regularity and practical value of obtained polymers are of special interest the p-substituted phenols. The lanthanide induced shifts (LIS) of the aromatic ring and the OH protons by addition Eu(fod)3 to various p-substituted phenols in CDCL3 solvent were measured Nuclear Magnetic Resonance spectroscopy. A linear relationship has been observed between the LIS of protons (∆=δcomplex –δsubstrate) and Eu(fod)3/substrate molar ratios. The LIS protons of the investigated phenols decreases in the following order: ОН > ortho > meta. The LIS of these protons also depends on both steric and electronic effects of p-substituents. The effect on the LIS of protons steric hindrance of substituents by way of example p-substituted alkyl phenols was studied. Alkyl phenols exhibit pronounced europium- induced shifts, their sensitivity increasing in the order: CH3 > C2H5 > sym-C5H11 > tert-C5H11 > tert-C4H9, i.e. in parallel with decreasing steric hindrance. The influence steric hindrance p-substituents of phenols on the LIS of protons in sequence following decreases: OH> meta >ortho. Contrary to the expectations, it is found that the LIS of the ortho protons an excellent linear correlation with meta-substituent constants, σm for 14 p-substituted phenols: ∆H2, 6=8.165-9.896 σm (r2=0,999). Moreover, a linear correlation between the LIS of the ortho protons and ionization constants, РКa of p-substituted phenols has been revealed. Similarly, the linear relationships for the LIS of the meta and the OH protons were obtained. Use the LIS of the phenolic hydroxyl groups for linear relationships is necessary with care, because of the signal broadening of the OH protons. New constants may be determinate with unusual case by this approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=novel%20correlations" title="novel correlations">novel correlations</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR%20spectroscopy" title=" NMR spectroscopy"> NMR spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=phenols" title=" phenols"> phenols</a>, <a href="https://publications.waset.org/abstracts/search?q=shift%20reagent" title=" shift reagent"> shift reagent</a> </p> <a href="https://publications.waset.org/abstracts/28738/novel-correlations-for-p-substituted-phenols-in-nmr-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Screening of Thyroid Stimulating Hormone Using Paper-Based Lateral Flow Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pattarachaya%20Preechakasedkit">Pattarachaya Preechakasedkit</a>, <a href="https://publications.waset.org/abstracts/search?q=Kota%20Osada"> Kota Osada</a>, <a href="https://publications.waset.org/abstracts/search?q=Koji%20Suzuki"> Koji Suzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Citterio"> Daniel Citterio</a>, <a href="https://publications.waset.org/abstracts/search?q=Orawon%20Chailapakul"> Orawon Chailapakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A paper-based lateral flow device for screening thyroid stimulating hormone (TSH) is reported. A sandwich immunoassay was performed using two mouse monoclonal TSH antibodies (anti-hTSH 5403 and 5404) as immobilized and labeled antibodies for capturing TSH samples. Test (anti-hTSH 5403) and control (goat anti-Mouse IgG) lines were fabricated on nitrocellulose membrane (NCM) using ballpoint pen printed with a speed of 3 cm/s and thickness setting of 1. The novel gold nanoparticles europium complex (AuNPs@Eu) was used as fluorescence label compared to conventional AuNPs label. The results obtained with this device can be visually assessed by the naked eyes and under UV hand lamps, and quantitative analysis can be performed using the ImageJ program. The limit of detection (LOD) under UV hand lamps (0.1 µIU/mL) provided 50-fold greater sensitivity than AuNPs (5 µIU/mL), which is suitable for both hypothyroidism and hyperthyroidism screening within 30 min. A linear relationship between the red intensity and the logarithmic concentrations of TSH was observed with a good correlation (R²=0.992). Furthermore, the device can be effectively applied for screening TSH in the spiked human serum with recovery range of 96.80-104.45% and RSD of 2.18-3.63%. Therefore, the developed device is an alternative method for TSH screening which provides a lot of advantages including low cost, short time analysis, ease of use, disposability, portability, and on-site measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thyroid%20stimulating%20hormone" title="thyroid stimulating hormone">thyroid stimulating hormone</a>, <a href="https://publications.waset.org/abstracts/search?q=paper-based%20lateral%20flow" title=" paper-based lateral flow"> paper-based lateral flow</a>, <a href="https://publications.waset.org/abstracts/search?q=hypothyroidism" title=" hypothyroidism"> hypothyroidism</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthyroidism" title=" hyperthyroidism"> hyperthyroidism</a> </p> <a href="https://publications.waset.org/abstracts/67545/screening-of-thyroid-stimulating-hormone-using-paper-based-lateral-flow-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Luminescent and Conductive Cathode Buffer Layer for Enhanced Power Conversion Efficiency of Bulk-Heterojunction Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swati%20Bishnoi">Swati Bishnoi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Haranath"> D. Haranath</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Gupta"> Vinay Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we demonstrate that the power conversion efficiency (PCE) of organic solar cells (OSCs) could be improved significantly by using ZnO doped with Aluminum (Al) and Europium (Eu) as cathode buffer layer (CBL). The ZnO:Al,Eu nanoparticle layer has broadband absorption in the ultraviolet (300-400 nm) region. The Al doping contributes to the enhancement in the conductivity whereas Eu doping significantly improves emission in the visible region. Moreover, this emission overlaps with the absorption range of polymer poly [N -9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′- benzothiadiazole)] (PCDTBT) significantly and results in an enhanced absorption by the active layer and hence high photocurrent. An increase in the power conversion efficiency (PCE) of 6.8% has been obtained for ZnO: Al,Eu CBL as compared to 5.9% for pristine ZnO, in the inverted device configuration ITO/CBL/active layer/MoOx/Al. The active layer comprises of a blend of PCDTBT donor and [6-6]-phenyl C71 butyric acid methyl ester (PC71BM) acceptor. In the reference device pristine ZnO has been used as CBL, whereas in the other one ZnO:Al,Eu has been used as CBL. The role of the luminescent CBL layer is to down-shift the UV light into visible range which overlaps with the absorption of PCDTBT polymer, resulting in an energy transfer from ZnO:Al,Eu to PCDTBT polymer and the absorption by active layer is enhanced as revealed by transient spectroscopy. This enhancement resulted in an increase in the short circuit current which contributes in an increased PCE in the device employing ZnO: Al,Eu CBL. Thus, the luminescent ZnO: Al, Eu nanoparticle CBL has great potential in organic solar cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cathode%20buffer%20layer" title="cathode buffer layer">cathode buffer layer</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transfer" title=" energy transfer"> energy transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solar%20cell" title=" organic solar cell"> organic solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20conversion%20efficiency" title=" power conversion efficiency"> power conversion efficiency</a> </p> <a href="https://publications.waset.org/abstracts/95323/luminescent-and-conductive-cathode-buffer-layer-for-enhanced-power-conversion-efficiency-of-bulk-heterojunction-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Numerical Response of Coaxial HPGe Detector for Skull and Knee Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pabitra%20Sahu">Pabitra Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Manohari"> M. Manohari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Priyadharshini"> S. Priyadharshini</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Santhanam"> R. Santhanam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chandrasekaran"> S. Chandrasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Venkatraman"> B. Venkatraman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiation workers of reprocessing plants have a potential for internal exposure due to actinides and fission products. Radionuclides like Americium, lead, Polonium and Europium are bone seekers and get accumulated in the skeletal part. As the major skeletal content is in the skull (13%) and knee (22%), measurements of old intake have to be carried out in the skull and knee. At the Indira Gandhi Centre for Atomic Research, a twin HPGe-based actinide monitor is used for the measurement of actinides present in bone. Efficiency estimation, which is one of the prerequisites for the quantification of radionuclides, requires anthropomorphic phantoms. Such phantoms are very limited. Hence, in this study, efficiency curves for a Twin HPGe-based actinide monitoring system are established theoretically using the FLUKA Monte Carlo method and ICRP adult male voxel phantom. In the case of skull measurement, the detector is placed over the forehead, and for knee measurement, one detector is placed over each knee. The efficiency values of radionuclides present in the knee and skull vary from 3.72E-04 to 4.19E-04 CPS/photon and 5.22E-04 to 7.07E-04 CPS/photon, respectively, for the energy range 17 to 3000keV. The efficiency curves for the measurement are established, and it is found that initially, the efficiency value increases up to 100 keV and then starts decreasing. It is found that the skull efficiency values are 4% to 63% higher than that of the knee, depending on the energy for all the energies except 17.74 keV. The reason is the closeness of the detector to the skull compared to the knee. But for 17.74 keV the efficiency of the knee is more than the skull due to the higher attenuation caused in the skull bones because of its greater thickness. The Minimum Detectable Activity (MDA) for 241Am present in the skull and knee is 9 Bq. 239Pu has a MDA of 950 Bq and 1270 Bq for knee and skull, respectively, for a counting time of 1800 sec. This paper discusses the simulation method and the results obtained in the study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FLUKA%20Monte%20Carlo%20Method" title="FLUKA Monte Carlo Method">FLUKA Monte Carlo Method</a>, <a href="https://publications.waset.org/abstracts/search?q=ICRP%20adult%20male%20voxel%20phantom" title=" ICRP adult male voxel phantom"> ICRP adult male voxel phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=knee" title=" knee"> knee</a>, <a href="https://publications.waset.org/abstracts/search?q=Skull." title=" Skull."> Skull.</a> </p> <a href="https://publications.waset.org/abstracts/185283/numerical-response-of-coaxial-hpge-detector-for-skull-and-knee-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Strategic Metals and Rare Earth Elements Exploration of Lithium Cesium Tantalum Type Pegmatites: A Case Study from Northwest Himalayas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Auzair%20Mehmood">Auzair Mehmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Arif"> Mohammad Arif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The LCT (Li, Cs and Ta rich)-type pegmatites, genetically related to peraluminous S-type granites, are being mined for strategic metals (SMs) and rare earth elements (REEs) around the world. This study investigates the SMs and REEs potentials of pegmatites that are spatially associated with an S-type granitic suite of the Himalayan sequence, specifically Mansehra Granitic Complex (MGC), northwest Pakistan. Geochemical signatures of the pegmatites and some of their mineral extracts were analyzed using Inductive Coupled Plasma Mass Spectroscopy (ICP-MS) technique to explore and generate potential prospects (if any) for SMs and REEs. In general, the REE patterns of the studied whole-rock pegmatite samples show tetrad effect and possess low total REE abundances, strong positive Europium (Eu) anomalies, weak negative Cesium (Cs) anomalies and relative enrichment in heavy REE. Similar features have been observed on the REE patterns of the feldspar extracts. However, the REE patterns of the muscovite extracts reflect preferential enrichment and possess negative Eu anomalies. The trace element evaluation further suggests that the MGC pegmatites have undergone low levels of fractionation. Various trace elements concentrations (and their ratios) including Ta versus Cs, K/Rb (Potassium/Rubidium) versus Rb and Th/U (Thorium/Uranium) versus K/Cs, were used to analyze the economically viable mineral potential of the studied rocks. On most of the plots, concentrations fall below the dividing line and confer either barren or low-level mineralization potential of the studied rocks for both SMs and REEs. The results demonstrate paucity of the MGC pegmatites with respect to Ta-Nb (Tantalum-Niobium) mineralization, which is in sharp contrast to many Pan-African S-type granites around the world. The MGC pegmatites are classified as muscovite pegmatites based on their K/Rb versus Cs relationship. This classification is consistent with the occurrence of rare accessory minerals like garnet, biotite, tourmaline, and beryl. Furthermore, the classification corroborates with an earlier sorting of the MCG pegmatites into muscovite-bearing, biotite-bearing, and subordinate muscovite-biotite types. These types of pegmatites lack any significant SMs and REEs mineralization potentials. Field relations, such as close spatial association with parent granitic rocks and absence of internal zonation structure, also reflect the barren character and hence lack of any potential prospects of the MGC pegmatites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exploration" title="exploration">exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=fractionation" title=" fractionation"> fractionation</a>, <a href="https://publications.waset.org/abstracts/search?q=Himalayas" title=" Himalayas"> Himalayas</a>, <a href="https://publications.waset.org/abstracts/search?q=pegmatites" title=" pegmatites"> pegmatites</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20elements" title=" rare earth elements"> rare earth elements</a> </p> <a href="https://publications.waset.org/abstracts/90355/strategic-metals-and-rare-earth-elements-exploration-of-lithium-cesium-tantalum-type-pegmatites-a-case-study-from-northwest-himalayas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>