CINXE.COM

Quantum machine learning - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Quantum machine learning - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"6190c82a-0e8d-4139-9fe6-9ee0b0bd4f82","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Quantum_machine_learning","wgTitle":"Quantum machine learning","wgCurRevisionId":1276107599,"wgRevisionId":1276107599,"wgArticleId":44108758,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: multiple names: authors list","CS1 errors: periodical ignored","Articles with short description","Short description is different from Wikidata","Wikipedia articles needing rewrite from July 2023","All articles needing rewrite","All articles with unsourced statements","Articles with unsourced statements from January 2023","Articles with unsourced statements from February 2017","Articles with unsourced statements from December 2020","Machine learning", "Quantum information science","Theoretical computer science","Quantum programming"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Quantum_machine_learning","wgRelevantArticleId":44108758,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":90000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true, "wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q18811578","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site", "mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Qml_approaches.tif/lossless-page1-1200px-Qml_approaches.tif.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1176"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Qml_approaches.tif/lossless-page1-800px-Qml_approaches.tif.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="784"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Qml_approaches.tif/lossless-page1-640px-Qml_approaches.tif.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="627"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Quantum machine learning - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Quantum_machine_learning"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Quantum_machine_learning&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Quantum_machine_learning"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Quantum_machine_learning rootpage-Quantum_machine_learning skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Quantum+machine+learning" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Quantum+machine+learning" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Quantum+machine+learning" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Quantum+machine+learning" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Machine_learning_with_quantum_computers" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Machine_learning_with_quantum_computers"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Machine learning with quantum computers</span> </div> </a> <button aria-controls="toc-Machine_learning_with_quantum_computers-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Machine learning with quantum computers subsection</span> </button> <ul id="toc-Machine_learning_with_quantum_computers-sublist" class="vector-toc-list"> <li id="toc-Quantum_associative_memories_and_quantum_pattern_recognition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_associative_memories_and_quantum_pattern_recognition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Quantum associative memories and quantum pattern recognition</span> </div> </a> <ul id="toc-Quantum_associative_memories_and_quantum_pattern_recognition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Linear_algebra_simulation_with_quantum_amplitudes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Linear_algebra_simulation_with_quantum_amplitudes"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Linear algebra simulation with quantum amplitudes</span> </div> </a> <ul id="toc-Linear_algebra_simulation_with_quantum_amplitudes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Variational_Quantum_Algorithms_(VQAs)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Variational_Quantum_Algorithms_(VQAs)"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Variational Quantum Algorithms (VQAs)</span> </div> </a> <ul id="toc-Variational_Quantum_Algorithms_(VQAs)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Variational_quantum_circuits_(VQCs)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Variational_quantum_circuits_(VQCs)"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Variational quantum circuits (VQCs)</span> </div> </a> <ul id="toc-Variational_quantum_circuits_(VQCs)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_binary_classifier" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_binary_classifier"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.5</span> <span>Quantum binary classifier</span> </div> </a> <ul id="toc-Quantum_binary_classifier-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_machine_learning_algorithms_based_on_Grover_search" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_machine_learning_algorithms_based_on_Grover_search"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.6</span> <span>Quantum machine learning algorithms based on Grover search</span> </div> </a> <ul id="toc-Quantum_machine_learning_algorithms_based_on_Grover_search-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum-enhanced_reinforcement_learning" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum-enhanced_reinforcement_learning"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.7</span> <span>Quantum-enhanced reinforcement learning</span> </div> </a> <ul id="toc-Quantum-enhanced_reinforcement_learning-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_annealing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_annealing"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.8</span> <span>Quantum annealing</span> </div> </a> <ul id="toc-Quantum_annealing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-NISQ_Circuit_as_Quantum_Model" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#NISQ_Circuit_as_Quantum_Model"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.9</span> <span>NISQ Circuit as Quantum Model</span> </div> </a> <ul id="toc-NISQ_Circuit_as_Quantum_Model-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_sampling_techniques" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_sampling_techniques"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.10</span> <span>Quantum sampling techniques</span> </div> </a> <ul id="toc-Quantum_sampling_techniques-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_neural_networks" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_neural_networks"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.11</span> <span>Quantum neural networks</span> </div> </a> <ul id="toc-Quantum_neural_networks-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_Convolution_Neural_Network" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Quantum_Convolution_Neural_Network"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.12</span> <span>Quantum Convolution Neural Network</span> </div> </a> <ul id="toc-Quantum_Convolution_Neural_Network-sublist" class="vector-toc-list"> <li id="toc-Dissipative_Quantum_Neural_Network" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Dissipative_Quantum_Neural_Network"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.12.1</span> <span>Dissipative Quantum Neural Network</span> </div> </a> <ul id="toc-Dissipative_Quantum_Neural_Network-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Hidden_quantum_Markov_models" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hidden_quantum_Markov_models"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.13</span> <span>Hidden quantum Markov models</span> </div> </a> <ul id="toc-Hidden_quantum_Markov_models-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fully_quantum_machine_learning" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fully_quantum_machine_learning"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.14</span> <span>Fully quantum machine learning</span> </div> </a> <ul id="toc-Fully_quantum_machine_learning-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Explainable_quantum_machine_learning" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Explainable_quantum_machine_learning"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.15</span> <span>Explainable quantum machine learning</span> </div> </a> <ul id="toc-Explainable_quantum_machine_learning-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Classical_learning_applied_to_quantum_problems" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Classical_learning_applied_to_quantum_problems"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Classical learning applied to quantum problems</span> </div> </a> <ul id="toc-Classical_learning_applied_to_quantum_problems-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Quantum_learning_theory" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Quantum_learning_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Quantum learning theory</span> </div> </a> <ul id="toc-Quantum_learning_theory-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Implementations_and_experiments" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Implementations_and_experiments"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Implementations and experiments</span> </div> </a> <ul id="toc-Implementations_and_experiments-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Skepticism" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Skepticism"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Skepticism</span> </div> </a> <ul id="toc-Skepticism-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Quantum machine learning</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 12 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-12" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">12 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A7%D9%84%D8%AA%D8%B9%D9%84%D9%85_%D8%A7%D9%84%D8%A2%D9%84%D9%8A_%D8%A7%D9%84%D9%83%D9%85%D9%8A" title="التعلم الآلي الكمي – Arabic" lang="ar" hreflang="ar" data-title="التعلم الآلي الكمي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Aprenentatge_autom%C3%A0tic_qu%C3%A0ntic" title="Aprenentatge automàtic quàntic – Catalan" lang="ca" hreflang="ca" data-title="Aprenentatge automàtic quàntic" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Kvant-masin%C3%B5pe" title="Kvant-masinõpe – Estonian" lang="et" hreflang="et" data-title="Kvant-masinõpe" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Aprendizaje_autom%C3%A1tico_cu%C3%A1ntico" title="Aprendizaje automático cuántico – Spanish" lang="es" hreflang="es" data-title="Aprendizaje automático cuántico" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%DB%8C%D8%A7%D8%AF%DA%AF%DB%8C%D8%B1%DB%8C_%D9%85%D8%A7%D8%B4%DB%8C%D9%86_%DA%A9%D9%88%D8%A7%D9%86%D8%AA%D9%88%D9%85%DB%8C" title="یادگیری ماشین کوانتومی – Persian" lang="fa" hreflang="fa" data-title="یادگیری ماشین کوانتومی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Pemelajaran_mesin_kuantum" title="Pemelajaran mesin kuantum – Indonesian" lang="id" hreflang="id" data-title="Pemelajaran mesin kuantum" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9C%D7%9E%D7%99%D7%93%D7%AA_%D7%9E%D7%9B%D7%95%D7%A0%D7%94_%D7%A7%D7%95%D7%95%D7%A0%D7%98%D7%99%D7%AA" title="למידת מכונה קוונטית – Hebrew" lang="he" hreflang="he" data-title="למידת מכונה קוונטית" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D0%BE%D0%B5_%D0%BC%D0%B0%D1%88%D0%B8%D0%BD%D0%BD%D0%BE%D0%B5_%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5" title="Квантовое машинное обучение – Russian" lang="ru" hreflang="ru" data-title="Квантовое машинное обучение" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BD%D0%BE_%D0%BC%D0%B0%D1%88%D0%B8%D0%BD%D1%81%D0%BA%D0%BE_%D1%83%D1%87%D0%B5%D1%9A%D0%B5" title="Квантно машинско учење – Serbian" lang="sr" hreflang="sr" data-title="Квантно машинско учење" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Kvanttikoneoppiminen" title="Kvanttikoneoppiminen – Finnish" lang="fi" hreflang="fi" data-title="Kvanttikoneoppiminen" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D0%B5_%D0%BC%D0%B0%D1%88%D0%B8%D0%BD%D0%BD%D0%B5_%D0%BD%D0%B0%D0%B2%D1%87%D0%B0%D0%BD%D0%BD%D1%8F" title="Квантове машинне навчання – Ukrainian" lang="uk" hreflang="uk" data-title="Квантове машинне навчання" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%87%8F%E5%AD%90%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92" title="量子機器學習 – Chinese" lang="zh" hreflang="zh" data-title="量子機器學習" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q18811578#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Quantum_machine_learning" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Quantum_machine_learning" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Quantum_machine_learning"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Quantum_machine_learning&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Quantum_machine_learning"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Quantum_machine_learning&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Quantum_machine_learning" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Quantum_machine_learning" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Quantum_machine_learning&amp;oldid=1276107599" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Quantum_machine_learning&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Quantum_machine_learning&amp;id=1276107599&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FQuantum_machine_learning"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FQuantum_machine_learning"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Quantum_machine_learning&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Quantum_machine_learning&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q18811578" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Interdisciplinary research area at the intersection of quantum physics and machine learning</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Cleanup_rewrite plainlinks metadata ambox ambox-content" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Crystal_Clear_app_kedit.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Crystal_Clear_app_kedit.svg/40px-Crystal_Clear_app_kedit.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Crystal_Clear_app_kedit.svg/60px-Crystal_Clear_app_kedit.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Crystal_Clear_app_kedit.svg/80px-Crystal_Clear_app_kedit.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>may need to be rewritten</b> to comply with Wikipedia's <a href="/wiki/Wikipedia:Manual_of_Style" title="Wikipedia:Manual of Style">quality standards</a>, as it is excessively detailed, relies heavily on primary sources, and may not provide sufficient weight to criticisms.<span class="hide-when-compact"> <a class="external text" href="https://en.wikipedia.org/w/index.php?title=Quantum_machine_learning&amp;action=edit">You can help</a>. The <a href="/wiki/Talk:Quantum_machine_learning" title="Talk:Quantum machine learning">talk page</a> may contain suggestions.</span> <span class="date-container"><i>(<span class="date">July 2023</span>)</i></span></div></td></tr></tbody></table> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about using quantum algorithms to solve machine learning tasks. For applications of classical machine learning to quantum systems, see <a href="/wiki/Machine_learning_in_physics" title="Machine learning in physics">Machine learning in physics</a>.</div><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar sidebar-collapse nomobile nowraplinks plainlist nowraplinks" style="width:19.0em;"><tbody><tr><td class="sidebar-pretitle">Part of a series of articles about</td></tr><tr><th class="sidebar-title-with-pretitle"><a href="/wiki/Quantum_mechanics" title="Quantum mechanics">Quantum mechanics</a></th></tr><tr><td class="sidebar-image"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi class="MJX-variant">&#x210F;<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1799e4a910c7d26396922a20ef5ceec25ca1871c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:16.882ex; height:5.509ex;" alt="{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle }"></span><div class="sidebar-caption" style="font-size:90%;padding-top:0.4em;font-style:italic;"><a href="/wiki/Schr%C3%B6dinger_equation" title="Schrödinger equation">Schrödinger equation</a></div></td></tr><tr><td class="sidebar-above hlist nowrap" style="display:block;margin-bottom:0.4em;"> <ul><li><a href="/wiki/Introduction_to_quantum_mechanics" title="Introduction to quantum mechanics">Introduction</a></li> <li><a href="/wiki/Glossary_of_elementary_quantum_mechanics" title="Glossary of elementary quantum mechanics">Glossary</a></li> <li><a href="/wiki/History_of_quantum_mechanics" title="History of quantum mechanics">History</a></li></ul></td></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Background</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Classical_mechanics" title="Classical mechanics">Classical mechanics</a></li> <li><a href="/wiki/Old_quantum_theory" title="Old quantum theory">Old quantum theory</a></li> <li><a href="/wiki/Bra%E2%80%93ket_notation" title="Bra–ket notation">Bra–ket notation</a></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Hamiltonian_(quantum_mechanics)" title="Hamiltonian (quantum mechanics)">Hamiltonian</a></li> <li><a href="/wiki/Wave_interference" title="Wave interference">Interference</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Fundamentals</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a href="/wiki/Complementarity_(physics)" title="Complementarity (physics)">Complementarity</a></li> <li><a href="/wiki/Quantum_decoherence" title="Quantum decoherence">Decoherence</a></li> <li><a href="/wiki/Quantum_entanglement" title="Quantum entanglement">Entanglement</a></li> <li><a href="/wiki/Energy_level" title="Energy level">Energy level</a></li> <li><a href="/wiki/Measurement_in_quantum_mechanics" title="Measurement in quantum mechanics">Measurement</a></li> <li><a href="/wiki/Quantum_nonlocality" title="Quantum nonlocality">Nonlocality</a></li> <li><a href="/wiki/Quantum_number" title="Quantum number">Quantum number</a></li> <li><a href="/wiki/Quantum_state" title="Quantum state">State</a></li> <li><a href="/wiki/Quantum_superposition" title="Quantum superposition">Superposition</a></li> <li><a href="/wiki/Symmetry_in_quantum_mechanics" title="Symmetry in quantum mechanics">Symmetry</a></li> <li><a href="/wiki/Quantum_tunnelling" title="Quantum tunnelling">Tunnelling</a></li> <li><a href="/wiki/Uncertainty_principle" title="Uncertainty principle">Uncertainty</a></li> <li><a href="/wiki/Wave_function" title="Wave function">Wave function</a> <ul><li><a href="/wiki/Wave_function_collapse" title="Wave function collapse">Collapse</a></li></ul></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Experiments</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a href="/wiki/Bell_test" title="Bell test">Bell's inequality</a></li> <li><a href="/wiki/CHSH_inequality" title="CHSH inequality">CHSH inequality</a></li> <li><a href="/wiki/Davisson%E2%80%93Germer_experiment" title="Davisson–Germer experiment">Davisson&#8211;Germer</a></li> <li><a href="/wiki/Double-slit_experiment" title="Double-slit experiment">Double-slit</a></li> <li><a href="/wiki/Elitzur%E2%80%93Vaidman_bomb_tester" title="Elitzur–Vaidman bomb tester">Elitzur&#8211;Vaidman</a></li> <li><a href="/wiki/Franck%E2%80%93Hertz_experiment" title="Franck–Hertz experiment">Franck&#8211;Hertz</a></li> <li><a href="/wiki/Leggett_inequality" title="Leggett inequality">Leggett inequality</a></li> <li><a href="/wiki/Leggett%E2%80%93Garg_inequality" title="Leggett–Garg inequality">Leggett–Garg inequality</a></li> <li><a href="/wiki/Mach%E2%80%93Zehnder_interferometer" title="Mach–Zehnder interferometer">Mach&#8211;Zehnder</a></li> <li><a href="/wiki/Popper%27s_experiment" title="Popper&#39;s experiment">Popper</a></li></ul> </div> <ul><li><a href="/wiki/Quantum_eraser_experiment" title="Quantum eraser experiment">Quantum eraser</a> <ul><li><a href="/wiki/Delayed-choice_quantum_eraser" title="Delayed-choice quantum eraser">Delayed-choice</a></li></ul></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Schr%C3%B6dinger%27s_cat" title="Schrödinger&#39;s cat">Schrödinger's cat</a></li> <li><a href="/wiki/Stern%E2%80%93Gerlach_experiment" title="Stern–Gerlach experiment">Stern&#8211;Gerlach</a></li> <li><a href="/wiki/Wheeler%27s_delayed-choice_experiment" title="Wheeler&#39;s delayed-choice experiment">Wheeler's delayed-choice</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Formulations</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Mathematical_formulation_of_quantum_mechanics" title="Mathematical formulation of quantum mechanics">Overview</a></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Heisenberg_picture" title="Heisenberg picture">Heisenberg</a></li> <li><a href="/wiki/Interaction_picture" title="Interaction picture">Interaction</a></li> <li><a href="/wiki/Matrix_mechanics" title="Matrix mechanics">Matrix</a></li> <li><a href="/wiki/Phase-space_formulation" title="Phase-space formulation">Phase-space</a></li> <li><a href="/wiki/Schr%C3%B6dinger_picture" title="Schrödinger picture">Schrödinger</a></li> <li><a href="/wiki/Path_integral_formulation" title="Path integral formulation">Sum-over-histories (path integral)</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Equations</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a href="/wiki/Dirac_equation" title="Dirac equation">Dirac</a></li> <li><a href="/wiki/Klein%E2%80%93Gordon_equation" title="Klein–Gordon equation">Klein–Gordon</a></li> <li><a href="/wiki/Pauli_equation" title="Pauli equation">Pauli</a></li> <li><a href="/wiki/Rydberg_formula" title="Rydberg formula">Rydberg</a></li> <li><a href="/wiki/Schr%C3%B6dinger_equation" title="Schrödinger equation">Schrödinger</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><a href="/wiki/Interpretations_of_quantum_mechanics" title="Interpretations of quantum mechanics">Interpretations</a></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a href="/wiki/Quantum_Bayesianism" title="Quantum Bayesianism">Bayesian</a></li> <li><a href="/wiki/Consistent_histories" title="Consistent histories">Consistent histories</a></li> <li><a href="/wiki/Copenhagen_interpretation" title="Copenhagen interpretation">Copenhagen</a></li> <li><a href="/wiki/De_Broglie%E2%80%93Bohm_theory" title="De Broglie–Bohm theory">de Broglie–Bohm</a></li> <li><a href="/wiki/Ensemble_interpretation" title="Ensemble interpretation">Ensemble</a></li> <li><a href="/wiki/Hidden-variable_theory" title="Hidden-variable theory">Hidden-variable</a> <ul><li><a href="/wiki/Local_hidden-variable_theory" title="Local hidden-variable theory">Local</a> <ul><li><a href="/wiki/Superdeterminism" title="Superdeterminism">Superdeterminism</a></li></ul></li></ul></li> <li><a href="/wiki/Many-worlds_interpretation" title="Many-worlds interpretation">Many-worlds</a></li> <li><a href="/wiki/Objective-collapse_theory" title="Objective-collapse theory">Objective-collapse</a></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">Quantum logic</a></li> <li><a href="/wiki/Relational_quantum_mechanics" title="Relational quantum mechanics">Relational</a></li> <li><a href="/wiki/Transactional_interpretation" title="Transactional interpretation">Transactional</a></li> <li><a href="/wiki/Von_Neumann%E2%80%93Wigner_interpretation" title="Von Neumann–Wigner interpretation">Von Neumann–Wigner</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Advanced topics</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Relativistic_quantum_mechanics" title="Relativistic quantum mechanics">Relativistic quantum mechanics</a></li> <li><a href="/wiki/Quantum_field_theory" title="Quantum field theory">Quantum field theory</a></li> <li><a href="/wiki/Quantum_information_science" title="Quantum information science">Quantum information science</a></li> <li><a href="/wiki/Quantum_computing" title="Quantum computing">Quantum computing</a></li> <li><a href="/wiki/Quantum_chaos" title="Quantum chaos">Quantum chaos</a></li> <li><a href="/wiki/Einstein%E2%80%93Podolsky%E2%80%93Rosen_paradox" title="Einstein–Podolsky–Rosen paradox">EPR paradox</a></li> <li><a href="/wiki/Density_matrix" title="Density matrix">Density matrix</a></li> <li><a href="/wiki/Scattering_theory" class="mw-redirect" title="Scattering theory">Scattering theory</a></li> <li><a href="/wiki/Quantum_statistical_mechanics" title="Quantum statistical mechanics">Quantum statistical mechanics</a></li> <li><a class="mw-selflink selflink">Quantum machine learning</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Scientists</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a href="/wiki/Yakir_Aharonov" title="Yakir Aharonov">Aharonov</a></li> <li><a href="/wiki/John_Stewart_Bell" title="John Stewart Bell">Bell</a></li> <li><a href="/wiki/Hans_Bethe" title="Hans Bethe">Bethe</a></li> <li><a href="/wiki/Patrick_Blackett" title="Patrick Blackett">Blackett</a></li> <li><a href="/wiki/Felix_Bloch" title="Felix Bloch">Bloch</a></li> <li><a href="/wiki/David_Bohm" title="David Bohm">Bohm</a></li> <li><a href="/wiki/Niels_Bohr" title="Niels Bohr">Bohr</a></li> <li><a href="/wiki/Max_Born" title="Max Born">Born</a></li> <li><a href="/wiki/Satyendra_Nath_Bose" title="Satyendra Nath Bose">Bose</a></li> <li><a href="/wiki/Louis_de_Broglie" title="Louis de Broglie">de Broglie</a></li> <li><a href="/wiki/Arthur_Compton" title="Arthur Compton">Compton</a></li> <li><a href="/wiki/Paul_Dirac" title="Paul Dirac">Dirac</a></li> <li><a href="/wiki/Clinton_Davisson" title="Clinton Davisson">Davisson</a></li> <li><a href="/wiki/Peter_Debye" title="Peter Debye">Debye</a></li> <li><a href="/wiki/Paul_Ehrenfest" title="Paul Ehrenfest">Ehrenfest</a></li> <li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Einstein</a></li> <li><a href="/wiki/Hugh_Everett_III" title="Hugh Everett III">Everett</a></li> <li><a href="/wiki/Vladimir_Fock" title="Vladimir Fock">Fock</a></li> <li><a href="/wiki/Enrico_Fermi" title="Enrico Fermi">Fermi</a></li> <li><a href="/wiki/Richard_Feynman" title="Richard Feynman">Feynman</a></li> <li><a href="/wiki/Roy_J._Glauber" title="Roy J. Glauber">Glauber</a></li> <li><a href="/wiki/Martin_Gutzwiller" title="Martin Gutzwiller">Gutzwiller</a></li> <li><a href="/wiki/Werner_Heisenberg" title="Werner Heisenberg">Heisenberg</a></li> <li><a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a></li> <li><a href="/wiki/Pascual_Jordan" title="Pascual Jordan">Jordan</a></li> <li><a href="/wiki/Hans_Kramers" title="Hans Kramers">Kramers</a></li> <li><a href="/wiki/Willis_Lamb" title="Willis Lamb">Lamb</a></li> <li><a href="/wiki/Lev_Landau" title="Lev Landau">Landau</a></li> <li><a href="/wiki/Max_von_Laue" title="Max von Laue">Laue</a></li> <li><a href="/wiki/Henry_Moseley" title="Henry Moseley">Moseley</a></li> <li><a href="/wiki/Robert_Andrews_Millikan" title="Robert Andrews Millikan">Millikan</a></li> <li><a href="/wiki/Heike_Kamerlingh_Onnes" title="Heike Kamerlingh Onnes">Onnes</a></li> <li><a href="/wiki/Wolfgang_Pauli" title="Wolfgang Pauli">Pauli</a></li> <li><a href="/wiki/Max_Planck" title="Max Planck">Planck</a></li> <li><a href="/wiki/Isidor_Isaac_Rabi" title="Isidor Isaac Rabi">Rabi</a></li> <li><a href="/wiki/C._V._Raman" title="C. V. Raman">Raman</a></li> <li><a href="/wiki/Johannes_Rydberg" title="Johannes Rydberg">Rydberg</a></li> <li><a href="/wiki/Erwin_Schr%C3%B6dinger" title="Erwin Schrödinger">Schrödinger</a></li> <li><a href="/wiki/Michelle_Simmons" title="Michelle Simmons">Simmons</a></li> <li><a href="/wiki/Arnold_Sommerfeld" title="Arnold Sommerfeld">Sommerfeld</a></li> <li><a href="/wiki/John_von_Neumann" title="John von Neumann">von Neumann</a></li> <li><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Weyl</a></li> <li><a href="/wiki/Wilhelm_Wien" title="Wilhelm Wien">Wien</a></li> <li><a href="/wiki/Eugene_Wigner" title="Eugene Wigner">Wigner</a></li> <li><a href="/wiki/Pieter_Zeeman" title="Pieter Zeeman">Zeeman</a></li> <li><a href="/wiki/Anton_Zeilinger" title="Anton Zeilinger">Zeilinger</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-navbar" style="border-top:1px solid #aaa;padding-top:0.1em;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Quantum_mechanics" title="Template:Quantum mechanics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Quantum_mechanics" title="Template talk:Quantum mechanics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Quantum_mechanics" title="Special:EditPage/Template:Quantum mechanics"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p><b>Quantum machine learning</b> is the integration of <a href="/wiki/Quantum_algorithm" title="Quantum algorithm">quantum algorithms</a> within <a href="/wiki/Machine_learning" title="Machine learning">machine learning</a> programs.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:7_2-0" class="reference"><a href="#cite_note-:7-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:8_3-0" class="reference"><a href="#cite_note-:8-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:9_4-0" class="reference"><a href="#cite_note-:9-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:5_7-0" class="reference"><a href="#cite_note-:5-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p><p>The most common use of the term refers to machine learning algorithms for the analysis of classical data executed on a <a href="/wiki/Quantum_computer" class="mw-redirect" title="Quantum computer">quantum computer</a>, i.e. quantum-enhanced machine learning.<sup id="cite_ref-Nathan_Wiebe_2014_9-0" class="reference"><a href="#cite_note-Nathan_Wiebe_2014-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> While machine learning algorithms are used to compute immense quantities of data, quantum machine learning utilizes <a href="/wiki/Qubit" title="Qubit">qubits</a> and quantum operations or specialized quantum systems to improve computational speed and data storage done by algorithms in a program.<sup id="cite_ref-:12_12-0" class="reference"><a href="#cite_note-:12-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> This includes hybrid methods that involve both classical and quantum processing, where computationally difficult subroutines are outsourced to a quantum device.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Farhi_14-0" class="reference"><a href="#cite_note-Farhi-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> These routines can be more complex in nature and executed faster on a quantum computer.<sup id="cite_ref-:5_7-1" class="reference"><a href="#cite_note-:5-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> Furthermore, quantum algorithms can be used to analyze <a href="/wiki/Quantum_state" title="Quantum state">quantum states</a> instead of classical data.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p><p>Beyond quantum computing, the term "quantum machine learning" is also associated with classical machine learning methods applied to data generated from quantum experiments (i.e. <a href="/wiki/Machine_learning_in_physics" title="Machine learning in physics">machine learning of quantum systems</a>), such as learning the <a href="/wiki/Phase_transition" title="Phase transition">phase transitions</a> of a quantum system<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:10_19-0" class="reference"><a href="#cite_note-:10-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> or creating new quantum experiments.<sup id="cite_ref-Krenn_090405_20-0" class="reference"><a href="#cite_note-Krenn_090405-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Knott_073033_21-0" class="reference"><a href="#cite_note-Knott_073033-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:6_22-0" class="reference"><a href="#cite_note-:6-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p><p>Quantum machine learning also extends to a branch of research that explores methodological and structural similarities between certain physical systems and learning systems, in particular neural networks. For example, some mathematical and numerical techniques from quantum physics are applicable to classical deep learning and vice versa.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> </p><p>Furthermore, researchers investigate more abstract notions of learning theory with respect to quantum information, sometimes referred to as "quantum learning theory".<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Qml_approaches.tif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Qml_approaches.tif/lossless-page1-220px-Qml_approaches.tif.png" decoding="async" width="220" height="216" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Qml_approaches.tif/lossless-page1-330px-Qml_approaches.tif.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Qml_approaches.tif/lossless-page1-440px-Qml_approaches.tif.png 2x" data-file-width="296" data-file-height="290" /></a><figcaption>Four different approaches to combine the disciplines of quantum computing and machine learning.<sup id="cite_ref-AimeurEtAl_2006_28-0" class="reference"><a href="#cite_note-AimeurEtAl_2006-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-DunjkoTaylorBriegel_29-0" class="reference"><a href="#cite_note-DunjkoTaylorBriegel-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> The first letter refers to whether the system under study is classical or quantum, while the second letter defines whether a classical or quantum information processing device is used.</figcaption></figure> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Machine_learning_with_quantum_computers">Machine learning with quantum computers</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=1" title="Edit section: Machine learning with quantum computers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Quantum-enhanced machine learning refers to <a href="/wiki/Quantum_algorithm" title="Quantum algorithm">quantum algorithms</a> that solve tasks in machine learning, thereby improving and often expediting classical machine learning techniques. Such algorithms typically require one to encode the given classical data set into a quantum computer to make it accessible for quantum information processing. Subsequently, quantum information processing routines are applied and the result of the quantum computation is read out by measuring the quantum system. For example, the outcome of the measurement of a qubit reveals the result of a binary classification task. While many proposals of quantum machine learning algorithms are still purely theoretical and require a full-scale universal <a href="/wiki/Quantum_computer" class="mw-redirect" title="Quantum computer">quantum computer</a> to be tested, others have been implemented on small-scale or special purpose quantum devices. </p> <div class="mw-heading mw-heading3"><h3 id="Quantum_associative_memories_and_quantum_pattern_recognition">Quantum associative memories and quantum pattern recognition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=2" title="Edit section: Quantum associative memories and quantum pattern recognition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Associative (or content-addressable memories) are able to recognize stored content on the basis of a similarity measure, rather than fixed addresses, like in random access memories. As such they must be able to retrieve both incomplete and corrupted patterns, the essential machine learning task of pattern recognition. </p><p>Typical classical associative memories store p patterns in the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(n^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(n^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cd9594a16cb898b8f2a2dff9227a385ec183392" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.032ex; height:3.176ex;" alt="{\displaystyle O(n^{2})}"></span> interactions (synapses) of a real,&#160; symmetric energy matrix over a network of n artificial neurons. The encoding is such that the desired patterns are local minima of the energy functional and retrieval is done by minimizing the total energy, starting from an initial configuration. </p><p>Unfortunately, classical associative memories are severely limited by the phenomenon of <a href="/wiki/Crosstalk" title="Crosstalk">cross-talk</a>. When too many patterns are stored, spurious memories appear which quickly proliferate, so that the energy landscape becomes disordered and no retrieval is anymore possible. The number of storable patterns is typically limited by a linear function of the number of neurons, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\leq O(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\leq O(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/877329da78c34dad3a9bdad7329791aa6933a531" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:9.335ex; height:2.843ex;" alt="{\displaystyle p\leq O(n)}"></span>. </p><p>Quantum associative memories<sup id="cite_ref-:7_2-1" class="reference"><a href="#cite_note-:7-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:8_3-1" class="reference"><a href="#cite_note-:8-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:9_4-1" class="reference"><a href="#cite_note-:9-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> (in their simplest realization) store patterns in a unitary matrix U acting on the <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a> of n qubits. Retrieval is realized by the <a href="/wiki/Unitary_(physics)" class="mw-redirect" title="Unitary (physics)">unitary evolution</a> of a fixed initial state to a <a href="/wiki/Quantum_superposition" title="Quantum superposition">quantum superposition</a> of the desired patterns with probability distribution peaked on the most similar pattern to an input. By its very quantum nature, the retrieval process is thus probabilistic. Because quantum associative memories are free from cross-talk, however, spurious memories are never generated. Correspondingly, they have a superior capacity than classical ones. The number of parameters in the unitary matrix U is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(pn)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(pn)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2833b4c361db498c2e71d4e05c53df8a65062226" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.147ex; height:2.843ex;" alt="{\displaystyle O(pn)}"></span>. One can thus have efficient, spurious-memory-free quantum associative memories for any polynomial number of patterns. </p> <div class="mw-heading mw-heading3"><h3 id="Linear_algebra_simulation_with_quantum_amplitudes">Linear algebra simulation with quantum amplitudes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=3" title="Edit section: Linear algebra simulation with quantum amplitudes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A number of quantum algorithms for machine learning are based on the idea of amplitude encoding, that is, to associate the <a href="/wiki/Probability_amplitude" title="Probability amplitude">amplitudes</a> of a quantum state with the inputs and outputs of computations.<sup id="cite_ref-Patrick_Rebentrost_2014_30-0" class="reference"><a href="#cite_note-Patrick_Rebentrost_2014-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Nathan_Wiebe_2012_31-0" class="reference"><a href="#cite_note-Nathan_Wiebe_2012-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Maria_Schuld_2016_32-0" class="reference"><a href="#cite_note-Maria_Schuld_2016-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> Since a state of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> qubits is described by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8226f30650ee4fe4e640c6d2798127e80e9c160d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.381ex; height:2.343ex;" alt="{\displaystyle 2^{n}}"></span> complex amplitudes, this information encoding can allow for an exponentially compact representation. Intuitively, this corresponds to associating a discrete probability distribution over binary random variables with a classical vector. The goal of algorithms based on amplitude encoding is to formulate quantum algorithms whose <a href="/wiki/Computational_complexity" title="Computational complexity">resources</a> grow polynomially in the number of qubits <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, which amounts to a logarithmic <a href="/wiki/Time_complexity" title="Time complexity">time complexity</a> in the number of amplitudes and thereby the dimension of the input. </p><p>Many quantum machine learning algorithms in this category are based on variations of the <a href="/wiki/Quantum_algorithm_for_linear_systems_of_equations" class="mw-redirect" title="Quantum algorithm for linear systems of equations">quantum algorithm for linear systems of equations</a><sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> (colloquially called HHL, after the paper's authors) which, under specific conditions, performs a matrix inversion using an amount of physical resources growing only logarithmically in the dimensions of the matrix. One of these conditions is that a <a href="/wiki/Hamiltonian_(quantum_mechanics)" title="Hamiltonian (quantum mechanics)">Hamiltonian</a> which entry wise corresponds to the matrix can be simulated efficiently, which is known to be possible if the matrix is sparse<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> or low rank.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> For reference, any known classical algorithm for <a href="/wiki/Matrix_inversion" class="mw-redirect" title="Matrix inversion">matrix inversion</a> requires a number of operations that grows <a href="/wiki/Computational_complexity_of_mathematical_operations#Matrix_algebra" title="Computational complexity of mathematical operations">more than quadratically in the dimension of the matrix</a> (e.g. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O{\mathord {\left(n^{2.373}\right)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2.373</mn> </mrow> </msup> <mo>)</mo> </mrow> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O{\mathord {\left(n^{2.373}\right)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1aae64872678cfd84c60f52b8c789d8d67141fb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.275ex; height:3.343ex;" alt="{\displaystyle O{\mathord {\left(n^{2.373}\right)}}}"></span>), but they are not restricted to sparse matrices. </p><p>Quantum matrix inversion can be applied to machine learning methods in which the training reduces to solving a <a href="/wiki/System_of_linear_equations" title="System of linear equations">linear system of equations</a>, for example in least-squares linear regression,<sup id="cite_ref-Nathan_Wiebe_2012_31-1" class="reference"><a href="#cite_note-Nathan_Wiebe_2012-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Maria_Schuld_2016_32-1" class="reference"><a href="#cite_note-Maria_Schuld_2016-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> the least-squares version of <a href="/wiki/Support_vector_machine" title="Support vector machine">support vector machines</a>,<sup id="cite_ref-Patrick_Rebentrost_2014_30-1" class="reference"><a href="#cite_note-Patrick_Rebentrost_2014-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> and Gaussian processes.<sup id="cite_ref-ReferenceA_36-0" class="reference"><a href="#cite_note-ReferenceA-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> </p><p>A crucial bottleneck of methods that simulate linear algebra computations with the amplitudes of quantum states is state preparation, which often requires one to initialise a quantum system in a state whose amplitudes reflect the features of the entire dataset. Although efficient methods for state preparation are known for specific cases,<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> this step easily hides the complexity of the task.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Variational_Quantum_Algorithms_(VQAs)"><span id="Variational_Quantum_Algorithms_.28VQAs.29"></span>Variational Quantum Algorithms (VQAs)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=4" title="Edit section: Variational Quantum Algorithms (VQAs)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>VQAs are one of the most studied classes of quantum algorithms, as modern research demonstrates their applicability to the vast majority of known major applications of the quantum computer, and they appear to be a leading hope for gaining quantum supremacy.<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup>&#160; VQAs are a mixed quantum-classical approach where the quantum processor prepares quantum states and measurement is made and the optimization is done by a classical computer. VQAs are considered best for NISQ as VQAs are noise tolerant compared to other algorithms and give quantum superiority with only a few hundred qubits. Researchers have studied circuit-based algorithms to solve optimization problems and find the ground state energy of complex systems, which were difficult to solve or required a large time to perform the computation using a classical computer.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Variational_quantum_circuits_(VQCs)"><span id="Variational_quantum_circuits_.28VQCs.29"></span>Variational quantum circuits (VQCs)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=5" title="Edit section: Variational quantum circuits (VQCs)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Variational Quantum Circuits also known as Parametrized Quantum Circuits (PQCs) are based on Variational Quantum Algorithms (VQAs). VQCs consist of three parts: preparation of initial states, quantum circuit, and measurement. Researchers are extensively studying VQCs, as it uses the power of quantum computation to learn in a short time and also use fewer parameters than its classical counterparts. It is theoretically and numerically proven that we can approximate non-linear functions, like those used in neural networks, on quantum circuits. Due to VQCs superiority, neural network has been replaced by VQCs in Reinforcement Learning tasks and Generative Algorithms. The intrinsic nature of quantum devices towards decoherence, random gate error and measurement errors caused to have high potential to limit the training of the variation circuits. Training the VQCs on the classical devices before employing them on quantum devices helps to overcome the problem of decoherence noise that came through the number of repetitions for training.<sup id="cite_ref-:2_44-0" class="reference"><a href="#cite_note-:2-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:3_45-0" class="reference"><a href="#cite_note-:3-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Quantum_binary_classifier">Quantum binary classifier</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=6" title="Edit section: Quantum binary classifier"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Pattern reorganization is one of the important tasks of machine learning, <a href="/wiki/Binary_classification" title="Binary classification">binary classification</a> is one of the tools or algorithms to find patterns. Binary classification is used in <a href="/wiki/Supervised_learning" title="Supervised learning">supervised learning</a> and in <a href="/wiki/Unsupervised_learning" title="Unsupervised learning">unsupervised learning</a>. In quantum machine learning, classical bits are converted to qubits and they are mapped to Hilbert space; complex value data are used in a quantum binary classifier to use the advantage of Hilbert space.<sup id="cite_ref-Park_126422_47-0" class="reference"><a href="#cite_note-Park_126422-47"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Yi_012020_48-0" class="reference"><a href="#cite_note-Yi_012020-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> By exploiting the quantum mechanic properties such as superposition, entanglement, interference the quantum binary classifier produces the accurate result in short period of time.<sup id="cite_ref-Maheshwari_2022_3705–3715_49-0" class="reference"><a href="#cite_note-Maheshwari_2022_3705–3715-49"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Quantum_machine_learning_algorithms_based_on_Grover_search">Quantum machine learning algorithms based on Grover search</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=7" title="Edit section: Quantum machine learning algorithms based on Grover search"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Another approach to improving classical machine learning with quantum information processing uses <a href="/wiki/Amplitude_amplification" title="Amplitude amplification">amplitude amplification</a> methods based on <a href="/wiki/Grover%27s_algorithm" title="Grover&#39;s algorithm">Grover's search</a> algorithm, which has been shown to solve unstructured search problems with a quadratic speedup compared to classical algorithms. These quantum routines can be employed for learning algorithms that translate into an unstructured search task, as can be done, for instance, in the case of the <a href="/wiki/K-medians_clustering" title="K-medians clustering">k-medians</a><sup id="cite_ref-:0_50-0" class="reference"><a href="#cite_note-:0-50"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> and the <a href="/wiki/K-nearest_neighbour" class="mw-redirect" title="K-nearest neighbour">k-nearest neighbors algorithms</a>.<sup id="cite_ref-Nathan_Wiebe_2014_9-1" class="reference"><a href="#cite_note-Nathan_Wiebe_2014-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> Other applications include quadratic speedups in the training of <a href="/wiki/Perceptrons" class="mw-redirect" title="Perceptrons">perceptron</a><sup id="cite_ref-wiebe2016nips_51-0" class="reference"><a href="#cite_note-wiebe2016nips-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> and the computation of <a href="/wiki/Attention_(machine_learning)" title="Attention (machine learning)">attention</a>.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> </p><p>An example of amplitude amplification being used in a machine learning algorithm is Grover's search algorithm minimization. In which a subroutine uses Grover's search algorithm to find an element less than some previously defined element. This can be done with an oracle that determines whether or not a state with a corresponding element is less than the predefined one. Grover's algorithm can then find an element such that our condition is met. The minimization is initialized by some random element in our data set, and iteratively does this subroutine to find the minimum element in the data set. This minimization is notably used in quantum k-medians, and it has a speed up of at least <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {O}}\left({\sqrt {\frac {n}{k}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>n</mi> <mi>k</mi> </mfrac> </msqrt> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {O}}\left({\sqrt {\frac {n}{k}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddb7fa3c11e7608a4949da41f80b8efc003adfc3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:10.213ex; height:6.343ex;" alt="{\displaystyle {\mathcal {O}}\left({\sqrt {\frac {n}{k}}}\right)}"></span> compared to classical versions of k-medians, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is the number of data points and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> is the number of clusters.<sup id="cite_ref-:0_50-1" class="reference"><a href="#cite_note-:0-50"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> </p><p>Amplitude amplification is often combined with <a href="/wiki/Quantum_walk" title="Quantum walk">quantum walks</a> to achieve the same quadratic speedup. Quantum walks have been proposed to enhance Google's PageRank algorithm<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> as well as the performance of reinforcement learning agents in the projective simulation framework.<sup id="cite_ref-paparo2014quantum_54-0" class="reference"><a href="#cite_note-paparo2014quantum-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Quantum-enhanced_reinforcement_learning">Quantum-enhanced reinforcement learning</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=8" title="Edit section: Quantum-enhanced reinforcement learning"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Reinforcement_learning" title="Reinforcement learning">Reinforcement learning</a> is a branch of machine learning distinct from supervised and unsupervised learning, which also admits quantum enhancements.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-paparo2014quantum_54-1" class="reference"><a href="#cite_note-paparo2014quantum-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> In quantum-enhanced reinforcement learning, a quantum agent interacts with a classical or quantum environment and occasionally receives rewards for its actions, which allows the agent to adapt its behavior—in other words, to learn what to do in order to gain more rewards. In some situations, either because of the quantum processing capability of the agent,<sup id="cite_ref-paparo2014quantum_54-2" class="reference"><a href="#cite_note-paparo2014quantum-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> or due to the possibility to probe the environment in <a href="/wiki/Quantum_superposition" title="Quantum superposition">superpositions</a>,<sup id="cite_ref-DunjkoTaylorBriegel_29-1" class="reference"><a href="#cite_note-DunjkoTaylorBriegel-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> a quantum speedup may be achieved. Implementations of these kinds of protocols have been proposed for systems of <a href="/wiki/Trapped_ion_quantum_computer" class="mw-redirect" title="Trapped ion quantum computer">trapped ions</a><sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Superconducting_quantum_computing" title="Superconducting quantum computing">superconducting circuits</a>.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> A quantum speedup of the agent's internal decision-making time<sup id="cite_ref-paparo2014quantum_54-3" class="reference"><a href="#cite_note-paparo2014quantum-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> has been experimentally demonstrated in trapped ions,<sup id="cite_ref-Sriarunothai2019Quantumenhanced_59-0" class="reference"><a href="#cite_note-Sriarunothai2019Quantumenhanced-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> while a quantum speedup of the learning time in a fully coherent (`quantum') interaction between agent and environment has been experimentally realized in a photonic setup.<sup id="cite_ref-SaggioEtAl2021_60-0" class="reference"><a href="#cite_note-SaggioEtAl2021-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Quantum_annealing">Quantum annealing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=9" title="Edit section: Quantum annealing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Quantum_annealing" title="Quantum annealing">Quantum annealing</a></div> <p><a href="/wiki/Quantum_annealing" title="Quantum annealing">Quantum annealing</a> is an optimization technique used to determine the local minima and maxima of a function over a given set of candidate functions. This is a method of discretizing a function with many local minima or maxima in order to determine the observables of the function. The process can be distinguished from <a href="/wiki/Simulated_annealing" title="Simulated annealing">Simulated annealing</a> by the <a href="/wiki/Quantum_tunnelling" title="Quantum tunnelling">Quantum tunneling</a> process, by which particles tunnel through kinetic or potential barriers from a high state to a low state. Quantum annealing starts from a superposition of all possible states of a system, weighted equally. Then the time-dependent <a href="/wiki/Schr%C3%B6dinger_equation" title="Schrödinger equation">Schrödinger equation</a> guides the time evolution of the system, serving to affect the amplitude of each state as time increases. Eventually, the ground state can be reached to yield the instantaneous Hamiltonian of the system. </p> <div class="mw-heading mw-heading3"><h3 id="NISQ_Circuit_as_Quantum_Model">NISQ Circuit as Quantum Model</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=10" title="Edit section: NISQ Circuit as Quantum Model"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As the depth of the quantum circuit advances on <a href="/wiki/Noisy_intermediate-scale_quantum_era" title="Noisy intermediate-scale quantum era">NISQ</a> devices, the noise level rises, posing a significant challenge to accurately computing costs and gradients on training models. The noise tolerance will be improved by using the quantum <a href="/wiki/Perceptron" title="Perceptron">perceptron</a> and the quantum algorithm on the currently accessible quantum hardware.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (January 2023)">citation needed</span></a></i>&#93;</sup> </p><p>A regular connection of similar components known as <a href="/wiki/Neuron" title="Neuron">neurons</a> forms the basis of even the most complex brain networks. Typically, a neuron has two operations: the inner product and an <a href="/wiki/Activation_function" title="Activation function">activation function</a>. As opposed to the activation function, which is typically <a href="/wiki/Nonlinear_system" title="Nonlinear system">nonlinear</a>, the inner product is a linear process. With quantum computing, linear processes may be easily accomplished additionally,&#160; due to the simplicity of implementation, the threshold function is preferred by the majority of quantum neurons for activation functions.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (January 2023)">citation needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Quantum_sampling_techniques">Quantum sampling techniques</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=11" title="Edit section: Quantum sampling techniques"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Sampling from high-dimensional probability distributions is at the core of a wide spectrum of computational techniques with important applications across science, engineering, and society. Examples include <a href="/wiki/Deep_learning" title="Deep learning">deep learning</a>, <a href="/wiki/Probabilistic_programming" title="Probabilistic programming">probabilistic programming</a>, and other machine learning and artificial intelligence applications. </p><p>A computationally hard problem, which is key for some relevant machine learning tasks, is the estimation of averages over probabilistic models defined in terms of a <a href="/wiki/Boltzmann_distribution" title="Boltzmann distribution">Boltzmann distribution</a>. Sampling from generic probabilistic models is hard: algorithms relying heavily on sampling are expected to remain intractable no matter how large and powerful classical computing resources become. Even though quantum annealers, like those produced by D-Wave Systems, were designed for challenging combinatorial optimization problems, it has been recently recognized as a potential candidate to speed up computations that rely on sampling by exploiting quantum effects.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> </p><p>Some research groups have recently explored the use of quantum annealing hardware for training <a href="/wiki/Boltzmann_machine" title="Boltzmann machine">Boltzmann machines</a> and <a href="/wiki/Deep_neural_networks" class="mw-redirect" title="Deep neural networks">deep neural networks</a>.<sup id="cite_ref-Adachi2015_62-0" class="reference"><a href="#cite_note-Adachi2015-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Benedetti2016b_63-0" class="reference"><a href="#cite_note-Benedetti2016b-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-William_G_1611_64-0" class="reference"><a href="#cite_note-William_G_1611-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> The standard approach to training Boltzmann machines relies on the computation of certain averages that can be estimated by standard <a href="/wiki/Gibbs_sampling" title="Gibbs sampling">sampling</a> techniques, such as <a href="/wiki/Markov_chain_Monte_Carlo" title="Markov chain Monte Carlo">Markov chain Monte Carlo</a> algorithms. Another possibility is to rely on a physical process, like quantum annealing, that naturally generates samples from a Boltzmann distribution. The objective is to find the optimal control parameters that best represent the empirical distribution of a given dataset. </p><p>The D-Wave 2X system hosted at NASA Ames Research Center has been recently used for the learning of a special class of restricted Boltzmann machines that can serve as a building block for deep learning architectures.<sup id="cite_ref-Benedetti2016b_63-1" class="reference"><a href="#cite_note-Benedetti2016b-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> Complementary work that appeared roughly simultaneously showed that quantum annealing can be used for supervised learning in classification tasks.<sup id="cite_ref-Adachi2015_62-1" class="reference"><a href="#cite_note-Adachi2015-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> The same device was later used to train a fully connected Boltzmann machine to generate, reconstruct, and classify down-scaled, low-resolution handwritten digits, among other synthetic datasets.<sup id="cite_ref-Benedetti2016a_65-0" class="reference"><a href="#cite_note-Benedetti2016a-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> In both cases, the models trained by quantum annealing had a similar or better performance in terms of quality. The ultimate question that drives this endeavour is whether there is quantum speedup in sampling applications. Experience with the use of quantum annealers for combinatorial optimization suggests the answer is not straightforward. Reverse annealing has been used as well to solve a fully connected quantum restricted Boltzmann machine.<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> </p><p>Inspired by the success of Boltzmann machines based on classical Boltzmann distribution, a new machine learning approach based on quantum Boltzmann distribution of a transverse-field Ising Hamiltonian was recently proposed.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> Due to the non-commutative nature of quantum mechanics, the training process of the quantum Boltzmann machine can become nontrivial. This problem was, to some extent, circumvented by introducing bounds on the quantum probabilities, allowing the authors to train the model efficiently by sampling. It is possible that a specific type of quantum Boltzmann machine has been trained in the D-Wave 2X by using a learning rule analogous to that of classical Boltzmann machines.<sup id="cite_ref-Benedetti2016a_65-1" class="reference"><a href="#cite_note-Benedetti2016a-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-William_G_1611_64-1" class="reference"><a href="#cite_note-William_G_1611-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> </p><p>Quantum annealing is not the only technology for sampling. In a prepare-and-measure scenario, a universal quantum computer prepares a thermal state, which is then sampled by measurements. This can reduce the time required to train a deep restricted Boltzmann machine, and provide a richer and more comprehensive framework for deep learning than classical computing.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> The same quantum methods also permit efficient training of full Boltzmann machines and multi-layer, fully connected models and do not have well-known classical counterparts. Relying on an efficient thermal state preparation protocol starting from an arbitrary state, quantum-enhanced <a href="/wiki/Markov_logic_network" title="Markov logic network">Markov logic networks</a> exploit the symmetries and the locality structure of the <a href="/wiki/Graphical_model" title="Graphical model">probabilistic graphical model</a> generated by a <a href="/wiki/First-order_logic" title="First-order logic">first-order logic</a> template.<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:10_19-1" class="reference"><a href="#cite_note-:10-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> This provides an exponential reduction in computational complexity in probabilistic inference, and, while the protocol relies on a universal quantum computer, under mild assumptions it can be embedded on contemporary quantum annealing hardware. </p> <div class="mw-heading mw-heading3"><h3 id="Quantum_neural_networks">Quantum neural networks</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=12" title="Edit section: Quantum neural networks"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Quantum_neural_network" title="Quantum neural network">Quantum neural network</a></div> <p>Quantum analogues or generalizations of classical neural nets are often referred to as <a href="/wiki/Quantum_neural_network" title="Quantum neural network">quantum neural networks</a>. The term is claimed by a wide range of approaches, including the implementation and extension of neural networks using photons, layered variational circuits or quantum Ising-type models. Quantum neural networks are often defined as an expansion on Deutsch's model of a quantum computational network.<sup id="cite_ref-:13_71-0" class="reference"><a href="#cite_note-:13-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> Within this model, nonlinear and irreversible gates, dissimilar to the Hamiltonian operator, are deployed to speculate the given data set.<sup id="cite_ref-:13_71-1" class="reference"><a href="#cite_note-:13-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> Such gates make certain phases unable to be observed and generate specific oscillations.<sup id="cite_ref-:13_71-2" class="reference"><a href="#cite_note-:13-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> Quantum neural networks apply the principals quantum information and quantum computation to classical neurocomputing.<sup id="cite_ref-:03_72-0" class="reference"><a href="#cite_note-:03-72"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> Current research shows that QNN can exponentially increase the amount of computing power and the degrees of freedom for a computer, which is limited for a classical computer to its size.<sup id="cite_ref-:03_72-1" class="reference"><a href="#cite_note-:03-72"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> A quantum neural network has computational capabilities to decrease the number of steps, qubits used, and computation time.<sup id="cite_ref-:13_71-3" class="reference"><a href="#cite_note-:13-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> The wave function to quantum mechanics is the neuron for Neural networks. To test quantum applications in a neural network, quantum dot molecules are deposited on a substrate of GaAs or similar to record how they communicate with one another. Each quantum dot can be referred as an island of electric activity, and when such dots are close enough (approximately 10 - 20&#160;nm)<sup id="cite_ref-:23_73-0" class="reference"><a href="#cite_note-:23-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> electrons can tunnel underneath the islands. An even distribution across the substrate in sets of two create dipoles and ultimately two spin states, up or down. These states are commonly known as qubits with corresponding states of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span> in Dirac notation.<sup id="cite_ref-:23_73-1" class="reference"><a href="#cite_note-:23-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Quantum_Convolution_Neural_Network">Quantum Convolution Neural Network</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=13" title="Edit section: Quantum Convolution Neural Network"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A novel design for multi-dimensional vectors that uses circuits as convolution filters<sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> is QCNN. It was inspired by the advantages of CNNs<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:02_76-0" class="reference"><a href="#cite_note-:02-76"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> and the power of QML. It is made using a combination of a variational quantum circuit(VQC)<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup> and a <a href="/wiki/Deep_neural_network" class="mw-redirect" title="Deep neural network">deep neural network</a><sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup>(DNN), fully utilizing the power of extremely parallel processing on a superposition of a quantum state with a finite number of qubits. The main strategy is to carry out an iterative optimization process in the <a href="/wiki/Noisy_intermediate-scale_quantum_era" title="Noisy intermediate-scale quantum era">NISQ</a><sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> devices, without the negative impact of noise, which is possibly incorporated into the circuit parameter, and without the need for quantum error correction.<sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> </p><p>The quantum circuit must effectively handle spatial information in order for QCNN to function as CNN. The convolution filter is the most basic technique for making use of spatial information. One or more quantum convolutional filters make up a quantum convolutional neural network (QCNN), and each of these filters transforms input data using a quantum circuit that can be created in an organized or randomized way. Three parts that make up the quantum convolutional filter are: the encoder, the parameterized quantum circuit (PQC),<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup> and the measurement. The quantum convolutional filter can be seen as an extension of the filter in the traditional CNN because it was designed with trainable parameters. </p><p>Quantum neural networks take advantage of the hierarchical structures,<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup> and for each subsequent layer, the number of qubits from the preceding layer is decreased by a factor of two. For n input qubits, these structure have O(log(n)) layers, allowing for shallow circuit depth. Additionally, they are able to avoid "barren plateau," one of the most significant issues with PQC-based algorithms, ensuring trainability.<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup> Despite the fact that the QCNN model does not include the corresponding quantum operation, the fundamental idea of the <a href="/wiki/Pooling_layer" title="Pooling layer">pooling layer</a> is also offered to assure validity. In QCNN architecture, the pooling layer is typically placed between succeeding convolutional layers. Its function is to shrink the representation's spatial size while preserving crucial features, which allows it to reduce the number of parameters, streamline network computing, and manage over-fitting. Such process can be accomplished applying <a href="/wiki/Tomography" title="Tomography">full Tomography</a> on the state to reduce it all the way down to one qubit and then processed it in subway. The most frequently used unit type in the <a href="/wiki/Pooling_(neural_networks)" class="mw-redirect" title="Pooling (neural networks)">pooling layer</a> is max pooling, although there are other types as well. Similar to <a href="/wiki/Feedforward_neural_network" title="Feedforward neural network">conventional feed-forward</a> neural networks, the last module is a fully connected layer with full connections to all activations in the preceding layer. Translational invariance, which requires identical blocks of parameterized quantum gates within a layer, is a distinctive feature of the QCNN architecture.<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Dissipative_Quantum_Neural_Network">Dissipative Quantum Neural Network</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=14" title="Edit section: Dissipative Quantum Neural Network"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Dissipative QNNs (DQNNs) are constructed from layers of qubits coupled by perceptron called building blocks, which have an arbitrary unitary design. Each node in the network layer of a DQNN is given a distinct collection of qubits, and each qubit is also given a unique quantum perceptron unitary to characterize it.<sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:1_86-0" class="reference"><a href="#cite_note-:1-86"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup> The input states information are transported through the network in a feed-forward fashion, layer-to-layer transition mapping on the qubits of the two adjacent layers, as the name implies. Dissipative term also refers to the fact that the output layer is formed by the ancillary qubits while the input layers are dropped while tracing out the final layer.<sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup> When performing a broad supervised learning task, DQNN are used to learn a unitary matrix connecting the input and output quantum states. The training data for this task consists of the quantum state and the corresponding classical labels. </p><p>Inspired by the extremely successful classical <a href="/wiki/Generative_adversarial_network" title="Generative adversarial network">Generative adversarial network(GAN)</a>,<sup id="cite_ref-88" class="reference"><a href="#cite_note-88"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> dissipative quantum generative adversarial network (DQGAN) is introduced for <a href="/wiki/Unsupervised_learning" title="Unsupervised learning">unsupervised learning</a> of the unlabeled training data . The generator and the discriminator are the two DQNNs that make up a single DQGAN.<sup id="cite_ref-:1_86-1" class="reference"><a href="#cite_note-:1-86"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup> The generator's goal is to create false training states that the discriminator cannot differentiate from the genuine ones, while the discriminator's objective is to separate the real training states from the fake states created by the generator. The relevant features of the training set are learned by the generator by alternate and adversarial training of the networks that aid in the production of sets that extend the training set. DQGAN has a fully quantum architecture and is trained in quantum data. </p> <div class="mw-heading mw-heading3"><h3 id="Hidden_quantum_Markov_models">Hidden quantum Markov models</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=15" title="Edit section: Hidden quantum Markov models"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Hidden quantum Markov models<sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> (HQMMs) are a quantum-enhanced version of classical <a href="/wiki/Hidden_Markov_model" title="Hidden Markov model">Hidden Markov Models</a> (HMMs), which are typically used to model sequential data in various fields like <a href="/wiki/Robotics" title="Robotics">robotics</a> and <a href="/wiki/Natural-language_processing" class="mw-redirect" title="Natural-language processing">natural language processing</a>. Unlike the approach taken by other quantum-enhanced machine learning algorithms, HQMMs can be viewed as models inspired by quantum mechanics that can be run on classical computers as well.<sup id="cite_ref-:4_90-0" class="reference"><a href="#cite_note-:4-90"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> Where classical HMMs use probability vectors to represent hidden 'belief' states, HQMMs use the quantum analogue: <a href="/wiki/Density_matrix" title="Density matrix">density matrices</a>. Recent work has shown that these models can be successfully learned by maximizing the log-likelihood of the given data via classical optimization, and there is some empirical evidence that these models can better model sequential data compared to classical HMMs in practice, although further work is needed to determine exactly when and how these benefits are derived.<sup id="cite_ref-:4_90-1" class="reference"><a href="#cite_note-:4-90"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> Additionally, since classical HMMs are a particular kind of <a href="/wiki/Bayesian_network" title="Bayesian network">Bayes net</a>, an exciting aspect of HQMMs is that the techniques used show how we can perform quantum-analogous <a href="/wiki/Bayesian_inference" title="Bayesian inference">Bayesian inference</a>, which should allow for the general construction of the quantum versions of <a href="/wiki/Graphical_model" title="Graphical model">probabilistic graphical models</a>.<sup id="cite_ref-:4_90-2" class="reference"><a href="#cite_note-:4-90"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Fully_quantum_machine_learning">Fully quantum machine learning</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=16" title="Edit section: Fully quantum machine learning"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the most general case of quantum machine learning, both the learning device and the system under study, as well as their interaction, are fully quantum. This section gives a few examples of results on this topic. </p><p>One class of problem that can benefit from the fully quantum approach is that of 'learning' unknown quantum states, processes or measurements, in the sense that one can subsequently reproduce them on another quantum system. For example, one may wish to learn a measurement that discriminates between two coherent states, given not a classical description of the states to be discriminated, but instead a set of example quantum systems prepared in these states. The naive approach would be to first extract a classical description of the states and then implement an ideal discriminating measurement based on this information. This would only require classical learning. However, one can show that a fully quantum approach is strictly superior in this case.<sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">&#91;</span>91<span class="cite-bracket">&#93;</span></a></sup> (This also relates to work on quantum pattern matching.<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">&#91;</span>92<span class="cite-bracket">&#93;</span></a></sup>) The problem of learning unitary transformations can be approached in a similar way.<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup> </p><p>Going beyond the specific problem of learning states and transformations, the task of <a href="/wiki/Quantum_clustering" title="Quantum clustering">clustering</a> also admits a fully quantum version, wherein both the oracle which returns the distance between data-points and the information processing device which runs the algorithm are quantum.<sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup> Finally, a general framework spanning supervised, unsupervised and reinforcement learning in the fully quantum setting was introduced in,<sup id="cite_ref-DunjkoTaylorBriegel_29-2" class="reference"><a href="#cite_note-DunjkoTaylorBriegel-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> where it was also shown that the possibility of probing the environment in superpositions permits a quantum speedup in reinforcement learning. Such a speedup in the reinforcement-learning paradigm has been experimentally demonstrated in a photonic setup.<sup id="cite_ref-SaggioEtAl2021_60-1" class="reference"><a href="#cite_note-SaggioEtAl2021-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Explainable_quantum_machine_learning">Explainable quantum machine learning</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=17" title="Edit section: Explainable quantum machine learning"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The need for models that can be understood by humans emerges in quantum machine learning in analogy to classical machine learning and drives the research field of explainable quantum machine learning (or XQML<sup id="cite_ref-xqml2023_95-0" class="reference"><a href="#cite_note-xqml2023-95"><span class="cite-bracket">&#91;</span>95<span class="cite-bracket">&#93;</span></a></sup> in analogy to <a href="/wiki/Explainable_artificial_intelligence" title="Explainable artificial intelligence">XAI/XML</a>). These efforts are often also referred to as Interpretable Machine Learning (IML, and by extension IQML).<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">&#91;</span>96<span class="cite-bracket">&#93;</span></a></sup> XQML/IQML can be considered as an alternative research direction instead of finding a quantum advantage.<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">&#91;</span>97<span class="cite-bracket">&#93;</span></a></sup> For example, XQML has been used in the context of mobile malware detection and classification.<sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">&#91;</span>98<span class="cite-bracket">&#93;</span></a></sup> Quantum <a href="/wiki/Shapley_value" title="Shapley value">Shapley values</a> have also been proposed to interpret gates within a circuit based on a game-theoretic approach.<sup id="cite_ref-xqml2023_95-1" class="reference"><a href="#cite_note-xqml2023-95"><span class="cite-bracket">&#91;</span>95<span class="cite-bracket">&#93;</span></a></sup> For this purpose, gates instead of features act as players in a coalitional game with a value function that depends on measurements of the quantum circuit of interest. Additionally, a quantum version of the classical technique known as LIME (Linear Interpretable Model-Agnostic Explanations)<sup id="cite_ref-99" class="reference"><a href="#cite_note-99"><span class="cite-bracket">&#91;</span>99<span class="cite-bracket">&#93;</span></a></sup> has also been proposed, known as Q-LIME.<sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">&#91;</span>100<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Classical_learning_applied_to_quantum_problems">Classical learning applied to quantum problems</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=18" title="Edit section: Classical learning applied to quantum problems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Machine_learning_in_physics" title="Machine learning in physics">Machine learning in physics</a></div> <p>The term "quantum machine learning" sometimes refers to classical machine learning performed on data from quantum systems. A basic example of this is <a href="/wiki/Quantum_tomography" title="Quantum tomography">quantum state tomography</a>, where a quantum state is learned from measurement. Other applications include learning Hamiltonians<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">&#91;</span>101<span class="cite-bracket">&#93;</span></a></sup> and automatically generating quantum experiments.<sup id="cite_ref-Krenn_090405_20-1" class="reference"><a href="#cite_note-Krenn_090405-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Quantum_learning_theory">Quantum learning theory</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=19" title="Edit section: Quantum learning theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Quantum learning theory pursues a mathematical analysis of the quantum generalizations of classical learning models and of the possible speed-ups or other improvements that they may provide. The framework is very similar to that of classical <a href="/wiki/Computational_learning_theory" title="Computational learning theory">computational learning theory</a>, but the learner in this case is a quantum information processing device, while the data may be either classical or quantum. Quantum learning theory should be contrasted with the quantum-enhanced machine learning discussed above, where the goal was to consider specific problems and to use quantum protocols to improve the time complexity of classical algorithms for these problems. Although quantum learning theory is still under development, partial results in this direction have been obtained.<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">&#91;</span>102<span class="cite-bracket">&#93;</span></a></sup> </p><p>The starting point in learning theory is typically a concept class, a set of possible concepts. Usually a concept is a function on some domain, such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{0,1\}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{0,1\}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cc07e486d73e18382d0d8d205149f0923ed0586" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.902ex; height:2.843ex;" alt="{\displaystyle \{0,1\}^{n}}"></span>. For example, the concept class could be the set of <a href="/wiki/Disjunctive_normal_form" title="Disjunctive normal form">disjunctive normal form</a> (DNF) formulas on n bits or the set of Boolean circuits of some constant depth. The goal for the learner is to learn (exactly or approximately) an unknown target concept from this concept class. The learner may be actively interacting with the target concept, or passively receiving samples from it. </p><p>In active learning, a learner can make membership queries to the target concept c, asking for its value c(x) on inputs x chosen by the learner. The learner then has to reconstruct the exact target concept, with high probability. In the model of quantum exact learning, the learner can make membership queries in quantum superposition. If the complexity of the learner is measured by the number of membership queries it makes, then quantum exact learners can be polynomially more efficient than classical learners for some concept classes, but not more.<sup id="cite_ref-gortlerservedioquantum_103-0" class="reference"><a href="#cite_note-gortlerservedioquantum-103"><span class="cite-bracket">&#91;</span>103<span class="cite-bracket">&#93;</span></a></sup> If complexity is measured by the amount of time the learner uses, then there are concept classes that can be learned efficiently by quantum learners but not by classical learners (under plausible complexity-theoretic assumptions).<sup id="cite_ref-gortlerservedioquantum_103-1" class="reference"><a href="#cite_note-gortlerservedioquantum-103"><span class="cite-bracket">&#91;</span>103<span class="cite-bracket">&#93;</span></a></sup> </p><p>A natural model of passive learning is Valiant's <a href="/wiki/Probably_approximately_correct_learning" title="Probably approximately correct learning">probably approximately correct (PAC) learning</a>. Here the learner receives random examples (x,c(x)), where x is distributed according to some unknown distribution D. The learner's goal is to output a hypothesis function h such that h(x)=c(x) with high probability when x is drawn according to D. The learner has to be able to produce such an 'approximately correct' h for every D and every target concept c in its concept class. We can consider replacing the random examples by potentially more powerful quantum examples <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{x}{\sqrt {D(x)}}|x,c(x)\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>D</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{x}{\sqrt {D(x)}}|x,c(x)\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb538817a1f9deb4b160834089ef7e2bf6c26a37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:19.19ex; height:6.009ex;" alt="{\displaystyle \sum _{x}{\sqrt {D(x)}}|x,c(x)\rangle }"></span>. In the PAC model (and the related agnostic model), this doesn't significantly reduce the number of examples needed: for every concept class, classical and quantum sample complexity are the same up to constant factors.<sup id="cite_ref-104" class="reference"><a href="#cite_note-104"><span class="cite-bracket">&#91;</span>104<span class="cite-bracket">&#93;</span></a></sup> However, for learning under some fixed distribution D, quantum examples can be very helpful, for example for learning DNF under the uniform distribution.<sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">&#91;</span>105<span class="cite-bracket">&#93;</span></a></sup> When considering time complexity, there exist concept classes that can be PAC-learned efficiently by quantum learners, even from classical examples, but not by classical learners (again, under plausible complexity-theoretic assumptions).<sup id="cite_ref-gortlerservedioquantum_103-2" class="reference"><a href="#cite_note-gortlerservedioquantum-103"><span class="cite-bracket">&#91;</span>103<span class="cite-bracket">&#93;</span></a></sup> </p><p>This passive learning type is also the most common scheme in supervised learning: a learning algorithm typically takes the training examples fixed, without the ability to query the label of unlabelled examples. Outputting a hypothesis h is a step of induction. Classically, an inductive model splits into a training and an application phase: the model parameters are estimated in the training phase, and the learned model is applied an arbitrary many times in the application phase. In the asymptotic limit of the number of applications, this splitting of phases is also present with quantum resources.<sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">&#91;</span>106<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Implementations_and_experiments">Implementations and experiments</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=20" title="Edit section: Implementations and experiments"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The earliest experiments were conducted using the adiabatic <a href="/wiki/D-Wave_Systems" title="D-Wave Systems">D-Wave</a> quantum computer, for instance, to detect cars in digital images using regularized boosting with a nonconvex objective function in a demonstration in 2009.<sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">&#91;</span>107<span class="cite-bracket">&#93;</span></a></sup> Many experiments followed on the same architecture, and leading tech companies have shown interest in the potential of quantum machine learning for future technological implementations. In 2013, Google Research, <a href="/wiki/NASA" title="NASA">NASA</a>, and the <a href="/wiki/Universities_Space_Research_Association" title="Universities Space Research Association">Universities Space Research Association</a> launched the <a href="/wiki/Quantum_Artificial_Intelligence_Lab" title="Quantum Artificial Intelligence Lab">Quantum Artificial Intelligence Lab</a> which explores the use of the adiabatic D-Wave quantum computer.<sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">&#91;</span>108<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">&#91;</span>109<span class="cite-bracket">&#93;</span></a></sup> A more recent example trained a probabilistic generative models with arbitrary pairwise connectivity, showing that their model is capable of generating handwritten digits as well as reconstructing noisy images of bars and stripes and handwritten digits.<sup id="cite_ref-Benedetti2016a_65-2" class="reference"><a href="#cite_note-Benedetti2016a-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> </p><p>Using a different annealing technology based on <a href="/wiki/Nuclear_magnetic_resonance" title="Nuclear magnetic resonance">nuclear magnetic resonance</a> (NMR), a quantum <a href="/wiki/Hopfield_network" title="Hopfield network">Hopfield network</a> was implemented in 2009 that mapped the input data and memorized data to Hamiltonians, allowing the use of adiabatic quantum computation.<sup id="cite_ref-110" class="reference"><a href="#cite_note-110"><span class="cite-bracket">&#91;</span>110<span class="cite-bracket">&#93;</span></a></sup> NMR technology also enables universal quantum computing,<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (February 2017)">citation needed</span></a></i>&#93;</sup> and it was used for the first experimental implementation of a quantum support vector machine to distinguish hand written number ‘6’ and ‘9’ on a liquid-state quantum computer in 2015.<sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">&#91;</span>111<span class="cite-bracket">&#93;</span></a></sup> The training data involved the pre-processing of the image which maps them to normalized 2-dimensional vectors to represent the images as the states of a qubit. The two entries of the vector are the vertical and horizontal ratio of the pixel intensity of the image. Once the vectors are defined on the <a href="/wiki/Feature_space" class="mw-redirect" title="Feature space">feature space</a>, the quantum support vector machine was implemented to classify the unknown input vector. The readout avoids costly <a href="/wiki/Quantum_tomography" title="Quantum tomography">quantum tomography</a> by reading out the final state in terms of direction (up/down) of the NMR signal. </p><p>Photonic implementations are attracting more attention,<sup id="cite_ref-WanDKGK16_112-0" class="reference"><a href="#cite_note-WanDKGK16-112"><span class="cite-bracket">&#91;</span>112<span class="cite-bracket">&#93;</span></a></sup> not the least because they do not require extensive cooling. Simultaneous spoken digit and speaker recognition and chaotic time-series prediction were demonstrated at data rates beyond 1 gigabyte per second in 2013.<sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">&#91;</span>113<span class="cite-bracket">&#93;</span></a></sup> Using non-linear photonics to implement an all-optical linear classifier, a perceptron model was capable of learning the classification boundary iteratively from training data through a feedback rule.<sup id="cite_ref-114" class="reference"><a href="#cite_note-114"><span class="cite-bracket">&#91;</span>114<span class="cite-bracket">&#93;</span></a></sup> A core building block in many learning algorithms is to calculate the distance between two vectors: this was first experimentally demonstrated for up to eight dimensions using entangled qubits in a photonic quantum computer in 2015.<sup id="cite_ref-115" class="reference"><a href="#cite_note-115"><span class="cite-bracket">&#91;</span>115<span class="cite-bracket">&#93;</span></a></sup> </p><p>Recently, based on a neuromimetic approach, a novel ingredient has been added to the field of quantum machine learning, in the form of a so-called quantum memristor, a quantized model of the standard classical <a href="/wiki/Memristor" title="Memristor">memristor</a>.<sup id="cite_ref-116" class="reference"><a href="#cite_note-116"><span class="cite-bracket">&#91;</span>116<span class="cite-bracket">&#93;</span></a></sup> This device can be constructed by means of a tunable resistor, weak measurements on the system, and a classical feed-forward mechanism. An implementation of a quantum memristor in superconducting circuits has been proposed,<sup id="cite_ref-117" class="reference"><a href="#cite_note-117"><span class="cite-bracket">&#91;</span>117<span class="cite-bracket">&#93;</span></a></sup> and an experiment with quantum dots performed.<sup id="cite_ref-118" class="reference"><a href="#cite_note-118"><span class="cite-bracket">&#91;</span>118<span class="cite-bracket">&#93;</span></a></sup> A quantum memristor would implement nonlinear interactions in the quantum dynamics which would aid the search for a fully functional quantum neural network. </p><p>Since 2016, IBM has launched an online cloud-based platform for quantum software developers, called the <a href="/wiki/IBM_Q_Experience" class="mw-redirect" title="IBM Q Experience">IBM Q Experience</a>. This platform consists of several fully operational quantum processors accessible via the IBM Web API. In doing so, the company is encouraging software developers to pursue new algorithms through a development environment with quantum capabilities. New architectures are being explored on an experimental basis, up to 32 qubits, using both trapped-ion and superconductive quantum computing methods. </p><p>In October 2019, it was noted that the introduction of Quantum Random Number Generators (QRNGs) to machine learning models including Neural Networks and Convolutional Neural Networks for random initial weight distribution and Random Forests for splitting processes had a profound effect on their ability when compared to the classical method of Pseudorandom Number Generators (PRNGs).<sup id="cite_ref-119" class="reference"><a href="#cite_note-119"><span class="cite-bracket">&#91;</span>119<span class="cite-bracket">&#93;</span></a></sup> However, in a more recent publication from 2021, these claims could not be reproduced for Neural Network weight initialization and no significant advantage of using QRNGs over PRNGs was found.<sup id="cite_ref-120" class="reference"><a href="#cite_note-120"><span class="cite-bracket">&#91;</span>120<span class="cite-bracket">&#93;</span></a></sup> The work also demonstrated that the generation of fair random numbers with a gate quantum computer is a non-trivial task on NISQ devices, and QRNGs are therefore typically much more difficult to use in practice than PRNGs. </p><p>A paper published in December 2018 reported on an experiment using a trapped-ion system demonstrating a quantum speedup of the deliberation time of reinforcement learning agents employing internal quantum hardware.<sup id="cite_ref-Sriarunothai2019Quantumenhanced_59-1" class="reference"><a href="#cite_note-Sriarunothai2019Quantumenhanced-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> </p><p>In March 2021, a team of researchers from Austria, The Netherlands, the US and Germany reported the experimental demonstration of a quantum speedup of the learning time of reinforcement learning agents interacting fully quantumly with the environment.<sup id="cite_ref-121" class="reference"><a href="#cite_note-121"><span class="cite-bracket">&#91;</span>121<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-SaggioEtAl2021_60-2" class="reference"><a href="#cite_note-SaggioEtAl2021-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> The relevant degrees of freedom of both agent and environment were realized on a compact and fully tunable integrated nanophotonic processor. </p> <div class="mw-heading mw-heading2"><h2 id="Skepticism">Skepticism</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=21" title="Edit section: Skepticism"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>While <a href="/wiki/Machine_learning" title="Machine learning">machine learning</a> itself is now not only a research field but an economically significant and fast growing industry and <a href="/wiki/Quantum_computing" title="Quantum computing">quantum computing</a> is a well established field of both theoretical and experimental research, quantum machine learning remains a purely theoretical field of studies. Attempts to experimentally demonstrate concepts of quantum machine learning remain insufficient.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (December 2020)">citation needed</span></a></i>&#93;</sup> Further, another obstacle exists at the prediction stage because the outputs of quantum learning models are inherently random.<sup id="cite_ref-122" class="reference"><a href="#cite_note-122"><span class="cite-bracket">&#91;</span>122<span class="cite-bracket">&#93;</span></a></sup> This creates an often considerable overhead, as many executions of a quantum learning model have to be aggregated to obtain an actual prediction. </p><p>Many of the leading scientists that extensively publish in the field of quantum machine learning warn about the extensive hype around the topic and are very restrained if asked about its practical uses in the foreseeable future. Sophia Chen<sup id="cite_ref-123" class="reference"><a href="#cite_note-123"><span class="cite-bracket">&#91;</span>123<span class="cite-bracket">&#93;</span></a></sup> collected some of the statements made by well known scientists in the field: </p> <ul><li>"I think we haven't done our homework yet. This is an extremely new scientific field," - physicist Maria Schuld of Canada-based quantum computing startup Xanadu.</li> <li>“When mixing machine learning with ‘quantum,’ you catalyse a hype-condensate.”<sup id="cite_ref-124" class="reference"><a href="#cite_note-124"><span class="cite-bracket">&#91;</span>124<span class="cite-bracket">&#93;</span></a></sup> - <a href="/wiki/Jacob_Biamonte" title="Jacob Biamonte">Jacob Biamonte</a> a contributor to the theory of quantum computation.</li> <li>"There is a lot more work that needs to be done before claiming quantum machine learning will actually work," - computer scientist Iordanis Kerenidis, the head of quantum algorithms at the Silicon Valley-based quantum computing startup QC Ware.</li> <li>"I have not seen a single piece of evidence that there exists a meaningful [machine learning] task for which it would make sense to use a quantum computer and not a classical computer," - physicist Ryan Sweke of the Free University of Berlin in Germany.</li> <li>“Don't fall for the hype!” - Frank Zickert, who is the author of probably the most practical book related to the subject beware that ”quantum computers are far away from advancing machine learning for their representation ability”, and even speaking about evaluation and optimization for any kind of useful task quantum supremacy is not yet achieved. Furthermore, nobody among the active researchers in the field make any forecasts about when it could possibly become practical.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (December 2020)">citation needed</span></a></i>&#93;</sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=22" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Differentiable_programming" title="Differentiable programming">Differentiable programming</a></li> <li><a href="/wiki/Quantum_computing" title="Quantum computing">Quantum computing</a></li> <li><a href="/wiki/Quantum_algorithm_for_linear_systems_of_equations" class="mw-redirect" title="Quantum algorithm for linear systems of equations">Quantum algorithm for linear systems of equations</a></li> <li><a href="/wiki/Quantum_annealing" title="Quantum annealing">Quantum annealing</a></li> <li><a href="/wiki/Quantum_neural_network" title="Quantum neural network">Quantum neural network</a></li> <li><a href="/wiki/Quantum_image" title="Quantum image">Quantum image</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_machine_learning&amp;action=edit&amp;section=23" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFVentura2000" class="citation journal cs1">Ventura, Dan (2000). "Quantum Associative Memory". <i>Information Sciences</i>. <b>124</b> (<span class="nowrap">1–</span>4): <span class="nowrap">273–</span>296. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/9807053">quant-ph/9807053</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0020-0255%2899%2900101-2">10.1016/S0020-0255(99)00101-2</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7232952">7232952</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Information+Sciences&amp;rft.atitle=Quantum+Associative+Memory&amp;rft.volume=124&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E1%E2%80%93%3C%2Fspan%3E4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E273-%3C%2Fspan%3E296&amp;rft.date=2000&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F9807053&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7232952%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2FS0020-0255%2899%2900101-2&amp;rft.aulast=Ventura&amp;rft.aufirst=Dan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-:7-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-:7_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:7_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrugenberger2001" class="citation journal cs1">Trugenberger, Carlo A. (2001). "Probabilistic Quantum Memories". <i>Physical Review Letters</i>. <b>87</b> (6): 067901. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0012100">quant-ph/0012100</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001PhRvL..87f7901T">2001PhRvL..87f7901T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.87.067901">10.1103/PhysRevLett.87.067901</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11497863">11497863</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:23325931">23325931</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Probabilistic+Quantum+Memories&amp;rft.volume=87&amp;rft.issue=6&amp;rft.pages=067901&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A23325931%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2001PhRvL..87f7901T&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0012100&amp;rft_id=info%3Apmid%2F11497863&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.87.067901&amp;rft.aulast=Trugenberger&amp;rft.aufirst=Carlo+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-:8-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-:8_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:8_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrugenberger2002" class="citation journal cs1">Trugenberger, Carlo A. (2002). "Quantum Pattern Recognition". <i>Quantum Information Processing</i>. <b>1</b> (6): <span class="nowrap">471–</span>493. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0210176">quant-ph/0210176</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002QuIP....1..471T">2002QuIP....1..471T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FA%3A1024022632303">10.1023/A:1024022632303</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1928001">1928001</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quantum+Information+Processing&amp;rft.atitle=Quantum+Pattern+Recognition&amp;rft.volume=1&amp;rft.issue=6&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E471-%3C%2Fspan%3E493&amp;rft.date=2002&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0210176&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1928001%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1023%2FA%3A1024022632303&amp;rft_id=info%3Abibcode%2F2002QuIP....1..471T&amp;rft.aulast=Trugenberger&amp;rft.aufirst=Carlo+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-:9-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-:9_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:9_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrugenberger2002" class="citation journal cs1">Trugenberger, C. A. (2002-12-19). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1103/physrevlett.89.277903">"Phase Transitions in Quantum Pattern Recognition"</a>. <i>Physical Review Letters</i>. <b>89</b> (27): 277903. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0204115">quant-ph/0204115</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002PhRvL..89A7903T">2002PhRvL..89A7903T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2Fphysrevlett.89.277903">10.1103/physrevlett.89.277903</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0031-9007">0031-9007</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12513243">12513243</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:33065081">33065081</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Phase+Transitions+in+Quantum+Pattern+Recognition&amp;rft.volume=89&amp;rft.issue=27&amp;rft.pages=277903&amp;rft.date=2002-12-19&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A33065081%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2002PhRvL..89A7903T&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0204115&amp;rft.issn=0031-9007&amp;rft_id=info%3Adoi%2F10.1103%2Fphysrevlett.89.277903&amp;rft_id=info%3Apmid%2F12513243&amp;rft.aulast=Trugenberger&amp;rft.aufirst=C.+A.&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1103%2Fphysrevlett.89.277903&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBiamonteWittekNicolaRebentrost2017" class="citation journal cs1">Biamonte, Jacob; Wittek, Peter; Nicola, Pancotti; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth (2017). "Quantum machine learning". <i>Nature</i>. <b>549</b> (7671): <span class="nowrap">195–</span>202. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1611.09347">1611.09347</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017Natur.549..195B">2017Natur.549..195B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature23474">10.1038/nature23474</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28905917">28905917</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:64536201">64536201</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Quantum+machine+learning&amp;rft.volume=549&amp;rft.issue=7671&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E195-%3C%2Fspan%3E202&amp;rft.date=2017&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A64536201%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2017Natur.549..195B&amp;rft_id=info%3Aarxiv%2F1611.09347&amp;rft_id=info%3Apmid%2F28905917&amp;rft_id=info%3Adoi%2F10.1038%2Fnature23474&amp;rft.aulast=Biamonte&amp;rft.aufirst=Jacob&amp;rft.au=Wittek%2C+Peter&amp;rft.au=Nicola%2C+Pancotti&amp;rft.au=Rebentrost%2C+Patrick&amp;rft.au=Wiebe%2C+Nathan&amp;rft.au=Lloyd%2C+Seth&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchuldPetruccione2018" class="citation book cs1">Schuld, Maria; Petruccione, Francesco (2018). <i>Supervised Learning with Quantum Computers</i>. Quantum Science and Technology. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018slqc.book.....S">2018slqc.book.....S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-96424-9">10.1007/978-3-319-96424-9</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-96423-2" title="Special:BookSources/978-3-319-96423-2"><bdi>978-3-319-96423-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Supervised+Learning+with+Quantum+Computers&amp;rft.series=Quantum+Science+and+Technology&amp;rft.date=2018&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-319-96424-9&amp;rft_id=info%3Abibcode%2F2018slqc.book.....S&amp;rft.isbn=978-3-319-96423-2&amp;rft.aulast=Schuld&amp;rft.aufirst=Maria&amp;rft.au=Petruccione%2C+Francesco&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-:5-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-:5_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:5_7-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchuldSinayskiyPetruccione2014" class="citation journal cs1">Schuld, Maria; Sinayskiy, Ilya; Petruccione, Francesco (2014). "An introduction to quantum machine learning". <i>Contemporary Physics</i>. <b>56</b> (2): <span class="nowrap">172–</span>185. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1409.3097">1409.3097</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015ConPh..56..172S">2015ConPh..56..172S</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.740.5622">10.1.1.740.5622</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00107514.2014.964942">10.1080/00107514.2014.964942</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119263556">119263556</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Contemporary+Physics&amp;rft.atitle=An+introduction+to+quantum+machine+learning&amp;rft.volume=56&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E172-%3C%2Fspan%3E185&amp;rft.date=2014&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119263556%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2015ConPh..56..172S&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.740.5622%23id-name%3DCiteSeerX&amp;rft_id=info%3Adoi%2F10.1080%2F00107514.2014.964942&amp;rft_id=info%3Aarxiv%2F1409.3097&amp;rft.aulast=Schuld&amp;rft.aufirst=Maria&amp;rft.au=Sinayskiy%2C+Ilya&amp;rft.au=Petruccione%2C+Francesco&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWittek2014" class="citation book cs1">Wittek, Peter (2014). <a rel="nofollow" class="external text" href="http://www.sciencedirect.com/science/book/9780128009536"><i>Quantum Machine Learning: What Quantum Computing Means to Data Mining</i></a>. Academic Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-12-800953-6" title="Special:BookSources/978-0-12-800953-6"><bdi>978-0-12-800953-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+Machine+Learning%3A+What+Quantum+Computing+Means+to+Data+Mining&amp;rft.pub=Academic+Press&amp;rft.date=2014&amp;rft.isbn=978-0-12-800953-6&amp;rft.aulast=Wittek&amp;rft.aufirst=Peter&amp;rft_id=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Fbook%2F9780128009536&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-Nathan_Wiebe_2014-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-Nathan_Wiebe_2014_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Nathan_Wiebe_2014_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWiebeKapoorSvore2014" class="citation journal cs1">Wiebe, Nathan; Kapoor, Ashish; <a href="/wiki/Krysta_Svore" title="Krysta Svore">Svore, Krysta</a> (2014). "Quantum Algorithms for Nearest-Neighbor Methods for Supervised and Unsupervised Learning". <i>Quantum Information &amp; Computation</i>. <b>15</b> (3): <span class="nowrap">0318–</span>0358. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1401.2142">1401.2142</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quantum+Information+%26+Computation&amp;rft.atitle=Quantum+Algorithms+for+Nearest-Neighbor+Methods+for+Supervised+and+Unsupervised+Learning&amp;rft.volume=15&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E0318-%3C%2Fspan%3E0358&amp;rft.date=2014&amp;rft_id=info%3Aarxiv%2F1401.2142&amp;rft.aulast=Wiebe&amp;rft.aufirst=Nathan&amp;rft.au=Kapoor%2C+Ashish&amp;rft.au=Svore%2C+Krysta&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLloydMohseniRebentrost2013" class="citation arxiv cs1">Lloyd, Seth; Mohseni, Masoud; Rebentrost, Patrick (2013). "Quantum algorithms for supervised and unsupervised machine learning". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1307.0411">1307.0411</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Quantum+algorithms+for+supervised+and+unsupervised+machine+learning&amp;rft.date=2013&amp;rft_id=info%3Aarxiv%2F1307.0411&amp;rft.aulast=Lloyd&amp;rft.aufirst=Seth&amp;rft.au=Mohseni%2C+Masoud&amp;rft.au=Rebentrost%2C+Patrick&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYooBangLeeLee2014" class="citation journal cs1">Yoo, Seokwon; Bang, Jeongho; Lee, Changhyoup; Lee, Jinhyoung (2014). "A quantum speedup in machine learning: Finding a N-bit Boolean function for a classification". <i>New Journal of Physics</i>. <b>16</b> (10): 103014. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1303.6055">1303.6055</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014NJPh...16j3014Y">2014NJPh...16j3014Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1367-2630%2F16%2F10%2F103014">10.1088/1367-2630/16/10/103014</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4956424">4956424</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=New+Journal+of+Physics&amp;rft.atitle=A+quantum+speedup+in+machine+learning%3A+Finding+a+N-bit+Boolean+function+for+a+classification&amp;rft.volume=16&amp;rft.issue=10&amp;rft.pages=103014&amp;rft.date=2014&amp;rft_id=info%3Aarxiv%2F1303.6055&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4956424%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F1367-2630%2F16%2F10%2F103014&amp;rft_id=info%3Abibcode%2F2014NJPh...16j3014Y&amp;rft.aulast=Yoo&amp;rft.aufirst=Seokwon&amp;rft.au=Bang%2C+Jeongho&amp;rft.au=Lee%2C+Changhyoup&amp;rft.au=Lee%2C+Jinhyoung&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-:12-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-:12_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchuldSinayskiyPetruccione2014" class="citation journal cs1">Schuld, Maria; Sinayskiy, Ilya; Petruccione, Francesco (2014-10-15). "An introduction to quantum machine learning". <i>Contemporary Physics</i>. <b>56</b> (2): <span class="nowrap">172–</span>185. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1409.3097">1409.3097</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015ConPh..56..172S">2015ConPh..56..172S</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.740.5622">10.1.1.740.5622</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00107514.2014.964942">10.1080/00107514.2014.964942</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0010-7514">0010-7514</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119263556">119263556</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Contemporary+Physics&amp;rft.atitle=An+introduction+to+quantum+machine+learning&amp;rft.volume=56&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E172-%3C%2Fspan%3E185&amp;rft.date=2014-10-15&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119263556%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2015ConPh..56..172S&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.740.5622%23id-name%3DCiteSeerX&amp;rft.issn=0010-7514&amp;rft_id=info%3Adoi%2F10.1080%2F00107514.2014.964942&amp;rft_id=info%3Aarxiv%2F1409.3097&amp;rft.aulast=Schuld&amp;rft.aufirst=Maria&amp;rft.au=Sinayskiy%2C+Ilya&amp;rft.au=Petruccione%2C+Francesco&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBenedettiRealpe-GómezBiswasPerdomo-Ortiz2017" class="citation journal cs1">Benedetti, Marcello; Realpe-Gómez, John; Biswas, Rupak; Perdomo-Ortiz, Alejandro (2017-11-30). "Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models". <i>Physical Review X</i>. <b>7</b> (4): 041052. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1609.02542">1609.02542</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017PhRvX...7d1052B">2017PhRvX...7d1052B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevX.7.041052">10.1103/PhysRevX.7.041052</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2160-3308">2160-3308</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:55331519">55331519</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+X&amp;rft.atitle=Quantum-Assisted+Learning+of+Hardware-Embedded+Probabilistic+Graphical+Models&amp;rft.volume=7&amp;rft.issue=4&amp;rft.pages=041052&amp;rft.date=2017-11-30&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A55331519%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2017PhRvX...7d1052B&amp;rft_id=info%3Aarxiv%2F1609.02542&amp;rft.issn=2160-3308&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevX.7.041052&amp;rft.aulast=Benedetti&amp;rft.aufirst=Marcello&amp;rft.au=Realpe-G%C3%B3mez%2C+John&amp;rft.au=Biswas%2C+Rupak&amp;rft.au=Perdomo-Ortiz%2C+Alejandro&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-Farhi-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-Farhi_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFarhiNeven2018" class="citation arxiv cs1">Farhi, Edward; Neven, Hartmut (2018-02-16). "Classification with Quantum Neural Networks on Near Term Processors". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1802.06002">1802.06002</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Classification+with+Quantum+Neural+Networks+on+Near+Term+Processors&amp;rft.date=2018-02-16&amp;rft_id=info%3Aarxiv%2F1802.06002&amp;rft.aulast=Farhi&amp;rft.aufirst=Edward&amp;rft.au=Neven%2C+Hartmut&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchuldBocharovSvoreWiebe2020" class="citation journal cs1">Schuld, Maria; Bocharov, Alex; <a href="/wiki/Krysta_Svore" title="Krysta Svore">Svore, Krysta</a>; Wiebe, Nathan (2020). "Circuit-centric quantum classifiers". <i>Physical Review A</i>. <b>101</b> (3): 032308. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1804.00633">1804.00633</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020PhRvA.101c2308S">2020PhRvA.101c2308S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.101.032308">10.1103/PhysRevA.101.032308</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:49577148">49577148</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+A&amp;rft.atitle=Circuit-centric+quantum+classifiers&amp;rft.volume=101&amp;rft.issue=3&amp;rft.pages=032308&amp;rft.date=2020&amp;rft_id=info%3Aarxiv%2F1804.00633&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A49577148%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevA.101.032308&amp;rft_id=info%3Abibcode%2F2020PhRvA.101c2308S&amp;rft.aulast=Schuld&amp;rft.aufirst=Maria&amp;rft.au=Bocharov%2C+Alex&amp;rft.au=Svore%2C+Krysta&amp;rft.au=Wiebe%2C+Nathan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYuAlbarran-ArriagadaRetamalWang2018" class="citation journal cs1">Yu, Shang; Albarran-Arriagada, F.; Retamal, J. C.; Wang, Yi-Tao; Liu, Wei; Ke, Zhi-Jin; Meng, Yu; Li, Zhi-Peng; Tang, Jian-Shun (2018-08-28). "Reconstruction of a Photonic Qubit State with Quantum Reinforcement Learning". <i>Advanced Quantum Technologies</i>. <b>2</b> (<span class="nowrap">7–</span>8): 1800074. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1808.09241">1808.09241</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fqute.201800074">10.1002/qute.201800074</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:85529734">85529734</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Quantum+Technologies&amp;rft.atitle=Reconstruction+of+a+Photonic+Qubit+State+with+Quantum+Reinforcement+Learning&amp;rft.volume=2&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E7%E2%80%93%3C%2Fspan%3E8&amp;rft.pages=1800074&amp;rft.date=2018-08-28&amp;rft_id=info%3Aarxiv%2F1808.09241&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A85529734%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Fqute.201800074&amp;rft.aulast=Yu&amp;rft.aufirst=Shang&amp;rft.au=Albarran-Arriagada%2C+F.&amp;rft.au=Retamal%2C+J.+C.&amp;rft.au=Wang%2C+Yi-Tao&amp;rft.au=Liu%2C+Wei&amp;rft.au=Ke%2C+Zhi-Jin&amp;rft.au=Meng%2C+Yu&amp;rft.au=Li%2C+Zhi-Peng&amp;rft.au=Tang%2C+Jian-Shun&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGhoshOpalaMatuszewskiPaterek2019" class="citation journal cs1">Ghosh, Sanjib; Opala, A.; Matuszewski, M.; Paterek, T.; Liew, Timothy C. H. (2019). "Quantum reservoir processing". <i>npj Quantum Information</i>. <b>5</b> (35): 35. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1811.10335">1811.10335</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019npjQI...5...35G">2019npjQI...5...35G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41534-019-0149-8">10.1038/s41534-019-0149-8</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119197635">119197635</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=npj+Quantum+Information&amp;rft.atitle=Quantum+reservoir+processing&amp;rft.volume=5&amp;rft.issue=35&amp;rft.pages=35&amp;rft.date=2019&amp;rft_id=info%3Aarxiv%2F1811.10335&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119197635%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2Fs41534-019-0149-8&amp;rft_id=info%3Abibcode%2F2019npjQI...5...35G&amp;rft.aulast=Ghosh&amp;rft.aufirst=Sanjib&amp;rft.au=Opala%2C+A.&amp;rft.au=Matuszewski%2C+M.&amp;rft.au=Paterek%2C+T.&amp;rft.au=Liew%2C+Timothy+C.+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBroeckerAssaadTrebst2017" class="citation arxiv cs1">Broecker, Peter; Assaad, Fakher F.; Trebst, Simon (2017-07-03). "Quantum phase recognition via unsupervised machine learning". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1707.00663">1707.00663</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/cond-mat.str-el">cond-mat.str-el</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Quantum+phase+recognition+via+unsupervised+machine+learning&amp;rft.date=2017-07-03&amp;rft_id=info%3Aarxiv%2F1707.00663&amp;rft.aulast=Broecker&amp;rft.aufirst=Peter&amp;rft.au=Assaad%2C+Fakher+F.&amp;rft.au=Trebst%2C+Simon&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-:10-19"><span class="mw-cite-backlink">^ <a href="#cite_ref-:10_19-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:10_19-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuembeliDauphinWittek2018" class="citation journal cs1">Huembeli, Patrick; Dauphin, Alexandre; Wittek, Peter (2018). "Identifying Quantum Phase Transitions with Adversarial Neural Networks". <i>Physical Review B</i>. <b>97</b> (13): 134109. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1710.08382">1710.08382</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018PhRvB..97m4109H">2018PhRvB..97m4109H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevB.97.134109">10.1103/PhysRevB.97.134109</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2469-9950">2469-9950</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:125593239">125593239</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+B&amp;rft.atitle=Identifying+Quantum+Phase+Transitions+with+Adversarial+Neural+Networks&amp;rft.volume=97&amp;rft.issue=13&amp;rft.pages=134109&amp;rft.date=2018&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A125593239%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2018PhRvB..97m4109H&amp;rft_id=info%3Aarxiv%2F1710.08382&amp;rft.issn=2469-9950&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevB.97.134109&amp;rft.aulast=Huembeli&amp;rft.aufirst=Patrick&amp;rft.au=Dauphin%2C+Alexandre&amp;rft.au=Wittek%2C+Peter&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-Krenn_090405-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-Krenn_090405_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Krenn_090405_20-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKrenn2016" class="citation journal cs1">Krenn, Mario (2016-01-01). "Automated Search for new Quantum Experiments". <i>Physical Review Letters</i>. <b>116</b> (9): 090405. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1509.02749">1509.02749</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016PhRvL.116i0405K">2016PhRvL.116i0405K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.116.090405">10.1103/PhysRevLett.116.090405</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26991161">26991161</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:20182586">20182586</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Automated+Search+for+new+Quantum+Experiments&amp;rft.volume=116&amp;rft.issue=9&amp;rft.pages=090405&amp;rft.date=2016-01-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A20182586%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2016PhRvL.116i0405K&amp;rft_id=info%3Aarxiv%2F1509.02749&amp;rft_id=info%3Apmid%2F26991161&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.116.090405&amp;rft.aulast=Krenn&amp;rft.aufirst=Mario&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-Knott_073033-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-Knott_073033_21-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnott2016" class="citation journal cs1">Knott, Paul (2016-03-22). "A search algorithm for quantum state engineering and metrology". <i>New Journal of Physics</i>. <b>18</b> (7): 073033. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1511.05327">1511.05327</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016NJPh...18g3033K">2016NJPh...18g3033K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1367-2630%2F18%2F7%2F073033">10.1088/1367-2630/18/7/073033</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2721958">2721958</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=New+Journal+of+Physics&amp;rft.atitle=A+search+algorithm+for+quantum+state+engineering+and+metrology&amp;rft.volume=18&amp;rft.issue=7&amp;rft.pages=073033&amp;rft.date=2016-03-22&amp;rft_id=info%3Aarxiv%2F1511.05327&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2721958%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F1367-2630%2F18%2F7%2F073033&amp;rft_id=info%3Abibcode%2F2016NJPh...18g3033K&amp;rft.aulast=Knott&amp;rft.aufirst=Paul&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-:6-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-:6_22-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDunjkoBriegel2018" class="citation journal cs1">Dunjko, Vedran; Briegel, Hans J (2018-06-19). "Machine learning &amp; artificial intelligence in the quantum domain: a review of recent progress". <i>Reports on Progress in Physics</i>. <b>81</b> (7): 074001. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1709.02779">1709.02779</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018RPPh...81g4001D">2018RPPh...81g4001D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1361-6633%2Faab406">10.1088/1361-6633/aab406</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/1887%2F71084">1887/71084</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0034-4885">0034-4885</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29504942">29504942</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3681629">3681629</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Reports+on+Progress+in+Physics&amp;rft.atitle=Machine+learning+%26+artificial+intelligence+in+the+quantum+domain%3A+a+review+of+recent+progress&amp;rft.volume=81&amp;rft.issue=7&amp;rft.pages=074001&amp;rft.date=2018-06-19&amp;rft_id=info%3Ahdl%2F1887%2F71084&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3681629%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2018RPPh...81g4001D&amp;rft_id=info%3Aarxiv%2F1709.02779&amp;rft.issn=0034-4885&amp;rft_id=info%3Adoi%2F10.1088%2F1361-6633%2Faab406&amp;rft_id=info%3Apmid%2F29504942&amp;rft.aulast=Dunjko&amp;rft.aufirst=Vedran&amp;rft.au=Briegel%2C+Hans+J&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHugginsPatelWhaleyStoudenmire2018" class="citation journal cs1">Huggins, William; Patel, Piyush; Whaley, K. Birgitta; Stoudenmire, E. Miles (2018-03-30). "Towards Quantum Machine Learning with Tensor Networks". <i>Quantum Science and Technology</i>. <b>4</b> (2): 024001. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1803.11537">1803.11537</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F2058-9565%2Faaea94">10.1088/2058-9565/aaea94</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4531946">4531946</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quantum+Science+and+Technology&amp;rft.atitle=Towards+Quantum+Machine+Learning+with+Tensor+Networks&amp;rft.volume=4&amp;rft.issue=2&amp;rft.pages=024001&amp;rft.date=2018-03-30&amp;rft_id=info%3Aarxiv%2F1803.11537&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4531946%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F2058-9565%2Faaea94&amp;rft.aulast=Huggins&amp;rft.aufirst=William&amp;rft.au=Patel%2C+Piyush&amp;rft.au=Whaley%2C+K.+Birgitta&amp;rft.au=Stoudenmire%2C+E.+Miles&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarleoNomuraImada2018" class="citation journal cs1">Carleo, Giuseppe; Nomura, Yusuke; Imada, Masatoshi (2018-02-26). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294148">"Constructing exact representations of quantum many-body systems with deep neural networks"</a>. <i>Nature Communications</i>. <b>9</b> (1): 5322. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1802.09558">1802.09558</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018NatCo...9.5322C">2018NatCo...9.5322C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41467-018-07520-3">10.1038/s41467-018-07520-3</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294148">6294148</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30552316">30552316</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Communications&amp;rft.atitle=Constructing+exact+representations+of+quantum+many-body+systems+with+deep+neural+networks&amp;rft.volume=9&amp;rft.issue=1&amp;rft.pages=5322&amp;rft.date=2018-02-26&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6294148%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F2018NatCo...9.5322C&amp;rft_id=info%3Aarxiv%2F1802.09558&amp;rft_id=info%3Apmid%2F30552316&amp;rft_id=info%3Adoi%2F10.1038%2Fs41467-018-07520-3&amp;rft.aulast=Carleo&amp;rft.aufirst=Giuseppe&amp;rft.au=Nomura%2C+Yusuke&amp;rft.au=Imada%2C+Masatoshi&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6294148&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBény2013" class="citation arxiv cs1">Bény, Cédric (2013-01-14). "Deep learning and the renormalization group". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1301.3124">1301.3124</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Deep+learning+and+the+renormalization+group&amp;rft.date=2013-01-14&amp;rft_id=info%3Aarxiv%2F1301.3124&amp;rft.aulast=B%C3%A9ny&amp;rft.aufirst=C%C3%A9dric&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArunachalamde_Wolf2017" class="citation arxiv cs1">Arunachalam, Srinivasan; de Wolf, Ronald (2017-01-24). "A Survey of Quantum Learning Theory". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1701.06806">1701.06806</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=A+Survey+of+Quantum+Learning+Theory&amp;rft.date=2017-01-24&amp;rft_id=info%3Aarxiv%2F1701.06806&amp;rft.aulast=Arunachalam&amp;rft.aufirst=Srinivasan&amp;rft.au=de+Wolf%2C+Ronald&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSergioliGiuntiniFreytes2019" class="citation journal cs1">Sergioli, Giuseppe; Giuntini, Roberto; Freytes, Hector (2019-05-09). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6508868">"A new Quantum approach to binary classification"</a>. <i>PLOS ONE</i>. <b>14</b> (5): e0216224. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019PLoSO..1416224S">2019PLoSO..1416224S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1371%2Fjournal.pone.0216224">10.1371/journal.pone.0216224</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6508868">6508868</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31071129">31071129</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=PLOS+ONE&amp;rft.atitle=A+new+Quantum+approach+to+binary+classification&amp;rft.volume=14&amp;rft.issue=5&amp;rft.pages=e0216224&amp;rft.date=2019-05-09&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6508868%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F31071129&amp;rft_id=info%3Adoi%2F10.1371%2Fjournal.pone.0216224&amp;rft_id=info%3Abibcode%2F2019PLoSO..1416224S&amp;rft.aulast=Sergioli&amp;rft.aufirst=Giuseppe&amp;rft.au=Giuntini%2C+Roberto&amp;rft.au=Freytes%2C+Hector&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC6508868&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-AimeurEtAl_2006-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-AimeurEtAl_2006_28-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAïmeurBrassardGambs2006" class="citation book cs1">Aïmeur, Esma; Brassard, Gilles; Gambs, Sébastien (2006-06-07). <a rel="nofollow" class="external text" href="https://archive.org/details/advancesinartifi0000cana/page/431">"Machine Learning in a Quantum World"</a>. <i>Advances in Artificial Intelligence</i>. Lecture Notes in Computer Science. Vol.&#160;4013. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/advancesinartifi0000cana/page/431">431–442</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F11766247_37">10.1007/11766247_37</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-34628-9" title="Special:BookSources/978-3-540-34628-9"><bdi>978-3-540-34628-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Machine+Learning+in+a+Quantum+World&amp;rft.btitle=Advances+in+Artificial+Intelligence&amp;rft.series=Lecture+Notes+in+Computer+Science&amp;rft.pages=431-442&amp;rft.date=2006-06-07&amp;rft_id=info%3Adoi%2F10.1007%2F11766247_37&amp;rft.isbn=978-3-540-34628-9&amp;rft.aulast=A%C3%AFmeur&amp;rft.aufirst=Esma&amp;rft.au=Brassard%2C+Gilles&amp;rft.au=Gambs%2C+S%C3%A9bastien&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fadvancesinartifi0000cana%2Fpage%2F431&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-DunjkoTaylorBriegel-29"><span class="mw-cite-backlink">^ <a href="#cite_ref-DunjkoTaylorBriegel_29-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-DunjkoTaylorBriegel_29-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-DunjkoTaylorBriegel_29-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDunjkoTaylorBriegel2016" class="citation journal cs1">Dunjko, Vedran; Taylor, Jacob M.; Briegel, Hans J. (2016-09-20). "Quantum-Enhanced Machine Learning". <i>Physical Review Letters</i>. <b>117</b> (13): 130501. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1610.08251">1610.08251</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016PhRvL.117m0501D">2016PhRvL.117m0501D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.117.130501">10.1103/PhysRevLett.117.130501</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27715099">27715099</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:12698722">12698722</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Quantum-Enhanced+Machine+Learning&amp;rft.volume=117&amp;rft.issue=13&amp;rft.pages=130501&amp;rft.date=2016-09-20&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A12698722%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2016PhRvL.117m0501D&amp;rft_id=info%3Aarxiv%2F1610.08251&amp;rft_id=info%3Apmid%2F27715099&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.117.130501&amp;rft.aulast=Dunjko&amp;rft.aufirst=Vedran&amp;rft.au=Taylor%2C+Jacob+M.&amp;rft.au=Briegel%2C+Hans+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-Patrick_Rebentrost_2014-30"><span class="mw-cite-backlink">^ <a href="#cite_ref-Patrick_Rebentrost_2014_30-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Patrick_Rebentrost_2014_30-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRebentrostMohseniLloyd2014" class="citation journal cs1">Rebentrost, Patrick; Mohseni, Masoud; Lloyd, Seth (2014). "Quantum Support Vector Machine for Big Data Classification". <i>Physical Review Letters</i>. <b>113</b> (13): 130503. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1307.0471">1307.0471</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014PhRvL.113m0503R">2014PhRvL.113m0503R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.113.130503">10.1103/PhysRevLett.113.130503</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/1721.1%2F90391">1721.1/90391</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25302877">25302877</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5503025">5503025</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Quantum+Support+Vector+Machine+for+Big+Data+Classification&amp;rft.volume=113&amp;rft.issue=13&amp;rft.pages=130503&amp;rft.date=2014&amp;rft_id=info%3Ahdl%2F1721.1%2F90391&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5503025%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2014PhRvL.113m0503R&amp;rft_id=info%3Aarxiv%2F1307.0471&amp;rft_id=info%3Apmid%2F25302877&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.113.130503&amp;rft.aulast=Rebentrost&amp;rft.aufirst=Patrick&amp;rft.au=Mohseni%2C+Masoud&amp;rft.au=Lloyd%2C+Seth&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-Nathan_Wiebe_2012-31"><span class="mw-cite-backlink">^ <a href="#cite_ref-Nathan_Wiebe_2012_31-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Nathan_Wiebe_2012_31-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWiebeBraunLloyd2012" class="citation journal cs1">Wiebe, Nathan; Braun, Daniel; Lloyd, Seth (2012). "Quantum Algorithm for Data Fitting". <i>Physical Review Letters</i>. <b>109</b> (5): 050505. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1204.5242">1204.5242</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012PhRvL.109e0505W">2012PhRvL.109e0505W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.109.050505">10.1103/PhysRevLett.109.050505</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23006156">23006156</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118439810">118439810</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Quantum+Algorithm+for+Data+Fitting&amp;rft.volume=109&amp;rft.issue=5&amp;rft.pages=050505&amp;rft.date=2012&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118439810%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2012PhRvL.109e0505W&amp;rft_id=info%3Aarxiv%2F1204.5242&amp;rft_id=info%3Apmid%2F23006156&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.109.050505&amp;rft.aulast=Wiebe&amp;rft.aufirst=Nathan&amp;rft.au=Braun%2C+Daniel&amp;rft.au=Lloyd%2C+Seth&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-Maria_Schuld_2016-32"><span class="mw-cite-backlink">^ <a href="#cite_ref-Maria_Schuld_2016_32-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Maria_Schuld_2016_32-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchuldSinayskiyPetruccione2016" class="citation journal cs1">Schuld, Maria; Sinayskiy, Ilya; Petruccione, Francesco (2016). "Prediction by linear regression on a quantum computer". <i>Physical Review A</i>. <b>94</b> (2): 022342. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1601.07823">1601.07823</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016PhRvA..94b2342S">2016PhRvA..94b2342S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.94.022342">10.1103/PhysRevA.94.022342</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118459345">118459345</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+A&amp;rft.atitle=Prediction+by+linear+regression+on+a+quantum+computer&amp;rft.volume=94&amp;rft.issue=2&amp;rft.pages=022342&amp;rft.date=2016&amp;rft_id=info%3Aarxiv%2F1601.07823&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118459345%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevA.94.022342&amp;rft_id=info%3Abibcode%2F2016PhRvA..94b2342S&amp;rft.aulast=Schuld&amp;rft.aufirst=Maria&amp;rft.au=Sinayskiy%2C+Ilya&amp;rft.au=Petruccione%2C+Francesco&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHarrowHassidimLloyd2008" class="citation journal cs1">Harrow, Aram W.; Hassidim, Avinatan; Lloyd, Seth (2008). "Quantum algorithm for solving linear systems of equations". <i>Physical Review Letters</i>. <b>103</b> (15): 150502. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0811.3171">0811.3171</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009PhRvL.103o0502H">2009PhRvL.103o0502H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.103.150502">10.1103/PhysRevLett.103.150502</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19905613">19905613</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5187993">5187993</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Quantum+algorithm+for+solving+linear+systems+of+equations&amp;rft.volume=103&amp;rft.issue=15&amp;rft.pages=150502&amp;rft.date=2008&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5187993%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2009PhRvL.103o0502H&amp;rft_id=info%3Aarxiv%2F0811.3171&amp;rft_id=info%3Apmid%2F19905613&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.103.150502&amp;rft.aulast=Harrow&amp;rft.aufirst=Aram+W.&amp;rft.au=Hassidim%2C+Avinatan&amp;rft.au=Lloyd%2C+Seth&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerryChildsKothari2015" class="citation conference cs1">Berry, Dominic W.; Childs, Andrew M.; Kothari, Robin (2015). "Hamiltonian simulation with nearly optimal dependence on all parameters". <i>2015 IEEE 56th Annual Symposium on Foundations of Computer Science</i>. 56th Annual Symposium on Foundations of Computer Science. IEEE. pp.&#160;<span class="nowrap">792–</span>809. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1501.01715">1501.01715</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FFOCS.2015.54">10.1109/FOCS.2015.54</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4673-8191-8" title="Special:BookSources/978-1-4673-8191-8"><bdi>978-1-4673-8191-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.atitle=Hamiltonian+simulation+with+nearly+optimal+dependence+on+all+parameters&amp;rft.btitle=2015+IEEE+56th+Annual+Symposium+on+Foundations+of+Computer+Science&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E792-%3C%2Fspan%3E809&amp;rft.pub=IEEE&amp;rft.date=2015&amp;rft_id=info%3Aarxiv%2F1501.01715&amp;rft_id=info%3Adoi%2F10.1109%2FFOCS.2015.54&amp;rft.isbn=978-1-4673-8191-8&amp;rft.aulast=Berry&amp;rft.aufirst=Dominic+W.&amp;rft.au=Childs%2C+Andrew+M.&amp;rft.au=Kothari%2C+Robin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLloydMohseniRebentrost2014" class="citation journal cs1">Lloyd, Seth; Mohseni, Masoud; Rebentrost, Patrick (2014). "Quantum principal component analysis". <i>Nature Physics</i>. <b>10</b> (9): 631. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1307.0401">1307.0401</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014NatPh..10..631L">2014NatPh..10..631L</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.746.480">10.1.1.746.480</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnphys3029">10.1038/nphys3029</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11553314">11553314</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Physics&amp;rft.atitle=Quantum+principal+component+analysis&amp;rft.volume=10&amp;rft.issue=9&amp;rft.pages=631&amp;rft.date=2014&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11553314%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2014NatPh..10..631L&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.746.480%23id-name%3DCiteSeerX&amp;rft_id=info%3Adoi%2F10.1038%2Fnphys3029&amp;rft_id=info%3Aarxiv%2F1307.0401&amp;rft.aulast=Lloyd&amp;rft.aufirst=Seth&amp;rft.au=Mohseni%2C+Masoud&amp;rft.au=Rebentrost%2C+Patrick&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-ReferenceA-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-ReferenceA_36-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhaoFitzsimonsFitzsimons2019" class="citation journal cs1">Zhao, Zhikuan; Fitzsimons, Jack K.; Fitzsimons, Joseph F. (2019). "Quantum assisted Gaussian process regression". <i>Physical Review A</i>. <b>99</b> (5): 052331. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1512.03929">1512.03929</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019PhRvA..99e2331Z">2019PhRvA..99e2331Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.99.052331">10.1103/PhysRevA.99.052331</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18303333">18303333</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+A&amp;rft.atitle=Quantum+assisted+Gaussian+process+regression&amp;rft.volume=99&amp;rft.issue=5&amp;rft.pages=052331&amp;rft.date=2019&amp;rft_id=info%3Aarxiv%2F1512.03929&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18303333%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevA.99.052331&amp;rft_id=info%3Abibcode%2F2019PhRvA..99e2331Z&amp;rft.aulast=Zhao&amp;rft.aufirst=Zhikuan&amp;rft.au=Fitzsimons%2C+Jack+K.&amp;rft.au=Fitzsimons%2C+Joseph+F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSoklakovSchack2006" class="citation journal cs1">Soklakov, Andrei N.; Schack, Rüdiger (2006). "Efficient state preparation for a register of quantum bits". <i>Physical Review A</i>. <b>73</b> (1): 012307. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0408045">quant-ph/0408045</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006PhRvA..73a2307S">2006PhRvA..73a2307S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.73.012307">10.1103/PhysRevA.73.012307</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17318769">17318769</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+A&amp;rft.atitle=Efficient+state+preparation+for+a+register+of+quantum+bits&amp;rft.volume=73&amp;rft.issue=1&amp;rft.pages=012307&amp;rft.date=2006&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0408045&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17318769%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevA.73.012307&amp;rft_id=info%3Abibcode%2F2006PhRvA..73a2307S&amp;rft.aulast=Soklakov&amp;rft.aufirst=Andrei+N.&amp;rft.au=Schack%2C+R%C3%BCdiger&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGiovannettiLloydMacCone2008" class="citation journal cs1">Giovannetti, Vittorio; Lloyd, Seth; MacCone, Lorenzo (2008). "Quantum Random Access Memory". <i>Physical Review Letters</i>. <b>100</b> (16): 160501. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0708.1879">0708.1879</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008PhRvL.100p0501G">2008PhRvL.100p0501G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.100.160501">10.1103/PhysRevLett.100.160501</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18518173">18518173</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:570390">570390</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Quantum+Random+Access+Memory&amp;rft.volume=100&amp;rft.issue=16&amp;rft.pages=160501&amp;rft.date=2008&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A570390%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2008PhRvL.100p0501G&amp;rft_id=info%3Aarxiv%2F0708.1879&amp;rft_id=info%3Apmid%2F18518173&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.100.160501&amp;rft.aulast=Giovannetti&amp;rft.aufirst=Vittorio&amp;rft.au=Lloyd%2C+Seth&amp;rft.au=MacCone%2C+Lorenzo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAaronson2015" class="citation journal cs1">Aaronson, Scott (2015). "Read the fine print". <i>Nature Physics</i>. <b>11</b> (4): <span class="nowrap">291–</span>293. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015NatPh..11..291A">2015NatPh..11..291A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnphys3272">10.1038/nphys3272</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122167250">122167250</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Physics&amp;rft.atitle=Read+the+fine+print&amp;rft.volume=11&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E291-%3C%2Fspan%3E293&amp;rft.date=2015&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122167250%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2Fnphys3272&amp;rft_id=info%3Abibcode%2F2015NatPh..11..291A&amp;rft.aulast=Aaronson&amp;rft.aufirst=Scott&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBangDuttaLeeKim2019" class="citation journal cs1">Bang, Jeongho; Dutta, Arijit; Lee, Seung-Woo; Kim, Jaewan (2019). "Optimal usage of quantum random access memory in quantum machine learning". <i>Physical Review A</i>. <b>99</b> (1): 012326. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1809.04814">1809.04814</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019PhRvA..99a2326B">2019PhRvA..99a2326B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.99.012326">10.1103/PhysRevA.99.012326</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:62841090">62841090</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+A&amp;rft.atitle=Optimal+usage+of+quantum+random+access+memory+in+quantum+machine+learning&amp;rft.volume=99&amp;rft.issue=1&amp;rft.pages=012326&amp;rft.date=2019&amp;rft_id=info%3Aarxiv%2F1809.04814&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A62841090%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevA.99.012326&amp;rft_id=info%3Abibcode%2F2019PhRvA..99a2326B&amp;rft.aulast=Bang&amp;rft.aufirst=Jeongho&amp;rft.au=Dutta%2C+Arijit&amp;rft.au=Lee%2C+Seung-Woo&amp;rft.au=Kim%2C+Jaewan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCerezo,_M.,_Arrasmith,_A._and_Babbush,_R.2021" class="citation journal cs1">Cerezo, M., Arrasmith, A. and Babbush, R.; et&#160;al. (Aug 2021) (2021). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1038/s42254-021-00348-9">"Variational quantum algorithms"</a>. <i>Nature Reviews Physics</i>. <b>3</b> (9): <span class="nowrap">625–</span>644. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2012.09265">2012.09265</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021NatRP...3..625C">2021NatRP...3..625C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs42254-021-00348-9">10.1038/s42254-021-00348-9</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Reviews+Physics&amp;rft.atitle=Variational+quantum+algorithms&amp;rft.volume=3&amp;rft.issue=9&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E625-%3C%2Fspan%3E644&amp;rft.date=2021&amp;rft_id=info%3Aarxiv%2F2012.09265&amp;rft_id=info%3Adoi%2F10.1038%2Fs42254-021-00348-9&amp;rft_id=info%3Abibcode%2F2021NatRP...3..625C&amp;rft.au=Cerezo%2C+M.%2C+Arrasmith%2C+A.+and+Babbush%2C+R.&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1038%2Fs42254-021-00348-9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.realtimenewsanalysis.com/2023/06/quantum-computing-finance-2024.html">"Quantum Computing: The Next Big Thing For Finance By 2024"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2023-06-17</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Quantum+Computing%3A+The+Next+Big+Thing+For+Finance+By+2024&amp;rft_id=https%3A%2F%2Fwww.realtimenewsanalysis.com%2F2023%2F06%2Fquantum-computing-finance-2024.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.geeksforgeeks.org/classical-computing-vs-quantum-computing/">"Classical Computing vs Quantum Computing"</a>. <i>GeeksforGeeks</i>. 2019-06-12<span class="reference-accessdate">. Retrieved <span class="nowrap">2023-06-17</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=GeeksforGeeks&amp;rft.atitle=Classical+Computing+vs+Quantum+Computing&amp;rft.date=2019-06-12&amp;rft_id=https%3A%2F%2Fwww.geeksforgeeks.org%2Fclassical-computing-vs-quantum-computing%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-:2-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-:2_44-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeddireddyBansalJacobAggarwal2022" class="citation arxiv cs1">Peddireddy, Dheeraj; Bansal, V.; Jacob, Z.; Aggarwal, V. (2022). "Tensor Ring Parametrized Variational Quantum Circuits for Large Scale Quantum Machine Learning". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2201.08878">2201.08878</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Tensor+Ring+Parametrized+Variational+Quantum+Circuits+for+Large+Scale+Quantum+Machine+Learning&amp;rft.date=2022&amp;rft_id=info%3Aarxiv%2F2201.08878&amp;rft.aulast=Peddireddy&amp;rft.aufirst=Dheeraj&amp;rft.au=Bansal%2C+V.&amp;rft.au=Jacob%2C+Z.&amp;rft.au=Aggarwal%2C+V.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-:3-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-:3_45-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGriol-BarresMillaCebriánMansoori2021" class="citation journal cs1">Griol-Barres, Israel; Milla, Sergio; Cebrián, Antonio; Mansoori, Yashar; Millet, José (January 2021). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fapp11146427">"Variational Quantum Circuits for Machine Learning. An Application for the Detection of Weak Signals"</a>. <i>Applied Sciences</i>. <b>11</b> (14): 6427. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fapp11146427">10.3390/app11146427</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10251%2F182654">10251/182654</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2076-3417">2076-3417</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Applied+Sciences&amp;rft.atitle=Variational+Quantum+Circuits+for+Machine+Learning.+An+Application+for+the+Detection+of+Weak+Signals&amp;rft.volume=11&amp;rft.issue=14&amp;rft.pages=6427&amp;rft.date=2021-01&amp;rft_id=info%3Ahdl%2F10251%2F182654&amp;rft.issn=2076-3417&amp;rft_id=info%3Adoi%2F10.3390%2Fapp11146427&amp;rft.aulast=Griol-Barres&amp;rft.aufirst=Israel&amp;rft.au=Milla%2C+Sergio&amp;rft.au=Cebri%C3%A1n%2C+Antonio&amp;rft.au=Mansoori%2C+Yashar&amp;rft.au=Millet%2C+Jos%C3%A9&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Fapp11146427&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenYangQiChen2020" class="citation journal cs1">Chen, Samuel Yen-Chi; Yang, Chao-Han Huck; Qi, Jun; Chen, Pin-Yu; Ma, Xiaoli; Goan, Hsi-Sheng (2020). <a rel="nofollow" class="external text" href="https://ieeexplore.ieee.org/document/9144562">"Variational Quantum Circuits for Deep Reinforcement Learning"</a>. <i>IEEE Access</i>. <b>8</b>: <span class="nowrap">141007–</span>141024. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1907.00397">1907.00397</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020IEEEA...8n1007C">2020IEEEA...8n1007C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FACCESS.2020.3010470">10.1109/ACCESS.2020.3010470</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2169-3536">2169-3536</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:195767325">195767325</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Access&amp;rft.atitle=Variational+Quantum+Circuits+for+Deep+Reinforcement+Learning&amp;rft.volume=8&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E141007-%3C%2Fspan%3E141024&amp;rft.date=2020&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A195767325%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2020IEEEA...8n1007C&amp;rft_id=info%3Aarxiv%2F1907.00397&amp;rft.issn=2169-3536&amp;rft_id=info%3Adoi%2F10.1109%2FACCESS.2020.3010470&amp;rft.aulast=Chen&amp;rft.aufirst=Samuel+Yen-Chi&amp;rft.au=Yang%2C+Chao-Han+Huck&amp;rft.au=Qi%2C+Jun&amp;rft.au=Chen%2C+Pin-Yu&amp;rft.au=Ma%2C+Xiaoli&amp;rft.au=Goan%2C+Hsi-Sheng&amp;rft_id=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F9144562&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-Park_126422-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-Park_126422_47-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParkBlankPetruccione2020" class="citation journal cs1">Park, Daniel K.; Blank, Carsten; Petruccione, Francesco (2020-07-27). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S0375960120302541">"The theory of the quantum kernel-based binary classifier"</a>. <i>Physics Letters A</i>. <b>384</b> (21): 126422. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2004.03489">2004.03489</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020PhLA..38426422P">2020PhLA..38426422P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.physleta.2020.126422">10.1016/j.physleta.2020.126422</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0375-9601">0375-9601</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:215238793">215238793</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physics+Letters+A&amp;rft.atitle=The+theory+of+the+quantum+kernel-based+binary+classifier&amp;rft.volume=384&amp;rft.issue=21&amp;rft.pages=126422&amp;rft.date=2020-07-27&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A215238793%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2020PhLA..38426422P&amp;rft_id=info%3Aarxiv%2F2004.03489&amp;rft.issn=0375-9601&amp;rft_id=info%3Adoi%2F10.1016%2Fj.physleta.2020.126422&amp;rft.aulast=Park&amp;rft.aufirst=Daniel+K.&amp;rft.au=Blank%2C+Carsten&amp;rft.au=Petruccione%2C+Francesco&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0375960120302541&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-Yi_012020-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-Yi_012020_48-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYiWangXu2021" class="citation journal cs1">Yi, Teng; Wang, Jie; Xu, Fufang (2021-08-01). <a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1742-6596%2F2006%2F1%2F012020">"Binary classification of single qubits using quantum machine learning method"</a>. <i>Journal of Physics: Conference Series</i>. <b>2006</b> (1): 012020. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1742-6596%2F2006%2F1%2F012020">10.1088/1742-6596/2006/1/012020</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1742-6588">1742-6588</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:237286847">237286847</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Physics%3A+Conference+Series&amp;rft.atitle=Binary+classification+of+single+qubits+using+quantum+machine+learning+method&amp;rft.volume=2006&amp;rft.issue=1&amp;rft.pages=012020&amp;rft.date=2021-08-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A237286847%23id-name%3DS2CID&amp;rft.issn=1742-6588&amp;rft_id=info%3Adoi%2F10.1088%2F1742-6596%2F2006%2F1%2F012020&amp;rft.aulast=Yi&amp;rft.aufirst=Teng&amp;rft.au=Wang%2C+Jie&amp;rft.au=Xu%2C+Fufang&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1088%252F1742-6596%252F2006%252F1%252F012020&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-Maheshwari_2022_3705–3715-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-Maheshwari_2022_3705–3715_49-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaheshwariSierra-SosaGarcia-Zapirain2022" class="citation journal cs1">Maheshwari, Danyal; Sierra-Sosa, Daniel; Garcia-Zapirain, Begonya (2022). <a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FACCESS.2021.3139323">"Variational Quantum Classifier for Binary Classification: Real vs Synthetic Dataset"</a>. <i>IEEE Access</i>. <b>10</b>: <span class="nowrap">3705–</span>3715. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022IEEEA..10.3705M">2022IEEEA..10.3705M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FACCESS.2021.3139323">10.1109/ACCESS.2021.3139323</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2169-3536">2169-3536</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:245614428">245614428</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Access&amp;rft.atitle=Variational+Quantum+Classifier+for+Binary+Classification%3A+Real+vs+Synthetic+Dataset&amp;rft.volume=10&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E3705-%3C%2Fspan%3E3715&amp;rft.date=2022&amp;rft_id=info%3Adoi%2F10.1109%2FACCESS.2021.3139323&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A245614428%23id-name%3DS2CID&amp;rft.issn=2169-3536&amp;rft_id=info%3Abibcode%2F2022IEEEA..10.3705M&amp;rft.aulast=Maheshwari&amp;rft.aufirst=Danyal&amp;rft.au=Sierra-Sosa%2C+Daniel&amp;rft.au=Garcia-Zapirain%2C+Begonya&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1109%252FACCESS.2021.3139323&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-:0-50"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_50-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_50-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAïmeurBrassardGambs2013" class="citation journal cs1">Aïmeur, Esma; Brassard, Gilles; Gambs, Sébastien (2013-02-01). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10994-012-5316-5">"Quantum speed-up for unsupervised learning"</a>. <i>Machine Learning</i>. <b>90</b> (2): <span class="nowrap">261–</span>287. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10994-012-5316-5">10.1007/s10994-012-5316-5</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0885-6125">0885-6125</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Machine+Learning&amp;rft.atitle=Quantum+speed-up+for+unsupervised+learning&amp;rft.volume=90&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E261-%3C%2Fspan%3E287&amp;rft.date=2013-02-01&amp;rft_id=info%3Adoi%2F10.1007%2Fs10994-012-5316-5&amp;rft.issn=0885-6125&amp;rft.aulast=A%C3%AFmeur&amp;rft.aufirst=Esma&amp;rft.au=Brassard%2C+Gilles&amp;rft.au=Gambs%2C+S%C3%A9bastien&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252Fs10994-012-5316-5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-wiebe2016nips-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-wiebe2016nips_51-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWiebeKapoorSvore2016" class="citation conference cs1">Wiebe, Nathan; Kapoor, Ashish; <a href="/wiki/Krysta_Svore" title="Krysta Svore">Svore, Krysta M.</a> (2016). <a rel="nofollow" class="external text" href="https://papers.nips.cc/paper/6401-quantum-perceptron-models"><i>Quantum Perceptron Models</i></a>. Advances in Neural Information Processing Systems. Vol.&#160;29. pp.&#160;<span class="nowrap">3999–</span>4007. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1602.04799">1602.04799</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Quantum+Perceptron+Models&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E3999-%3C%2Fspan%3E4007&amp;rft.date=2016&amp;rft_id=info%3Aarxiv%2F1602.04799&amp;rft.aulast=Wiebe&amp;rft.aufirst=Nathan&amp;rft.au=Kapoor%2C+Ashish&amp;rft.au=Svore%2C+Krysta+M.&amp;rft_id=https%3A%2F%2Fpapers.nips.cc%2Fpaper%2F6401-quantum-perceptron-models&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGao2023" class="citation arxiv cs1">Gao, Yeqi (2023-07-16). "Fast Quantum Algorithm for Attention Computation". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2307.08045">2307.08045</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Fast+Quantum+Algorithm+for+Attention+Computation&amp;rft.date=2023-07-16&amp;rft_id=info%3Aarxiv%2F2307.08045&amp;rft.aulast=Gao&amp;rft.aufirst=Yeqi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPaparoMartin-Delgado2012" class="citation journal cs1">Paparo, Giuseppe Davide; Martin-Delgado, Miguel Angel (2012). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370332">"Google in a Quantum Network"</a>. <i>Scientific Reports</i>. <b>2</b> (444): 444. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1112.2079">1112.2079</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012NatSR...2..444P">2012NatSR...2..444P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fsrep00444">10.1038/srep00444</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370332">3370332</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22685626">22685626</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+Reports&amp;rft.atitle=Google+in+a+Quantum+Network&amp;rft.volume=2&amp;rft.issue=444&amp;rft.pages=444&amp;rft.date=2012&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3370332%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F2012NatSR...2..444P&amp;rft_id=info%3Aarxiv%2F1112.2079&amp;rft_id=info%3Apmid%2F22685626&amp;rft_id=info%3Adoi%2F10.1038%2Fsrep00444&amp;rft.aulast=Paparo&amp;rft.aufirst=Giuseppe+Davide&amp;rft.au=Martin-Delgado%2C+Miguel+Angel&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3370332&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-paparo2014quantum-54"><span class="mw-cite-backlink">^ <a href="#cite_ref-paparo2014quantum_54-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-paparo2014quantum_54-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-paparo2014quantum_54-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-paparo2014quantum_54-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPaparoDunjkoMakmalMartin-Delgado2014" class="citation journal cs1">Paparo, Giuseppe Davide; Dunjko, Vedran; Makmal, Adi; Martin-Delgado, Miguel Angel; Briegel, Hans J. (2014). "Quantum Speedup for Active Learning Agents". <i>Physical Review X</i>. <b>4</b> (3): 031002. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1401.4997">1401.4997</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014PhRvX...4c1002P">2014PhRvX...4c1002P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevX.4.031002">10.1103/PhysRevX.4.031002</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:54652978">54652978</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+X&amp;rft.atitle=Quantum+Speedup+for+Active+Learning+Agents&amp;rft.volume=4&amp;rft.issue=3&amp;rft.pages=031002&amp;rft.date=2014&amp;rft_id=info%3Aarxiv%2F1401.4997&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A54652978%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevX.4.031002&amp;rft_id=info%3Abibcode%2F2014PhRvX...4c1002P&amp;rft.aulast=Paparo&amp;rft.aufirst=Giuseppe+Davide&amp;rft.au=Dunjko%2C+Vedran&amp;rft.au=Makmal%2C+Adi&amp;rft.au=Martin-Delgado%2C+Miguel+Angel&amp;rft.au=Briegel%2C+Hans+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDongChenLiTarn2008" class="citation journal cs1">Dong, Daoyi; Chen, Chunlin; Li, Hanxiong; Tarn, Tzyh-Jong (2008). "Quantum Reinforcement Learning". <i>IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics</i>. <b>38</b> (5): <span class="nowrap">1207–</span>1220. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0810.3828">0810.3828</a></span>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.243.5369">10.1.1.243.5369</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTSMCB.2008.925743">10.1109/TSMCB.2008.925743</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18784007">18784007</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17768796">17768796</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Systems%2C+Man%2C+and+Cybernetics+-+Part+B%3A+Cybernetics&amp;rft.atitle=Quantum+Reinforcement+Learning&amp;rft.volume=38&amp;rft.issue=5&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1207-%3C%2Fspan%3E1220&amp;rft.date=2008&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17768796%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FTSMCB.2008.925743&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.243.5369%23id-name%3DCiteSeerX&amp;rft_id=info%3Apmid%2F18784007&amp;rft_id=info%3Aarxiv%2F0810.3828&amp;rft.aulast=Dong&amp;rft.aufirst=Daoyi&amp;rft.au=Chen%2C+Chunlin&amp;rft.au=Li%2C+Hanxiong&amp;rft.au=Tarn%2C+Tzyh-Jong&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCrawfordLevitGhadermarzyOberoi2018" class="citation arxiv cs1">Crawford, Daniel; Levit, Anna; Ghadermarzy, Navid; Oberoi, Jaspreet S.; Ronagh, Pooya (2018). "Reinforcement Learning Using Quantum Boltzmann Machines". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1612.05695">1612.05695</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Reinforcement+Learning+Using+Quantum+Boltzmann+Machines&amp;rft.date=2018&amp;rft_id=info%3Aarxiv%2F1612.05695&amp;rft.aulast=Crawford&amp;rft.aufirst=Daniel&amp;rft.au=Levit%2C+Anna&amp;rft.au=Ghadermarzy%2C+Navid&amp;rft.au=Oberoi%2C+Jaspreet+S.&amp;rft.au=Ronagh%2C+Pooya&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDunjkoFriisBriegel2015" class="citation journal cs1">Dunjko, Vedran; Friis, Nicolai; Briegel, Hans J. (2015-01-01). "Quantum-enhanced deliberation of learning agents using trapped ions". <i>New Journal of Physics</i>. <b>17</b> (2): 023006. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1407.2830">1407.2830</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015NJPh...17b3006D">2015NJPh...17b3006D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1367-2630%2F17%2F2%2F023006">10.1088/1367-2630/17/2/023006</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1367-2630">1367-2630</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119292539">119292539</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=New+Journal+of+Physics&amp;rft.atitle=Quantum-enhanced+deliberation+of+learning+agents+using+trapped+ions&amp;rft.volume=17&amp;rft.issue=2&amp;rft.pages=023006&amp;rft.date=2015-01-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119292539%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2015NJPh...17b3006D&amp;rft_id=info%3Aarxiv%2F1407.2830&amp;rft.issn=1367-2630&amp;rft_id=info%3Adoi%2F10.1088%2F1367-2630%2F17%2F2%2F023006&amp;rft.aulast=Dunjko&amp;rft.aufirst=Vedran&amp;rft.au=Friis%2C+Nicolai&amp;rft.au=Briegel%2C+Hans+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLamata2017" class="citation journal cs1">Lamata, Lucas (2017). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431677">"Basic protocols in quantum reinforcement learning with superconducting circuits"</a>. <i>Scientific Reports</i>. <b>7</b> (1): 1609. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1701.05131">1701.05131</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017NatSR...7.1609L">2017NatSR...7.1609L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41598-017-01711-6">10.1038/s41598-017-01711-6</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431677">5431677</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28487535">28487535</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+Reports&amp;rft.atitle=Basic+protocols+in+quantum+reinforcement+learning+with+superconducting+circuits&amp;rft.volume=7&amp;rft.issue=1&amp;rft.pages=1609&amp;rft.date=2017&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5431677%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F2017NatSR...7.1609L&amp;rft_id=info%3Aarxiv%2F1701.05131&amp;rft_id=info%3Apmid%2F28487535&amp;rft_id=info%3Adoi%2F10.1038%2Fs41598-017-01711-6&amp;rft.aulast=Lamata&amp;rft.aufirst=Lucas&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5431677&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-Sriarunothai2019Quantumenhanced-59"><span class="mw-cite-backlink">^ <a href="#cite_ref-Sriarunothai2019Quantumenhanced_59-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Sriarunothai2019Quantumenhanced_59-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSriarunothaiWölkGiriFriis2019" class="citation journal cs1">Sriarunothai, Theeraphot; Wölk, Sabine; Giri, Gouri Shankar; Friis, Nicolai; Dunjko, Vedran; Briegel, Hans J.; Wunderlich, Christof (2019). "Speeding-up the decision making of a learning agent using an ion trap quantum processor". <i>Quantum Science and Technology</i>. <b>4</b> (1): 015014. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1709.01366">1709.01366</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019QS&amp;T....4a5014S">2019QS&#38;T....4a5014S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F2058-9565%2Faaef5e">10.1088/2058-9565/aaef5e</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2058-9565">2058-9565</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2429346">2429346</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quantum+Science+and+Technology&amp;rft.atitle=Speeding-up+the+decision+making+of+a+learning+agent+using+an+ion+trap+quantum+processor&amp;rft.volume=4&amp;rft.issue=1&amp;rft.pages=015014&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2429346%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2019QS%26T....4a5014S&amp;rft_id=info%3Aarxiv%2F1709.01366&amp;rft.issn=2058-9565&amp;rft_id=info%3Adoi%2F10.1088%2F2058-9565%2Faaef5e&amp;rft.aulast=Sriarunothai&amp;rft.aufirst=Theeraphot&amp;rft.au=W%C3%B6lk%2C+Sabine&amp;rft.au=Giri%2C+Gouri+Shankar&amp;rft.au=Friis%2C+Nicolai&amp;rft.au=Dunjko%2C+Vedran&amp;rft.au=Briegel%2C+Hans+J.&amp;rft.au=Wunderlich%2C+Christof&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-SaggioEtAl2021-60"><span class="mw-cite-backlink">^ <a href="#cite_ref-SaggioEtAl2021_60-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-SaggioEtAl2021_60-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-SaggioEtAl2021_60-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSaggioAsenbeckHamannStrömberg2021" class="citation journal cs1">Saggio, Valeria; Asenbeck, Beate; Hamann, Arne; Strömberg, Teodor; Schiansky, Peter; Dunjko, Vedran; Friis, Nicolai; Harris, Nicholas C.; Hochberg, Michael; Englund, Dirk; Wölk, Sabine; Briegel, Hans J.; Walther, Philip (10 March 2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1038/s41586-021-03242-7">"Experimental quantum speed-up in reinforcement learning agents"</a>. <i>Nature</i>. <b>591</b> (7849): <span class="nowrap">229–</span>233. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2103.06294">2103.06294</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021Natur.591..229S">2021Natur.591..229S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41586-021-03242-7">10.1038/s41586-021-03242-7</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1476-4687">1476-4687</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612051">7612051</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33692560">33692560</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:232185235">232185235</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=Experimental+quantum+speed-up+in+reinforcement+learning+agents&amp;rft.volume=591&amp;rft.issue=7849&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E229-%3C%2Fspan%3E233&amp;rft.date=2021-03-10&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7612051%23id-name%3DPMC&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A232185235%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2021Natur.591..229S&amp;rft_id=info%3Aarxiv%2F2103.06294&amp;rft.issn=1476-4687&amp;rft_id=info%3Adoi%2F10.1038%2Fs41586-021-03242-7&amp;rft_id=info%3Apmid%2F33692560&amp;rft.aulast=Saggio&amp;rft.aufirst=Valeria&amp;rft.au=Asenbeck%2C+Beate&amp;rft.au=Hamann%2C+Arne&amp;rft.au=Str%C3%B6mberg%2C+Teodor&amp;rft.au=Schiansky%2C+Peter&amp;rft.au=Dunjko%2C+Vedran&amp;rft.au=Friis%2C+Nicolai&amp;rft.au=Harris%2C+Nicholas+C.&amp;rft.au=Hochberg%2C+Michael&amp;rft.au=Englund%2C+Dirk&amp;rft.au=W%C3%B6lk%2C+Sabine&amp;rft.au=Briegel%2C+Hans+J.&amp;rft.au=Walther%2C+Philip&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1038%2Fs41586-021-03242-7&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBiswasJiangKecheziKnysh2016" class="citation journal cs1"><a href="/wiki/Eleanor_Rieffel" title="Eleanor Rieffel">Biswas, Rupak</a>; Jiang, Zhang; Kechezi, Kostya; Knysh, Sergey; Mandrà, Salvatore; O’Gorman, Bryan; Perdomo-Ortiz, Alejando; Pethukov, Andre; Realpe-Gómez, John; Rieffel, Eleanor; Venturelli, Davide; Vasko, Fedir; Wang, Zhihui (2016). <a rel="nofollow" class="external text" href="https://zenodo.org/record/1259293">"A NASA perspective on quantum computing: Opportunities and challenges"</a>. <i>Parallel Computing</i>. <b>64</b>: <span class="nowrap">81–</span>98. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1704.04836">1704.04836</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.parco.2016.11.002">10.1016/j.parco.2016.11.002</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:27547901">27547901</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Parallel+Computing&amp;rft.atitle=A+NASA+perspective+on+quantum+computing%3A+Opportunities+and+challenges&amp;rft.volume=64&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E81-%3C%2Fspan%3E98&amp;rft.date=2016&amp;rft_id=info%3Aarxiv%2F1704.04836&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A27547901%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.parco.2016.11.002&amp;rft.aulast=Biswas&amp;rft.aufirst=Rupak&amp;rft.au=Jiang%2C+Zhang&amp;rft.au=Kechezi%2C+Kostya&amp;rft.au=Knysh%2C+Sergey&amp;rft.au=Mandr%C3%A0%2C+Salvatore&amp;rft.au=O%E2%80%99Gorman%2C+Bryan&amp;rft.au=Perdomo-Ortiz%2C+Alejando&amp;rft.au=Pethukov%2C+Andre&amp;rft.au=Realpe-G%C3%B3mez%2C+John&amp;rft.au=Rieffel%2C+Eleanor&amp;rft.au=Venturelli%2C+Davide&amp;rft.au=Vasko%2C+Fedir&amp;rft.au=Wang%2C+Zhihui&amp;rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1259293&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-Adachi2015-62"><span class="mw-cite-backlink">^ <a href="#cite_ref-Adachi2015_62-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Adachi2015_62-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAdachiHenderson2015" class="citation arxiv cs1">Adachi, Steven H.; Henderson, Maxwell P. (2015). "Application of quantum annealing to training of deep neural networks". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1510.06356">1510.06356</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Application+of+quantum+annealing+to+training+of+deep+neural+networks&amp;rft.date=2015&amp;rft_id=info%3Aarxiv%2F1510.06356&amp;rft.aulast=Adachi&amp;rft.aufirst=Steven+H.&amp;rft.au=Henderson%2C+Maxwell+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-Benedetti2016b-63"><span class="mw-cite-backlink">^ <a href="#cite_ref-Benedetti2016b_63-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Benedetti2016b_63-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBenedettiRealpe-GómezBiswasPerdomo-Ortiz2016" class="citation journal cs1">Benedetti, Marcello; Realpe-Gómez, John; Biswas, Rupak; Perdomo-Ortiz, Alejandro (2016). "Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning". <i>Physical Review A</i>. <b>94</b> (2): 022308. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1510.07611">1510.07611</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016PhRvA..94b2308B">2016PhRvA..94b2308B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.94.022308">10.1103/PhysRevA.94.022308</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118602077">118602077</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+A&amp;rft.atitle=Estimation+of+effective+temperatures+in+quantum+annealers+for+sampling+applications%3A+A+case+study+with+possible+applications+in+deep+learning&amp;rft.volume=94&amp;rft.issue=2&amp;rft.pages=022308&amp;rft.date=2016&amp;rft_id=info%3Aarxiv%2F1510.07611&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118602077%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevA.94.022308&amp;rft_id=info%3Abibcode%2F2016PhRvA..94b2308B&amp;rft.aulast=Benedetti&amp;rft.aufirst=Marcello&amp;rft.au=Realpe-G%C3%B3mez%2C+John&amp;rft.au=Biswas%2C+Rupak&amp;rft.au=Perdomo-Ortiz%2C+Alejandro&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-William_G_1611-64"><span class="mw-cite-backlink">^ <a href="#cite_ref-William_G_1611_64-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-William_G_1611_64-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKorenkevychXueBianChudak2016" class="citation arxiv cs1">Korenkevych, Dmytro; Xue, Yanbo; Bian, Zhengbing; Chudak, Fabian; Macready, William G.; Rolfe, Jason; Andriyash, Evgeny (2016). "Benchmarking quantum hardware for training of fully visible Boltzmann machines". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1611.04528">1611.04528</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Benchmarking+quantum+hardware+for+training+of+fully+visible+Boltzmann+machines&amp;rft.date=2016&amp;rft_id=info%3Aarxiv%2F1611.04528&amp;rft.aulast=Korenkevych&amp;rft.aufirst=Dmytro&amp;rft.au=Xue%2C+Yanbo&amp;rft.au=Bian%2C+Zhengbing&amp;rft.au=Chudak%2C+Fabian&amp;rft.au=Macready%2C+William+G.&amp;rft.au=Rolfe%2C+Jason&amp;rft.au=Andriyash%2C+Evgeny&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-Benedetti2016a-65"><span class="mw-cite-backlink">^ <a href="#cite_ref-Benedetti2016a_65-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Benedetti2016a_65-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Benedetti2016a_65-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBenedettiRealpe-GómezBiswasPerdomo-Ortiz2017" class="citation journal cs1">Benedetti, Marcello; Realpe-Gómez, John; Biswas, Rupak; Perdomo-Ortiz, Alejandro (2017). "Quantum-assisted learning of graphical models with arbitrary pairwise connectivity". <i>Physical Review X</i>. <b>7</b> (4): 041052. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1609.02542">1609.02542</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017PhRvX...7d1052B">2017PhRvX...7d1052B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevX.7.041052">10.1103/PhysRevX.7.041052</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:55331519">55331519</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+X&amp;rft.atitle=Quantum-assisted+learning+of+graphical+models+with+arbitrary+pairwise+connectivity&amp;rft.volume=7&amp;rft.issue=4&amp;rft.pages=041052&amp;rft.date=2017&amp;rft_id=info%3Aarxiv%2F1609.02542&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A55331519%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevX.7.041052&amp;rft_id=info%3Abibcode%2F2017PhRvX...7d1052B&amp;rft.aulast=Benedetti&amp;rft.aufirst=Marcello&amp;rft.au=Realpe-G%C3%B3mez%2C+John&amp;rft.au=Biswas%2C+Rupak&amp;rft.au=Perdomo-Ortiz%2C+Alejandro&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRocuttoDestriPrati2021" class="citation journal cs1">Rocutto, Lorenzo; Destri, Claudio; Prati, Enrico (2021). "Quantum Semantic Learning by Reverse Annealing of an Adiabatic Quantum Computer". <i>Advanced Quantum Technologies</i>. <b>4</b> (2): 2000133. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2003.11945">2003.11945</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fqute.202000133">10.1002/qute.202000133</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2511-9044">2511-9044</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:214667224">214667224</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Quantum+Technologies&amp;rft.atitle=Quantum+Semantic+Learning+by+Reverse+Annealing+of+an+Adiabatic+Quantum+Computer&amp;rft.volume=4&amp;rft.issue=2&amp;rft.pages=2000133&amp;rft.date=2021&amp;rft_id=info%3Aarxiv%2F2003.11945&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A214667224%23id-name%3DS2CID&amp;rft.issn=2511-9044&amp;rft_id=info%3Adoi%2F10.1002%2Fqute.202000133&amp;rft.aulast=Rocutto&amp;rft.aufirst=Lorenzo&amp;rft.au=Destri%2C+Claudio&amp;rft.au=Prati%2C+Enrico&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAminAndriyashRolfeKulchytskyy2018" class="citation journal cs1">Amin, Mohammad H.; Andriyash, Evgeny; Rolfe, Jason; Kulchytskyy, Bohdan; Melko, Roger (2018). "Quantum Boltzmann machines". <i>Phys. Rev. X</i>. <b>8</b> (21050): 021050. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1601.02036">1601.02036</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018PhRvX...8b1050A">2018PhRvX...8b1050A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevX.8.021050">10.1103/PhysRevX.8.021050</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119198869">119198869</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Phys.+Rev.+X&amp;rft.atitle=Quantum+Boltzmann+machines&amp;rft.volume=8&amp;rft.issue=21050&amp;rft.pages=021050&amp;rft.date=2018&amp;rft_id=info%3Aarxiv%2F1601.02036&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119198869%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevX.8.021050&amp;rft_id=info%3Abibcode%2F2018PhRvX...8b1050A&amp;rft.aulast=Amin&amp;rft.aufirst=Mohammad+H.&amp;rft.au=Andriyash%2C+Evgeny&amp;rft.au=Rolfe%2C+Jason&amp;rft.au=Kulchytskyy%2C+Bohdan&amp;rft.au=Melko%2C+Roger&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDasChakrabartiStinchcombe2005" class="citation journal cs1">Das, Arnab; Chakrabarti, Bikas K.; Stinchcombe, Robin B. (2005). "Quantum annealing in a kinetically constrained system". <i>Physical Review E</i>. <b>72</b> (2): 026701. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/cond-mat/0502167">cond-mat/0502167</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005PhRvE..72b6701D">2005PhRvE..72b6701D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevE.72.026701">10.1103/PhysRevE.72.026701</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16196745">16196745</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+E&amp;rft.atitle=Quantum+annealing+in+a+kinetically+constrained+system&amp;rft.volume=72&amp;rft.issue=2&amp;rft.pages=026701&amp;rft.date=2005&amp;rft_id=info%3Aarxiv%2Fcond-mat%2F0502167&amp;rft_id=info%3Apmid%2F16196745&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevE.72.026701&amp;rft_id=info%3Abibcode%2F2005PhRvE..72b6701D&amp;rft.aulast=Das&amp;rft.aufirst=Arnab&amp;rft.au=Chakrabarti%2C+Bikas+K.&amp;rft.au=Stinchcombe%2C+Robin+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWiebeKapoorSvore2014" class="citation arxiv cs1">Wiebe, Nathan; Kapoor, Ashish; <a href="/wiki/Krysta_Svore" title="Krysta Svore">Svore, Krysta M.</a> (2014). "Quantum deep learning". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1412.3489">1412.3489</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Quantum+deep+learning&amp;rft.date=2014&amp;rft_id=info%3Aarxiv%2F1412.3489&amp;rft.aulast=Wiebe&amp;rft.aufirst=Nathan&amp;rft.au=Kapoor%2C+Ashish&amp;rft.au=Svore%2C+Krysta+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWittekGogolin2017" class="citation journal cs1">Wittek, Peter; Gogolin, Christian (2017). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5395824">"Quantum Enhanced Inference in Markov Logic Networks"</a>. <i>Scientific Reports</i>. <b>7</b> (45672): 45672. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1611.08104">1611.08104</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017NatSR...745672W">2017NatSR...745672W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fsrep45672">10.1038/srep45672</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5395824">5395824</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28422093">28422093</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+Reports&amp;rft.atitle=Quantum+Enhanced+Inference+in+Markov+Logic+Networks&amp;rft.volume=7&amp;rft.issue=45672&amp;rft.pages=45672&amp;rft.date=2017&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5395824%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F2017NatSR...745672W&amp;rft_id=info%3Aarxiv%2F1611.08104&amp;rft_id=info%3Apmid%2F28422093&amp;rft_id=info%3Adoi%2F10.1038%2Fsrep45672&amp;rft.aulast=Wittek&amp;rft.aufirst=Peter&amp;rft.au=Gogolin%2C+Christian&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5395824&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-:13-71"><span class="mw-cite-backlink">^ <a href="#cite_ref-:13_71-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:13_71-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:13_71-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:13_71-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuptaZia2001" class="citation journal cs1">Gupta, Sanjay; Zia, R.K.P. (2001-11-01). "Quantum Neural Networks". <i>Journal of Computer and System Sciences</i>. <b>63</b> (3): <span class="nowrap">355–</span>383. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0201144">quant-ph/0201144</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1006%2Fjcss.2001.1769">10.1006/jcss.2001.1769</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0022-0000">0022-0000</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:206569020">206569020</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Computer+and+System+Sciences&amp;rft.atitle=Quantum+Neural+Networks&amp;rft.volume=63&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E355-%3C%2Fspan%3E383&amp;rft.date=2001-11-01&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0201144&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A206569020%23id-name%3DS2CID&amp;rft.issn=0022-0000&amp;rft_id=info%3Adoi%2F10.1006%2Fjcss.2001.1769&amp;rft.aulast=Gupta&amp;rft.aufirst=Sanjay&amp;rft.au=Zia%2C+R.K.P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-:03-72"><span class="mw-cite-backlink">^ <a href="#cite_ref-:03_72-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:03_72-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEzhovVentura2000" class="citation book cs1">Ezhov, Alexandr A.; Ventura, Dan (2000). <i>Quantum Neural Networks</i>. Studies in Fuzziness and Soft Computing. Vol.&#160;45. Physica-Verlag HD. pp.&#160;<span class="nowrap">213–</span>235. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.683.5972">10.1.1.683.5972</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-7908-1856-7_11">10.1007/978-3-7908-1856-7_11</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-7908-2470-4" title="Special:BookSources/978-3-7908-2470-4"><bdi>978-3-7908-2470-4</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9099722">9099722</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+Neural+Networks&amp;rft.series=Studies+in+Fuzziness+and+Soft+Computing&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E213-%3C%2Fspan%3E235&amp;rft.pub=Physica-Verlag+HD&amp;rft.date=2000&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.683.5972%23id-name%3DCiteSeerX&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9099722%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-7908-1856-7_11&amp;rft.isbn=978-3-7908-2470-4&amp;rft.aulast=Ezhov&amp;rft.aufirst=Alexandr+A.&amp;rft.au=Ventura%2C+Dan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span> <span class="cs1-visible-error citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: </span><span class="cs1-visible-error citation-comment"><code class="cs1-code">&#124;work=</code> ignored (<a href="/wiki/Help:CS1_errors#periodical_ignored" title="Help:CS1 errors">help</a>)</span></span> </li> <li id="cite_note-:23-73"><span class="mw-cite-backlink">^ <a href="#cite_ref-:23_73-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:23_73-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBehrmanNashSteckChandrashekar2000" class="citation journal cs1">Behrman, E.C.; Nash, L.R.; Steck, J.E.; Chandrashekar, V.G.; Skinner, S.R. (2000-10-01). "Simulations of quantum neural networks". <i>Information Sciences</i>. <b>128</b> (<span class="nowrap">3–</span>4): <span class="nowrap">257–</span>269. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0020-0255%2800%2900056-6">10.1016/S0020-0255(00)00056-6</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0020-0255">0020-0255</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Information+Sciences&amp;rft.atitle=Simulations+of+quantum+neural+networks&amp;rft.volume=128&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E3%E2%80%93%3C%2Fspan%3E4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E257-%3C%2Fspan%3E269&amp;rft.date=2000-10-01&amp;rft_id=info%3Adoi%2F10.1016%2FS0020-0255%2800%2900056-6&amp;rft.issn=0020-0255&amp;rft.aulast=Behrman&amp;rft.aufirst=E.C.&amp;rft.au=Nash%2C+L.R.&amp;rft.au=Steck%2C+J.E.&amp;rft.au=Chandrashekar%2C+V.G.&amp;rft.au=Skinner%2C+S.R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHendersonShakyaPradhanCook2020" class="citation journal cs1">Henderson, Maxwell; Shakya, Samriddhi; Pradhan, Shashindra; Cook, Tristan (2020-02-27). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007/s42484-020-00012-y">"Quanvolutional neural networks: powering image recognition with quantum circuits"</a>. <i>Quantum Machine Intelligence</i>. <b>2</b> (1). <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1904.04767">1904.04767</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs42484-020-00012-y">10.1007/s42484-020-00012-y</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2524-4906">2524-4906</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:104291950">104291950</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quantum+Machine+Intelligence&amp;rft.atitle=Quanvolutional+neural+networks%3A+powering+image+recognition+with+quantum+circuits&amp;rft.volume=2&amp;rft.issue=1&amp;rft.date=2020-02-27&amp;rft_id=info%3Aarxiv%2F1904.04767&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A104291950%23id-name%3DS2CID&amp;rft.issn=2524-4906&amp;rft_id=info%3Adoi%2F10.1007%2Fs42484-020-00012-y&amp;rft.aulast=Henderson&amp;rft.aufirst=Maxwell&amp;rft.au=Shakya%2C+Samriddhi&amp;rft.au=Pradhan%2C+Shashindra&amp;rft.au=Cook%2C+Tristan&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs42484-020-00012-y&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGaikwad" class="citation book cs1">Gaikwad, Akash S. <a rel="nofollow" class="external text" href="http://worldcat.org/oclc/1197735354"><i>Pruning convolution neural network (SqueezeNet) for efficient hardware deployment</i></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1197735354">1197735354</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Pruning+convolution+neural+network+%28SqueezeNet%29+for+efficient+hardware+deployment&amp;rft_id=info%3Aoclcnum%2F1197735354&amp;rft.aulast=Gaikwad&amp;rft.aufirst=Akash+S.&amp;rft_id=http%3A%2F%2Fworldcat.org%2Foclc%2F1197735354&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-:02-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-:02_76-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCongChoiLukin2019" class="citation journal cs1">Cong, Iris; Choi, Soonwon; Lukin, Mikhail D. (2019-08-26). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1038/s41567-019-0648-8">"Quantum convolutional neural networks"</a>. <i>Nature Physics</i>. <b>15</b> (12): <span class="nowrap">1273–</span>1278. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1810.03787">1810.03787</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019NatPh..15.1273C">2019NatPh..15.1273C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41567-019-0648-8">10.1038/s41567-019-0648-8</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1745-2473">1745-2473</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:53642483">53642483</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Physics&amp;rft.atitle=Quantum+convolutional+neural+networks&amp;rft.volume=15&amp;rft.issue=12&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1273-%3C%2Fspan%3E1278&amp;rft.date=2019-08-26&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A53642483%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2019NatPh..15.1273C&amp;rft_id=info%3Aarxiv%2F1810.03787&amp;rft.issn=1745-2473&amp;rft_id=info%3Adoi%2F10.1038%2Fs41567-019-0648-8&amp;rft.aulast=Cong&amp;rft.aufirst=Iris&amp;rft.au=Choi%2C+Soonwon&amp;rft.au=Lukin%2C+Mikhail+D.&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1038%2Fs41567-019-0648-8&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMitaraiNegoroKitagawaFujii2018" class="citation journal cs1">Mitarai, K.; Negoro, M.; Kitagawa, M.; Fujii, K. (2018-09-10). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1103/physreva.98.032309">"Quantum circuit learning"</a>. <i>Physical Review A</i>. <b>98</b> (3): 032309. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1803.00745">1803.00745</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018PhRvA..98c2309M">2018PhRvA..98c2309M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2Fphysreva.98.032309">10.1103/physreva.98.032309</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/11094%2F77645">11094/77645</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2469-9926">2469-9926</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117542570">117542570</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+A&amp;rft.atitle=Quantum+circuit+learning&amp;rft.volume=98&amp;rft.issue=3&amp;rft.pages=032309&amp;rft.date=2018-09-10&amp;rft_id=info%3Ahdl%2F11094%2F77645&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117542570%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2018PhRvA..98c2309M&amp;rft_id=info%3Aarxiv%2F1803.00745&amp;rft.issn=2469-9926&amp;rft_id=info%3Adoi%2F10.1103%2Fphysreva.98.032309&amp;rft.aulast=Mitarai&amp;rft.aufirst=K.&amp;rft.au=Negoro%2C+M.&amp;rft.au=Kitagawa%2C+M.&amp;rft.au=Fujii%2C+K.&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1103%2Fphysreva.98.032309&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHochreiterSchmidhuber1997" class="citation journal cs1">Hochreiter, Sepp; Schmidhuber, Jürgen (1997-11-01). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1162/neco.1997.9.8.1735">"Long Short-Term Memory"</a>. <i>Neural Computation</i>. <b>9</b> (8): <span class="nowrap">1735–</span>1780. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1162%2Fneco.1997.9.8.1735">10.1162/neco.1997.9.8.1735</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0899-7667">0899-7667</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9377276">9377276</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1915014">1915014</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Neural+Computation&amp;rft.atitle=Long+Short-Term+Memory&amp;rft.volume=9&amp;rft.issue=8&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1735-%3C%2Fspan%3E1780&amp;rft.date=1997-11-01&amp;rft.issn=0899-7667&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1915014%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F9377276&amp;rft_id=info%3Adoi%2F10.1162%2Fneco.1997.9.8.1735&amp;rft.aulast=Hochreiter&amp;rft.aufirst=Sepp&amp;rft.au=Schmidhuber%2C+J%C3%BCrgen&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1162%2Fneco.1997.9.8.1735&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPreskill2018" class="citation journal cs1">Preskill, John (2018-08-06). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.22331/q-2018-08-06-79">"Quantum Computing in the NISQ era and beyond"</a>. <i>Quantum</i>. <b>2</b>: 79. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1801.00862">1801.00862</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018Quant...2...79P">2018Quant...2...79P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.22331%2Fq-2018-08-06-79">10.22331/q-2018-08-06-79</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2521-327X">2521-327X</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:44098998">44098998</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quantum&amp;rft.atitle=Quantum+Computing+in+the+NISQ+era+and+beyond&amp;rft.volume=2&amp;rft.pages=79&amp;rft.date=2018-08-06&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A44098998%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2018Quant...2...79P&amp;rft_id=info%3Aarxiv%2F1801.00862&amp;rft.issn=2521-327X&amp;rft_id=info%3Adoi%2F10.22331%2Fq-2018-08-06-79&amp;rft.aulast=Preskill&amp;rft.aufirst=John&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.22331%2Fq-2018-08-06-79&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBacon2013" class="citation book cs1">Bacon, Dave (2013-09-12). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1017/cbo9781139034807.023">"Experimental quantum error correction"</a>. <i>Quantum Error Correction</i>. Cambridge University Press. pp.&#160;<span class="nowrap">509–</span>518. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2Fcbo9781139034807.023">10.1017/cbo9781139034807.023</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780521897877" title="Special:BookSources/9780521897877"><bdi>9780521897877</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">2022-11-23</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Experimental+quantum+error+correction&amp;rft.btitle=Quantum+Error+Correction&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E509-%3C%2Fspan%3E518&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2013-09-12&amp;rft_id=info%3Adoi%2F10.1017%2Fcbo9781139034807.023&amp;rft.isbn=9780521897877&amp;rft.aulast=Bacon&amp;rft.aufirst=Dave&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1017%2Fcbo9781139034807.023&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBhartiCervera-LiertaKyawHaug2022" class="citation journal cs1">Bharti, Kishor; Cervera-Lierta, Alba; Kyaw, Thi Ha; Haug, Tobias; Alperin-Lea, Sumner; Anand, Abhinav; Degroote, Matthias; Heimonen, Hermanni; Kottmann, Jakob S.; Menke, Tim; Mok, Wai-Keong; Sim, Sukin; Kwek, Leong-Chuan; Aspuru-Guzik, Alán (2022-02-15). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1103/revmodphys.94.015004">"Noisy intermediate-scale quantum algorithms"</a>. <i>Reviews of Modern Physics</i>. <b>94</b> (1): 015004. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2101.08448">2101.08448</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022RvMP...94a5004B">2022RvMP...94a5004B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2Frevmodphys.94.015004">10.1103/revmodphys.94.015004</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/10356%2F161272">10356/161272</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0034-6861">0034-6861</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:231662441">231662441</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Reviews+of+Modern+Physics&amp;rft.atitle=Noisy+intermediate-scale+quantum+algorithms&amp;rft.volume=94&amp;rft.issue=1&amp;rft.pages=015004&amp;rft.date=2022-02-15&amp;rft_id=info%3Ahdl%2F10356%2F161272&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A231662441%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2022RvMP...94a5004B&amp;rft_id=info%3Aarxiv%2F2101.08448&amp;rft.issn=0034-6861&amp;rft_id=info%3Adoi%2F10.1103%2Frevmodphys.94.015004&amp;rft.aulast=Bharti&amp;rft.aufirst=Kishor&amp;rft.au=Cervera-Lierta%2C+Alba&amp;rft.au=Kyaw%2C+Thi+Ha&amp;rft.au=Haug%2C+Tobias&amp;rft.au=Alperin-Lea%2C+Sumner&amp;rft.au=Anand%2C+Abhinav&amp;rft.au=Degroote%2C+Matthias&amp;rft.au=Heimonen%2C+Hermanni&amp;rft.au=Kottmann%2C+Jakob+S.&amp;rft.au=Menke%2C+Tim&amp;rft.au=Mok%2C+Wai-Keong&amp;rft.au=Sim%2C+Sukin&amp;rft.au=Kwek%2C+Leong-Chuan&amp;rft.au=Aspuru-Guzik%2C+Al%C3%A1n&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1103%2Frevmodphys.94.015004&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrantBenedettiCaoHallam2018" class="citation journal cs1">Grant, Edward; Benedetti, Marcello; Cao, Shuxiang; Hallam, Andrew; Lockhart, Joshua; Stojevic, Vid; Green, Andrew G.; Severini, Simone (December 2018). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1038/s41534-018-0116-9">"Hierarchical quantum classifiers"</a>. <i>npj Quantum Information</i>. <b>4</b> (1): 65. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1804.03680">1804.03680</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018npjQI...4...65G">2018npjQI...4...65G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41534-018-0116-9">10.1038/s41534-018-0116-9</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:55479810">55479810</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=npj+Quantum+Information&amp;rft.atitle=Hierarchical+quantum+classifiers&amp;rft.volume=4&amp;rft.issue=1&amp;rft.pages=65&amp;rft.date=2018-12&amp;rft_id=info%3Aarxiv%2F1804.03680&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A55479810%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2Fs41534-018-0116-9&amp;rft_id=info%3Abibcode%2F2018npjQI...4...65G&amp;rft.aulast=Grant&amp;rft.aufirst=Edward&amp;rft.au=Benedetti%2C+Marcello&amp;rft.au=Cao%2C+Shuxiang&amp;rft.au=Hallam%2C+Andrew&amp;rft.au=Lockhart%2C+Joshua&amp;rft.au=Stojevic%2C+Vid&amp;rft.au=Green%2C+Andrew+G.&amp;rft.au=Severini%2C+Simone&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1038%2Fs41534-018-0116-9&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhaoGao2021" class="citation journal cs1">Zhao, Chen; Gao, Xiao-Shan (2021-06-04). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.22331/q-2021-06-04-466">"Analyzing the barren plateau phenomenon in training quantum neural networks with the ZX-calculus"</a>. <i>Quantum</i>. <b>5</b>: 466. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2102.01828">2102.01828</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021Quant...5..466Z">2021Quant...5..466Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.22331%2Fq-2021-06-04-466">10.22331/q-2021-06-04-466</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2521-327X">2521-327X</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:231786346">231786346</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quantum&amp;rft.atitle=Analyzing+the+barren+plateau+phenomenon+in+training+quantum+neural+networks+with+the+ZX-calculus&amp;rft.volume=5&amp;rft.pages=466&amp;rft.date=2021-06-04&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A231786346%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2021Quant...5..466Z&amp;rft_id=info%3Aarxiv%2F2102.01828&amp;rft.issn=2521-327X&amp;rft_id=info%3Adoi%2F10.22331%2Fq-2021-06-04-466&amp;rft.aulast=Zhao&amp;rft.aufirst=Chen&amp;rft.au=Gao%2C+Xiao-Shan&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.22331%2Fq-2021-06-04-466&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHurKimPark2022" class="citation journal cs1">Hur, Tak; Kim, Leeseok; Park, Daniel K. (2022-02-10). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1007/s42484-021-00061-x">"Quantum convolutional neural network for classical data classification"</a>. <i>Quantum Machine Intelligence</i>. <b>4</b> (1): 3. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2108.00661">2108.00661</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs42484-021-00061-x">10.1007/s42484-021-00061-x</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2524-4906">2524-4906</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:236772493">236772493</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quantum+Machine+Intelligence&amp;rft.atitle=Quantum+convolutional+neural+network+for+classical+data+classification&amp;rft.volume=4&amp;rft.issue=1&amp;rft.pages=3&amp;rft.date=2022-02-10&amp;rft_id=info%3Aarxiv%2F2108.00661&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A236772493%23id-name%3DS2CID&amp;rft.issn=2524-4906&amp;rft_id=info%3Adoi%2F10.1007%2Fs42484-021-00061-x&amp;rft.aulast=Hur&amp;rft.aufirst=Tak&amp;rft.au=Kim%2C+Leeseok&amp;rft.au=Park%2C+Daniel+K.&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1007%2Fs42484-021-00061-x&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOstaszewskiGrantBenedetti2021" class="citation journal cs1">Ostaszewski, Mateusz; Grant, Edward; Benedetti, Marcello (2021-01-28). <a rel="nofollow" class="external text" href="https://doi.org/10.22331%2Fq-2021-01-28-391">"Structure optimization for parameterized quantum circuits"</a>. <i>Quantum</i>. <b>5</b>: 391. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1905.09692">1905.09692</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021Quant...5..391O">2021Quant...5..391O</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.22331%2Fq-2021-01-28-391">10.22331/q-2021-01-28-391</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2521-327X">2521-327X</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:231719244">231719244</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quantum&amp;rft.atitle=Structure+optimization+for+parameterized+quantum+circuits&amp;rft.volume=5&amp;rft.pages=391&amp;rft.date=2021-01-28&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A231719244%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2021Quant...5..391O&amp;rft_id=info%3Aarxiv%2F1905.09692&amp;rft.issn=2521-327X&amp;rft_id=info%3Adoi%2F10.22331%2Fq-2021-01-28-391&amp;rft.aulast=Ostaszewski&amp;rft.aufirst=Mateusz&amp;rft.au=Grant%2C+Edward&amp;rft.au=Benedetti%2C+Marcello&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.22331%252Fq-2021-01-28-391&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-:1-86"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_86-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_86-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBeerMüller2021" class="citation arxiv cs1">Beer, Kerstin; Müller, Gabriel (2021-12-11). "Dissipative quantum generative adversarial networks". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2112.06088">2112.06088</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Dissipative+quantum+generative+adversarial+networks&amp;rft.date=2021-12-11&amp;rft_id=info%3Aarxiv%2F2112.06088&amp;rft.aulast=Beer&amp;rft.aufirst=Kerstin&amp;rft.au=M%C3%BCller%2C+Gabriel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ.2020" class="citation book cs1">J., Sharma, Kunal Cerezo, M. Cincio, Lukasz Coles, Patrick (2020-05-25). <a rel="nofollow" class="external text" href="http://worldcat.org/oclc/1228410830"><i>Trainability of Dissipative Perceptron-Based Quantum Neural Networks</i></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1228410830">1228410830</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Trainability+of+Dissipative+Perceptron-Based+Quantum+Neural+Networks&amp;rft.date=2020-05-25&amp;rft_id=info%3Aoclcnum%2F1228410830&amp;rft.aulast=J.&amp;rft.aufirst=Sharma%2C+Kunal+Cerezo%2C+M.+Cincio%2C+Lukasz+Coles%2C+Patrick&amp;rft_id=http%3A%2F%2Fworldcat.org%2Foclc%2F1228410830&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-88">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoodfellowPouget-AbadieMirzaXu2014" class="citation arxiv cs1">Goodfellow, Ian J.; Pouget-Abadie, Jean; Mirza, Mehdi; Xu, Bing; Warde-Farley, David; Ozair, Sherjil; Courville, Aaron; Bengio, Yoshua (2014-06-10). "Generative Adversarial Networks". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1406.2661">1406.2661</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/stat.ML">stat.ML</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Generative+Adversarial+Networks&amp;rft.date=2014-06-10&amp;rft_id=info%3Aarxiv%2F1406.2661&amp;rft.aulast=Goodfellow&amp;rft.aufirst=Ian+J.&amp;rft.au=Pouget-Abadie%2C+Jean&amp;rft.au=Mirza%2C+Mehdi&amp;rft.au=Xu%2C+Bing&amp;rft.au=Warde-Farley%2C+David&amp;rft.au=Ozair%2C+Sherjil&amp;rft.au=Courville%2C+Aaron&amp;rft.au=Bengio%2C+Yoshua&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-89">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClarkHuang_W.BarlowBeige2015" class="citation book cs1">Clark, Lewis A.; Huang W., Wei; Barlow, Thomas H.; Beige, Almut (2015). "Hidden Quantum Markov Models and Open Quantum Systems with Instantaneous Feedback". In Sanayei, Ali; Rössler, Otto E.; Zelinka, Ivan (eds.). <i>ISCS 2014: Interdisciplinary Symposium on Complex Systems</i>. Emergence, Complexity and Computation. Vol.&#160;14. pp.&#160;<span class="nowrap">131–</span>151. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1406.5847">1406.5847</a></span>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.749.3332">10.1.1.749.3332</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-10759-2_16">10.1007/978-3-319-10759-2_16</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-10759-2" title="Special:BookSources/978-3-319-10759-2"><bdi>978-3-319-10759-2</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119226526">119226526</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Hidden+Quantum+Markov+Models+and+Open+Quantum+Systems+with+Instantaneous+Feedback&amp;rft.btitle=ISCS+2014%3A+Interdisciplinary+Symposium+on+Complex+Systems&amp;rft.series=Emergence%2C+Complexity+and+Computation&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E131-%3C%2Fspan%3E151&amp;rft.date=2015&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119226526%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-319-10759-2_16&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.749.3332%23id-name%3DCiteSeerX&amp;rft_id=info%3Aarxiv%2F1406.5847&amp;rft.isbn=978-3-319-10759-2&amp;rft.aulast=Clark&amp;rft.aufirst=Lewis+A.&amp;rft.au=Huang+W.%2C+Wei&amp;rft.au=Barlow%2C+Thomas+H.&amp;rft.au=Beige%2C+Almut&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-:4-90"><span class="mw-cite-backlink">^ <a href="#cite_ref-:4_90-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:4_90-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:4_90-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSrinivasanGordonBoots2018" class="citation journal cs1">Srinivasan, Siddarth; Gordon, Geoff; Boots, Byron (2018). <a rel="nofollow" class="external text" href="https://www.cc.gatech.edu/~bboots3/files/learning_hqmms.pdf">"Learning Hidden Quantum Markov Models"</a> <span class="cs1-format">(PDF)</span>. <i>Aistats</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Aistats&amp;rft.atitle=Learning+Hidden+Quantum+Markov+Models&amp;rft.date=2018&amp;rft.aulast=Srinivasan&amp;rft.aufirst=Siddarth&amp;rft.au=Gordon%2C+Geoff&amp;rft.au=Boots%2C+Byron&amp;rft_id=https%3A%2F%2Fwww.cc.gatech.edu%2F~bboots3%2Ffiles%2Flearning_hqmms.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSentísGuţăAdesso2015" class="citation journal cs1">Sentís, Gael; Guţă, Mădălin; Adesso, Gerardo (9 July 2015). <a rel="nofollow" class="external text" href="https://doi.org/10.1140%2Fepjqt%2Fs40507-015-0030-4">"Quantum learning of coherent states"</a>. <i>EPJ Quantum Technology</i>. <b>2</b> (1): 17. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1410.8700">1410.8700</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015EPJQT...2...17S">2015EPJQT...2...17S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1140%2Fepjqt%2Fs40507-015-0030-4">10.1140/epjqt/s40507-015-0030-4</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=EPJ+Quantum+Technology&amp;rft.atitle=Quantum+learning+of+coherent+states&amp;rft.volume=2&amp;rft.issue=1&amp;rft.pages=17&amp;rft.date=2015-07-09&amp;rft_id=info%3Aarxiv%2F1410.8700&amp;rft_id=info%3Adoi%2F10.1140%2Fepjqt%2Fs40507-015-0030-4&amp;rft_id=info%3Abibcode%2F2015EPJQT...2...17S&amp;rft.aulast=Sent%C3%ADs&amp;rft.aufirst=Gael&amp;rft.au=Gu%C5%A3%C4%83%2C+M%C4%83d%C4%83lin&amp;rft.au=Adesso%2C+Gerardo&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1140%252Fepjqt%252Fs40507-015-0030-4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSasakiCarlini2002" class="citation journal cs1">Sasaki, Masahide; Carlini, Alberto (6 August 2002). "Quantum learning and universal quantum matching machine". <i>Physical Review A</i>. <b>66</b> (2): 022303. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0202173">quant-ph/0202173</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002PhRvA..66b2303S">2002PhRvA..66b2303S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.66.022303">10.1103/PhysRevA.66.022303</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119383508">119383508</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+A&amp;rft.atitle=Quantum+learning+and+universal+quantum+matching+machine&amp;rft.volume=66&amp;rft.issue=2&amp;rft.pages=022303&amp;rft.date=2002-08-06&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0202173&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119383508%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevA.66.022303&amp;rft_id=info%3Abibcode%2F2002PhRvA..66b2303S&amp;rft.aulast=Sasaki&amp;rft.aufirst=Masahide&amp;rft.au=Carlini%2C+Alberto&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBisioChiribellaD’ArianoFacchini2010" class="citation journal cs1">Bisio, Alessandro; Chiribella, Giulio; D’Ariano, Giacomo Mauro; Facchini, Stefano; Perinotti, Paolo (25 March 2010). "Optimal quantum learning of a unitary transformation". <i>Physical Review A</i>. <b>81</b> (3): 032324. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0903.0543">0903.0543</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010PhRvA..81c2324B">2010PhRvA..81c2324B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.81.032324">10.1103/PhysRevA.81.032324</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119289138">119289138</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+A&amp;rft.atitle=Optimal+quantum+learning+of+a+unitary+transformation&amp;rft.volume=81&amp;rft.issue=3&amp;rft.pages=032324&amp;rft.date=2010-03-25&amp;rft_id=info%3Aarxiv%2F0903.0543&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119289138%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevA.81.032324&amp;rft_id=info%3Abibcode%2F2010PhRvA..81c2324B&amp;rft.aulast=Bisio&amp;rft.aufirst=Alessandro&amp;rft.au=Chiribella%2C+Giulio&amp;rft.au=D%E2%80%99Ariano%2C+Giacomo+Mauro&amp;rft.au=Facchini%2C+Stefano&amp;rft.au=Perinotti%2C+Paolo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-94">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAïmeurBrassardGambs2007" class="citation book cs1">Aïmeur, Esma; Brassard, Gilles; Gambs, Sébastien (1 January 2007). "Quantum clustering algorithms". <i>Proceedings of the 24th international conference on Machine learning</i>. pp.&#160;<span class="nowrap">1–</span>8. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.80.9513">10.1.1.80.9513</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F1273496.1273497">10.1145/1273496.1273497</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-59593-793-3" title="Special:BookSources/978-1-59593-793-3"><bdi>978-1-59593-793-3</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4357684">4357684</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Quantum+clustering+algorithms&amp;rft.btitle=Proceedings+of+the+24th+international+conference+on+Machine+learning&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E8&amp;rft.date=2007-01-01&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.80.9513%23id-name%3DCiteSeerX&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4357684%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1145%2F1273496.1273497&amp;rft.isbn=978-1-59593-793-3&amp;rft.aulast=A%C3%AFmeur&amp;rft.aufirst=Esma&amp;rft.au=Brassard%2C+Gilles&amp;rft.au=Gambs%2C+S%C3%A9bastien&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-xqml2023-95"><span class="mw-cite-backlink">^ <a href="#cite_ref-xqml2023_95-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-xqml2023_95-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeeseGerlachMückeMüller2023" class="citation arxiv cs1">Heese, Raoul; Gerlach, Thore; Mücke, Sascha; Müller, Sabine; Jakobs, Matthias; Piatkowski, Nico (22 January 2023). "Explainable Quantum Machine Learning". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2301.09138">2301.09138</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Explainable+Quantum+Machine+Learning&amp;rft.date=2023-01-22&amp;rft_id=info%3Aarxiv%2F2301.09138&amp;rft.aulast=Heese&amp;rft.aufirst=Raoul&amp;rft.au=Gerlach%2C+Thore&amp;rft.au=M%C3%BCcke%2C+Sascha&amp;rft.au=M%C3%BCller%2C+Sabine&amp;rft.au=Jakobs%2C+Matthias&amp;rft.au=Piatkowski%2C+Nico&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMolnar" class="citation book cs1">Molnar, Christoph. <a rel="nofollow" class="external text" href="https://christophm.github.io/interpretable-ml-book/"><i>Interpretable Machine Learning</i></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Interpretable+Machine+Learning&amp;rft.aulast=Molnar&amp;rft.aufirst=Christoph&amp;rft_id=https%3A%2F%2Fchristophm.github.io%2Finterpretable-ml-book%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchuldKilloran2022" class="citation journal cs1">Schuld, Maria; Killoran, Nathan (2 March 2022). "Is Quantum Advantage the Right Goal for Quantum Machine Learning?". <i>PRX Quantum</i>. <b>3</b> (3): 030101. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2203.01340">2203.01340</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022PRXQ....3c0101S">2022PRXQ....3c0101S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPRXQuantum.3.030101">10.1103/PRXQuantum.3.030101</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:247222732">247222732</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=PRX+Quantum&amp;rft.atitle=Is+Quantum+Advantage+the+Right+Goal+for+Quantum+Machine+Learning%3F&amp;rft.volume=3&amp;rft.issue=3&amp;rft.pages=030101&amp;rft.date=2022-03-02&amp;rft_id=info%3Aarxiv%2F2203.01340&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A247222732%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPRXQuantum.3.030101&amp;rft_id=info%3Abibcode%2F2022PRXQ....3c0101S&amp;rft.aulast=Schuld&amp;rft.aufirst=Maria&amp;rft.au=Killoran%2C+Nathan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMercaldoCiaramellaIadarolaStorto2022" class="citation journal cs1">Mercaldo, F.; Ciaramella, G.; Iadarola, G.; Storto, M.; Martinelli, F.; Santone, A.o (2022). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fapp122312025">"Towards Explainable Quantum Machine Learning for Mobile Malware Detection and Classification"</a>. <i>Applied Sciences</i>. <b>12</b> (23): 12025. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fapp122312025">10.3390/app122312025</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Applied+Sciences&amp;rft.atitle=Towards+Explainable+Quantum+Machine+Learning+for+Mobile+Malware+Detection+and+Classification&amp;rft.volume=12&amp;rft.issue=23&amp;rft.pages=12025&amp;rft.date=2022&amp;rft_id=info%3Adoi%2F10.3390%2Fapp122312025&amp;rft.aulast=Mercaldo&amp;rft.aufirst=F.&amp;rft.au=Ciaramella%2C+G.&amp;rft.au=Iadarola%2C+G.&amp;rft.au=Storto%2C+M.&amp;rft.au=Martinelli%2C+F.&amp;rft.au=Santone%2C+A.o&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Fapp122312025&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-99">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRibeiroSinghGuestrin2016" class="citation arxiv cs1">Ribeiro, Marco Tulio; Singh, Sameer; Guestrin, Carlos (2016-08-09). "<span class="cs1-kern-left"></span>"Why Should I Trust You?": Explaining the Predictions of Any Classifier". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1602.04938">1602.04938</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/cs.LG">cs.LG</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=%22Why+Should+I+Trust+You%3F%22%3A+Explaining+the+Predictions+of+Any+Classifier&amp;rft.date=2016-08-09&amp;rft_id=info%3Aarxiv%2F1602.04938&amp;rft.aulast=Ribeiro&amp;rft.aufirst=Marco+Tulio&amp;rft.au=Singh%2C+Sameer&amp;rft.au=Guestrin%2C+Carlos&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPiraFerrie2024" class="citation journal cs1">Pira, Lirandë; Ferrie, Chris (2024-04-18). "On the interpretability of quantum neural networks". <i>Quantum Machine Intelligence</i>. <b>6</b> (2). <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2308.11098">2308.11098</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs42484-024-00191-y">10.1007/s42484-024-00191-y</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quantum+Machine+Intelligence&amp;rft.atitle=On+the+interpretability+of+quantum+neural+networks&amp;rft.volume=6&amp;rft.issue=2&amp;rft.date=2024-04-18&amp;rft_id=info%3Aarxiv%2F2308.11098&amp;rft_id=info%3Adoi%2F10.1007%2Fs42484-024-00191-y&amp;rft.aulast=Pira&amp;rft.aufirst=Lirand%C3%AB&amp;rft.au=Ferrie%2C+Chris&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCoryWiebeFerrieGranade2012" class="citation journal cs1">Cory, D. G.; Wiebe, Nathan; Ferrie, Christopher; Granade, Christopher E. (2012-07-06). "Robust Online Hamiltonian Learning". <i>New Journal of Physics</i>. <b>14</b> (10): 103013. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1207.1655">1207.1655</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012NJPh...14j3013G">2012NJPh...14j3013G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1367-2630%2F14%2F10%2F103013">10.1088/1367-2630/14/10/103013</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9928389">9928389</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=New+Journal+of+Physics&amp;rft.atitle=Robust+Online+Hamiltonian+Learning&amp;rft.volume=14&amp;rft.issue=10&amp;rft.pages=103013&amp;rft.date=2012-07-06&amp;rft_id=info%3Aarxiv%2F1207.1655&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9928389%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F1367-2630%2F14%2F10%2F103013&amp;rft_id=info%3Abibcode%2F2012NJPh...14j3013G&amp;rft.aulast=Cory&amp;rft.aufirst=D.+G.&amp;rft.au=Wiebe%2C+Nathan&amp;rft.au=Ferrie%2C+Christopher&amp;rft.au=Granade%2C+Christopher+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArunachalamde_Wolf2017" class="citation arxiv cs1">Arunachalam, Srinivasan; de Wolf, Ronald (2017). "A Survey of Quantum Learning Theory". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1701.06806">1701.06806</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=A+Survey+of+Quantum+Learning+Theory&amp;rft.date=2017&amp;rft_id=info%3Aarxiv%2F1701.06806&amp;rft.aulast=Arunachalam&amp;rft.aufirst=Srinivasan&amp;rft.au=de+Wolf%2C+Ronald&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-gortlerservedioquantum-103"><span class="mw-cite-backlink">^ <a href="#cite_ref-gortlerservedioquantum_103-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-gortlerservedioquantum_103-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-gortlerservedioquantum_103-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFServedioGortler2004" class="citation journal cs1">Servedio, Rocco A.; Gortler, Steven J. (2004). "Equivalences and Separations Between Quantum and Classical Learnability". <i>SIAM Journal on Computing</i>. <b>33</b> (5): <span class="nowrap">1067–</span>1092. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.69.6555">10.1.1.69.6555</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1137%2FS0097539704412910">10.1137/S0097539704412910</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=SIAM+Journal+on+Computing&amp;rft.atitle=Equivalences+and+Separations+Between+Quantum+and+Classical+Learnability&amp;rft.volume=33&amp;rft.issue=5&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1067-%3C%2Fspan%3E1092&amp;rft.date=2004&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.69.6555%23id-name%3DCiteSeerX&amp;rft_id=info%3Adoi%2F10.1137%2FS0097539704412910&amp;rft.aulast=Servedio&amp;rft.aufirst=Rocco+A.&amp;rft.au=Gortler%2C+Steven+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-104">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArunachalamde_Wolf2016" class="citation arxiv cs1">Arunachalam, Srinivasan; de Wolf, Ronald (2016). "Optimal Quantum Sample Complexity of Learning Algorithms". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1607.00932">1607.00932</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Optimal+Quantum+Sample+Complexity+of+Learning+Algorithms&amp;rft.date=2016&amp;rft_id=info%3Aarxiv%2F1607.00932&amp;rft.aulast=Arunachalam&amp;rft.aufirst=Srinivasan&amp;rft.au=de+Wolf%2C+Ronald&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-105">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNaderJeffrey1999" class="citation journal cs1">Nader, Bshouty H.; Jeffrey, Jackson C. (1999). "Learning DNF over the Uniform Distribution Using a Quantum Example Oracle". <i>SIAM Journal on Computing</i>. <b>28</b> (3): <span class="nowrap">1136–</span>1153. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.23.5709">10.1.1.23.5709</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1137%2FS0097539795293123">10.1137/S0097539795293123</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=SIAM+Journal+on+Computing&amp;rft.atitle=Learning+DNF+over+the+Uniform+Distribution+Using+a+Quantum+Example+Oracle&amp;rft.volume=28&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1136-%3C%2Fspan%3E1153&amp;rft.date=1999&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.23.5709%23id-name%3DCiteSeerX&amp;rft_id=info%3Adoi%2F10.1137%2FS0097539795293123&amp;rft.aulast=Nader&amp;rft.aufirst=Bshouty+H.&amp;rft.au=Jeffrey%2C+Jackson+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-106">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMonràsSentísWittek2017" class="citation journal cs1">Monràs, Alex; Sentís, Gael; Wittek, Peter (2017). "Inductive supervised quantum learning". <i>Physical Review Letters</i>. <b>118</b> (19): 190503. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1605.07541">1605.07541</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017PhRvL.118s0503M">2017PhRvL.118s0503M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.118.190503">10.1103/PhysRevLett.118.190503</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28548536">28548536</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6521971">6521971</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Inductive+supervised+quantum+learning&amp;rft.volume=118&amp;rft.issue=19&amp;rft.pages=190503&amp;rft.date=2017&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6521971%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2017PhRvL.118s0503M&amp;rft_id=info%3Aarxiv%2F1605.07541&amp;rft_id=info%3Apmid%2F28548536&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.118.190503&amp;rft.aulast=Monr%C3%A0s&amp;rft.aufirst=Alex&amp;rft.au=Sent%C3%ADs%2C+Gael&amp;rft.au=Wittek%2C+Peter&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-107">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://static.googleusercontent.com/media/www.google.com/de//googleblogs/pdfs/nips_demoreport_120709_research.pdf">"NIPS 2009 Demonstration: Binary Classification using Hardware Implementation of Quantum Annealing"</a> <span class="cs1-format">(PDF)</span>. Static.googleusercontent.com<span class="reference-accessdate">. Retrieved <span class="nowrap">26 November</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=NIPS+2009+Demonstration%3A+Binary+Classification+using+Hardware+Implementation+of+Quantum+Annealing&amp;rft.pub=Static.googleusercontent.com&amp;rft_id=http%3A%2F%2Fstatic.googleusercontent.com%2Fmedia%2Fwww.google.com%2Fde%2F%2Fgoogleblogs%2Fpdfs%2Fnips_demoreport_120709_research.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://plus.google.com/+QuantumAILab">"Google Quantum A.I. Lab Team"</a>. <i>Google Plus</i>. 31 January 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">31 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Google+Plus&amp;rft.atitle=Google+Quantum+A.I.+Lab+Team&amp;rft.date=2017-01-31&amp;rft_id=https%3A%2F%2Fplus.google.com%2F%2BQuantumAILab&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-109">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20170201210200/https://ti.arc.nasa.gov/tech/dash/physics/quail/">"NASA Quantum Artificial Intelligence Laboratory"</a>. <i>NASA</i>. 31 January 2017. Archived from <a rel="nofollow" class="external text" href="https://ti.arc.nasa.gov/tech/dash/physics/quail/">the original</a> on 1 February 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">31 January</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=NASA&amp;rft.atitle=NASA+Quantum+Artificial+Intelligence+Laboratory&amp;rft.date=2017-01-31&amp;rft_id=https%3A%2F%2Fti.arc.nasa.gov%2Ftech%2Fdash%2Fphysics%2Fquail%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-110">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNeigovzenNevesSollacherGlaser2009" class="citation journal cs1">Neigovzen, Rodion; Neves, Jorge L.; Sollacher, Rudolf; Glaser, Steffen J. (2009). "Quantum pattern recognition with liquid-state nuclear magnetic resonance". <i>Physical Review A</i>. <b>79</b> (4): 042321. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0802.1592">0802.1592</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009PhRvA..79d2321N">2009PhRvA..79d2321N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.79.042321">10.1103/PhysRevA.79.042321</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119115625">119115625</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+A&amp;rft.atitle=Quantum+pattern+recognition+with+liquid-state+nuclear+magnetic+resonance&amp;rft.volume=79&amp;rft.issue=4&amp;rft.pages=042321&amp;rft.date=2009&amp;rft_id=info%3Aarxiv%2F0802.1592&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119115625%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevA.79.042321&amp;rft_id=info%3Abibcode%2F2009PhRvA..79d2321N&amp;rft.aulast=Neigovzen&amp;rft.aufirst=Rodion&amp;rft.au=Neves%2C+Jorge+L.&amp;rft.au=Sollacher%2C+Rudolf&amp;rft.au=Glaser%2C+Steffen+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiLiuXuDu2015" class="citation journal cs1">Li, Zhaokai; Liu, Xiaomei; Xu, Nanyang; Du, Jiangfeng (2015). "Experimental Realization of a Quantum Support Vector Machine". <i>Physical Review Letters</i>. <b>114</b> (14): 140504. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1410.1054">1410.1054</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015PhRvL.114n0504L">2015PhRvL.114n0504L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.114.140504">10.1103/PhysRevLett.114.140504</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25910101">25910101</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119182770">119182770</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Experimental+Realization+of+a+Quantum+Support+Vector+Machine&amp;rft.volume=114&amp;rft.issue=14&amp;rft.pages=140504&amp;rft.date=2015&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119182770%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2015PhRvL.114n0504L&amp;rft_id=info%3Aarxiv%2F1410.1054&amp;rft_id=info%3Apmid%2F25910101&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.114.140504&amp;rft.aulast=Li&amp;rft.aufirst=Zhaokai&amp;rft.au=Liu%2C+Xiaomei&amp;rft.au=Xu%2C+Nanyang&amp;rft.au=Du%2C+Jiangfeng&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-WanDKGK16-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-WanDKGK16_112-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWanDahlstenKristjanssonGardner2017" class="citation journal cs1">Wan, Kwok-Ho; Dahlsten, Oscar; Kristjansson, Hler; Gardner, Robert; Kim, Myungshik (2017). "Quantum generalisation of feedforward neural networks". <i>npj Quantum Information</i>. <b>3</b> (36): 36. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1612.01045">1612.01045</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017npjQI...3...36W">2017npjQI...3...36W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41534-017-0032-4">10.1038/s41534-017-0032-4</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:51685660">51685660</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=npj+Quantum+Information&amp;rft.atitle=Quantum+generalisation+of+feedforward+neural+networks&amp;rft.volume=3&amp;rft.issue=36&amp;rft.pages=36&amp;rft.date=2017&amp;rft_id=info%3Aarxiv%2F1612.01045&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A51685660%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2Fs41534-017-0032-4&amp;rft_id=info%3Abibcode%2F2017npjQI...3...36W&amp;rft.aulast=Wan&amp;rft.aufirst=Kwok-Ho&amp;rft.au=Dahlsten%2C+Oscar&amp;rft.au=Kristjansson%2C+Hler&amp;rft.au=Gardner%2C+Robert&amp;rft.au=Kim%2C+Myungshik&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-113">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrunnerSorianoMirassoFischer2013" class="citation journal cs1">Brunner, Daniel; Soriano, Miguel C.; Mirasso, Claudio R.; Fischer, Ingo (2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562454">"Parallel photonic information processing at gigabyte per second data rates using transient states"</a>. <i>Nature Communications</i>. <b>4</b>: 1364. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013NatCo...4.1364B">2013NatCo...4.1364B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fncomms2368">10.1038/ncomms2368</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562454">3562454</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23322052">23322052</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Communications&amp;rft.atitle=Parallel+photonic+information+processing+at+gigabyte+per+second+data+rates+using+transient+states&amp;rft.volume=4&amp;rft.pages=1364&amp;rft.date=2013&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3562454%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F23322052&amp;rft_id=info%3Adoi%2F10.1038%2Fncomms2368&amp;rft_id=info%3Abibcode%2F2013NatCo...4.1364B&amp;rft.aulast=Brunner&amp;rft.aufirst=Daniel&amp;rft.au=Soriano%2C+Miguel+C.&amp;rft.au=Mirasso%2C+Claudio+R.&amp;rft.au=Fischer%2C+Ingo&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3562454&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-114">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTezakMabuchi2015" class="citation journal cs1">Tezak, Nikolas; Mabuchi, Hideo (2015). "A coherent perceptron for all-optical learning". <i>EPJ Quantum Technology</i>. <b>2</b> (1): 10. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1501.01608">1501.01608</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015EPJQT...2...10T">2015EPJQT...2...10T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1140%2Fepjqt%2Fs40507-015-0023-3">10.1140/epjqt/s40507-015-0023-3</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:28568346">28568346</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=EPJ+Quantum+Technology&amp;rft.atitle=A+coherent+perceptron+for+all-optical+learning&amp;rft.volume=2&amp;rft.issue=1&amp;rft.pages=10&amp;rft.date=2015&amp;rft_id=info%3Aarxiv%2F1501.01608&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A28568346%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1140%2Fepjqt%2Fs40507-015-0023-3&amp;rft_id=info%3Abibcode%2F2015EPJQT...2...10T&amp;rft.aulast=Tezak&amp;rft.aufirst=Nikolas&amp;rft.au=Mabuchi%2C+Hideo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-115">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCaiWuSuChen2015" class="citation journal cs1">Cai, X.-D.; Wu, D.; Su, Z.-E.; Chen, M.-C.; Wang, X.-L.; Li, Li; Liu, N.-L.; Lu, C.-Y.; Pan, J.-W. (2015). "Entanglement-Based Machine Learning on a Quantum Computer". <i>Physical Review Letters</i>. <b>114</b> (11): 110504. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1409.7770">1409.7770</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015PhRvL.114k0504C">2015PhRvL.114k0504C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.114.110504">10.1103/PhysRevLett.114.110504</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25839250">25839250</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:44769024">44769024</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Entanglement-Based+Machine+Learning+on+a+Quantum+Computer&amp;rft.volume=114&amp;rft.issue=11&amp;rft.pages=110504&amp;rft.date=2015&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A44769024%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2015PhRvL.114k0504C&amp;rft_id=info%3Aarxiv%2F1409.7770&amp;rft_id=info%3Apmid%2F25839250&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.114.110504&amp;rft.aulast=Cai&amp;rft.aufirst=X.-D.&amp;rft.au=Wu%2C+D.&amp;rft.au=Su%2C+Z.-E.&amp;rft.au=Chen%2C+M.-C.&amp;rft.au=Wang%2C+X.-L.&amp;rft.au=Li%2C+Li&amp;rft.au=Liu%2C+N.-L.&amp;rft.au=Lu%2C+C.-Y.&amp;rft.au=Pan%2C+J.-W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-116">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPfeifferEgusquizaDi_VentraSanz2016" class="citation journal cs1">Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E. (2016). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933948">"Quantum memristors"</a>. <i>Scientific Reports</i>. <b>6</b> (2016): 29507. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1511.02192">1511.02192</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016NatSR...629507P">2016NatSR...629507P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fsrep29507">10.1038/srep29507</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933948">4933948</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27381511">27381511</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+Reports&amp;rft.atitle=Quantum+memristors&amp;rft.volume=6&amp;rft.issue=2016&amp;rft.pages=29507&amp;rft.date=2016&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4933948%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F2016NatSR...629507P&amp;rft_id=info%3Aarxiv%2F1511.02192&amp;rft_id=info%3Apmid%2F27381511&amp;rft_id=info%3Adoi%2F10.1038%2Fsrep29507&amp;rft.aulast=Pfeiffer&amp;rft.aufirst=P.&amp;rft.au=Egusquiza%2C+I.+L.&amp;rft.au=Di+Ventra%2C+M.&amp;rft.au=Sanz%2C+M.&amp;rft.au=Solano%2C+E.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4933948&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-117"><span class="mw-cite-backlink"><b><a href="#cite_ref-117">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSalmilehtoDeppeDi_VentraSanz2017" class="citation journal cs1">Salmilehto, J.; Deppe, F.; Di Ventra, M.; Sanz, M.; Solano, E. (2017). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5307327">"Quantum Memristors with Superconducting Circuits"</a>. <i>Scientific Reports</i>. <b>7</b> (42044): 42044. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1603.04487">1603.04487</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017NatSR...742044S">2017NatSR...742044S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fsrep42044">10.1038/srep42044</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5307327">5307327</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28195193">28195193</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+Reports&amp;rft.atitle=Quantum+Memristors+with+Superconducting+Circuits&amp;rft.volume=7&amp;rft.issue=42044&amp;rft.pages=42044&amp;rft.date=2017&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5307327%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F2017NatSR...742044S&amp;rft_id=info%3Aarxiv%2F1603.04487&amp;rft_id=info%3Apmid%2F28195193&amp;rft_id=info%3Adoi%2F10.1038%2Fsrep42044&amp;rft.aulast=Salmilehto&amp;rft.aufirst=J.&amp;rft.au=Deppe%2C+F.&amp;rft.au=Di+Ventra%2C+M.&amp;rft.au=Sanz%2C+M.&amp;rft.au=Solano%2C+E.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5307327&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-118"><span class="mw-cite-backlink"><b><a href="#cite_ref-118">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiHollowayBenjaminBriggs2017" class="citation journal cs1">Li, Ying; Holloway, Gregory W.; Benjamin, Simon C.; Briggs, G. Andrew D.; Baugh, Jonathan; Mol, Jan A. (2017). "A simple and robust quantum memristor". <i>Physical Review B</i>. <b>96</b> (7): 075446. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1612.08409">1612.08409</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017PhRvB..96g5446L">2017PhRvB..96g5446L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevB.96.075446">10.1103/PhysRevB.96.075446</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119454549">119454549</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+B&amp;rft.atitle=A+simple+and+robust+quantum+memristor&amp;rft.volume=96&amp;rft.issue=7&amp;rft.pages=075446&amp;rft.date=2017&amp;rft_id=info%3Aarxiv%2F1612.08409&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119454549%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevB.96.075446&amp;rft_id=info%3Abibcode%2F2017PhRvB..96g5446L&amp;rft.aulast=Li&amp;rft.aufirst=Ying&amp;rft.au=Holloway%2C+Gregory+W.&amp;rft.au=Benjamin%2C+Simon+C.&amp;rft.au=Briggs%2C+G.+Andrew+D.&amp;rft.au=Baugh%2C+Jonathan&amp;rft.au=Mol%2C+Jan+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-119">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBirdEkártFaria2019" class="citation journal cs1">Bird, Jordan J.; Ekárt, Anikó; Faria, Diego R. (2019-10-28). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00500-019-04450-0">"On the effects of pseudorandom and quantum-random number generators in soft computing"</a>. <i>Soft Computing</i>. <b>24</b> (12). Springer Science and Business Media LLC: <span class="nowrap">9243–</span>9256. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00500-019-04450-0">10.1007/s00500-019-04450-0</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1432-7643">1432-7643</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Soft+Computing&amp;rft.atitle=On+the+effects+of+pseudorandom+and+quantum-random+number+generators+in+soft+computing&amp;rft.volume=24&amp;rft.issue=12&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E9243-%3C%2Fspan%3E9256&amp;rft.date=2019-10-28&amp;rft_id=info%3Adoi%2F10.1007%2Fs00500-019-04450-0&amp;rft.issn=1432-7643&amp;rft.aulast=Bird&amp;rft.aufirst=Jordan+J.&amp;rft.au=Ek%C3%A1rt%2C+Anik%C3%B3&amp;rft.au=Faria%2C+Diego+R.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252Fs00500-019-04450-0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-120"><span class="mw-cite-backlink"><b><a href="#cite_ref-120">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeeseWolterMückeFranken2024" class="citation journal cs1">Heese, Raoul; Wolter, Moritz; Mücke, Sascha; Franken, Lukas; Piatkowski, Nico (2024). "On the effects of biased quantum random numbers on the initialization of artificial neural networks". <i>Machine Learning</i>. <b>113</b> (3): <span class="nowrap">1189–</span>1217. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2108.13329">2108.13329</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10994-023-06490-y">10.1007/s10994-023-06490-y</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Machine+Learning&amp;rft.atitle=On+the+effects+of+biased+quantum+random+numbers+on+the+initialization+of+artificial+neural+networks&amp;rft.volume=113&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1189-%3C%2Fspan%3E1217&amp;rft.date=2024&amp;rft_id=info%3Aarxiv%2F2108.13329&amp;rft_id=info%3Adoi%2F10.1007%2Fs10994-023-06490-y&amp;rft.aulast=Heese&amp;rft.aufirst=Raoul&amp;rft.au=Wolter%2C+Moritz&amp;rft.au=M%C3%BCcke%2C+Sascha&amp;rft.au=Franken%2C+Lukas&amp;rft.au=Piatkowski%2C+Nico&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-121">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.newscientist.com/article/2270517-a-quantum-trick-with-photons-gives-machine-learning-a-speed-boost/">"A quantum trick with photons gives machine learning a speed boost"</a>. <i>New Scientist</i><span class="reference-accessdate">. Retrieved <span class="nowrap">31 August</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=New+Scientist&amp;rft.atitle=A+quantum+trick+with+photons+gives+machine+learning+a+speed+boost&amp;rft_id=https%3A%2F%2Fwww.newscientist.com%2Farticle%2F2270517-a-quantum-trick-with-photons-gives-machine-learning-a-speed-boost%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-122"><span class="mw-cite-backlink"><b><a href="#cite_ref-122">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRecio-ArmengolEisertMeyer2024" class="citation arxiv cs1">Recio-Armengol, Erik; Eisert, Jens; Meyer, Johannes Jakob (2024-06-19). "Single-shot quantum machine learning". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2406.13812">2406.13812</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Single-shot+quantum+machine+learning&amp;rft.date=2024-06-19&amp;rft_id=info%3Aarxiv%2F2406.13812&amp;rft.aulast=Recio-Armengol&amp;rft.aufirst=Erik&amp;rft.au=Eisert%2C+Jens&amp;rft.au=Meyer%2C+Johannes+Jakob&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-123"><span class="mw-cite-backlink"><b><a href="#cite_ref-123">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20201027091228/https://www.protocol.com/manuals/quantum-computing/machine-learning-ai-quantum-computing-move-beyond-hype">"Can quantum machine learning move beyond its own hype?"</a>. <i>Protocol</i>. 2020-05-04. Archived from <a rel="nofollow" class="external text" href="https://www.protocol.com/manuals/quantum-computing/machine-learning-ai-quantum-computing-move-beyond-hype">the original</a> on 2020-10-27<span class="reference-accessdate">. Retrieved <span class="nowrap">2020-10-27</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Protocol&amp;rft.atitle=Can+quantum+machine+learning+move+beyond+its+own+hype%3F&amp;rft.date=2020-05-04&amp;rft_id=https%3A%2F%2Fwww.protocol.com%2Fmanuals%2Fquantum-computing%2Fmachine-learning-ai-quantum-computing-move-beyond-hype&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> <li id="cite_note-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-124">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.quantamagazine.org/job-one-for-quantum-computers-boost-artificial-intelligence-20180129/">"Can quantum machine learning move beyond its own hype?"</a>. <i>quantamagazine.org</i>. 2018-01-22.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=quantamagazine.org&amp;rft.atitle=Can+quantum+machine+learning+move+beyond+its+own+hype%3F&amp;rft.date=2018-01-22&amp;rft_id=https%3A%2F%2Fwww.quantamagazine.org%2Fjob-one-for-quantum-computers-boost-artificial-intelligence-20180129%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+machine+learning" class="Z3988"></span></span> </li> </ol></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Quantum_information_science667" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Quantum_information" title="Template:Quantum information"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Quantum_information" title="Template talk:Quantum information"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Quantum_information" title="Special:EditPage/Template:Quantum information"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Quantum_information_science667" style="font-size:114%;margin:0 4em"><a href="/wiki/Quantum_information_science" title="Quantum information science">Quantum information science</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">General</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/DiVincenzo%27s_criteria" title="DiVincenzo&#39;s criteria">DiVincenzo's criteria</a></li> <li><a href="/wiki/Noisy_intermediate-scale_quantum_era" title="Noisy intermediate-scale quantum era">NISQ era</a></li> <li><a href="/wiki/Quantum_computing" title="Quantum computing">Quantum computing</a> <ul><li><a href="/wiki/Timeline_of_quantum_computing_and_communication" title="Timeline of quantum computing and communication">timeline</a></li></ul></li> <li><a href="/wiki/Quantum_information" title="Quantum information">Quantum information</a></li> <li><a href="/wiki/Quantum_programming" title="Quantum programming">Quantum programming</a></li> <li><a href="/wiki/Quantum_simulator" title="Quantum simulator">Quantum simulation</a></li> <li><a href="/wiki/Qubit" title="Qubit">Qubit</a> <ul><li><a href="/wiki/Physical_and_logical_qubits" title="Physical and logical qubits">physical vs. logical</a></li></ul></li> <li><a href="/wiki/List_of_quantum_processors" title="List of quantum processors">Quantum processors</a> <ul><li><a href="/wiki/Cloud-based_quantum_computing" title="Cloud-based quantum computing">cloud-based</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theorems</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bell%27s_theorem" title="Bell&#39;s theorem">Bell's</a></li> <li><a href="/wiki/Eastin%E2%80%93Knill_theorem" title="Eastin–Knill theorem">Eastin–Knill</a></li> <li><a href="/wiki/Gleason%27s_theorem" title="Gleason&#39;s theorem">Gleason's</a></li> <li><a href="/wiki/Gottesman%E2%80%93Knill_theorem" title="Gottesman–Knill theorem">Gottesman–Knill</a></li> <li><a href="/wiki/Holevo%27s_theorem" title="Holevo&#39;s theorem">Holevo's</a></li> <li><a href="/wiki/No-broadcasting_theorem" title="No-broadcasting theorem">No-broadcasting</a></li> <li><a href="/wiki/No-cloning_theorem" title="No-cloning theorem">No-cloning</a></li> <li><a href="/wiki/No-communication_theorem" title="No-communication theorem">No-communication</a></li> <li><a href="/wiki/No-deleting_theorem" title="No-deleting theorem">No-deleting</a></li> <li><a href="/wiki/No-hiding_theorem" title="No-hiding theorem">No-hiding</a></li> <li><a href="/wiki/No-teleportation_theorem" title="No-teleportation theorem">No-teleportation</a></li> <li><a href="/wiki/PBR_theorem" class="mw-redirect" title="PBR theorem">PBR</a></li> <li><a href="/wiki/Quantum_speed_limit_theorems" class="mw-redirect" title="Quantum speed limit theorems">Quantum speed limit</a></li> <li><a href="/wiki/Threshold_theorem" title="Threshold theorem">Threshold</a></li> <li><a href="/wiki/Solovay%E2%80%93Kitaev_theorem" title="Solovay–Kitaev theorem">Solovay–Kitaev</a></li> <li><a href="/wiki/Schr%C3%B6dinger%E2%80%93HJW_theorem" title="Schrödinger–HJW theorem">Purification</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Quantum<br />communication</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Classical_capacity" title="Classical capacity">Classical capacity</a> <ul><li><a href="/wiki/Entanglement-assisted_classical_capacity" title="Entanglement-assisted classical capacity">entanglement-assisted</a></li> <li><a href="/wiki/Quantum_capacity" title="Quantum capacity">quantum capacity</a></li></ul></li> <li><a href="/wiki/Entanglement_distillation" title="Entanglement distillation">Entanglement distillation</a></li> <li><a href="/wiki/Entanglement_swapping" title="Entanglement swapping">Entanglement swapping</a></li> <li><a href="/wiki/Monogamy_of_entanglement" title="Monogamy of entanglement">Monogamy of entanglement</a></li> <li><a href="/wiki/LOCC" title="LOCC">LOCC</a></li> <li><a href="/wiki/Quantum_channel" title="Quantum channel">Quantum channel</a> <ul><li><a href="/wiki/Quantum_network" title="Quantum network">quantum network</a></li></ul></li> <li><a href="/wiki/Quantum_teleportation" title="Quantum teleportation">Quantum teleportation</a> <ul><li><a href="/wiki/Quantum_gate_teleportation" title="Quantum gate teleportation">quantum gate teleportation</a></li></ul></li> <li><a href="/wiki/Superdense_coding" title="Superdense coding">Superdense coding</a></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Quantum_cryptography24" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_cryptography" title="Quantum cryptography">Quantum cryptography</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Post-quantum_cryptography" title="Post-quantum cryptography">Post-quantum cryptography</a></li> <li><a href="/wiki/Quantum_coin_flipping" title="Quantum coin flipping">Quantum coin flipping</a></li> <li><a href="/wiki/Quantum_money" title="Quantum money">Quantum money</a></li> <li><a href="/wiki/Quantum_key_distribution" title="Quantum key distribution">Quantum key distribution</a> <ul><li><a href="/wiki/BB84" title="BB84">BB84</a></li> <li><a href="/wiki/SARG04" title="SARG04">SARG04</a></li> <li><a href="/wiki/List_of_quantum_key_distribution_protocols" title="List of quantum key distribution protocols">other protocols</a></li></ul></li> <li><a href="/wiki/Quantum_secret_sharing" title="Quantum secret sharing">Quantum secret sharing</a></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_algorithm" title="Quantum algorithm">Quantum algorithms</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Amplitude_amplification" title="Amplitude amplification">Amplitude amplification</a></li> <li><a href="/wiki/Bernstein%E2%80%93Vazirani_algorithm" title="Bernstein–Vazirani algorithm">Bernstein–Vazirani</a></li> <li><a href="/wiki/BHT_algorithm" title="BHT algorithm">BHT</a></li> <li><a href="/wiki/Boson_sampling" title="Boson sampling">Boson sampling</a></li> <li><a href="/wiki/Deutsch%E2%80%93Jozsa_algorithm" title="Deutsch–Jozsa algorithm">Deutsch–Jozsa</a></li> <li><a href="/wiki/Grover%27s_algorithm" title="Grover&#39;s algorithm">Grover's</a></li> <li><a href="/wiki/HHL_algorithm" title="HHL algorithm">HHL</a></li> <li><a href="/wiki/Hidden_subgroup_problem" title="Hidden subgroup problem">Hidden subgroup</a></li> <li><a href="/wiki/Quantum_annealing" title="Quantum annealing">Quantum annealing</a></li> <li><a href="/wiki/Quantum_counting_algorithm" title="Quantum counting algorithm">Quantum counting</a></li> <li><a href="/wiki/Quantum_Fourier_transform" title="Quantum Fourier transform">Quantum Fourier transform</a></li> <li><a href="/wiki/Quantum_optimization_algorithms" title="Quantum optimization algorithms">Quantum optimization</a></li> <li><a href="/wiki/Quantum_phase_estimation_algorithm" title="Quantum phase estimation algorithm">Quantum phase estimation</a></li> <li><a href="/wiki/Shor%27s_algorithm" title="Shor&#39;s algorithm">Shor's</a></li> <li><a href="/wiki/Simon%27s_problem" title="Simon&#39;s problem">Simon's</a></li> <li><a href="/wiki/Variational_quantum_eigensolver" title="Variational quantum eigensolver">VQE</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_complexity_theory" title="Quantum complexity theory">Quantum<br />complexity theory</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/BQP" title="BQP">BQP</a></li> <li><a href="/wiki/Exact_quantum_polynomial_time" title="Exact quantum polynomial time">EQP</a></li> <li><a href="/wiki/QIP_(complexity)" title="QIP (complexity)">QIP</a></li> <li><a href="/wiki/QMA" title="QMA">QMA</a></li> <li><a href="/wiki/PostBQP" title="PostBQP">PostBQP</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Quantum <br /> processor benchmarks</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_supremacy" title="Quantum supremacy">Quantum supremacy</a></li> <li><a href="/wiki/Quantum_volume" title="Quantum volume">Quantum volume</a></li> <li><a href="/wiki/Randomized_benchmarking" title="Randomized benchmarking">Randomized benchmarking</a> <ul><li><a href="/wiki/Cross-entropy_benchmarking" title="Cross-entropy benchmarking">XEB</a></li></ul></li> <li><a href="/wiki/Relaxation_(NMR)" title="Relaxation (NMR)">Relaxation times</a> <ul><li><a href="/wiki/Spin%E2%80%93lattice_relaxation" title="Spin–lattice relaxation"><i>T</i><sub>1</sub></a></li> <li><a href="/wiki/Spin%E2%80%93spin_relaxation" title="Spin–spin relaxation"><i>T</i><sub>2</sub></a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Quantum<br /><a href="/wiki/Model_of_computation" title="Model of computation">computing models</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adiabatic_quantum_computation" title="Adiabatic quantum computation">Adiabatic quantum computation</a></li> <li><a href="/wiki/Continuous-variable_quantum_information" title="Continuous-variable quantum information">Continuous-variable quantum information</a></li> <li><a href="/wiki/One-way_quantum_computer" title="One-way quantum computer">One-way quantum computer</a> <ul><li><a href="/wiki/Cluster_state" title="Cluster state">cluster state</a></li></ul></li> <li><a href="/wiki/Quantum_circuit" title="Quantum circuit">Quantum circuit</a> <ul><li><a href="/wiki/Quantum_logic_gate" title="Quantum logic gate">quantum logic gate</a></li></ul></li> <li><a class="mw-selflink selflink">Quantum machine learning</a> <ul><li><a href="/wiki/Quantum_neural_network" title="Quantum neural network">quantum neural network</a></li></ul></li> <li><a href="/wiki/Quantum_Turing_machine" title="Quantum Turing machine">Quantum Turing machine</a></li> <li><a href="/wiki/Topological_quantum_computer" title="Topological quantum computer">Topological quantum computer</a></li> <li><a href="/wiki/Hamiltonian_quantum_computation" title="Hamiltonian quantum computation">Hamiltonian quantum computation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_error_correction" title="Quantum error correction">Quantum<br />error correction</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Codes <ul><li><a href="/wiki/CSS_code" title="CSS code">CSS</a></li> <li><a href="/wiki/Quantum_convolutional_code" title="Quantum convolutional code">quantum convolutional</a></li> <li><a href="/wiki/Stabilizer_code" title="Stabilizer code">stabilizer</a></li> <li><a href="/wiki/Shor_code" class="mw-redirect" title="Shor code">Shor</a></li> <li><a href="/wiki/Bacon%E2%80%93Shor_code" title="Bacon–Shor code">Bacon–Shor</a></li> <li><a href="/wiki/Steane_code" title="Steane code">Steane</a></li> <li><a href="/wiki/Toric_code" title="Toric code">Toric</a></li> <li><a href="/wiki/Gnu_code" title="Gnu code"><i>gnu</i></a></li></ul></li> <li><a href="/wiki/Entanglement-assisted_stabilizer_formalism" title="Entanglement-assisted stabilizer formalism">Entanglement-assisted</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Physical<br />implementations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_optics" title="Quantum optics">Quantum optics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cavity_quantum_electrodynamics" title="Cavity quantum electrodynamics">Cavity QED</a></li> <li><a href="/wiki/Circuit_quantum_electrodynamics" title="Circuit quantum electrodynamics">Circuit QED</a></li> <li><a href="/wiki/Linear_optical_quantum_computing" title="Linear optical quantum computing">Linear optical QC</a></li> <li><a href="/wiki/KLM_protocol" title="KLM protocol">KLM protocol</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Ultracold_atom" title="Ultracold atom">Ultracold atoms</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Neutral_atom_quantum_computer" title="Neutral atom quantum computer">Neutral atom QC</a></li> <li><a href="/wiki/Trapped-ion_quantum_computer" title="Trapped-ion quantum computer">Trapped-ion QC</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Spin_(physics)" title="Spin (physics)">Spin</a>-based</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kane_quantum_computer" title="Kane quantum computer">Kane QC</a></li> <li><a href="/wiki/Spin_qubit_quantum_computer" title="Spin qubit quantum computer">Spin qubit QC</a></li> <li><a href="/wiki/Nitrogen-vacancy_center" title="Nitrogen-vacancy center">NV center</a></li> <li><a href="/wiki/Nuclear_magnetic_resonance_quantum_computer" title="Nuclear magnetic resonance quantum computer">NMR QC</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Superconducting_quantum_computing" title="Superconducting quantum computing">Superconducting</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Charge_qubit" title="Charge qubit">Charge qubit</a></li> <li><a href="/wiki/Flux_qubit" title="Flux qubit">Flux qubit</a></li> <li><a href="/wiki/Phase_qubit" title="Phase qubit">Phase qubit</a></li> <li><a href="/wiki/Transmon" title="Transmon">Transmon</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_programming" title="Quantum programming">Quantum<br />programming</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/OpenQASM" title="OpenQASM">OpenQASM</a>–<a href="/wiki/Qiskit" title="Qiskit">Qiskit</a>–<a href="/wiki/IBM_Quantum_Experience" class="mw-redirect" title="IBM Quantum Experience">IBM QX</a></li> <li><a href="/wiki/Quil_(instruction_set_architecture)" title="Quil (instruction set architecture)">Quil</a>–<a href="/wiki/Rigetti_Computing" title="Rigetti Computing">Forest/Rigetti QCS</a></li> <li><a href="/wiki/Cirq" title="Cirq">Cirq</a></li> <li><a href="/wiki/Q_Sharp" title="Q Sharp">Q#</a></li> <li><a href="/wiki/Libquantum" title="Libquantum">libquantum</a></li> <li><a href="/wiki/Quantum_programming" title="Quantum programming">many others...</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Quantum_information_science" title="Category:Quantum information science">Quantum information science</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Template"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/16px-Symbol_template_class_pink.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/23px-Symbol_template_class_pink.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/31px-Symbol_template_class_pink.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Template:Quantum_mechanics_topics" title="Template:Quantum mechanics topics">Quantum mechanics topics</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Differentiable_computing254" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Differentiable_computing" title="Template:Differentiable computing"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Differentiable_computing" title="Template talk:Differentiable computing"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Differentiable_computing" title="Special:EditPage/Template:Differentiable computing"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Differentiable_computing254" style="font-size:114%;margin:0 4em">Differentiable computing</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Differentiable_function" title="Differentiable function">General</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><b><a href="/wiki/Differentiable_programming" title="Differentiable programming">Differentiable programming</a></b></li> <li><a href="/wiki/Information_geometry" title="Information geometry">Information geometry</a></li> <li><a href="/wiki/Statistical_manifold" title="Statistical manifold">Statistical manifold</a></li> <li><a href="/wiki/Automatic_differentiation" title="Automatic differentiation">Automatic differentiation</a></li> <li><a href="/wiki/Neuromorphic_computing" title="Neuromorphic computing">Neuromorphic computing</a></li> <li><a href="/wiki/Pattern_recognition" title="Pattern recognition">Pattern recognition</a></li> <li><a href="/wiki/Ricci_calculus" title="Ricci calculus">Ricci calculus</a></li> <li><a href="/wiki/Computational_learning_theory" title="Computational learning theory">Computational learning theory</a></li> <li><a href="/wiki/Inductive_bias" title="Inductive bias">Inductive bias</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Hardware</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Graphcore" title="Graphcore">IPU</a></li> <li><a href="/wiki/Tensor_Processing_Unit" title="Tensor Processing Unit">TPU</a></li> <li><a href="/wiki/Vision_processing_unit" title="Vision processing unit">VPU</a></li> <li><a href="/wiki/Memristor" title="Memristor">Memristor</a></li> <li><a href="/wiki/SpiNNaker" title="SpiNNaker">SpiNNaker</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Software libraries</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/TensorFlow" title="TensorFlow">TensorFlow</a></li> <li><a href="/wiki/PyTorch" title="PyTorch">PyTorch</a></li> <li><a href="/wiki/Keras" title="Keras">Keras</a></li> <li><a href="/wiki/Scikit-learn" title="Scikit-learn">scikit-learn</a></li> <li><a href="/wiki/Theano_(software)" title="Theano (software)">Theano</a></li> <li><a href="/wiki/JAX_(software)" title="JAX (software)">JAX</a></li> <li><a href="/wiki/Flux_(machine-learning_framework)" title="Flux (machine-learning framework)">Flux.jl</a></li> <li><a href="/wiki/MindSpore" title="MindSpore">MindSpore</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Symbol_portal_class.svg" class="mw-file-description" title="Portal"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/16px-Symbol_portal_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/23px-Symbol_portal_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/31px-Symbol_portal_class.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span> Portals <ul><li><a href="/wiki/Portal:Computer_programming" title="Portal:Computer programming">Computer programming</a></li> <li><a href="/wiki/Portal:Technology" title="Portal:Technology">Technology</a></li></ul></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Emerging_technologies167" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style="text-align: center;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Emerging_technologies" title="Template:Emerging technologies"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Emerging_technologies" title="Template talk:Emerging technologies"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Emerging_technologies" title="Special:EditPage/Template:Emerging technologies"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Emerging_technologies167" style="font-size:114%;margin:0 4em"><a href="/wiki/Emerging_technologies" title="Emerging technologies">Emerging technologies</a></div></th></tr><tr><th scope="row" class="navbox-group" style="text-align: center;;width:1%">Fields</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;"><a href="/wiki/Quantum_technology" class="mw-redirect" title="Quantum technology">Quantum</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_algorithm" title="Quantum algorithm">algorithms</a></li> <li><a href="/wiki/Quantum_amplifier" title="Quantum amplifier">amplifier</a></li> <li><a href="/wiki/Quantum_bus" title="Quantum bus">bus</a></li> <li><a href="/wiki/Quantum_cellular_automaton" title="Quantum cellular automaton">cellular automata</a></li> <li><a href="/wiki/Quantum_channel" title="Quantum channel">channel</a></li> <li><a href="/wiki/Quantum_circuit" title="Quantum circuit">circuit</a></li> <li><a href="/wiki/Quantum_complexity_theory" title="Quantum complexity theory">complexity theory</a></li> <li><a href="/wiki/Quantum_computing" title="Quantum computing">computing</a></li> <li><a href="/wiki/Quantum_cryptography" title="Quantum cryptography">cryptography</a> <ul><li><a href="/wiki/Post-quantum_cryptography" title="Post-quantum cryptography">post-quantum</a></li></ul></li> <li><a href="/wiki/Quantum_dynamics" title="Quantum dynamics">dynamics</a></li> <li><a href="/wiki/Quantum_electronics" class="mw-redirect" title="Quantum electronics">electronics</a></li> <li><a href="/wiki/Quantum_error_correction" title="Quantum error correction">error correction</a></li> <li><a href="/wiki/Quantum_finite_automaton" title="Quantum finite automaton">finite automata</a></li> <li><a href="/wiki/Quantum_image_processing" title="Quantum image processing">image processing</a></li> <li><a href="/wiki/Quantum_imaging" title="Quantum imaging">imaging</a></li> <li><a href="/wiki/Quantum_information" title="Quantum information">information</a></li> <li><a href="/wiki/Quantum_key_distribution" title="Quantum key distribution">key distribution</a></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">logic</a></li> <li><a href="/wiki/Quantum_logic_clock" title="Quantum logic clock">logic clock</a></li> <li><a href="/wiki/Quantum_logic_gate" title="Quantum logic gate">logic gate</a></li> <li><a href="/wiki/Quantum_machine" title="Quantum machine">machine</a></li> <li><a class="mw-selflink selflink">machine learning</a></li> <li><a href="/wiki/Quantum_metamaterial" title="Quantum metamaterial">metamaterial</a></li> <li><a href="/wiki/Quantum_network" title="Quantum network">network</a></li> <li><a href="/wiki/Quantum_neural_network" title="Quantum neural network">neural network</a></li> <li><a href="/wiki/Quantum_optics" title="Quantum optics">optics</a></li> <li><a href="/wiki/Quantum_programming" title="Quantum programming">programming</a></li> <li><a href="/wiki/Quantum_sensor" title="Quantum sensor">sensing</a></li> <li><a href="/wiki/Quantum_simulator" title="Quantum simulator">simulator</a></li> <li><a href="/wiki/Quantum_teleportation" title="Quantum teleportation">teleportation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Other</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Acoustic_levitation" title="Acoustic levitation">Acoustic levitation</a></li> <li><a href="/wiki/Anti-gravity" title="Anti-gravity">Anti-gravity</a></li> <li><a href="/wiki/Cloak_of_invisibility" title="Cloak of invisibility">Cloak of invisibility</a></li> <li><a href="/wiki/Digital_scent_technology" title="Digital scent technology">Digital scent technology</a></li> <li><a href="/wiki/Force_field_(technology)" title="Force field (technology)">Force field</a> <ul><li><a href="/wiki/Plasma_window" title="Plasma window">Plasma window</a></li></ul></li> <li><a href="/wiki/Immersion_(virtual_reality)" title="Immersion (virtual reality)">Immersive virtual reality</a></li> <li><a href="/wiki/Magnetic_refrigeration" title="Magnetic refrigeration">Magnetic refrigeration</a></li> <li><a href="/wiki/Phased-array_optics" title="Phased-array optics">Phased-array optics</a></li> <li><a href="/wiki/Thermoacoustic_heat_engine" title="Thermoacoustic heat engine">Thermoacoustic heat engine</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td class="navbox-abovebelow" colspan="2" style="text-align: center;"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="List-Class article"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <b><a href="/wiki/List_of_emerging_technologies" title="List of emerging technologies">List</a></b></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐ext.codfw.main‐786d8bd985‐4mshm Cached time: 20250216223854 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.644 seconds Real time usage: 1.834 seconds Preprocessor visited node count: 9781/1000000 Post‐expand include size: 448211/2097152 bytes Template argument size: 5763/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 8/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 590274/5000000 bytes Lua time usage: 1.107/10.000 seconds Lua memory usage: 6920454/52428800 bytes Lua Profile: ? 180 ms 16.1% dataWrapper <mw.lua:672> 180 ms 16.1% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::gsub 180 ms 16.1% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 160 ms 14.3% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::find 60 ms 5.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::preprocess 60 ms 5.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::match 40 ms 3.6% is_generic <Module:Citation/CS1:1498> 40 ms 3.6% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getExpandedArgument 40 ms 3.6% <mw.lua:694> 40 ms 3.6% [others] 140 ms 12.5% Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1534.189 1 -total 71.64% 1099.027 1 Template:Reflist 48.54% 744.698 86 Template:Cite_journal 8.18% 125.534 18 Template:Cite_arXiv 6.28% 96.413 1 Template:Quantum_mechanics 6.01% 92.198 1 Template:Sidebar_with_collapsible_lists 5.28% 80.965 1 Template:Short_description 4.23% 64.966 6 Template:Navbox 3.47% 53.179 2 Template:Pagetype 3.39% 51.953 10 Template:Cite_book --> <!-- Saved in parser cache with key enwiki:pcache:44108758:|#|:idhash:canonical and timestamp 20250216223919 and revision id 1276107599. Rendering was triggered because: page-edit --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Quantum_machine_learning&amp;oldid=1276107599">https://en.wikipedia.org/w/index.php?title=Quantum_machine_learning&amp;oldid=1276107599</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Machine_learning" title="Category:Machine learning">Machine learning</a></li><li><a href="/wiki/Category:Quantum_information_science" title="Category:Quantum information science">Quantum information science</a></li><li><a href="/wiki/Category:Theoretical_computer_science" title="Category:Theoretical computer science">Theoretical computer science</a></li><li><a href="/wiki/Category:Quantum_programming" title="Category:Quantum programming">Quantum programming</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">CS1 maint: multiple names: authors list</a></li><li><a href="/wiki/Category:CS1_errors:_periodical_ignored" title="Category:CS1 errors: periodical ignored">CS1 errors: periodical ignored</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_rewrite_from_July_2023" title="Category:Wikipedia articles needing rewrite from July 2023">Wikipedia articles needing rewrite from July 2023</a></li><li><a href="/wiki/Category:All_articles_needing_rewrite" title="Category:All articles needing rewrite">All articles needing rewrite</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_January_2023" title="Category:Articles with unsourced statements from January 2023">Articles with unsourced statements from January 2023</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_February_2017" title="Category:Articles with unsourced statements from February 2017">Articles with unsourced statements from February 2017</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_December_2020" title="Category:Articles with unsourced statements from December 2020">Articles with unsourced statements from December 2020</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 16 February 2025, at 22:38<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Quantum_machine_learning&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Quantum machine learning</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>12 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-b766959bd-7lph7","wgBackendResponseTime":133,"wgPageParseReport":{"limitreport":{"cputime":"1.644","walltime":"1.834","ppvisitednodes":{"value":9781,"limit":1000000},"postexpandincludesize":{"value":448211,"limit":2097152},"templateargumentsize":{"value":5763,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":8,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":590274,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1534.189 1 -total"," 71.64% 1099.027 1 Template:Reflist"," 48.54% 744.698 86 Template:Cite_journal"," 8.18% 125.534 18 Template:Cite_arXiv"," 6.28% 96.413 1 Template:Quantum_mechanics"," 6.01% 92.198 1 Template:Sidebar_with_collapsible_lists"," 5.28% 80.965 1 Template:Short_description"," 4.23% 64.966 6 Template:Navbox"," 3.47% 53.179 2 Template:Pagetype"," 3.39% 51.953 10 Template:Cite_book"]},"scribunto":{"limitreport-timeusage":{"value":"1.107","limit":"10.000"},"limitreport-memusage":{"value":6920454,"limit":52428800},"limitreport-profile":[["?","180","16.1"],["dataWrapper \u003Cmw.lua:672\u003E","180","16.1"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::gsub","180","16.1"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","160","14.3"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::find","60","5.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::preprocess","60","5.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::match","40","3.6"],["is_generic \u003CModule:Citation/CS1:1498\u003E","40","3.6"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getExpandedArgument","40","3.6"],["\u003Cmw.lua:694\u003E","40","3.6"],["[others]","140","12.5"]]},"cachereport":{"origin":"mw-api-ext.codfw.main-786d8bd985-4mshm","timestamp":"20250216223854","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Quantum machine learning","url":"https:\/\/en.wikipedia.org\/wiki\/Quantum_machine_learning","sameAs":"http:\/\/www.wikidata.org\/entity\/Q18811578","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q18811578","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2014-10-14T12:19:40Z","dateModified":"2025-02-16T22:38:53Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/1\/1b\/Qml_approaches.tif","headline":"Quantum Machine Learning combines quantum computing and ML to enhance algorithms, leveraging unique quantum properties, like superposition and entanglement , for efficient problem-solving."}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10