CINXE.COM

Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review

<!DOCTYPE html> <html lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="https://www.facebook.com/2008/fbml"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <meta content="mdpi" name="sso-service" /> <meta content="width=device-width, initial-scale=1.0" name="viewport" /> <title>Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review</title><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/font-awesome.min.css?eb190a3a77e5e1ee?1740558760"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery.multiselect.css?f56c135cbf4d1483?1740558760"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/chosen.min.css?d7ca5ca9441ef9e1?1740558760"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/main2.css?53f2584328279bf5?1740558760"> <link rel="mask-icon" href="https://pub.mdpi-res.com/img/mask-icon-128.svg?c1c7eca266cd7013?1740558760" color="#4f5671"> <link rel="apple-touch-icon" sizes="180x180" href="https://pub.mdpi-res.com/icon/apple-touch-icon-180x180.png?1740558760"> <link rel="apple-touch-icon" sizes="152x152" href="https://pub.mdpi-res.com/icon/apple-touch-icon-152x152.png?1740558760"> <link rel="apple-touch-icon" sizes="144x144" href="https://pub.mdpi-res.com/icon/apple-touch-icon-144x144.png?1740558760"> <link rel="apple-touch-icon" sizes="120x120" href="https://pub.mdpi-res.com/icon/apple-touch-icon-120x120.png?1740558760"> <link rel="apple-touch-icon" sizes="114x114" href="https://pub.mdpi-res.com/icon/apple-touch-icon-114x114.png?1740558760"> <link rel="apple-touch-icon" sizes="76x76" href="https://pub.mdpi-res.com/icon/apple-touch-icon-76x76.png?1740558760"> <link rel="apple-touch-icon" sizes="72x72" href="https://pub.mdpi-res.com/icon/apple-touch-icon-72x72.png?1740558760"> <link rel="apple-touch-icon" sizes="57x57" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1740558760"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1740558760"> <link rel="apple-touch-icon-precomposed" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1740558760"> <link rel="manifest" href="/manifest.json"> <meta name="theme-color" content="#ffffff"> <meta name="application-name" content="&nbsp;"/> <link rel="apple-touch-startup-image" href="https://pub.mdpi-res.com/img/journals/geosciences-logo-sq.png?8600e93ff98dbf14"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/img/journals/geosciences-logo-sq.png?8600e93ff98dbf14"> <meta name="msapplication-TileImage" content="https://pub.mdpi-res.com/img/journals/geosciences-logo-sq.png?8600e93ff98dbf14"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1740558760"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1740558760"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/xml2html/article-html.css?230b005b39af4260?1740558760"> <style> h2, #abstract .related_suggestion_title { } .batch_articles a { color: #000; } a, .batch_articles .authors a, a:focus, a:hover, a:active, .batch_articles a:focus, .batch_articles a:hover, li.side-menu-li a { } span.label a { color: #fff; } #main-content a.title-link:hover, #main-content a.title-link:focus, #main-content div.generic-item a.title-link:hover, #main-content div.generic-item a.title-link:focus { } #main-content #middle-column .generic-item.article-item a.title-link:hover, #main-content #middle-column .generic-item.article-item a.title-link:focus { } .art-authors a.toEncode { color: #333; font-weight: 700; } #main-content #middle-column ul li::before { } .accordion-navigation.active a.accordion__title, .accordion-navigation.active a.accordion__title::after { } .accordion-navigation li:hover::before, .accordion-navigation li:hover a, .accordion-navigation li:focus a { } .relative-size-container .relative-size-image .relative-size { } .middle-column__help__fixed a:hover i, } input[type="checkbox"]:checked:after { } input[type="checkbox"]:not(:disabled):hover:before { } #main-content .bolded-text { } #main-content .hypothesis-count-container { } #main-content .hypothesis-count-container:before { } .full-size-menu ul li.menu-item .dropdown-wrapper { } .full-size-menu ul li.menu-item > a.open::after { } #title-story .title-story-orbit .orbit-caption { #background: url('/img/design/000000_background.png') !important; background: url('/img/design/ffffff_background.png') !important; color: rgb(51, 51, 51) !important; } #main-content .content__container__orbit { background-color: #000 !important; } #main-content .content__container__journal { color: #fff; } .html-article-menu .row span { } .html-article-menu .row span.active { } .accordion-navigation__journal .side-menu-li.active::before, .accordion-navigation__journal .side-menu-li.active a { color: rgba(0,51,153,0.75) !important; font-weight: 700; } .accordion-navigation__journal .side-menu-li:hover::before , .accordion-navigation__journal .side-menu-li:hover a { color: rgba(0,51,153,0.75) !important; } .side-menu-ul li.active a, .side-menu-ul li.active, .side-menu-ul li.active::before { color: rgba(0,51,153,0.75) !important; } .side-menu-ul li.active a { } .result-selected, .active-result.highlighted, .active-result:hover, .result-selected, .active-result.highlighted, .active-result:focus { } .search-container.search-container__default-scheme { } nav.tab-bar .open-small-search.active:after { } .search-container.search-container__default-scheme .custom-accordion-for-small-screen-link::after { color: #fff; } @media only screen and (max-width: 50em) { #main-content .content__container.journal-info { color: #fff; } #main-content .content__container.journal-info a { color: #fff; } } .button.button--color { } .button.button--color:hover, .button.button--color:focus { } .button.button--color-journal { position: relative; background-color: rgba(0,51,153,0.75); border-color: #fff; color: #fff !important; } .button.button--color-journal:hover::before { content: ''; position: absolute; top: 0; left: 0; height: 100%; width: 100%; background-color: #ffffff; opacity: 0.2; } .button.button--color-journal:visited, .button.button--color-journal:hover, .button.button--color-journal:focus { background-color: rgba(0,51,153,0.75); border-color: #fff; color: #fff !important; } .button.button--color path { } .button.button--color:hover path { fill: #fff; } #main-content #search-refinements .ui-slider-horizontal .ui-slider-range { } .breadcrumb__element:last-of-type a { } #main-header { } #full-size-menu .top-bar, #full-size-menu li.menu-item span.user-email { } .top-bar-section li:not(.has-form) a:not(.button) { } #full-size-menu li.menu-item .dropdown-wrapper li a:hover { } #full-size-menu li.menu-item a:hover, #full-size-menu li.menu.item a:focus, nav.tab-bar a:hover { } #full-size-menu li.menu.item a:active, #full-size-menu li.menu.item a.active { } #full-size-menu li.menu-item a.open-mega-menu.active, #full-size-menu li.menu-item div.mega-menu, a.open-mega-menu.active { } #full-size-menu li.menu-item div.mega-menu li, #full-size-menu li.menu-item div.mega-menu a { border-color: #9a9a9a; } div.type-section h2 { font-size: 20px; line-height: 26px; font-weight: 300; } div.type-section h3 { margin-left: 15px; margin-bottom: 0px; font-weight: 300; } .journal-tabs .tab-title.active a { } </style> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/slick.css?f38b2db10e01b157?1740558760"> <meta name="title" content="Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review"> <meta name="description" content="The effective stress principle (ESP) plays a basic role in geology and engineering problems as it is involved in fundamental issues concerning strain and failure of rock and soil, as well as of other porous materials such as concrete, metal powders, biological tissues, etc. Although since its introduction in the 1920s the main ESP aspects have been unravelled and theoretically derived, these do not appear to have been always entirely perceived by many in the science community dealing with ESP-related topics but having little familiarity with the complex theories of porous media and poroelasticity. The purpose of this review is to provide a guidance for the reader who needs an updated overview of the different theoretical and experimental approaches to the ESP and related topics over the past century, with particular reference to geological fracturing processes. We begin by illustrating, after some introductive historical remarks, the basic theory underlying the ESP, based on theory of elasticity methods. Then the different ESP-related theories and experimental results, as well as main interpretations of rock jointing and fracturing phenomena, are discussed. Two main classical works are then revisited, and a rigorous ESP proof is derived. Such a proof is aimed at geologists, engineers and geophysicists to become more familiar with theories of porous media and poroelasticity, being based on the classical theory of elasticity. The final part of this review illustrates some still open issues about faulting and hydraulic fracturing in rocks." > <link rel="image_src" href="https://pub.mdpi-res.com/img/journals/geosciences-logo.png?8600e93ff98dbf14" > <meta name="dc.title" content="Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review"> <meta name="dc.creator" content="Vincenzo Guerriero"> <meta name="dc.creator" content="Stefano Mazzoli"> <meta name="dc.type" content="Review"> <meta name="dc.source" content="Geosciences 2021, Vol. 11, Page 119"> <meta name="dc.date" content="2021-03-05"> <meta name ="dc.identifier" content="10.3390/geosciences11030119"> <meta name="dc.publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="dc.rights" content="http://creativecommons.org/licenses/by/3.0/"> <meta name="dc.format" content="application/pdf" > <meta name="dc.language" content="en" > <meta name="dc.description" content="The effective stress principle (ESP) plays a basic role in geology and engineering problems as it is involved in fundamental issues concerning strain and failure of rock and soil, as well as of other porous materials such as concrete, metal powders, biological tissues, etc. Although since its introduction in the 1920s the main ESP aspects have been unravelled and theoretically derived, these do not appear to have been always entirely perceived by many in the science community dealing with ESP-related topics but having little familiarity with the complex theories of porous media and poroelasticity. The purpose of this review is to provide a guidance for the reader who needs an updated overview of the different theoretical and experimental approaches to the ESP and related topics over the past century, with particular reference to geological fracturing processes. We begin by illustrating, after some introductive historical remarks, the basic theory underlying the ESP, based on theory of elasticity methods. Then the different ESP-related theories and experimental results, as well as main interpretations of rock jointing and fracturing phenomena, are discussed. Two main classical works are then revisited, and a rigorous ESP proof is derived. Such a proof is aimed at geologists, engineers and geophysicists to become more familiar with theories of porous media and poroelasticity, being based on the classical theory of elasticity. The final part of this review illustrates some still open issues about faulting and hydraulic fracturing in rocks." > <meta name="dc.subject" content="effective stress" > <meta name="dc.subject" content="theory of elasticity" > <meta name="dc.subject" content="poroelasticity" > <meta name="dc.subject" content="coseismic overpressure" > <meta name="dc.subject" content="tensional fractures" > <meta name ="prism.issn" content="2076-3263"> <meta name ="prism.publicationName" content="Geosciences"> <meta name ="prism.publicationDate" content="2021-03-05"> <meta name ="prism.volume" content="11"> <meta name ="prism.number" content="3"> <meta name ="prism.section" content="Review" > <meta name ="prism.startingPage" content="119" > <meta name="citation_issn" content="2076-3263"> <meta name="citation_journal_title" content="Geosciences"> <meta name="citation_publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="citation_title" content="Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review"> <meta name="citation_publication_date" content="2021/3"> <meta name="citation_online_date" content="2021/03/05"> <meta name="citation_volume" content="11"> <meta name="citation_issue" content="3"> <meta name="citation_firstpage" content="119"> <meta name="citation_author" content="Guerriero, Vincenzo"> <meta name="citation_author" content="Mazzoli, Stefano"> <meta name="citation_doi" content="10.3390/geosciences11030119"> <meta name="citation_id" content="mdpi-geosciences11030119"> <meta name="citation_abstract_html_url" content="https://www.mdpi.com/2076-3263/11/3/119"> <meta name="citation_pdf_url" content="https://www.mdpi.com/2076-3263/11/3/119/pdf?version=1615949270"> <link rel="alternate" type="application/pdf" title="PDF Full-Text" href="https://www.mdpi.com/2076-3263/11/3/119/pdf?version=1615949270"> <meta name="fulltext_pdf" content="https://www.mdpi.com/2076-3263/11/3/119/pdf?version=1615949270"> <meta name="citation_fulltext_html_url" content="https://www.mdpi.com/2076-3263/11/3/119/htm"> <link rel="alternate" type="text/html" title="HTML Full-Text" href="https://www.mdpi.com/2076-3263/11/3/119/htm"> <meta name="fulltext_html" content="https://www.mdpi.com/2076-3263/11/3/119/htm"> <link rel="alternate" type="text/xml" title="XML Full-Text" href="https://www.mdpi.com/2076-3263/11/3/119/xml"> <meta name="fulltext_xml" content="https://www.mdpi.com/2076-3263/11/3/119/xml"> <meta name="citation_xml_url" content="https://www.mdpi.com/2076-3263/11/3/119/xml"> <meta name="twitter:card" content="summary" /> <meta name="twitter:site" content="@MDPIOpenAccess" /> <meta name="twitter:image" content="https://pub.mdpi-res.com/img/journals/geosciences-logo-social.png?8600e93ff98dbf14" /> <meta property="fb:app_id" content="131189377574"/> <meta property="og:site_name" content="MDPI"/> <meta property="og:type" content="article"/> <meta property="og:url" content="https://www.mdpi.com/2076-3263/11/3/119" /> <meta property="og:title" content="Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review" /> <meta property="og:description" content="The effective stress principle (ESP) plays a basic role in geology and engineering problems as it is involved in fundamental issues concerning strain and failure of rock and soil, as well as of other porous materials such as concrete, metal powders, biological tissues, etc. Although since its introduction in the 1920s the main ESP aspects have been unravelled and theoretically derived, these do not appear to have been always entirely perceived by many in the science community dealing with ESP-related topics but having little familiarity with the complex theories of porous media and poroelasticity. The purpose of this review is to provide a guidance for the reader who needs an updated overview of the different theoretical and experimental approaches to the ESP and related topics over the past century, with particular reference to geological fracturing processes. We begin by illustrating, after some introductive historical remarks, the basic theory underlying the ESP, based on theory of elasticity methods. Then the different ESP-related theories and experimental results, as well as main interpretations of rock jointing and fracturing phenomena, are discussed. Two main classical works are then revisited, and a rigorous ESP proof is derived. Such a proof is aimed at geologists, engineers and geophysicists to become more familiar with theories of porous media and poroelasticity, being based on the classical theory of elasticity. The final part of this review illustrates some still open issues about faulting and hydraulic fracturing in rocks." /> <meta property="og:image" content="https://pub.mdpi-res.com/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-ag-550.jpg?1615971707" /> <link rel="alternate" type="application/rss+xml" title="MDPI Publishing - Latest articles" href="https://www.mdpi.com/rss"> <meta name="google-site-verification" content="PxTlsg7z2S00aHroktQd57fxygEjMiNHydKn3txhvwY"> <meta name="facebook-domain-verification" content="mcoq8dtq6sb2hf7z29j8w515jjoof7" /> <script id="usercentrics-cmp" src="https://web.cmp.usercentrics.eu/ui/loader.js" data-ruleset-id="PbAnaGk92sB5Cc" async></script> <!--[if lt IE 9]> <script>var browserIe8 = true;</script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/ie8foundationfix.css?50273beac949cbf0?1740558760"> <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.6.2/html5shiv.js"></script> <script src="//s3.amazonaws.com/nwapi/nwmatcher/nwmatcher-1.2.5-min.js"></script> <script src="//html5base.googlecode.com/svn-history/r38/trunk/js/selectivizr-1.0.3b.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/respond.js/1.1.0/respond.min.js"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8patch.js?9e1d3c689a0471df?1740558760"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/rem.min.js?94b62787dcd6d2f2?1740558760"></script> <![endif]--> <script> window.dataLayer = window.dataLayer || []; function gtag() { dataLayer.push(arguments); } gtag('consent', 'default', { 'ad_user_data': 'denied', 'ad_personalization': 'denied', 'ad_storage': 'denied', 'analytics_storage': 'denied', 'wait_for_update': 500, }); dataLayer.push({'gtm.start': new Date().getTime(), 'event': 'gtm.js'}); </script> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-WPK7SW5'); </script> </head> <body> <div class="direction direction_right" id="small_right" style="border-right-width: 0px; padding:0;"> <i class="fa fa-caret-right fa-2x"></i> </div> <div class="big_direction direction_right" id="big_right" style="border-right-width: 0px;"> <div style="text-align: right;"> Next Article in Journal<br> <div><a href="/2076-3263/11/3/120">Relationship between the Geotourism Potential and Function in the Polish Part of the <i>Roztocze Transboundary Biosphere Reserve</i></a></div> Next Article in Special Issue<br> <div><a href="/2076-3263/11/5/216">The Santorini-Amorgos Shear Zone: Evidence for Dextral Transtension in the South Aegean Back-Arc Region, Greece</a></div> </div> </div> <div class="direction" id="small_left" style="border-left-width: 0px"> <i class="fa fa-caret-left fa-2x"></i> </div> <div class="big_direction" id="big_left" style="border-left-width: 0px;"> <div> Previous Article in Journal<br> <div><a href="/2076-3263/11/3/118">Micromorphological Characteristic of Different-Aged Cryosols from the East Part of Lena River Delta, Siberia, Russia</a></div> Previous Article in Special Issue<br> <div><a href="/2076-3263/11/2/102">Morphotectonic Analysis along the Northern Margin of Samos Island, Related to the Seismic Activity of October 2020, Aegean Sea, Greece</a></div> </div> </div> <div style="clear: both;"></div> <div id="menuModal" class="reveal-modal reveal-modal-new reveal-modal-menu" aria-hidden="true" data-reveal role="dialog"> <div class="menu-container"> <div class="UI_NavMenu"> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Journals</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about/journals">Active Journals</a> <a href="/about/journalfinder">Find a Journal</a> <a href="/about/journals/proposal">Journal Proposal</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <a href="/topics"> <h2>Topics</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Information</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; max-width: 200px; float: left;"> <a href="/authors">For Authors</a> <a href="/reviewers">For Reviewers</a> <a href="/editors">For Editors</a> <a href="/librarians">For Librarians</a> <a href="/publishing_services">For Publishers</a> <a href="/societies">For Societies</a> <a href="/conference_organizers">For Conference Organizers</a> </div> <div style="width: 100%; max-width: 250px; float: left;"> <a href="/openaccess">Open Access Policy</a> <a href="/ioap">Institutional Open Access Program</a> <a href="/special_issues_guidelines">Special Issues Guidelines</a> <a href="/editorial_process">Editorial Process</a> <a href="/ethics">Research and Publication Ethics</a> <a href="/apc">Article Processing Charges</a> <a href="/awards">Awards</a> <a href="/testimonials">Testimonials</a> </div> </div> </div> </div> <a href="/authors/english"> <h2>Author Services</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Initiatives</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer">Sciforum</a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer">MDPI Books</a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer">Preprints.org</a> <a href="https://www.scilit.com" target="_blank" rel="noopener noreferrer">Scilit</a> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer">SciProfiles</a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer">Encyclopedia</a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer">JAMS</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>About</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about">Overview</a> <a href="/about/contact">Contact</a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer">Careers</a> <a href="/about/announcements">News</a> <a href="/about/press">Press</a> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer">Blog</a> </div> </div> </div> </div> </div> <div class="menu-container__buttons"> <a class="button UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> </div> </div> </div> <div id="captchaModal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-label="Captcha" aria-hidden="true" role="dialog"></div> <div id="actionDisabledModal" class="reveal-modal" data-reveal aria-labelledby="actionDisableModalTitle" aria-hidden="true" role="dialog" style="width: 300px;"> <h2 id="actionDisableModalTitle">Notice</h2> <form action="/email/captcha" method="post" id="emailCaptchaForm"> <div class="row"> <div id="js-action-disabled-modal-text" class="small-12 columns"> </div> <div id="js-action-disabled-modal-submit" class="small-12 columns" style="margin-top: 10px; display: none;"> You can make submissions to other journals <a href="https://susy.mdpi.com/user/manuscripts/upload">here</a>. </div> </div> </form> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="rssNotificationModal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="rssNotificationModalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="rssNotificationModalTitle">Notice</h2> <p> You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader. </p> </div> </div> <div class="row"> <div class="small-12 columns"> <a class="button button--color js-rss-notification-confirm">Continue</a> <a class="button button--grey" onclick="$(this).closest('.reveal-modal').find('.close-reveal-modal').click(); return false;">Cancel</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="drop-article-label-openaccess" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to <a href="https://www.mdpi.com/openaccess">https://www.mdpi.com/openaccess</a>. </p> </div> <div id="drop-article-label-feature" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications. </p> <p> Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers. </p> </div> <div id="drop-article-label-choice" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal. <div style="margin-top: -10px;"> <div id="drop-article-label-choice-journal-link" style="display: none; margin-top: -10px; padding-top: 10px;"> </div> </div> </p> </div> <div id="drop-article-label-resubmission" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Original Submission Date Received: <span id="drop-article-label-resubmission-date"></span>. </p> </div> <div id="container"> <noscript> <div id="no-javascript"> You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled. </div> </noscript> <div class="fixed"> <nav class="tab-bar show-for-medium-down"> <div class="row full-width collapse"> <div class="medium-3 small-4 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1740558760" style="width: 64px;" title="MDPI Open Access Journals"> </a> </div> <div class="medium-3 small-4 columns right-aligned"> <div class="show-for-medium-down"> <a href="#" style="display: none;"> <i class="material-icons" onclick="$('#menuModal').foundation('reveal', 'close'); return false;">clear</i> </a> <a class="js-toggle-desktop-layout-link" title="Toggle desktop layout" style="display: none;" href="/toggle_desktop_layout_cookie"> <i class="material-icons">zoom_out_map</i> </a> <a href="#" class="js-open-small-search open-small-search"> <i class="material-icons show-for-small only">search</i> </a> <a title="MDPI main page" class="js-open-menu" data-reveal-id="menuModal" href="#"> <i class="material-icons">menu</i> </a> </div> </div> </div> </nav> </div> <section class="main-section"> <header> <div class="full-size-menu show-for-large-up"> <div class="row full-width"> <div class="large-1 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1740558760" title="MDPI Open Access Journals"> </a> </div> <div class="large-8 columns text-right UI_NavMenu"> <ul> <li class="menu-item"> <a href="/about/journals" data-dropdown="journals-dropdown" aria-controls="journals-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Journals</a> <ul id="journals-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about/journals"> Active Journals </a> </li> <li> <a href="/about/journalfinder"> Find a Journal </a> </li> <li> <a href="/about/journals/proposal"> Journal Proposal </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/topics">Topics</a> </li> <li class="menu-item"> <a href="/authors" data-dropdown="information-dropdown" aria-controls="information-dropdown" aria-expanded="false" data-options="is_hover:true; hover_timeout:200">Information</a> <ul id="information-dropdown" class="f-dropdown dropdown-wrapper" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-5 columns right-border"> <ul> <li> <a href="/authors">For Authors</a> </li> <li> <a href="/reviewers">For Reviewers</a> </li> <li> <a href="/editors">For Editors</a> </li> <li> <a href="/librarians">For Librarians</a> </li> <li> <a href="/publishing_services">For Publishers</a> </li> <li> <a href="/societies">For Societies</a> </li> <li> <a href="/conference_organizers">For Conference Organizers</a> </li> </ul> </div> <div class="small-7 columns"> <ul> <li> <a href="/openaccess">Open Access Policy</a> </li> <li> <a href="/ioap">Institutional Open Access Program</a> </li> <li> <a href="/special_issues_guidelines">Special Issues Guidelines</a> </li> <li> <a href="/editorial_process">Editorial Process</a> </li> <li> <a href="/ethics">Research and Publication Ethics</a> </li> <li> <a href="/apc">Article Processing Charges</a> </li> <li> <a href="/awards">Awards</a> </li> <li> <a href="/testimonials">Testimonials</a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/authors/english">Author Services</a> </li> <li class="menu-item"> <a href="/about/initiatives" data-dropdown="initiatives-dropdown" aria-controls="initiatives-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Initiatives</a> <ul id="initiatives-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> </li> <li> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> </li> <li> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> </li> <li> <a href="https://www.scilit.com" target="_blank" rel="noopener noreferrer"> Scilit </a> </li> <li> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer"> SciProfiles </a> </li> <li> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> </li> <li> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/about" data-dropdown="about-dropdown" aria-controls="about-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">About</a> <ul id="about-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about"> Overview </a> </li> <li> <a href="/about/contact"> Contact </a> </li> <li> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Careers </a> </li> <li> <a href="/about/announcements"> News </a> </li> <li> <a href="/about/press"> Press </a> </li> <li> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer"> Blog </a> </li> </ul> </div> </div> </li> </ul> </li> </ul> </div> <div class="large-3 columns text-right full-size-menu__buttons"> <div> <a class="button button--default-inversed UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> <a class="button button--default js-journal-active-only-link js-journal-active-only-submit-link UC_NavSubmitButton" href=" https://susy.mdpi.com/user/manuscripts/upload?journal=geosciences " data-disabledmessage="new submissions are not possible.">Submit</a> </div> </div> </div> </div> <div class="header-divider">&nbsp;</div> <div class="search-container hide-for-small-down row search-container__homepage-scheme"> <form id="basic_search" style="background-color: inherit !important;" class="large-12 medium-12 columns " action="/search" method="get"> <div class="row search-container__main-elements"> <div class="large-2 medium-2 small-12 columns text-right1 small-only-text-left"> <div class="show-for-medium-up"> <div class="search-input-label">&nbsp;</div> </div> <span class="search-container__title">Search<span class="hide-for-medium"> for Articles</span><span class="hide-for-small">:</span></span> </div> <div class="custom-accordion-for-small-screen-content"> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Title / Keyword</div> </div> <input type="text" placeholder="Title / Keyword" id="q" tabindex="1" name="q" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Author / Affiliation / Email</div> </div> <input type="text" id="authors" placeholder="Author / Affiliation / Email" tabindex="2" name="authors" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Journal</div> </div> <select id="journal" tabindex="3" name="journal" class="chosen-select"> <option value="">All Journals</option> <option value="acoustics" > Acoustics </option> <option value="amh" > Acta Microbiologica Hellenica (AMH) </option> <option value="actuators" > Actuators </option> <option value="adhesives" > Adhesives </option> <option value="admsci" > Administrative Sciences </option> <option value="adolescents" > Adolescents </option> <option value="arm" > Advances in Respiratory Medicine (ARM) </option> <option value="aerobiology" > Aerobiology </option> <option value="aerospace" > Aerospace </option> <option value="agriculture" > Agriculture </option> <option value="agriengineering" > AgriEngineering </option> <option value="agrochemicals" > Agrochemicals </option> <option value="agronomy" > Agronomy </option> <option value="ai" > AI </option> <option value="aisens" > AI Sensors </option> <option value="air" > Air </option> <option value="algorithms" > Algorithms </option> <option value="allergies" > Allergies </option> <option value="alloys" > Alloys </option> <option value="analytica" > Analytica </option> <option value="analytics" > Analytics </option> <option value="anatomia" > Anatomia </option> <option value="anesthres" > Anesthesia Research </option> <option value="animals" > Animals </option> <option value="antibiotics" > Antibiotics </option> <option value="antibodies" > Antibodies </option> <option value="antioxidants" > Antioxidants </option> <option value="applbiosci" > Applied Biosciences </option> <option value="applmech" > Applied Mechanics </option> <option value="applmicrobiol" > Applied Microbiology </option> <option value="applnano" > Applied Nano </option> <option value="applsci" > Applied Sciences </option> <option value="asi" > Applied System Innovation (ASI) </option> <option value="appliedchem" > AppliedChem </option> <option value="appliedmath" > AppliedMath </option> <option value="aquacj" > Aquaculture Journal </option> <option value="architecture" > Architecture </option> <option value="arthropoda" > Arthropoda </option> <option value="arts" > Arts </option> <option value="astronomy" > Astronomy </option> <option value="atmosphere" > Atmosphere </option> <option value="atoms" > Atoms </option> <option value="audiolres" > Audiology Research </option> <option value="automation" > Automation </option> <option value="axioms" > Axioms </option> <option value="bacteria" > Bacteria </option> <option value="batteries" > Batteries </option> <option value="behavsci" > Behavioral Sciences </option> <option value="beverages" > Beverages </option> <option value="BDCC" > Big Data and Cognitive Computing (BDCC) </option> <option value="biochem" > BioChem </option> <option value="bioengineering" > Bioengineering </option> <option value="biologics" > Biologics </option> <option value="biology" > Biology </option> <option value="blsf" > Biology and Life Sciences Forum </option> <option value="biomass" > Biomass </option> <option value="biomechanics" > Biomechanics </option> <option value="biomed" > BioMed </option> <option value="biomedicines" > Biomedicines </option> <option value="biomedinformatics" > BioMedInformatics </option> <option value="biomimetics" > Biomimetics </option> <option value="biomolecules" > Biomolecules </option> <option value="biophysica" > Biophysica </option> <option value="biosensors" > Biosensors </option> <option value="biosphere" > Biosphere </option> <option value="biotech" > BioTech </option> <option value="birds" > Birds </option> <option value="blockchains" > Blockchains </option> <option value="brainsci" > Brain Sciences </option> <option value="buildings" > Buildings </option> <option value="businesses" > Businesses </option> <option value="carbon" > C (Journal of Carbon Research) </option> <option value="cancers" > Cancers </option> <option value="cardiogenetics" > Cardiogenetics </option> <option value="catalysts" > Catalysts </option> <option value="cells" > Cells </option> <option value="ceramics" > Ceramics </option> <option value="challenges" > Challenges </option> <option value="ChemEngineering" > ChemEngineering </option> <option value="chemistry" > Chemistry </option> <option value="chemproc" > Chemistry Proceedings </option> <option value="chemosensors" > Chemosensors </option> <option value="children" > Children </option> <option value="chips" > Chips </option> <option value="civileng" > CivilEng </option> <option value="cleantechnol" > Clean Technologies (Clean Technol.) </option> <option value="climate" > Climate </option> <option value="ctn" > Clinical and Translational Neuroscience (CTN) </option> <option value="clinbioenerg" > Clinical Bioenergetics </option> <option value="clinpract" > Clinics and Practice </option> <option value="clockssleep" > Clocks &amp; Sleep </option> <option value="coasts" > Coasts </option> <option value="coatings" > Coatings </option> <option value="colloids" > Colloids and Interfaces </option> <option value="colorants" > Colorants </option> <option value="commodities" > Commodities </option> <option value="complications" > Complications </option> <option value="compounds" > Compounds </option> <option value="computation" > Computation </option> <option value="csmf" > Computer Sciences &amp; Mathematics Forum </option> <option value="computers" > Computers </option> <option value="condensedmatter" > Condensed Matter </option> <option value="conservation" > Conservation </option> <option value="constrmater" > Construction Materials </option> <option value="cmd" > Corrosion and Materials Degradation (CMD) </option> <option value="cosmetics" > Cosmetics </option> <option value="covid" > COVID </option> <option value="cmtr" > Craniomaxillofacial Trauma &amp; Reconstruction (CMTR) </option> <option value="crops" > Crops </option> <option value="cryo" > Cryo </option> <option value="cryptography" > Cryptography </option> <option value="crystals" > Crystals </option> <option value="cimb" > Current Issues in Molecular Biology (CIMB) </option> <option value="curroncol" > Current Oncology </option> <option value="dairy" > Dairy </option> <option value="data" > Data </option> <option value="dentistry" > Dentistry Journal </option> <option value="dermato" > Dermato </option> <option value="dermatopathology" > Dermatopathology </option> <option value="designs" > Designs </option> <option value="diabetology" > Diabetology </option> <option value="diagnostics" > Diagnostics </option> <option value="dietetics" > Dietetics </option> <option value="digital" > Digital </option> <option value="disabilities" > Disabilities </option> <option value="diseases" > Diseases </option> <option value="diversity" > Diversity </option> <option value="dna" > DNA </option> <option value="drones" > Drones </option> <option value="ddc" > Drugs and Drug Candidates (DDC) </option> <option value="dynamics" > Dynamics </option> <option value="earth" > Earth </option> <option value="ecologies" > Ecologies </option> <option value="econometrics" > Econometrics </option> <option value="economies" > Economies </option> <option value="education" > Education Sciences </option> <option value="electricity" > Electricity </option> <option value="electrochem" > Electrochem </option> <option value="electronicmat" > Electronic Materials </option> <option value="electronics" > Electronics </option> <option value="ecm" > Emergency Care and Medicine </option> <option value="encyclopedia" > Encyclopedia </option> <option value="endocrines" > Endocrines </option> <option value="energies" > Energies </option> <option value="esa" > Energy Storage and Applications (ESA) </option> <option value="eng" > Eng </option> <option value="engproc" > Engineering Proceedings </option> <option value="entropy" > Entropy </option> <option value="eesp" > Environmental and Earth Sciences Proceedings </option> <option value="environments" > Environments </option> <option value="epidemiologia" > Epidemiologia </option> <option value="epigenomes" > Epigenomes </option> <option value="ebj" > European Burn Journal (EBJ) </option> <option value="ejihpe" > European Journal of Investigation in Health, Psychology and Education (EJIHPE) </option> <option value="fermentation" > Fermentation </option> <option value="fibers" > Fibers </option> <option value="fintech" > FinTech </option> <option value="fire" > Fire </option> <option value="fishes" > Fishes </option> <option value="fluids" > Fluids </option> <option value="foods" > Foods </option> <option value="forecasting" > Forecasting </option> <option value="forensicsci" > Forensic Sciences </option> <option value="forests" > Forests </option> <option value="fossstud" > Fossil Studies </option> <option value="foundations" > Foundations </option> <option value="fractalfract" > Fractal and Fractional (Fractal Fract) </option> <option value="fuels" > Fuels </option> <option value="future" > Future </option> <option value="futureinternet" > Future Internet </option> <option value="futurepharmacol" > Future Pharmacology </option> <option value="futuretransp" > Future Transportation </option> <option value="galaxies" > Galaxies </option> <option value="games" > Games </option> <option value="gases" > Gases </option> <option value="gastroent" > Gastroenterology Insights </option> <option value="gastrointestdisord" > Gastrointestinal Disorders </option> <option value="gastronomy" > Gastronomy </option> <option value="gels" > Gels </option> <option value="genealogy" > Genealogy </option> <option value="genes" > Genes </option> <option value="geographies" > Geographies </option> <option value="geohazards" > GeoHazards </option> <option value="geomatics" > Geomatics </option> <option value="geometry" > Geometry </option> <option value="geosciences" selected='selected'> Geosciences </option> <option value="geotechnics" > Geotechnics </option> <option value="geriatrics" > Geriatrics </option> <option value="glacies" > Glacies </option> <option value="gucdd" > Gout, Urate, and Crystal Deposition Disease (GUCDD) </option> <option value="grasses" > Grasses </option> <option value="greenhealth" > Green Health </option> <option value="hardware" > Hardware </option> <option value="healthcare" > Healthcare </option> <option value="hearts" > Hearts </option> <option value="hemato" > Hemato </option> <option value="hematolrep" > Hematology Reports </option> <option value="heritage" > Heritage </option> <option value="histories" > Histories </option> <option value="horticulturae" > Horticulturae </option> <option value="hospitals" > Hospitals </option> <option value="humanities" > Humanities </option> <option value="humans" > Humans </option> <option value="hydrobiology" > Hydrobiology </option> <option value="hydrogen" > Hydrogen </option> <option value="hydrology" > Hydrology </option> <option value="hygiene" > Hygiene </option> <option value="immuno" > Immuno </option> <option value="idr" > Infectious Disease Reports </option> <option value="informatics" > Informatics </option> <option value="information" > Information </option> <option value="infrastructures" > Infrastructures </option> <option value="inorganics" > Inorganics </option> <option value="insects" > Insects </option> <option value="instruments" > Instruments </option> <option value="iic" > Intelligent Infrastructure and Construction </option> <option value="ijerph" > International Journal of Environmental Research and Public Health (IJERPH) </option> <option value="ijfs" > International Journal of Financial Studies (IJFS) </option> <option value="ijms" > International Journal of Molecular Sciences (IJMS) </option> <option value="IJNS" > International Journal of Neonatal Screening (IJNS) </option> <option value="ijom" > International Journal of Orofacial Myology and Myofunctional Therapy (IJOM) </option> <option value="ijpb" > International Journal of Plant Biology (IJPB) </option> <option value="ijt" > International Journal of Topology </option> <option value="ijtm" > International Journal of Translational Medicine (IJTM) </option> <option value="ijtpp" > International Journal of Turbomachinery, Propulsion and Power (IJTPP) </option> <option value="ime" > International Medical Education (IME) </option> <option value="inventions" > Inventions </option> <option value="IoT" > IoT </option> <option value="ijgi" > ISPRS International Journal of Geo-Information (IJGI) </option> <option value="J" > J </option> <option value="jal" > Journal of Ageing and Longevity (JAL) </option> <option value="jcdd" > Journal of Cardiovascular Development and Disease (JCDD) </option> <option value="jcto" > Journal of Clinical &amp; Translational Ophthalmology (JCTO) </option> <option value="jcm" > Journal of Clinical Medicine (JCM) </option> <option value="jcs" > Journal of Composites Science (J. Compos. Sci.) </option> <option value="jcp" > Journal of Cybersecurity and Privacy (JCP) </option> <option value="jdad" > Journal of Dementia and Alzheimer&#039;s Disease (JDAD) </option> <option value="jdb" > Journal of Developmental Biology (JDB) </option> <option value="jeta" > Journal of Experimental and Theoretical Analyses (JETA) </option> <option value="jemr" > Journal of Eye Movement Research (JEMR) </option> <option value="jfb" > Journal of Functional Biomaterials (JFB) </option> <option value="jfmk" > Journal of Functional Morphology and Kinesiology (JFMK) </option> <option value="jof" > Journal of Fungi (JoF) </option> <option value="jimaging" > Journal of Imaging (J. Imaging) </option> <option value="jintelligence" > Journal of Intelligence (J. Intell.) </option> <option value="jlpea" > Journal of Low Power Electronics and Applications (JLPEA) </option> <option value="jmmp" > Journal of Manufacturing and Materials Processing (JMMP) </option> <option value="jmse" > Journal of Marine Science and Engineering (JMSE) </option> <option value="jmahp" > Journal of Market Access &amp; Health Policy (JMAHP) </option> <option value="jmms" > Journal of Mind and Medical Sciences (JMMS) </option> <option value="jmp" > Journal of Molecular Pathology (JMP) </option> <option value="jnt" > Journal of Nanotheranostics (JNT) </option> <option value="jne" > Journal of Nuclear Engineering (JNE) </option> <option value="ohbm" > Journal of Otorhinolaryngology, Hearing and Balance Medicine (JOHBM) </option> <option value="jop" > Journal of Parks </option> <option value="jpm" > Journal of Personalized Medicine (JPM) </option> <option value="jpbi" > Journal of Pharmaceutical and BioTech Industry (JPBI) </option> <option value="jor" > Journal of Respiration (JoR) </option> <option value="jrfm" > Journal of Risk and Financial Management (JRFM) </option> <option value="jsan" > Journal of Sensor and Actuator Networks (JSAN) </option> <option value="joma" > Journal of the Oman Medical Association (JOMA) </option> <option value="jtaer" > Journal of Theoretical and Applied Electronic Commerce Research (JTAER) </option> <option value="jvd" > Journal of Vascular Diseases (JVD) </option> <option value="jox" > Journal of Xenobiotics (JoX) </option> <option value="jzbg" > Journal of Zoological and Botanical Gardens (JZBG) </option> <option value="journalmedia" > Journalism and Media </option> <option value="kidneydial" > Kidney and Dialysis </option> <option value="kinasesphosphatases" > Kinases and Phosphatases </option> <option value="knowledge" > Knowledge </option> <option value="labmed" > LabMed </option> <option value="laboratories" > Laboratories </option> <option value="land" > Land </option> <option value="languages" > Languages </option> <option value="laws" > Laws </option> <option value="life" > Life </option> <option value="limnolrev" > Limnological Review </option> <option value="lipidology" > Lipidology </option> <option value="liquids" > Liquids </option> <option value="literature" > Literature </option> <option value="livers" > Livers </option> <option value="logics" > Logics </option> <option value="logistics" > Logistics </option> <option value="lubricants" > Lubricants </option> <option value="lymphatics" > Lymphatics </option> <option value="make" > Machine Learning and Knowledge Extraction (MAKE) </option> <option value="machines" > Machines </option> <option value="macromol" > Macromol </option> <option value="magnetism" > Magnetism </option> <option value="magnetochemistry" > Magnetochemistry </option> <option value="marinedrugs" > Marine Drugs </option> <option value="materials" > Materials </option> <option value="materproc" > Materials Proceedings </option> <option value="mca" > Mathematical and Computational Applications (MCA) </option> <option value="mathematics" > Mathematics </option> <option value="medsci" > Medical Sciences </option> <option value="msf" > Medical Sciences Forum </option> <option value="medicina" > Medicina </option> <option value="medicines" > Medicines </option> <option value="membranes" > Membranes </option> <option value="merits" > Merits </option> <option value="metabolites" > Metabolites </option> <option value="metals" > Metals </option> <option value="meteorology" > Meteorology </option> <option value="methane" > Methane </option> <option value="mps" > Methods and Protocols (MPs) </option> <option value="metrics" > Metrics </option> <option value="metrology" > Metrology </option> <option value="micro" > Micro </option> <option value="microbiolres" > Microbiology Research </option> <option value="micromachines" > Micromachines </option> <option value="microorganisms" > Microorganisms </option> <option value="microplastics" > Microplastics </option> <option value="microwave" > Microwave </option> <option value="minerals" > Minerals </option> <option value="mining" > Mining </option> <option value="modelling" > Modelling </option> <option value="mmphys" > Modern Mathematical Physics </option> <option value="molbank" > Molbank </option> <option value="molecules" > Molecules </option> <option value="mti" > Multimodal Technologies and Interaction (MTI) </option> <option value="muscles" > Muscles </option> <option value="nanoenergyadv" > Nanoenergy Advances </option> <option value="nanomanufacturing" > Nanomanufacturing </option> <option value="nanomaterials" > Nanomaterials </option> <option value="ndt" > NDT </option> <option value="network" > Network </option> <option value="neuroglia" > Neuroglia </option> <option value="neurolint" > Neurology International </option> <option value="neurosci" > NeuroSci </option> <option value="nitrogen" > Nitrogen </option> <option value="ncrna" > Non-Coding RNA (ncRNA) </option> <option value="nursrep" > Nursing Reports </option> <option value="nutraceuticals" > Nutraceuticals </option> <option value="nutrients" > Nutrients </option> <option value="obesities" > Obesities </option> <option value="oceans" > Oceans </option> <option value="onco" > Onco </option> <option value="optics" > Optics </option> <option value="oral" > Oral </option> <option value="organics" > Organics </option> <option value="organoids" > Organoids </option> <option value="osteology" > Osteology </option> <option value="oxygen" > Oxygen </option> <option value="parasitologia" > Parasitologia </option> <option value="particles" > Particles </option> <option value="pathogens" > Pathogens </option> <option value="pathophysiology" > Pathophysiology </option> <option value="pediatrrep" > Pediatric Reports </option> <option value="pets" > Pets </option> <option value="pharmaceuticals" > Pharmaceuticals </option> <option value="pharmaceutics" > Pharmaceutics </option> <option value="pharmacoepidemiology" > Pharmacoepidemiology </option> <option value="pharmacy" > Pharmacy </option> <option value="philosophies" > Philosophies </option> <option value="photochem" > Photochem </option> <option value="photonics" > Photonics </option> <option value="phycology" > Phycology </option> <option value="physchem" > Physchem </option> <option value="psf" > Physical Sciences Forum </option> <option value="physics" > Physics </option> <option value="physiologia" > Physiologia </option> <option value="plants" > Plants </option> <option value="plasma" > Plasma </option> <option value="platforms" > Platforms </option> <option value="pollutants" > Pollutants </option> <option value="polymers" > Polymers </option> <option value="polysaccharides" > Polysaccharides </option> <option value="populations" > Populations </option> <option value="poultry" > Poultry </option> <option value="powders" > Powders </option> <option value="proceedings" > Proceedings </option> <option value="processes" > Processes </option> <option value="prosthesis" > Prosthesis </option> <option value="proteomes" > Proteomes </option> <option value="psychiatryint" > Psychiatry International </option> <option value="psychoactives" > Psychoactives </option> <option value="psycholint" > Psychology International </option> <option value="publications" > Publications </option> <option value="purification" > Purification </option> <option value="qubs" > Quantum Beam Science (QuBS) </option> <option value="quantumrep" > Quantum Reports </option> <option value="quaternary" > Quaternary </option> <option value="radiation" > Radiation </option> <option value="reactions" > Reactions </option> <option value="realestate" > Real Estate </option> <option value="receptors" > Receptors </option> <option value="recycling" > Recycling </option> <option value="rsee" > Regional Science and Environmental Economics (RSEE) </option> <option value="religions" > Religions </option> <option value="remotesensing" > Remote Sensing </option> <option value="reports" > Reports </option> <option value="reprodmed" > Reproductive Medicine (Reprod. Med.) </option> <option value="resources" > Resources </option> <option value="rheumato" > Rheumato </option> <option value="risks" > Risks </option> <option value="robotics" > Robotics </option> <option value="ruminants" > Ruminants </option> <option value="safety" > Safety </option> <option value="sci" > Sci </option> <option value="scipharm" > Scientia Pharmaceutica (Sci. Pharm.) </option> <option value="sclerosis" > Sclerosis </option> <option value="seeds" > Seeds </option> <option value="sensors" > Sensors </option> <option value="separations" > Separations </option> <option value="sexes" > Sexes </option> <option value="signals" > Signals </option> <option value="sinusitis" > Sinusitis </option> <option value="smartcities" > Smart Cities </option> <option value="socsci" > Social Sciences </option> <option value="siuj" > Société Internationale d’Urologie Journal (SIUJ) </option> <option value="societies" > Societies </option> <option value="software" > Software </option> <option value="soilsystems" > Soil Systems </option> <option value="solar" > Solar </option> <option value="solids" > Solids </option> <option value="spectroscj" > Spectroscopy Journal </option> <option value="sports" > Sports </option> <option value="standards" > Standards </option> <option value="stats" > Stats </option> <option value="stresses" > Stresses </option> <option value="surfaces" > Surfaces </option> <option value="surgeries" > Surgeries </option> <option value="std" > Surgical Techniques Development </option> <option value="sustainability" > Sustainability </option> <option value="suschem" > Sustainable Chemistry </option> <option value="symmetry" > Symmetry </option> <option value="synbio" > SynBio </option> <option value="systems" > Systems </option> <option value="targets" > Targets </option> <option value="taxonomy" > Taxonomy </option> <option value="technologies" > Technologies </option> <option value="telecom" > Telecom </option> <option value="textiles" > Textiles </option> <option value="thalassrep" > Thalassemia Reports </option> <option value="therapeutics" > Therapeutics </option> <option value="thermo" > Thermo </option> <option value="timespace" > Time and Space </option> <option value="tomography" > Tomography </option> <option value="tourismhosp" > Tourism and Hospitality </option> <option value="toxics" > Toxics </option> <option value="toxins" > Toxins </option> <option value="transplantology" > Transplantology </option> <option value="traumacare" > Trauma Care </option> <option value="higheredu" > Trends in Higher Education </option> <option value="tropicalmed" > Tropical Medicine and Infectious Disease (TropicalMed) </option> <option value="universe" > Universe </option> <option value="urbansci" > Urban Science </option> <option value="uro" > Uro </option> <option value="vaccines" > Vaccines </option> <option value="vehicles" > Vehicles </option> <option value="venereology" > Venereology </option> <option value="vetsci" > Veterinary Sciences </option> <option value="vibration" > Vibration </option> <option value="virtualworlds" > Virtual Worlds </option> <option value="viruses" > Viruses </option> <option value="vision" > Vision </option> <option value="waste" > Waste </option> <option value="water" > Water </option> <option value="wild" > Wild </option> <option value="wind" > Wind </option> <option value="women" > Women </option> <option value="world" > World </option> <option value="wevj" > World Electric Vehicle Journal (WEVJ) </option> <option value="youth" > Youth </option> <option value="zoonoticdis" > Zoonotic Diseases </option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Article Type</div> </div> <select id="article_type" tabindex="4" name="article_type" class="chosen-select"> <option value="">All Article Types</option> <option value="research-article">Article</option> <option value="review-article">Review</option> <option value="rapid-communication">Communication</option> <option value="editorial">Editorial</option> <option value="abstract">Abstract</option> <option value="book-review">Book Review</option> <option value="brief-communication">Brief Communication</option> <option value="brief-report">Brief Report</option> <option value="case-report">Case Report</option> <option value="clinicopathological-challenge">Clinicopathological Challenge</option> <option value="article-commentary">Comment</option> <option value="commentary">Commentary</option> <option value="concept-paper">Concept Paper</option> <option value="conference-report">Conference Report</option> <option value="correction">Correction</option> <option value="creative">Creative</option> <option value="data-descriptor">Data Descriptor</option> <option value="discussion">Discussion</option> <option value="Entry">Entry</option> <option value="essay">Essay</option> <option value="expression-of-concern">Expression of Concern</option> <option value="extended-abstract">Extended Abstract</option> <option value="field-guide">Field Guide</option> <option value="giants-in-urology">Giants in Urology</option> <option value="guidelines">Guidelines</option> <option value="hypothesis">Hypothesis</option> <option value="interesting-image">Interesting Images</option> <option value="letter">Letter</option> <option value="books-received">New Book Received</option> <option value="obituary">Obituary</option> <option value="opinion">Opinion</option> <option value="perspective">Perspective</option> <option value="proceedings">Proceeding Paper</option> <option value="project-report">Project Report</option> <option value="protocol">Protocol</option> <option value="registered-report">Registered Report</option> <option value="reply">Reply</option> <option value="retraction">Retraction</option> <option value="note">Short Note</option> <option value="study-protocol">Study Protocol</option> <option value="systematic_review">Systematic Review</option> <option value="technical-note">Technical Note</option> <option value="tutorial">Tutorial</option> <option value="urology-around-the-world">Urology around the World</option> <option value="viewpoint">Viewpoint</option> </select> </div> <div class="large-1 medium-1 small-6 end columns small-push-6 medium-reset-order large-reset-order js-search-collapsed-button-container"> <div class="search-input-label">&nbsp;</div> <input type="submit" id="search" value="Search" class="button button--dark button--full-width searchButton1 US_SearchButton" tabindex="12"> </div> <div class="large-1 medium-1 small-6 end columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-collapsed-link-container"> <div class="search-input-label">&nbsp;</div> <a class="main-search-clear search-container__link" href="#" onclick="openAdvanced(''); return false;">Advanced<span class="show-for-small-only"> Search</span></a> </div> </div> </div> <div class="search-container__advanced" style="margin-top: 0; padding-top: 0px; background-color: inherit; color: inherit;"> <div class="row"> <div class="large-2 medium-2 columns show-for-medium-up">&nbsp;</div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Section</div> </div> <select id="section" tabindex="5" name="section" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Special Issue</div> </div> <select id="special_issue" tabindex="6" name="special_issue" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Volume</div> <input type="text" id="volume" tabindex="7" name="volume" placeholder="..." value="11" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Issue</div> <input type="text" id="issue" tabindex="8" name="issue" placeholder="..." value="3" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Number</div> <input type="text" id="number" tabindex="9" name="number" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Page</div> <input type="text" id="page" tabindex="10" name="page" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 columns small-push-6 medium-reset order large-reset-order medium-reset-order js-search-expanded-button-container"></div> <div class="large-1 medium-1 small-6 columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-expanded-link-container"></div> </div> </div> </form> <form id="advanced-search" class="large-12 medium-12 columns"> <div class="search-container__advanced"> <div id="advanced-search-template" class="row advanced-search-row"> <div class="large-2 medium-2 small-12 columns show-for-medium-up">&nbsp;</div> <div class="large-2 medium-2 small-3 columns connector-div"> <div class="search-input-label"><span class="show-for-medium-up">Logical Operator</span><span class="show-for-small">Operator</span></div> <select class="connector"> <option value="and">AND</option> <option value="or">OR</option> </select> </div> <div class="large-3 medium-3 small-6 columns search-text-div"> <div class="search-input-label">Search Text</div> <input type="text" class="search-text" placeholder="Search text"> </div> <div class="large-2 medium-2 small-6 large-offset-0 medium-offset-0 small-offset-3 columns search-field-div"> <div class="search-input-label">Search Type</div> <select class="search-field"> <option value="all">All fields</option> <option value="title">Title</option> <option value="abstract">Abstract</option> <option value="keywords">Keywords</option> <option value="authors">Authors</option> <option value="affiliations">Affiliations</option> <option value="doi">Doi</option> <option value="full_text">Full Text</option> <option value="references">References</option> </select> </div> <div class="large-1 medium-1 small-3 columns"> <div class="search-input-label">&nbsp;</div> <div class="search-action-div"> <div class="search-plus"> <i class="material-icons">add_circle_outline</i> </div> </div> <div class="search-action-div"> <div class="search-minus"> <i class="material-icons">remove_circle_outline</i> </div> </div> </div> <div class="large-1 medium-1 small-6 large-offset-0 medium-offset-0 small-offset-3 end columns"> <div class="search-input-label">&nbsp;</div> <input class="advanced-search-button button button--dark search-submit" type="submit" value="Search"> </div> <div class="large-1 medium-1 small-6 end columns show-for-medium-up"></div> </div> </div> </form> </div> <div class="header-divider">&nbsp;</div> <div class="breadcrumb row full-row"> <div class="breadcrumb__element"> <a href="/about/journals">Journals</a> </div> <div class="breadcrumb__element"> <a href="/journal/geosciences">Geosciences</a> </div> <div class="breadcrumb__element"> <a href="/2076-3263/11">Volume 11</a> </div> <div class="breadcrumb__element"> <a href="/2076-3263/11/3">Issue 3</a> </div> <div class="breadcrumb__element"> <a href="#">10.3390/geosciences11030119</a> </div> </div> </header> <div id="main-content" class=""> <div class="row full-width row-fixed-left-column"> <div id="left-column" class="content__column large-3 medium-3 small-12 columns"> <div class="content__container"> <a href="/journal/geosciences"> <img src="https://pub.mdpi-res.com/img/journals/geosciences-logo.png?8600e93ff98dbf14" alt="geosciences-logo" title="Geosciences" style="max-height: 60px; margin: 0 0 0 0;"> </a> <div class="generic-item no-border"> <a class="button button--color button--full-width js-journal-active-only-link js-journal-active-only-submit-link UC_ArticleSubmitButton" href="https://susy.mdpi.com/user/manuscripts/upload?form%5Bjournal_id%5D%3D79" data-disabledmessage="creating new submissions is not possible."> Submit to this Journal </a> <a class="button button--color button--full-width js-journal-active-only-link UC_ArticleReviewButton" href="https://susy.mdpi.com/volunteer/journals/review" data-disabledmessage="volunteering as journal reviewer is not possible."> Review for this Journal </a> <a class="button button--color-inversed button--color-journal button--full-width js-journal-active-only-link UC_ArticleEditIssueButton" href="/journalproposal/sendproposalspecialissue/geosciences" data-path="/2076-3263/11/3/119" data-disabledmessage="proposing new special issue is not possible."> Propose a Special Issue </a> </div> <div class="generic-item link-article-menu show-for-small"> <a href="#" class="link-article-menu show-for-small"> <span class="closed">&#9658;</span> <span class="open" style="display: none;">&#9660;</span> Article Menu </a> </div> <div class="hide-small-down-initially UI_ArticleMenu"> <div class="generic-item"> <h2>Article Menu</h2> </div> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-navigation"> <a href="#academic_editors" class="accordion__title">Academic Editor</a> <div id="academic_editors" class="content active"> <div class="academic-editor-container " title=""> <div class="sciprofiles-link" style="display: inline-block"> <div class="sciprofiles-link__link"> <img class="sciprofiles-link__image" src="https://pub.mdpi-res.com/bundles/mdpisciprofileslink/img/unknown-user.png?1740558760" style="width: auto; height: 16px; border-radius: 50%;"> <span class="sciprofiles-link__name" style="line-height: 36px;">Ioannis Kassaras</span> </div> </div> </div> </div> </li> <li class="accordion-direct-link"> <a href="/2076-3263/11/3/119/scifeed_display" data-reveal-id="scifeed-modal" data-reveal-ajax="true">Subscribe SciFeed</a> </li> <li class="accordion-direct-link js-article-similarity-container" style="display: none"> <a href="#" class="js-similarity-related-articles">Recommended Articles</a> </li> <li class="accordion-navigation"> <a href="#related" class="accordion__title">Related Info Link</a> <div id="related" class="content UI_ArticleMenu_RelatedLinks"> <ul> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Theory%20of%20Effective%20Stress%20in%20Soil%20and%20Rock%20and%20Implications%20for%20Fracturing%20Processes%3A%20A%20Review" target="_blank" rel="noopener noreferrer">Google Scholar</a> </li> </ul> </div> </li> <li class="accordion-navigation"> <a href="#authors" class="accordion__title">More by Authors Links</a> <div id="authors" class="content UI_ArticleMenu_AuthorsLinks"> <ul class="side-menu-ul"> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on DOAJ</a> </li> <div id="AuthorDOAJExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Vincenzo%20Guerriero%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Guerriero, V.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Stefano%20Mazzoli%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Mazzoli, S.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on Google Scholar</a> </li> <div id="AuthorGoogleExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Vincenzo%20Guerriero" target="_blank" rel="noopener noreferrer">Guerriero, V.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Stefano%20Mazzoli" target="_blank" rel="noopener noreferrer">Mazzoli, S.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on PubMed</a> </li> <div id="AuthorPubMedExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&amp;term=Vincenzo%20Guerriero" target="_blank" rel="noopener noreferrer">Guerriero, V.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&amp;term=Stefano%20Mazzoli" target="_blank" rel="noopener noreferrer">Mazzoli, S.</a> <li> </li> </ul> </div> </ul> </div> </li> </ul> <span style="display:none" id="scifeed_hidden_flag"></span> <span style="display:none" id="scifeed_subscribe_url">/ajax/scifeed/subscribe</span> </div> </div> <div class="content__container responsive-moving-container large medium active hidden" data-id="article-counters"> <div id="counts-wrapper" class="row generic-item no-border" data-equalizer> <div id="js-counts-wrapper__views" class="small-12 hide columns count-div-container"> <a href="#metrics" > <div class="count-div" data-equalizer-watch> <span class="name">Article Views</span> <span class="count view-number"></span> </div> </a> </div> <div id="js-counts-wrapper__citations" class="small-12 columns hide count-div-container"> <a href="#metrics" > <div class="count-div" data-equalizer-watch> <span class="name">Citations</span> <span class="count citations-number Var_ArticleMaxCitations">-</span> </div> </a> </div> </div> </div> <div class="content__container"> <div class="hide-small-down-initially"> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-navigation"> <a href="#table_of_contents" class="accordion__title">Table of Contents</a> <div id="table_of_contents" class="content active"> <div class="menu-caption" id="html-quick-links-title"></div> </div> </li> </ul> </div> </div> <!-- PubGrade code --> <div id="pbgrd-sky"></div> <script src="https://cdn.pbgrd.com/core-mdpi.js"></script> <style>.content__container { min-width: 300px; }</style> <!-- PubGrade code --> </div> <div id="middle-column" class="content__column large-9 medium-9 small-12 columns end middle-bordered"> <div class="middle-column__help"> <div class="middle-column__help__fixed show-for-medium-up"> <span id="js-altmetrics-donut" href="#" target="_blank" rel="noopener noreferrer" style="display: none;"> <span data-badge-type='donut' class='altmetric-embed' data-doi='10.3390/geosciences11030119'></span> <span>Altmetric</span> </span> <a href="#" class="UA_ShareButton" data-reveal-id="main-share-modal" title="Share"> <i class="material-icons">share</i> <span>Share</span> </a> <a href="#" data-reveal-id="main-help-modal" title="Help"> <i class="material-icons">announcement</i> <span>Help</span> </a> <a href="javascript:void(0);" data-reveal-id="cite-modal" data-counterslink = "https://www.mdpi.com/2076-3263/11/3/119/cite" > <i class="material-icons">format_quote</i> <span>Cite</span> </a> <a href="https://sciprofiles.com/discussion-groups/public/10.3390/geosciences11030119?utm_source=mpdi.com&utm_medium=publication&utm_campaign=discuss_in_sciprofiles" target="_blank" rel="noopener noreferrer" title="Discuss in Sciprofiles"> <i class="material-icons">question_answer</i> <span>Discuss in SciProfiles</span> </a> </div> <div id="main-help-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Need Help?</h2> </div> <div class="small-6 columns"> <h3>Support</h3> <p> Find support for a specific problem in the support section of our website. </p> <a target="_blank" href="/about/contactform" class="button button--color button--full-width"> Get Support </a> </div> <div class="small-6 columns"> <h3>Feedback</h3> <p> Please let us know what you think of our products and services. </p> <a target="_blank" href="/feedback/send" class="button button--color button--full-width"> Give Feedback </a> </div> <div class="small-6 columns end"> <h3>Information</h3> <p> Visit our dedicated information section to learn more about MDPI. </p> <a target="_blank" href="/authors" class="button button--color button--full-width"> Get Information </a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> <div class="middle-column__main "> <div class="page-highlight"> <style type="text/css"> img.review-status { width: 30px; } </style> <div id="jmolModal" class="reveal-modal" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <h2>JSmol Viewer</h2> <div class="row"> <div class="small-12 columns text-center"> <iframe style="width: 520px; height: 520px;" frameborder="0" id="jsmol-content"></iframe> <div class="content"></div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div itemscope itemtype="http://schema.org/ScholarlyArticle" id="abstract" class="abstract_div"> <div class="js-check-update-container"></div> <div class="html-content__container content__container content__container__combined-for-large__first" style="overflow: auto; position: inherit;"> <div class='html-profile-nav'> <div class='top-bar'> <div class='nav-sidebar-btn show-for-large-up' data-status='opened' > <i class='material-icons'>first_page</i> </div> <a id="js-button-download" class="button button--color-inversed" style="display: none;" href="/2076-3263/11/3/119/pdf?version=1615949270" data-name="Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review" data-journal="geosciences"> <i class="material-icons custom-download"></i> Download PDF </a> <div class='nav-btn'> <i class='material-icons'>settings</i> </div> <a href="/2076-3263/11/3/119/reprints" id="js-button-reprints" class="button button--color-inversed"> Order Article Reprints </a> </div> <div class='html-article-menu'> <div class='html-first-step row'> <div class='html-font-family large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'> Font Type: </div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option"><i style='font-family:Arial, Arial, Helvetica, sans-serif;' data-fontfamily='Arial, Arial, Helvetica, sans-serif'>Arial</i></span> <span class="html-article-menu-option"><i style='font-family:Georgia1, Georgia, serif;' data-fontfamily='Georgia1, Georgia, serif'>Georgia</i></span> <span class="html-article-menu-option"><i style='font-family:Verdana, Verdana, Geneva, sans-serif;' data-fontfamily='Verdana, Verdana, Geneva, sans-serif' >Verdana</i></span> </div> </div> </div> <div class='html-font-resize large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'>Font Size:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-percent="100">Aa</span> <span class="html-article-menu-option a2" data-percent="120">Aa</span> <span class="html-article-menu-option a3" data-percent="160">Aa</span> </div> </div> </div> </div> <div class='row'> <div class='html-line-space large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns' >Line Spacing:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-line-height="1.5em"> <i class="fa">&#xf034;</i> </span> <span class="html-article-menu-option a2" data-line-height="1.8em"> <i class="fa">&#xf034;</i> </span> <span class="html-article-menu-option a3" data-line-height="2.1em"> <i class="fa">&#xf034;</i> </span> </div> </div> </div> <div class='html-column-width large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns' >Column Width:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-column-width="20%"> <i class="fa">&#xf035;</i> </span> <span class="html-article-menu-option a2" data-column-width="10%"> <i class="fa">&#xf035;</i> </span> <span class="html-article-menu-option a3" data-column-width="0%"> <i class="fa">&#xf035;</i> </span> </div> </div> </div> </div> <div class='row'> <div class='html-font-bg large-6 medium-6 small-12 columns end'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'>Background:</div> <div class='large-8 medium-8 small-12 columns'> <div class="html-article-menu-option html-nav-bg html-nav-bright" data-bg="bright"> <i class="fa fa-file-text"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-dark" data-bg="dark"> <i class="fa fa-file-text-o"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-creme" data-bg="creme"> <i class="fa fa-file-text"></i> </div> </div> </div> </div> </div> </div> </div> <article ><div class='html-article-content'> <span itemprop="publisher" content="Multidisciplinary Digital Publishing Institute"></span><span itemprop="url" content="https://www.mdpi.com/2076-3263/11/3/119"></span> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/geosciences/editors_choice">More Editor’s choice articles in journal <em>Geosciences</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <h1 class="title hypothesis_container" itemprop="name"> Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review </h1> <div class="art-authors hypothesis_container"> by <span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop4497353' data-options='is_hover:true, hover_timeout:5000'> Vincenzo Guerriero</div><div id="profile-card-drop4497353" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/profiles/3107858/thumb/Vincenzo_Guerriero.jpg" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Vincenzo Guerriero</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/3107858?utm_source=mdpi.com&amp;utm_medium=website&amp;utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.com/scholars?q=Vincenzo%20Guerriero" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Vincenzo%20Guerriero&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Vincenzo%20Guerriero" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 1</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="4497353" href="/cdn-cgi/l/email-protection#6b4408050f46080c024407440e060a0207461b19041f0e081f020405485b5b5a0d5c5d5a535a5e5a585a535b085a525e535a5a5b585a585b5f5b5f5a0d5a585b5f5a52585d5b585a535a0d5a535a5c5e535a0d5b59"><sup><i class="fa fa-envelope-o"></i></sup></a> and </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop4497354' data-options='is_hover:true, hover_timeout:5000'> Stefano Mazzoli</div><div id="profile-card-drop4497354" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Stefano Mazzoli</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/901566?utm_source=mdpi.com&amp;utm_medium=website&amp;utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.com/scholars?q=Stefano%20Mazzoli" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Stefano%20Mazzoli&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Stefano%20Mazzoli" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> 2,*</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="4497354" href="/cdn-cgi/l/email-protection#3c135f5258115f5b5513501359515d5550114c4e5348595f485553521f0c0c0c0b0b0f0d0a0d090d0e0d580d5f09580d590d0e0c050c050d5f0d5a0d5d0f0f0c0a0d580d5d0d0c0d0e0d5909580d5d0c0b"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0003-3911-9183" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1740558760" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a></span> </div> <div class="nrm"></div> <span style="display:block; height:6px;"></span> <div></div> <div style="margin: 5px 0 15px 0;" class="hypothesis_container"> <div class="art-affiliations"> <div class="affiliation "> <div class="affiliation-item"><sup>1</sup></div> <div class="affiliation-name ">Department of Earth, Environmental and Resources Sciences (DiSTAR), University of Naples “Federico II”, 80138 Naples, Italy</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>2</sup></div> <div class="affiliation-name ">School of Sciences and Technology, Geology Division, University of Camerino, Via Gentile III da Varano, 7, 62032 Camerino, Italy</div> </div> <div class="affiliation"> <div class="affiliation-item"><sup>*</sup></div> <div class="affiliation-name ">Author to whom correspondence should be addressed. </div> </div> </div> </div> <div class="bib-identity" style="margin-bottom: 10px;"> <em>Geosciences</em> <b>2021</b>, <em>11</em>(3), 119; <a href="https://doi.org/10.3390/geosciences11030119">https://doi.org/10.3390/geosciences11030119</a> </div> <div class="pubhistory" style="font-weight: bold; padding-bottom: 10px;"> <span style="display: inline-block">Submission received: 26 January 2021</span> / <span style="display: inline-block">Revised: 28 February 2021</span> / <span style="display: inline-block">Accepted: 1 March 2021</span> / <span style="display: inline-block">Published: 5 March 2021</span> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/geosciences/special_issues/crust ">Seismotectonics, Active Deformation, and Structure of the Crust</a>)<br/> </div> <div class="highlight-box1"> <div class="download"> <a class="button button--color-inversed button--drop-down" data-dropdown="drop-download-511539" aria-controls="drop-supplementary-511539" aria-expanded="false"> Download <i class="material-icons">keyboard_arrow_down</i> </a> <div id="drop-download-511539" class="f-dropdown label__btn__dropdown label__btn__dropdown--button" data-dropdown-content aria-hidden="true" tabindex="-1"> <a class="UD_ArticlePDF" href="/2076-3263/11/3/119/pdf?version=1615949270" data-name="Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review" data-journal="geosciences">Download PDF</a> <br/> <a id="js-pdf-with-cover-access-captcha" href="#" data-target="/2076-3263/11/3/119/pdf-with-cover" class="accessCaptcha">Download PDF with Cover</a> <br/> <a id="js-xml-access-captcha" href="#" data-target="/2076-3263/11/3/119/xml" class="accessCaptcha">Download XML</a> <br/> <a href="/2076-3263/11/3/119/epub" id="epub_link">Download Epub</a> <br/> </div> <div class="js-browse-figures" style="display: inline-block;"> <a href="#" class="button button--color-inversed margin-bottom-10 openpopupgallery UI_BrowseArticleFigures" data-target='article-popup' data-counterslink = "https://www.mdpi.com/2076-3263/11/3/119/browse" >Browse Figures</a> </div> <div id="article-popup" class="popupgallery" style="display: inline; line-height: 200%"> <a href="https://pub.mdpi-res.com/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-ag.png?1615971707" title=" <strong>Graphical abstract</strong><br/> "> </a> <a href="https://pub.mdpi-res.com/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g001.png?1615971706" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Control volumes of soil and rock. The elastic problem considers here elementary volumes smaller than pores; the stress σ&lt;sub&gt;ij&lt;/sub&gt;, acting over the control volume, should be viewed as boundary condition for the elastic problem having as unknown the stress field ψ&lt;sub&gt;ij&lt;/sub&gt;. Note that the boundary surface is given by union of pore and outer surfaces.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g002.png?1615971706" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Fillunger’s interpretation of ES. According to such model, the ES is viewed as the force per unit (porous) area borne by the only solid phase.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g003.png?1615971706" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Results of finite difference numerical simulation, involving a simple model of porous body including two hierarchical joint sets under sudden pore pressure increase (in the top right of the figure). Diagram showing the pore pressure trend (on the ordinate axis) for several time steps within the analysed system (T0 denotes the time step value). The diagrams point out how the function p shows, for several time values, some concavities bounded by larger fractures, whilst the detail image of a single cell (bounded by major fractures) allows to recognise, at a smaller scale, similar concavities bounded by smaller fractures (modified after Guerriero et al. [&lt;a href=&quot;#B116-geosciences-11-00119&quot; class=&quot;html-bibr&quot;&gt;116&lt;/a&gt;]).&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g004.png?1615971705" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Two geometrically similar bodies B1 and B2, under the same external stress system, show similar local stress fields, i.e., within such bodies the same local stress tensor is associated to corresponding points.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g005.png?1615971706" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Schematic diagram showing a generic volume of porous aggregate experiencing the stress systems σa = (σ −&lt;span class=&quot;html-italic&quot;&gt;P&lt;/span&gt;) and &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt;. The local stress field ψ&lt;sub&gt;ij&lt;/sub&gt; is a valid solution when the stress σ&lt;span class=&quot;html-italic&quot;&gt;&lt;sub&gt;a&lt;/sub&gt;&lt;/span&gt; is applied over Σ&lt;sup&gt;II&lt;/sup&gt; or all its similar surfaces. The solution associated to a uniform isotropic pressure &lt;span class=&quot;html-italic&quot;&gt;p&lt;/span&gt; is independent from the boundary surface shape.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g006.png?1615971706" title=" <strong>Figure 6</strong><br/> &lt;p&gt;(&lt;b&gt;A&lt;/b&gt;) Growing fracture near a pre-existing joint network with randomly distributed flaws within host rock. Near the growing fracture (denoted by red line) a stress shadow hinders enucleating of new parallel fractures from flaws, so reducing its probability of rupture. (&lt;b&gt;B&lt;/b&gt;) When the growing fracture reaches the pre-existing joint network, it causes a pore pressure drop within the nearest fractures, so reducing or erasing or also reverting the stress shadow (e.g., for the EW oriented fracture). As a consequence, the probability of rupture of flaws in the neighbouring rock, is increased and new fractures could be triggered, whose extension is preferentially orthogonal to the here-considered growing joint.&lt;/p&gt; "> </a> </div> <a class="button button--color-inversed" href="/2076-3263/11/3/119/notes">Versions&nbsp;Notes</a> </div> </div> <div class="responsive-moving-container small hidden" data-id="article-counters" style="margin-top: 15px;"></div> <div class="html-dynamic"> <section> <div class="art-abstract art-abstract-new in-tab hypothesis_container"> <p> <div><section class="html-abstract" id="html-abstract"> <h2 id="html-abstract-title">Abstract</h2><b>:</b> <div class="html-p">The effective stress principle (ESP) plays a basic role in geology and engineering problems as it is involved in fundamental issues concerning strain and failure of rock and soil, as well as of other porous materials such as concrete, metal powders, biological tissues, etc. Although since its introduction in the 1920s the main ESP aspects have been unravelled and theoretically derived, these do not appear to have been always entirely perceived by many in the science community dealing with ESP-related topics but having little familiarity with the complex theories of porous media and poroelasticity. The purpose of this review is to provide a guidance for the reader who needs an updated overview of the different theoretical and experimental approaches to the ESP and related topics over the past century, with particular reference to geological fracturing processes. We begin by illustrating, after some introductive historical remarks, the basic theory underlying the ESP, based on theory of elasticity methods. Then the different ESP-related theories and experimental results, as well as main interpretations of rock jointing and fracturing phenomena, are discussed. Two main classical works are then revisited, and a rigorous ESP proof is derived. Such a proof is aimed at geologists, engineers and geophysicists to become more familiar with theories of porous media and poroelasticity, being based on the classical theory of elasticity. The final part of this review illustrates some still open issues about faulting and hydraulic fracturing in rocks.</div> </section> <div id="html-keywords"> <div class="html-gwd-group"><div id="html-keywords-title">Keywords: </div><a href="/search?q=effective+stress">effective stress</a>; <a href="/search?q=theory+of+elasticity">theory of elasticity</a>; <a href="/search?q=poroelasticity">poroelasticity</a>; <a href="/search?q=coseismic+overpressure">coseismic overpressure</a>; <a href="/search?q=tensional+fractures">tensional fractures</a></div> <div> </div> </div> </div> </p> </div> <div class="row"> <div class="columns large-12 text-center"> <div class="abstract-image-preview open js-browse-figures"> <a href="#" class="openpopupgallery" data-target='article-popup-ga'> <img src="https://pub.mdpi-res.com/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-ag-550.jpg?1615971707" style="max-width: 100%; max-height: 280px; padding: 10px;"> </a> <div id="article-popup-ga" class="popupgallery" style="display: inline; line-height: 200%"> <a href="https://pub.mdpi-res.com/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-ag.png?1615971707" title="<strong>Graphical Abstract</strong>"></a> </div> <div>Graphical Abstract</div> </div> </div> </div> </section> </div> <div class="hypothesis_container"> <ul class="menu html-nav" data-prev-node="#html-quick-links-title"> </ul> <div class="html-body"> <section id='sec1-geosciences-11-00119' type='intro'><h2 data-nested='1'> 1. Introduction</h2><div class='html-p'>The effective stress principle (ESP), introduced by Terzaghi during the 1920s [<a href="#B1-geosciences-11-00119" class="html-bibr">1</a>,<a href="#B2-geosciences-11-00119" class="html-bibr">2</a>], is involved in fundamental issues concerning strain and failure of rock and soil, as well as of other porous materials such as concrete, metal powders, biological tissues, etc., as it allows one to predict the mechanical behaviour of saturated porous media. Based on his experimental data, Terzaghi stated that only a fraction of the total stress (σ) exceeding the pore-water pressure (p), which he called effective stress (σ’), is responsible for soil and rock strain and/or failure. On the other hand, at the same effective stress conditions, pore-water pressure (or neutral stress) magnitude has practically no influence on their stress–strain and/or failure behaviour.</div><div class='html-p'>The formulation proposed by Terzaghi [<a href="#B1-geosciences-11-00119" class="html-bibr">1</a>,<a href="#B2-geosciences-11-00119" class="html-bibr">2</a>] for the effective stress (ES) in one-dimensional form was:<div class='html-disp-formula-info' id=''> <div class='f'> σ’ = σ − p, </div> <div class='l'> <label >(1)</label> </div> </div> where σ’ denotes the effective stress, σ the total stress and <span class='html-italic'>p</span> the pore water pressure or neutral stress. In terms of stress tensor components, the equivalent form is the following:<div class='html-disp-formula-info' id=''> <div class='f'> σ’<sub>ij</sub> = σ<sub>ij</sub> − δ<sub>ij</sub> <span class='html-italic'>p</span>, </div> <div class='l'> </div> </div> where δij denotes the Kronecker delta. Here and in the following, the usual convention used by geologists of a positive sign for compressive stresses is adopted.</div><div class='html-p'>Such principle was introduced in the 1920s as an experimental law and the underlying theory was developed within less than one century. Since its experimental assessment, the effect of pore water pressure on rock strength and stress–strain behaviour, as well as the ESP, appeared controversial and has been object of long-standing debates (e.g., [<a href="#B3-geosciences-11-00119" class="html-bibr">3</a>,<a href="#B4-geosciences-11-00119" class="html-bibr">4</a>,<a href="#B5-geosciences-11-00119" class="html-bibr">5</a>]); details about a heated debate between these authors has been reported by de Boer [<a href="#B6-geosciences-11-00119" class="html-bibr">6</a>].</div><div class='html-p'>The understanding of ESP concept has been then rendered complicated as different formulations for ES have been proposed by various authors.</div><div class='html-p'>Fillunger [<a href="#B5-geosciences-11-00119" class="html-bibr">5</a>], on theoretical grounds, derived the following ES law:<div class='html-disp-formula-info' id=''> <div class='f'> σ’ = σ − n <span class='html-italic'>p</span>, </div> <div class='l'> <label >(2)</label> </div> </div> where n denotes rock or soil porosity (i.e., the ratio <span class='html-italic'>pore volume/rock volume</span>).</div><div class='html-p'>Skempton [<a href="#B7-geosciences-11-00119" class="html-bibr">7</a>] in a memorable work analysed, besides Terzaghi’s formulation Equation (1), also the following expressions for the ES by carrying out an extensive review of available formulations and experimental data in literature, in order to make clearer the theory:<div class='html-disp-formula-info' id=''> <div class='f'> σ’ = σ − (1 − a<sub>c</sub>) <span class='html-italic'>p</span>, </div> <div class='l'> <label >(3)</label> </div> </div><div class='html-disp-formula-info' id=''> <div class='f'> σ’ = σ − (1 − a<sub>c</sub> tan ψ/tan φ’) <span class='html-italic'>p</span> (for soil shear strength), </div> <div class='l'> <label >(4)</label> </div> </div><div class='html-disp-formula-info' id=''> <div class='f'> σ’ = σ − (1 − C<sub>s</sub>/C) <span class='html-italic'>p</span> (for volume change), </div> <div class='l'> <label >(5)</label> </div> </div> where a<sub>c</sub> denotes the contact area ratio (i.e., the area of contact between the particles, per unit gross area of the material), φ the angle of shearing resistance, ψ the angle of intrinsic friction [<a href="#B7-geosciences-11-00119" class="html-bibr">7</a>] and C<sub>s</sub> and C the compressibility of the constituent material (i.e., nonporous, nonfractured rock/clast) and of rock or soil aggregate, respectively. We point out here as Skempton [<a href="#B7-geosciences-11-00119" class="html-bibr">7</a>] opened its paper with the following sentence: “… it is of philosophical interest to examine the fundamental principles of effective stress, since it would seem improbable that an expression of the form (σ’ = σ − u), is strictly true…”.</div><div class='html-p'>In 1971 Nur and Byerlee [<a href="#B8-geosciences-11-00119" class="html-bibr">8</a>] have provided a theoretical derivation of the Eq. 5, corroborated by experimental data and valid for stress–strain behaviour of rocks, in the following equivalent form:<div class='html-disp-formula-info' id=''> <div class='f'> σ’ = σ − (1 − K/K<sub>s</sub>) <span class='html-italic'>p</span> (for rock volume change), </div> <div class='l'> </div> </div> where K and K<sub>s</sub> are the bulk moduli of porous rock and solid rock (i.e., the inverse of C<sub>s</sub> and C), respectively. Although their proof was rigorous, the authors pointed out several limits of their model, mainly related to the assumption of elastic linear behaviour of porous rock.</div><div class='html-p'>Suklje [<a href="#B9-geosciences-11-00119" class="html-bibr">9</a>] theoretically derived the following form for ES:<div class='html-disp-formula-info' id=''> <div class='f'> σ’ = σ − (1 − (1 − n) (C<sub>s</sub>/C)) <span class='html-italic'>p</span> (for rock volume change), </div> <div class='l'> <label >(6)</label> </div> </div> which differs from Skempton’s as well as Nur and Byerlee’s formulation (Equation (5)) by the term (1 − n), i.e., the solid volume fraction.</div><div class='html-p'>Although it was recognised as some of these ES laws was in disagreement with experimental evidence (namely those given by Equations (2), (3) and (6), as explained in <a href="#sec3dot1-geosciences-11-00119" class="html-sec">Section 3.1</a> and <a href="#sec4dot1-geosciences-11-00119" class="html-sec">Section 4.1</a>), various concerns remained about the scope of validity of the different ES formulations according to different basic assumptions.</div><div class='html-p'>The extensive work carried out by Biot along some decades [<a href="#B10-geosciences-11-00119" class="html-bibr">10</a>,<a href="#B11-geosciences-11-00119" class="html-bibr">11</a>,<a href="#B12-geosciences-11-00119" class="html-bibr">12</a>,<a href="#B13-geosciences-11-00119" class="html-bibr">13</a>,<a href="#B14-geosciences-11-00119" class="html-bibr">14</a>,<a href="#B15-geosciences-11-00119" class="html-bibr">15</a>,<a href="#B16-geosciences-11-00119" class="html-bibr">16</a>,<a href="#B17-geosciences-11-00119" class="html-bibr">17</a>] has widely developed the theory of Poroelasticity so providing relevant answers about the effect of pore pressure on rock and soil behaviour. Furthermore, already in the 1970s Auriault and Sanchez-Palencia [<a href="#B18-geosciences-11-00119" class="html-bibr">18</a>,<a href="#B19-geosciences-11-00119" class="html-bibr">19</a>,<a href="#B20-geosciences-11-00119" class="html-bibr">20</a>] provided a theoretical treatise about saturated porous media that also explains the ESP.</div><div class='html-p'>Nevertheless, during the 1990s such principle appeared as still controversial. For instance, Oka [<a href="#B21-geosciences-11-00119" class="html-bibr">21</a>] pointed out that: “…The question of why the effective stress is meaningful, however, still remains unanswered…”. De Buhan and Dormieux [<a href="#B22-geosciences-11-00119" class="html-bibr">22</a>] referred to ESP as ‘Terzaghi’s postulate’ and tried to clarify several theoretical aspects of ESP validity. Bluhm and De Boer [<a href="#B23-geosciences-11-00119" class="html-bibr">23</a>] stated that: “… Although the phenomenon of effective stresses was known for a long time, the theoretical foundation has remained unsatisfactory until now…”.</div><div class='html-p'>In the following two decades the study of porous media aroused growing interest, not only in the geological or geotechnical engineering disciplines but also in the field of porous materials of various nature such as metal powders, foams, composite materials and biological tissues (e.g., [<a href="#B24-geosciences-11-00119" class="html-bibr">24</a>,<a href="#B25-geosciences-11-00119" class="html-bibr">25</a>,<a href="#B26-geosciences-11-00119" class="html-bibr">26</a>,<a href="#B27-geosciences-11-00119" class="html-bibr">27</a>]). Consequently, the entire theoretical infrastructure has experienced a large development giving rise to the formation of practically autonomous scientific branches such as Theory of Porous Media, thanks to the extensive theoretical work carried out by Ehlers, De Boer, Coussy and their coauthors, [<a href="#B23-geosciences-11-00119" class="html-bibr">23</a>,<a href="#B24-geosciences-11-00119" class="html-bibr">24</a>,<a href="#B25-geosciences-11-00119" class="html-bibr">25</a>,<a href="#B26-geosciences-11-00119" class="html-bibr">26</a>,<a href="#B27-geosciences-11-00119" class="html-bibr">27</a>,<a href="#B28-geosciences-11-00119" class="html-bibr">28</a>,<a href="#B29-geosciences-11-00119" class="html-bibr">29</a>,<a href="#B30-geosciences-11-00119" class="html-bibr">30</a>] and Poroelasticity [<a href="#B31-geosciences-11-00119" class="html-bibr">31</a>,<a href="#B32-geosciences-11-00119" class="html-bibr">32</a>,<a href="#B33-geosciences-11-00119" class="html-bibr">33</a>,<a href="#B34-geosciences-11-00119" class="html-bibr">34</a>,<a href="#B35-geosciences-11-00119" class="html-bibr">35</a>,<a href="#B36-geosciences-11-00119" class="html-bibr">36</a>,<a href="#B37-geosciences-11-00119" class="html-bibr">37</a>,<a href="#B38-geosciences-11-00119" class="html-bibr">38</a>]. These theories represent an essential tool in the study of porous media in science and engineering and have also unravelled and clarified several aspects of the ESP, nevertheless, these are now so specialised that they may be accessible by few people in the scientific community, whereas many engineers, geologists and geophysicists, who often deal with themes involving the ESP (e.g., role of pore pressure in earthquakes, jointing and hydraulic fracturing of rocks, etc.), may not be familiar with them and might misinterpret some of their results.</div><div class='html-p'>Additionally, with reference to geological processes of brittle strain, such as faulting and jointing, the role of pore pressure is still debated. Several works point out the relevant role of pore pressure variations in earthquake triggering and coseismic slip evolution [<a href="#B39-geosciences-11-00119" class="html-bibr">39</a>,<a href="#B40-geosciences-11-00119" class="html-bibr">40</a>,<a href="#B41-geosciences-11-00119" class="html-bibr">41</a>,<a href="#B42-geosciences-11-00119" class="html-bibr">42</a>,<a href="#B43-geosciences-11-00119" class="html-bibr">43</a>] as well as of other weakening mechanism, such as flash heating and frictional weakening (e.g., [<a href="#B44-geosciences-11-00119" class="html-bibr">44</a>,<a href="#B45-geosciences-11-00119" class="html-bibr">45</a>,<a href="#B46-geosciences-11-00119" class="html-bibr">46</a>]). Although the numerous competing physical phenomena concurring in slip escalation are well established [<a href="#B43-geosciences-11-00119" class="html-bibr">43</a>,<a href="#B47-geosciences-11-00119" class="html-bibr">47</a>,<a href="#B48-geosciences-11-00119" class="html-bibr">48</a>,<a href="#B49-geosciences-11-00119" class="html-bibr">49</a>,<a href="#B50-geosciences-11-00119" class="html-bibr">50</a>,<a href="#B51-geosciences-11-00119" class="html-bibr">51</a>,<a href="#B52-geosciences-11-00119" class="html-bibr">52</a>,<a href="#B53-geosciences-11-00119" class="html-bibr">53</a>], quantifying the role of thermal pore overpressure among them is still a challenging task (<a href="#sec3dot6-geosciences-11-00119" class="html-sec">Section 3.6</a> and <a href="#sec5-geosciences-11-00119" class="html-sec">Section 5</a>). Similarly, within the framework of tensional joint network development, the role of pore pressure has been on the focus of a long-standing debate and it remains still unclear to date (<a href="#sec3dot6-geosciences-11-00119" class="html-sec">Section 3.6</a> and <a href="#sec5-geosciences-11-00119" class="html-sec">Section 5</a>).</div><div class='html-p'>A further issue is represented by the substantially different behaviour of soils and rocks. The question is why different models for such bodies—an aggregate of solids in contact for the former and a multiconnected solid including voids for the latter—lead to the same ESP formulations. This topic is addressed in <a href="#sec4dot4-geosciences-11-00119" class="html-sec">Section 4.4</a>.</div><div class='html-p'>Main aim of this review is to provide an overview of different proposed formulations for ESP as well as unravelling the underlying theory on the basis of the classical Theory of Elasticity, in order to clarify to the reader its fundamental role in geological processes and geotechnical engineering applications.</div></section><section id='sec2-geosciences-11-00119' type=''><h2 data-nested='1'> 2. Basic Theory</h2><section id='sec2dot1-geosciences-11-00119' type=''><h4 class='html-italic' data-nested='2'> 2.1. Definition of ES</h4><div class='html-p'>The ESP allows one to predict the mechanical behaviour of a porous medium, subjected to a tension state σij and a pore pressure <span class='html-italic'>p</span>, on the basis of experimental data involving only dry samples. In other words, the usefulness of an appropriate ESP formulation consists in allowing to assess the behaviour of a porous body for whatever pore pressure value on the basis of experiments carried out at zero pore pressure.</div><div class='html-p'>An exhaustive definition for ES has been provided by Lade and De Boer [<a href="#B54-geosciences-11-00119" class="html-bibr">54</a>] which define the ES as the stress, depending on the applied tension σ<sub>ij</sub> and pore pressure p, which controls the strain or strength behaviour of soil and rock (or a generic porous body) for whatever pore pressure value or, in other terms, the stress which applied over a dry porous body (i.e., at <span class='html-italic'>p</span> = 0) provides the same strain or strength behaviour which is observed at <span class='html-italic'>p</span> ≠ 0.</div><div class='html-p'>All proposed formulations in literature for the ES, such as e.g., Equations (1)–(6), are in the following form:<div class='html-disp-formula-info' id=''> <div class='f'> σ’<sub>ij</sub> = σ<sub>ij</sub> − δ<sub>ij</sub> η <span class='html-italic'>p</span>, </div> <div class='l'> <label >(7)</label> </div> </div> or, in one dimensional form:<div class='html-disp-formula-info' id=''> <div class='f'> σ’ = σ − η <span class='html-italic'>p</span>, </div> <div class='l'> </div> </div> where η is a coefficient which generally can depend from the applied stress and pore pressure, as well as from other porous medium associated parameters (e.g., porosity, intrinsic and aggregate compressibility, etc.). It should be noted that, in spite of many available definitions in literature, Equation (7) does not establish a general linear dependence between ES and the variables (σ<sub>ij</sub>, <span class='html-italic'>p</span>), as the term η may be in general a nonlinear function of such variables. As an example, in the term (1 − C<sub>s</sub>/C) of Equation (5), the porous rock or soil compressibility C is a (empirical or theoretical) nonlinear function of the difference (σ − <span class='html-italic'>p</span>) so as proved experimentally by Nur and Byerlee [<a href="#B8-geosciences-11-00119" class="html-bibr">8</a>] and theoretically by Zimmerman et al. [<a href="#B33-geosciences-11-00119" class="html-bibr">33</a>,<a href="#B55-geosciences-11-00119" class="html-bibr">55</a>].</div></section><section id='sec2dot2-geosciences-11-00119' type=''><h4 class='html-italic' data-nested='2'> 2.2. A First Simple Theoretical Proof of the ESP</h4><div class='html-p'>In order to investigate the stress field features within the porous medium, we will carry out our analysis at a smaller scale than pores and/or clasts. Namely we consider here a control volume of porous medium, including many pores and voids. The elastic problem within such control volume will involve elementary volumes smaller than pores and/or clasts (<a href="#geosciences-11-00119-f001" class="html-fig">Figure 1</a>).</div><div class='html-p'>Here, σij denotes the stress tensor acting on a cubic control porous volume, whereas the stress acting on the elementary volume smaller than pores is denoted by ψ<sub>ij</sub>. Therefore, σ<sub>ij</sub> should be viewed as boundary condition for the elastic problem having as unknown the stress field ψ<sub>ij</sub>. The boundary of the considered continuum is a surface Σ, composed by the external boundary surface Σ1 and the pore surface Σ2 (<a href="#geosciences-11-00119-f001" class="html-fig">Figure 1</a>). We will consider at the moment a single elastic body including interconnected voids (pores and fractures) fully filled by liquid under uniform pressure, which simulates rock or concrete behaviour, whereas the behaviour of granular media, i.e., constituted by many elastic bodies in contact, will be discussed in <a href="#sec4dot4-geosciences-11-00119" class="html-sec">Section 4.4</a>.</div><div class='html-p'>A basic here adopted assumption consists in considering the porous medium as constituted by a linear elastic, homogeneous and isotropic material. It should be noted that, despite such assumption, the porous aggregate can be nonlinear elastic (e.g., rock) or inelastic (e.g., soil, which are discussed later), anisotropic according to pore and fracture orientation, heterogeneous according to void spatial distribution (i.e.,as a consequence of spatially variable porosity). The appropriateness of such assumption has been discussed in detail by Zimmerman et al. [<a href="#B32-geosciences-11-00119" class="html-bibr">32</a>,<a href="#B33-geosciences-11-00119" class="html-bibr">33</a>,<a href="#B34-geosciences-11-00119" class="html-bibr">34</a>,<a href="#B56-geosciences-11-00119" class="html-bibr">56</a>]. We can conclude that, although such assumption reduces the general validity of such model, this latter covers with a good approximation avery wide variety of real cases and has the advantage of a relatively simple theoretical treatment.</div><div class='html-p'>The stress distribution inside a linear elastic body in absence of body forces is governed by the following linear elliptic differential system (e.g., [<a href="#B57-geosciences-11-00119" class="html-bibr">57</a>]):<div class='html-disp-formula-info' id=''> <div class='f'> (1 + <span class='html-italic'>v</span>) ∇<sup>2</sup>ψ<sub>ij</sub> + ∂<sup>2</sup>ψ<sub>kk</sub>/∂x<sub>i</sub>∂x<sub>j</sub> = 0, </div> <div class='l'> <label >(8)</label> </div> </div> where <span class='html-italic'>v</span> is the Poisson ratio and ∇<sup>2</sup> is the Laplace operator and the Einstein convention about repeated indexes is adopted (e.g., ψ<sub>kk</sub> = ψ<sub>1</sub> + ψ<sub>2</sub> + ψ<sub>3</sub> ).</div><div class='html-p'>The boundary conditions are defined by the external stress acting over the (strained) boundary surface ∑, i.e., over the outer surface ∑1 and pore surface ∑2:<div class='html-disp-formula-info' id=''> <div class='f'> ψ<sub>ij</sub>n<sub>j</sub> = t<sub>i</sub>, </div> <div class='l'> <label >(9)</label> </div> </div> where n<sub>j</sub> denotes the local boundary surface normal vector and t<sub>i</sub> denotes the tension acting on the boundary at a point. Namely, the control volume is subjected to a stress σ<sub>ij</sub> acting over ∑1 and a pressure p acting on ∑2. The pore pressure is assumed here to be uniform within the control volume.</div><div class='html-p'>The equation system 8 provides the basic relations of the Theory of Elasticity and is derived by combining local equilibrium equations with the compatibility conditions between infinitesimal strain components, as well as the elastic equations [<a href="#B57-geosciences-11-00119" class="html-bibr">57</a>]. Its derivation is briefly illustrated in <a href="#app1-geosciences-11-00119" class="html-app">Appendix A</a>1.</div><div class='html-p'>Now, in order to study the local stress field features, we proceed according to two commonly employed steps: (i) decomposition of the acting force system in an equivalent one and (ii) use of superposition principle.</div><dl class='html-roman-lower'><dt id=''>(i)</dt><dd><div class='html-p'>the stress σ<sub>ij</sub> acting on the outer surface, can be decomposed as follows:<div class='html-disp-formula-info' id=''> <div class='f'> σ<sub>ij</sub> = (σ<sub>ij</sub>−δ<sub>ij</sub><span class='html-italic'>p</span>) + δ<sub>ij</sub><span class='html-italic'>p</span>, </div> <div class='l'> <label >(10)</label> </div> </div></div></dd></dl><div class='html-p'>This is only a simple algebraic operation which is always allowed in mechanics (with no generality loss); analogous decompositions are widely adopted in Continuum Mechanics and Theory of Elasticity (e.g., [<a href="#B57-geosciences-11-00119" class="html-bibr">57</a>], in many theoretical proofs along the whole textbook)in order to decompose the boundary conditions in more simple systems whose associate solutions are already known or easily manageable.</div><dl class='html-roman-lower'><dt id=''>(ii)</dt><dd><div class='html-p'>the superposition principle needs to be justified as it does not have general validity, in particular for the above described nonlinear elastic model. We provide a rigorous proof of its applicability in <a href="#sec4dot2-geosciences-11-00119" class="html-sec">Section 4.2</a>.</div></dd></dl><div class='html-p'>The stress field associated to the second term on the right side of Equation (10), (δ<sub>ij</sub><span class='html-italic'>p</span>), which is now applied over ∑1 and ∑2, i.e., the whole boundary surface, is a well-known solution consisting of a uniform isotropic pressure equal to <span class='html-italic'>p</span>(e.g., [<a href="#B57-geosciences-11-00119" class="html-bibr">57</a>]) for whatever boundary or pore surface shape, whereas the stress at a point associated to the first term (σ<sub>ij</sub>−δ<sub>ij</sub><span class='html-italic'>p</span>) is a generic tensor ψ0<sub>ij</sub> = ψ0<sub>ij</sub>(σ<sub>ij</sub>−δ<sub>ij</sub><span class='html-italic'>p</span>). We point out as we are not interested in calculating the solution ψ<sub>ij</sub> for each point but at achieving information about its features, namely at comparing the local stress and strain fields in a porous medium subjected to a pore pressure with those into an identical one in dry condition.</div><div class='html-p'>The solution of Equation (8), associated to the boundary stress of Equation (10) is given, by the superposition principle, by the sum of ψ0<sub>ij</sub> and <span class='html-italic'>p</span>:</div><div class='html-disp-formula-info' id=''> <div class='f'> ψ<sub>ij</sub> = ψ0<sub>ij</sub> (σ<sub>kl</sub>−δ<sub>kl</sub><span class='html-italic'>p</span>) + δ<sub>ij</sub><span class='html-italic'>p</span>, </div> <div class='l'> <label >(11)</label> </div> </div><div class='html-p'>This is not an ES law, but rather a description of the local stress field at a smaller scale than pores. Equation (11) plays a key role in the model developed in this study, as it allows one to evaluate relevant properties of local stresses within the material and can clarify several significant aspects of the ESP. The stress (and strain) field within the material constituting the porous body includes:</div><dl class='html-roman-lower'><dt id=''>(i)</dt><dd><div class='html-p'>a term (δ<sub>ij</sub><span class='html-italic'>p</span>) which is only responsible for a small volume reduction, according to the intrinsic bulk modulus of the solid Ks, with no shape—and pore shape—change,</div></dd><dt id=''>(ii)</dt><dd><div class='html-p'>a term ψ0<sub>ij</sub>, depending on (σ<sub>kl</sub>−δ<sub>kl</sub><span class='html-italic'>p</span>), which produces the often more evident strainat both microscopic and macroscopic scales, in terms of aggregate volume and shape change as well as pore surface shape transformation. It should be noted that this stress and strain depend uniquely on Terzaghi’s ES (σ<sub>kl</sub>−δ<sub>kl</sub> <span class='html-italic'>p</span>). This provides a first explanation of the ESP for stress–strain behaviour of rock. Two identical porous bodies, one subjected to pore pressure and one in dry condition but showing the same difference (σ<sub>ij</sub>−δ<sub>ij</sub> <span class='html-italic'>p</span>), exhibit macroscopic strain which differ only by a small volume change associated to <span class='html-italic'>p</span>.</div></dd></dl><div class='html-p'>The Nur–Byerlee–Skempton formulation for the ES (Equation (5)) takes into account such small difference by introducing a further corrective term in the ES expression, given by (1 − Cs/C), which is often slightly less than unity, being Cs &lt;&lt; C in usual geotechnical application. Nevertheless, it should be noted that such a term might be substantially different from unity at depth of some kilometres in the Earth’s crust. For this reason, such ES expression may be more suitable than Terzaghi’s ES when dealing with stress–strain behaviour of rocks. On the basis of Equation (11) also this formulation can be derived (<a href="#sec4dot1-geosciences-11-00119" class="html-sec">Section 4.1</a>).</div><div class='html-p'>With reference to rock strength behaviour, tensional, as well as shear, fracture growth is mainly affected by forces acting in areas of high stress concentration, such as fracture tips. In these areas, in most of cases, pore pressure is negligible with respect to the maximum acting stress, denoted by ψ0<sub>Max</sub> (<a href="#sec4-geosciences-11-00119" class="html-sec">Section 4</a>), i.e., <div class='html-disp-formula-info' id=''> <div class='f'> ψ0<sub>Max</sub>&gt;&gt;<span class='html-italic'>p</span>, </div> <div class='l'> <label >(12)</label> </div> </div> this implies that Equation (11) becomes:<div class='html-disp-formula-info' id=''> <div class='f'> ψ<sub>Max</sub> ≈ ψ0<sub>Max</sub> (σ<sub>kl</sub>−δ<sub>kl</sub><span class='html-italic'>p</span>), </div> <div class='l'> <label >(13)</label> </div> </div></div><div class='html-p'>Details about effect of pore pressure on rock strength are discussed in <a href="#sec4dot3-geosciences-11-00119" class="html-sec">Section 4.3</a>. As rock inelastic behaviour is mainly controlled by concentrated stress ψ<sub>Max</sub>, which is fully dependent on Terzaghi’s ES, this latter law well describes all these phenomena so as broadly experimentally observed (e.g., [<a href="#B7-geosciences-11-00119" class="html-bibr">7</a>,<a href="#B55-geosciences-11-00119" class="html-bibr">55</a>,<a href="#B56-geosciences-11-00119" class="html-bibr">56</a>] and many others).</div><div class='html-p'><a href="#sec4dot4-geosciences-11-00119" class="html-sec">Section 4.4</a> shows that the above-illustrated reasoning about ESP in rock can also be extended to soils and granular media, which unlike rocks always exhibit an inelastic behaviour. The analysis of ESP for visco-plastic as well as visco-elastic strain according to several rheological models ([<a href="#B56-geosciences-11-00119" class="html-bibr">56</a>], Chapter 9), despite its relevance in geological processes, is well beyond the scope of this paper. Indeed, deformation processes acting over geological time scales are likely associated to inelasticity also in rock. Here we limit ourselves by pointing out how several problems of rock visco-elasticity can be modelled considering relaxation phenomena such as variation of the initial shape (i.e., under no imposed external stress) and thus reconciling the problem of internal stress distribution between fluid and solid phases (i.e., ESP) to an elastic one with a changed geometry of the boundary surface. From this viewpoint, the above illustrated model may be still conceptually valid, although for their complexity visco-elastic problems need to be carefully dealt with and may be the object of future research.</div></section><section id='sec2dot3-geosciences-11-00119' type=''><h4 class='html-italic' data-nested='2'> 2.3. Nonlinear Elastic Behaviour of Rock and Main Issues in Proving the ESP by Means of Theory of Elasticity</h4><div class='html-p'>Rocks ordinarily exhibit nonlinear elastic behaviour although the constituent material may often display linear elasticity over a wide range of stress values. As clarified by many authors [<a href="#B8-geosciences-11-00119" class="html-bibr">8</a>,<a href="#B31-geosciences-11-00119" class="html-bibr">31</a>,<a href="#B32-geosciences-11-00119" class="html-bibr">32</a>,<a href="#B33-geosciences-11-00119" class="html-bibr">33</a>,<a href="#B34-geosciences-11-00119" class="html-bibr">34</a>,<a href="#B36-geosciences-11-00119" class="html-bibr">36</a>,<a href="#B55-geosciences-11-00119" class="html-bibr">55</a>,<a href="#B58-geosciences-11-00119" class="html-bibr">58</a>,<a href="#B59-geosciences-11-00119" class="html-bibr">59</a>,<a href="#B60-geosciences-11-00119" class="html-bibr">60</a>,<a href="#B61-geosciences-11-00119" class="html-bibr">61</a>,<a href="#B62-geosciences-11-00119" class="html-bibr">62</a>,<a href="#B63-geosciences-11-00119" class="html-bibr">63</a>,<a href="#B64-geosciences-11-00119" class="html-bibr">64</a>], rock macroscopic strain is mainly controlled by local strain of elongated pores and/or fractures and pore collapse phenomena. In case of nonlinear elastic behaviour, the use of the superposition principle is generally not allowed and the derivation of Equation (11) is not a trivial result. To better understand this concept, consider the following simple example involving a cubic specimen made up of a nonlinear elastic material. Let ε<sub>a</sub> be the volume strain due to a confining isotropic pressure σ<sub>a</sub> and ε<sub>b</sub> due to σ<sub>b</sub>. If we imagine to apply before σ<sub>a</sub> and successively σ<sub>b</sub>, the resulting strain ε<sub>v</sub> is different from the sum of single strains (ε<sub>a</sub> + ε<sub>b</sub>) as, after application of σ<sub>a</sub>, the specimen compressibility has changed and therefore the strain due to σ<sub>b</sub> is different from that which was observed by application of σ<sub>b</sub> over the unloaded specimen. However, in <a href="#sec4-geosciences-11-00119" class="html-sec">Section 4</a> we show that, for the special above described case (<a href="#sec2dot2-geosciences-11-00119" class="html-sec">Section 2.2</a>) such principle is still valid.</div></section><section id='sec2dot4-geosciences-11-00119' type=''><h4 class='html-italic' data-nested='2'> 2.4. Conventional and Substantial Aspects of the ESP</h4><div class='html-p'>The conventionality of ESP can be explained by means of a simple example involving an unjacketed test on rock. Let us imagine to carry on an unjacketed test, such as those described by Skempton [<a href="#B7-geosciences-11-00119" class="html-bibr">7</a>], Nur and Byerlee [<a href="#B8-geosciences-11-00119" class="html-bibr">8</a>] as well as Cheng ([<a href="#B38-geosciences-11-00119" class="html-bibr">38</a>], Section 1.2.4), in which a rock sample is subjected to a pore pressure <span class='html-italic'>p</span>, which is equal to the confining pressure P<span class='html-italic'>c</span>. In such a condition this sample is transformed in a geometrically similar smaller one. According to the above given definition, the ES is the stress which, applied on the dry sample, provides the same here observed volume strain, i.e., for which (C P’<sub>c</sub> = C<sub>s</sub><span class='html-italic'>p</span>), where P’<sub>c</sub> denotes the confining ES. This latter stress can also be calculated by means of Equation (5), as (P’<sub>c</sub>= <span class='html-italic'>p</span> − (1 − C<sub>s</sub>/C) <span class='html-italic'>p</span> = (C<sub>s</sub>/C) <span class='html-italic'>p</span>). It should be noted that, although the sample in dry condition undergoing such stress exhibits the same volume change observed in the unjacketed test, these two strain processes are geometrically and mechanically substantially different. The unjacketed test produces a cubic volume strain with no pore shape change, whereas the dry sample shows volume strain involving relevant pore geometry change, pore collapse etc.</div><div class='html-p'>The substantial aspect of ESP is related to the fact that a fraction of the local stress given by (δ<sub>kl</sub><span class='html-italic'>p</span>) (i.e., related to neutral stress) has the only effect of producing an often unimportant cubic volume strain of porous medium, whereas the most relevant part of strain is attributable to the term ψ0<sub>ij</sub> (σ<sub>kl</sub>−δ<sub>kl</sub><span class='html-italic'>p</span>) of the local stress, which is fully dependent on Terzaghi’s ES. This latter contribution to strain is the most relevant for several reasons: (i) it is often the most evident or abundant, (ii) the pore/fracture shape changes which are related to ψ0<sub>ij</sub> affect substantially the main mechanical and hydraulic rock features, such as compressibility and other elastic moduli [<a href="#B31-geosciences-11-00119" class="html-bibr">31</a>,<a href="#B32-geosciences-11-00119" class="html-bibr">32</a>,<a href="#B33-geosciences-11-00119" class="html-bibr">33</a>,<a href="#B34-geosciences-11-00119" class="html-bibr">34</a>,<a href="#B36-geosciences-11-00119" class="html-bibr">36</a>,<a href="#B56-geosciences-11-00119" class="html-bibr">56</a>,<a href="#B58-geosciences-11-00119" class="html-bibr">58</a>,<a href="#B59-geosciences-11-00119" class="html-bibr">59</a>,<a href="#B60-geosciences-11-00119" class="html-bibr">60</a>,<a href="#B61-geosciences-11-00119" class="html-bibr">61</a>,<a href="#B62-geosciences-11-00119" class="html-bibr">62</a>,<a href="#B63-geosciences-11-00119" class="html-bibr">63</a>,<a href="#B64-geosciences-11-00119" class="html-bibr">64</a>], rock strength, permeability, etc.</div><div class='html-p'>Robin [<a href="#B65-geosciences-11-00119" class="html-bibr">65</a>] discussed an analogous relationship to that provided by Equation (11) (although expressed in nonlocal terms and restricted to the case of isotropic confining pressure), highlighting that different ES laws can be defined according to the parameters to be investigated. He also pointed out that a widespread definition of ES, compatible with that proposed in <a href="#sec2dot1-geosciences-11-00119" class="html-sec">Section 2.1</a>, may be misleading, whereas the simpler Terzaghi formulation is more closely linked to the deformation state of the porous medium. Based on Robin’s studies, Hampton and Boitnott [<a href="#B66-geosciences-11-00119" class="html-bibr">66</a>] emphasise how the term "effective pressure" has the misleading connotation of "equivalent pressure" and comment as follows: "... As such, the terms ’effective pressure’ and ’effective stress’ are misnomers that should be avoided without specific reference to a particular property… ".</div><div class='html-p'>Therefore, we can conclude that the ES definition is substantially conventional and related to the problem being treated. Among various ES formulations, Terzaghi’s seems particularly appropriate, for its simplicity and as it describes a stress system that is directly related to the internal geometry of pores and to the mechanical characteristics of the porous medium.</div></section></section><section id='sec3-geosciences-11-00119' type=''><h2 data-nested='1'> 3. Development of Theories Involving ESP</h2><section id='sec3dot1-geosciences-11-00119' type=''><h4 class='html-italic' data-nested='2'> 3.1. Fillunger’s Approach</h4><div class='html-p'>Fillunger [<a href="#B5-geosciences-11-00119" class="html-bibr">5</a>,<a href="#B67-geosciences-11-00119" class="html-bibr">67</a>] was the first to study, according to an organic theory, the effect of the pore pressure on strength and deformability of porous media such as soil, rock and concrete as well as the precursor of the modern Theory of Porous media [<a href="#B6-geosciences-11-00119" class="html-bibr">6</a>,<a href="#B29-geosciences-11-00119" class="html-bibr">29</a>,<a href="#B68-geosciences-11-00119" class="html-bibr">68</a>]. He provided for the ES the formulation of Equation (2), which appears in disagreement with the experimental evidence. It should be taken into account that the study of porous media was an absolute novelty as at that time they were approximated with continuous systems. Therefore, the concept of ES was not aimed at predicting the behaviour of porous media on the basis of laboratory tests according to the definition given in <a href="#sec2dot1-geosciences-11-00119" class="html-sec">Section 2.1</a>. In the Fillunger model the ES was intended as stress, loading the solid skeleton, to be utilised within differential equilibrium and balance equations [<a href="#B5-geosciences-11-00119" class="html-bibr">5</a>,<a href="#B6-geosciences-11-00119" class="html-bibr">6</a>].</div><div class='html-p'>Under the hypothesis of isotropic pore distribution, it can be proved as rock porosity n is equal to surface porosity, i.e., to the ratio (void area/total area) evaluated on an ideal elementary surface within a porous medium (e.g., [<a href="#B69-geosciences-11-00119" class="html-bibr">69</a>]). Therefore, denoting by P<sub>c</sub> the total confining stress and by dA the area of such elementary surface, the net acting force across this latter, given by (P<sub>c</sub>dA), is balanced by a force offered by the liquid phase on the pore surface, equal to (<span class='html-italic'>p</span>ndA), to which a force offered by the solid is added, equal to (σ<sub>s</sub> (1 − n) dA), where σs denotes the stress acting on the solid phase (<a href="#geosciences-11-00119-f002" class="html-fig">Figure 2</a>).</div><div class='html-p'>We point out that the ratio between this latter force and the whole elementary surface area dA (i.e., area of solid and pores) is given by ((1 − n) σ<sub>s</sub>), which can be interpreted as the stress effectively acting on the solid skeleton. Therefore, it results:<div class='html-disp-formula-info' id=''> <div class='f'> P<sub>C</sub> dA = <span class='html-italic'>p</span> n dA + σ<sub>s</sub> (1 − n) dA, </div> <div class='l'> </div> </div> from which:<div class='html-disp-formula-info' id=''> <div class='f'> (1 − n) σ<sub>s</sub> = P<sub>C</sub>− n <span class='html-italic'>p</span>., </div> <div class='l'> <label >(14)</label> </div> </div></div><div class='html-p'>This expression is identical to Equation (2) if the term at the first member is interpreted as ES. The problem of disagreement of such expression with experimental data can be imputed to an erroneous interpretation by the reader of the concept of ES, intended in the modern sense as the stress that applied to a dry sample gives the same observed response (<a href="#sec2dot1-geosciences-11-00119" class="html-sec">Section 2.1</a>). The expression is instead correct if the quantity at the first member is interpreted as the stress effectively acting on the solid through an elementary surface, in local equilibrium equations.</div><div class='html-p'>The stress effectively acting on the solid through an elementary surface is substantially different from the ES as defined in <a href="#sec2dot1-geosciences-11-00119" class="html-sec">Section 2.1</a>. This latter is referred to as the effect of the acting stresses on rock or soil, in terms of strain or strength behaviour, which depends on the stresses effectively acting on the outer surface of a control volume, i.e., Σ1, as well as that acting on the pore surface Σ2, whereas the former depends only on stress applied over Σ1. </div><div class='html-p'>Therefore, Fillunger was right, as his definition of ES was different from that given in <a href="#sec2dot1-geosciences-11-00119" class="html-sec">Section 2.1</a>, not being aimed at the experimental comparison of the mechanical behaviour of samples under different pore pressure conditions but at providing an appropriate variable for his mathematical model.</div></section><section id='sec3dot2-geosciences-11-00119' type=''><h4 class='html-italic' data-nested='2'> 3.2. Terzaghi’s Work</h4><div class='html-p'>Terzaghi’s work has provided the basis to soil and rock mechanics and, more generally, to geotechnical engineering [<a href="#B70-geosciences-11-00119" class="html-bibr">70</a>]. Terzaghi was more oriented to an experimental approach than Fillunger and his definition of ESP is compatible with that given in <a href="#sec2dot1-geosciences-11-00119" class="html-sec">Section 2.1</a>, being aimed at predicting the behaviour of saturated soils and rocks on the basis of experimental tests. Terzaghi had also encountered the problem of the disagreement of the ESP provided by Equation (2) with the experimental data and, on the basis of the experimental evidence, finally proposed the well-known formulation given by Equation (1) [<a href="#B2-geosciences-11-00119" class="html-bibr">2</a>]. As at that time the theory of soil and rock mechanics was in its infancy, it was not easy to interpret the subtle difference between stress effectively transmitted by the solid skeleton of a porous medium and ES as defined in <a href="#sec2dot1-geosciences-11-00119" class="html-sec">Section 2.1</a>.</div><div class='html-p'>Fillunger and other scientists in the 1910s had found experimental evidence of the role of ESP on soil behaviour, nevertheless according to Skempton [<a href="#B71-geosciences-11-00119" class="html-bibr">71</a>], which commented as follows, only Terzaghi has gasped the extent of this fundamental law:“… This result is similarly a direct consequence of the principle of effective stress. Nevertheless it is clear that the physical meaning of these tests was in no way understood, and it required the genius of Terzaghi to clarify and enunciate this basic law of the mechanical properties of porous materials…”.</div><div class='html-p'>Along his prolific scientific career, Terzaghi carried out an extensive experimental and theoretical work by developing the one-dimensional consolidation and settlement theory, the design of earth, rock and concrete dams on all kinds of foundations, several methods of soil laboratory test and pore pressure measurement, as well as most of the methods of modern engineering geology, rock and soil mechanics and in general of geotechnical engineering [<a href="#B72-geosciences-11-00119" class="html-bibr">72</a>]. Terzaghi’s ESP remains, today, the major reference in the above-mentioned subjects.</div></section><section id='sec3dot3-geosciences-11-00119' type=''><h4 class='html-italic' data-nested='2'> 3.3. From Biot’s to Zimmerman’sWorks and the Modern Poroelasticity</h4><div class='html-p'>After the works of Fillunger and Terzaghi, Heinrich followed the direction of the former whereas Biot of the latter. Heinrich’s work [<a href="#B73-geosciences-11-00119" class="html-bibr">73</a>,<a href="#B74-geosciences-11-00119" class="html-bibr">74</a>] was forgotten for decades and the theory of mixtures has been reused in the 1970s [<a href="#B6-geosciences-11-00119" class="html-bibr">6</a>,<a href="#B75-geosciences-11-00119" class="html-bibr">75</a>]. Biot, at the beginning of his career followed Terzaghi’s direction, giving the basis to the modern Poroelasticity. Biot fully developed the three-dimensional soil consolidation theory [<a href="#B10-geosciences-11-00119" class="html-bibr">10</a>,<a href="#B76-geosciences-11-00119" class="html-bibr">76</a>], extending the one-dimensional model previously developed by Terzaghi [<a href="#B1-geosciences-11-00119" class="html-bibr">1</a>,<a href="#B4-geosciences-11-00119" class="html-bibr">4</a>] to more general hypotheses and introducing the set of basic equations of poroelasticity. In this work Biot explained, according to a rational and rigorous theory, various aspects about the role of fluids on porous media strain and of ESP. Afterwards, Biot and Willis [<a href="#B17-geosciences-11-00119" class="html-bibr">17</a>] provided the formulation of the ES according to Equation (5), under hypothesis of linear elasticity of the porous medium. In the same year Geertsma [<a href="#B77-geosciences-11-00119" class="html-bibr">77</a>] rederived Biot’sporoelasticity equations, using a different set of variables and he too proved Equation (5) for the ES, according to the hypothesis of linear elastic behaviour. Biot then extended the consolidation theory to the case of anisotropic behaviour [<a href="#B11-geosciences-11-00119" class="html-bibr">11</a>] and later to the case of nonlinear elasticity [<a href="#B15-geosciences-11-00119" class="html-bibr">15</a>] using second order approximations of the elastic stress–strain relations. Furthermore, he has discussed in detail the general solutions of the poroelastic and consolidation model [<a href="#B12-geosciences-11-00119" class="html-bibr">12</a>]. This model has also been adapted in order to study the behaviour of saturated porous media in dynamic and seismic conditions [<a href="#B13-geosciences-11-00119" class="html-bibr">13</a>,<a href="#B78-geosciences-11-00119" class="html-bibr">78</a>,<a href="#B79-geosciences-11-00119" class="html-bibr">79</a>,<a href="#B80-geosciences-11-00119" class="html-bibr">80</a>]. Porous media strain was then analysed from the thermodynamic point of view under very general hypotheses [<a href="#B16-geosciences-11-00119" class="html-bibr">16</a>].</div><div class='html-p'>Skempton [<a href="#B7-geosciences-11-00119" class="html-bibr">7</a>] experimentally verified some formulations of the ES, establishing that Equation (5) is the most appropriate, between various proposed formulations, at describing of the strain of granular media under high pressures, while Nur and Byerlee [<a href="#B8-geosciences-11-00119" class="html-bibr">8</a>] theoretically derived this formulation for stress–strain rock behaviour. Details on these two works are illustrated below; here we limit ourselves to saying that, as highlighted by Nur and Byerlee, the main limitation of their proof lies in the fact that it assumes rock linear elastic behaviour. Garg and Nur [<a href="#B55-geosciences-11-00119" class="html-bibr">55</a>] have provided a proof of Equation (5) based on the mixture theory, corroborating the conclusions obtained by Nur and Byerlee and extending their validity to the case of nonlinear elastic behaviour of rock. Namely, they established that Equation (5) correctly describes the stress–strain behaviour of rock, while Terzaghi’s ES (Equation (1)) adequately describes their strength behaviour.</div><div class='html-p'>The nonlinear elastic behaviour of rocks, i.e., characterised by compressibility and toughness depending onstress, has been explained by Walsh [<a href="#B58-geosciences-11-00119" class="html-bibr">58</a>,<a href="#B59-geosciences-11-00119" class="html-bibr">59</a>,<a href="#B60-geosciences-11-00119" class="html-bibr">60</a>], who pointed out that it is mainly controlled by the modification in the geometry of more elongated pores. This concept was subsequently further clarified by Walsh and Grosenbaugh [<a href="#B61-geosciences-11-00119" class="html-bibr">61</a>], as well as by Zimmerman [<a href="#B31-geosciences-11-00119" class="html-bibr">31</a>,<a href="#B32-geosciences-11-00119" class="html-bibr">32</a>,<a href="#B33-geosciences-11-00119" class="html-bibr">33</a>,<a href="#B34-geosciences-11-00119" class="html-bibr">34</a>,<a href="#B62-geosciences-11-00119" class="html-bibr">62</a>] and more recently by other authors (e.g., [<a href="#B36-geosciences-11-00119" class="html-bibr">36</a>,<a href="#B64-geosciences-11-00119" class="html-bibr">64</a>]).</div><div class='html-p'>Zimmerman [<a href="#B33-geosciences-11-00119" class="html-bibr">33</a>], analogously to Geertsma [<a href="#B77-geosciences-11-00119" class="html-bibr">77</a>], approached the poroelastic problem in terms of more physically identifiable variables such as volume of porous body and of pores, confining and pore pressures (denoted by V<sub>b</sub>, V<sub>p</sub>, P<sub>c</sub>, and P<sub>p</sub>, respectively), providing relevant conclusions about stress–strain behaviour of nonlinear elastic saturated porous media as well as the ESP, rigorously corroborating the validity of Equation (5) for stress–strain ES, in which he proved that rock compressibility depends only from Terzaghi’s ES(σ − p). Zimmerman’s paper provides a relevant extension of Nur and Byerlee’s [<a href="#B8-geosciences-11-00119" class="html-bibr">8</a>] work, as it overcomes its main limitations related to the assumption of rock linear elasticity and of rock compressibility dependence on Terzaghi’s ES and represents a main reference about these topics.</div><div class='html-p'>Since the 1990s, the theory of Poroelasticity has undergone significant developments, also making use of the results of the Homogenisation criteria and of the modern Theory of Porous Media, unravelling different aspects of porous media behaviour such as constitutive equations, micromechanics, variational energy formulations, poroelastodynamics, poroviscoelasticity, porothermoelasticity, and porochemoelasticity, as thoroughly illustrated by Cheng [<a href="#B38-geosciences-11-00119" class="html-bibr">38</a>].</div></section><section id='sec3dot4-geosciences-11-00119' type=''><h4 class='html-italic' data-nested='2'> 3.4. Homogenisation Theory</h4><div class='html-p'>The homogenisation approach assumes periodic pore geometry and then extends the achieved results about the behaviour of a template elementary porous volume (control volume) to an aggregate made up of identical elementary volumes. Within this latter volume, solid and fluid phases occupy different spaces, i.e., variables such as density, stress/pressure field etc. are defined within the pore or solid space for fluid and solid, respectively. In such spaces the governing partial differential equations are defined. These are elasticity or other rheological models for solid and Navier–Stokes for fluid. Such equations, together with boundary conditions, are therefore simplified by considering perturbations of appropriate parameters and so analysing the first or second order related terms. As explained by Cheng [<a href="#B38-geosciences-11-00119" class="html-bibr">38</a>], the homogenisation approach makes extensive use of mathematics and different mathematical treatments may lead to different and sometimes even inconsistent results; therefore, these results always need to be experimentally validated. Furthermore, we point out that, due to the complexity of these theories, some of the results might be misinterpreted.</div><div class='html-p'>The homogenisation theory has allowed an in-depth analysis of several aspects of porous media behaviour. A theoretical analysis of the ESP by means of this approach was carried out by Auriault and Sanchez-Palencia [<a href="#B18-geosciences-11-00119" class="html-bibr">18</a>] and, for the case of inelastic behaviour, by De Buhan and Dormieux [<a href="#B22-geosciences-11-00119" class="html-bibr">22</a>]. Such approach was used in order to build up micromechanical models for porous media behaviour [<a href="#B81-geosciences-11-00119" class="html-bibr">81</a>,<a href="#B82-geosciences-11-00119" class="html-bibr">82</a>,<a href="#B83-geosciences-11-00119" class="html-bibr">83</a>,<a href="#B84-geosciences-11-00119" class="html-bibr">84</a>] as well as for theoretical approaches to Darcy law [<a href="#B84-geosciences-11-00119" class="html-bibr">84</a>,<a href="#B85-geosciences-11-00119" class="html-bibr">85</a>,<a href="#B86-geosciences-11-00119" class="html-bibr">86</a>], poroelastodynamic models [<a href="#B19-geosciences-11-00119" class="html-bibr">19</a>,<a href="#B20-geosciences-11-00119" class="html-bibr">20</a>,<a href="#B87-geosciences-11-00119" class="html-bibr">87</a>,<a href="#B88-geosciences-11-00119" class="html-bibr">88</a>], and porochemoelasticity(e.g., [<a href="#B89-geosciences-11-00119" class="html-bibr">89</a>]).</div></section><section id='sec3dot5-geosciences-11-00119' type=''><h4 class='html-italic' data-nested='2'> 3.5. Theory of Mixtures and the Modern Theory of Porous Media</h4><div class='html-p'>The modern Theory of Porous Media (TPM) is based on the mixture theory combined with the volume fraction concept [<a href="#B68-geosciences-11-00119" class="html-bibr">68</a>,<a href="#B90-geosciences-11-00119" class="html-bibr">90</a>]. Unlike the homogenisation approach, in such models solid and liquid phases are considered as overlying continua within a porous control volume, whose associated characters are weighted by a volume fraction; as an example, the reduced fluid density, here denoted by ρ<sup>f</sup>, consists of an averaged value over the control volume, equal to ρ<sup>f</sup> = n ρ<sub>f</sub>, where ρ<sub>f</sub> denotes the real fluid density and n the porosity. Analogously, the solid reduced density is ρ<sup>s</sup> = n<sup>s</sup>ρ<sub>s</sub>, where n<sup>s</sup> is the solid fraction, i.e., (1 −n) and ρ<sub>s</sub> the real solid density. Therefore, solid and fluid phases are substituted by “smeared” continua that can be treated by methods of continuum mechanics ([<a href="#B24-geosciences-11-00119" class="html-bibr">24</a>,<a href="#B30-geosciences-11-00119" class="html-bibr">30</a>,<a href="#B90-geosciences-11-00119" class="html-bibr">90</a>] Chapter 5).</div><div class='html-p'>About this model, Cheng [<a href="#B38-geosciences-11-00119" class="html-bibr">38</a>] points out as follows: “This approach is largely mathematical, and the material coefficients generally do not possess physical meaning until a comparison is made with a theory that is in use, such as a phenomenological theory”; therefore, due to the abstractness of such theory, its results need to be carefully dealt with in order to avoid some misinterpretations. An example is given by the above discussed mixture theory based Fillunger’s ES formulation (<a href="#sec3dot1-geosciences-11-00119" class="html-sec">Section 3.1</a>) in which the stress effectively acting on the solid should not be confused with the ES as defined in <a href="#sec2dot1-geosciences-11-00119" class="html-sec">Section 2.1</a>. Another relevant example is given by Suklje’s [<a href="#B9-geosciences-11-00119" class="html-bibr">9</a>] ES formulation. This latter might be defined as the stress producing strain involving the only solid phase (skeleton and solid particles; <a href="#sec4dot1-geosciences-11-00119" class="html-sec">Section 4.1</a>), which also in this case, should not be confused with the ES as defined in <a href="#sec2dot1-geosciences-11-00119" class="html-sec">Section 2.1</a>.</div><div class='html-p'>After its involvement by Fillunger, the mixture theory had been poorly adopted in porous media studies until the 1970s [<a href="#B6-geosciences-11-00119" class="html-bibr">6</a>]. At that time Morland [<a href="#B91-geosciences-11-00119" class="html-bibr">91</a>] used the mixture theory combined with volume fraction in order to build up the Theory of Interacting Continua, within the framework of porous media analysis. Based on such approach, Garg and Nur [<a href="#B55-geosciences-11-00119" class="html-bibr">55</a>] have critically re-examined the theoretical and experimental bases of several ES laws.</div><div class='html-p'>In the last decades the TPM has allowed the analysis of porous media behaviour under general hypotheses in several areas of science and engineering, going from geotechnics to biomechanics (e.g., [<a href="#B24-geosciences-11-00119" class="html-bibr">24</a>,<a href="#B25-geosciences-11-00119" class="html-bibr">25</a>,<a href="#B26-geosciences-11-00119" class="html-bibr">26</a>,<a href="#B27-geosciences-11-00119" class="html-bibr">27</a>]). According to TPM approach, Bluhm and De Boer [<a href="#B23-geosciences-11-00119" class="html-bibr">23</a>] have reviewed the underlying theory to the ESP, proving some of the previously proposed ES formulations. Didwania and De Boer [<a href="#B92-geosciences-11-00119" class="html-bibr">92</a>] have provided a very interesting theoretical treatment of the ESP under general hypotheses.</div><div class='html-p'>The mixture theory has provided fundamental tools aimed at unravelling several aspects of macro- and micro-scale stress and strain field features, within saturated and unsaturated porous media [<a href="#B24-geosciences-11-00119" class="html-bibr">24</a>,<a href="#B92-geosciences-11-00119" class="html-bibr">92</a>,<a href="#B93-geosciences-11-00119" class="html-bibr">93</a>,<a href="#B94-geosciences-11-00119" class="html-bibr">94</a>,<a href="#B95-geosciences-11-00119" class="html-bibr">95</a>], as well as at providing theoretical proofs of some ES laws [<a href="#B23-geosciences-11-00119" class="html-bibr">23</a>,<a href="#B55-geosciences-11-00119" class="html-bibr">55</a>]. Furthermore, according to such theory, variational energy formulations have been developed [<a href="#B24-geosciences-11-00119" class="html-bibr">24</a>,<a href="#B91-geosciences-11-00119" class="html-bibr">91</a>,<a href="#B96-geosciences-11-00119" class="html-bibr">96</a>,<a href="#B97-geosciences-11-00119" class="html-bibr">97</a>,<a href="#B98-geosciences-11-00119" class="html-bibr">98</a>], as well as elastodynamic models for porous media [<a href="#B94-geosciences-11-00119" class="html-bibr">94</a>,<a href="#B99-geosciences-11-00119" class="html-bibr">99</a>,<a href="#B100-geosciences-11-00119" class="html-bibr">100</a>], Porochemoelasticity [<a href="#B101-geosciences-11-00119" class="html-bibr">101</a>,<a href="#B102-geosciences-11-00119" class="html-bibr">102</a>,<a href="#B103-geosciences-11-00119" class="html-bibr">103</a>], and mechanics of microporous media (e.g., [<a href="#B104-geosciences-11-00119" class="html-bibr">104</a>]).</div></section><section id='sec3dot6-geosciences-11-00119' type=''><h4 class='html-italic' data-nested='2'> 3.6. Effect of Pore Pressure on Rock Fracturing</h4><div class='html-p'>Pore pressure plays significant roles in geological fracturing phenomena observable at different scales such as faulting, from the kilometre to the regional scale, and formation of tensional joints, at the metre to crystal scale. In the former case, the coseismic increase in pressure due to developed slip-related high temperatures can markedly affect the slip evolution; in the latter case pore pressure is considered as essential in order to justify fracturing phenomena, as it appears unlikely that in earth crust, in presence of lithostatic load, traction can develop in terms of total stresses (e.g., [<a href="#B105-geosciences-11-00119" class="html-bibr">105</a>]).</div><section id='sec3dot6dot1-geosciences-11-00119' type=''><h4 class='' data-nested='3'> 3.6.1. Earthquake and Coseismic Overpressurisation</h4><div class='html-p'>During an earthquake, at the fault plane high temperatures develop which cause an increase in pore pressure associated to vaporisation (e.g., [<a href="#B39-geosciences-11-00119" class="html-bibr">39</a>,<a href="#B40-geosciences-11-00119" class="html-bibr">40</a>,<a href="#B41-geosciences-11-00119" class="html-bibr">41</a>,<a href="#B42-geosciences-11-00119" class="html-bibr">42</a>,<a href="#B43-geosciences-11-00119" class="html-bibr">43</a>,<a href="#B106-geosciences-11-00119" class="html-bibr">106</a>,<a href="#B107-geosciences-11-00119" class="html-bibr">107</a>]). This increase, in the coseismic phase, can notably affect slip evolution and speed, moreover, in the post-seismic phase it can control the aftershock phenomenon [<a href="#B108-geosciences-11-00119" class="html-bibr">108</a>], as pore pressure increase slowly propagates into the surrounding rock.</div><div class='html-p'>From the viewpoint of Coulomb’s strength theory, an increase in fluid pressure reduces the normal stress acting on the fault plane that holds it in place, moreover fluids can exert a lubricating effect (e.g., [<a href="#B107-geosciences-11-00119" class="html-bibr">107</a>] and references therein). It should be taken into account that coseismicoverpressurisation is a practically instantaneous phenomenon if compared with the fluid flow time resulting in low permeability fault core rocks and, therefore, such increase in pressure, denoted by Δ<span class='html-italic'>p</span>, occurs in a thin layer in correspondence of the fault plane, where in coseismic conditions, in the surrounding rock the pore pressure remains at the preseismic values, denoted by p<sub>0</sub>. As fluid pressure acting on the fault plane walls, equal to (p<sub>0</sub> + Δ<span class='html-italic'>p</span>), is not counterbalanced by the pore pressure acting in the surrounding rock, equal to p<sub>0</sub>, then the tangential stress offered at the fault plane is reduced to a greater extent than that which would be considered in terms of ordinary effective stress. For these reasons thermal overpressurisation may enhance the faulting process instability, as it provides a positive feedback between slip and strength at the fault plane as fault slip increases pore pressure and this latter reduces friction forces at the fault plane, thereby enhancing slip.</div><div class='html-p'>In post-seismic stage the pressure gradient between fault plane and neighbouring rock causes a fluid flow which increases pore pressure in the surrounding fracture networks and so it may trigger new faulting processes by reactivating neighbouring faults, giving rise to aftershocks. Analogously, also manmade pore pressure increase, by means of fluid injection in Earth’s crust, may induce seismicity (e.g., [<a href="#B52-geosciences-11-00119" class="html-bibr">52</a>,<a href="#B109-geosciences-11-00119" class="html-bibr">109</a>,<a href="#B110-geosciences-11-00119" class="html-bibr">110</a>] and references therein).</div></section><section id='sec3dot6dot2-geosciences-11-00119' type=''><h4 class='' data-nested='3'> 3.6.2. Hydraulic Jointing</h4><div class='html-p'>For a long time, formation of tensile fractures in rock has been considered a poorly explained phenomenon as stresses in the Earth’s crust are compressive, with the exception of particular cases involving very shallow rocks. Hubbert and Willis [<a href="#B111-geosciences-11-00119" class="html-bibr">111</a>] clarified as fractures are produced when tensile ES (Equation (1)), rather than total stress, exceeds rock tensional strength. Subsequently Secor [<a href="#B112-geosciences-11-00119" class="html-bibr">112</a>] explained how pore pressure in Earth crust can cause hydraulic fracturing without depth limits. Based on strain energy balance methods and following the Griffith crack growth model, Secor [<a href="#B113-geosciences-11-00119" class="html-bibr">113</a>] illustrated an hydraulic fracturing model consisting of an elastic solid including random oriented elliptical flaws, hydraulically connected by a permeable matrix, filled by fluid under homogeneous pore pressure. According to Secor’s model if from an opportunely oriented flaw enucleates a fracture, a pressure drop occurs within this latter a cause of increase in void volume. Such process stage evolves at about sound speed and, so, fracture extension rapidly stops, being the final internal pore pressure lower than that in the surrounding rock. The produced pressure gradient, between the interior of growing fracture and surrounding pores, results in a fluid flow towards the fissure itself. When the pore pressure reaches a suitable value, the crack further extends. Therefore, according to this model, fracture extension is an intermittent process.</div><div class='html-p'>Fyfe et al. [<a href="#B105-geosciences-11-00119" class="html-bibr">105</a>,<a href="#B114-geosciences-11-00119" class="html-bibr">114</a>] questioned Secor’s model as it did not take into accountthat fluid pressure inside a growing fracture is counterbalanced by the pore pressure in the neighbouring rock. According to them, this fracturing mechanism is possible if the ES in the neighbouring rock is used in the formulation of Equation (5),in this way the fluid pressure into the growing fracture would be (albeit slightly) higher than decrease in total stress, given by ((1 − C<sub>s</sub>/C) p), in the surrounding rock. This model is illustrated in detail by Engelder and Lacazette [<a href="#B115-geosciences-11-00119" class="html-bibr">115</a>], in which mixed boundary conditions are defined in terms of both applied stress and displacements. Namely, the authors considered a condition of uniaxial strain for a control volume of rock, undergoing a vertical total stress σ1, a homogeneous pore pressure p and constrained in lateral expansion (note as this latter condition is expressed in terms of displacements rather than stresses). Therefore, lateral total stress is an increasing function of σ1 and p. It can be proved as, under such boundary conditions, tensional fracturing is possible only if ES, acting over the boundary of a control volume including the considered growing joint, is calculated according to Equation (5), rather than Equation (1) [<a href="#B114-geosciences-11-00119" class="html-bibr">114</a>]. The illustrated model is interesting as it justifies occurrence of tensional joints also when horizontal extension is constrained, e.g., in areas characterised by no extensional tectonics, nevertheless, the reached conclusions should not be misinterpreted, deducing that fracturing is generally controlled by Skempton–Nur–Byerlee ES (Equation (5)) rather than Terzaghi’s ES (Eq. 1), as the validity of the former ES formulation is strictly related to the imposed boundary conditions. In fact, fracture growth is mainly controlled by local stresses at the fracture tip, for which Equations (12) and (13) hold.</div><div class='html-p'>Within the framework of geological fracturing processes, we should take into account, besides uniaxial strain, also other likely kinds of boundary conditions. Two common cases in nature are related to (i) pore pressure increase by natural or manmade (e.g., fluid injection) causes and (ii) tectonic-related total horizontal stress decrease.</div><div class='html-p'>In the case (i) it should be taken into account as pore pressure may show a strongly heterogeneous spatial distribution as illustrated by <a href="#geosciences-11-00119-f003" class="html-fig">Figure 3</a> [<a href="#B116-geosciences-11-00119" class="html-bibr">116</a>], with exception for cases of extremely slow fluid pressure increase; within the more permeable joint networks, fluid pressure increase is more rapid than in the less permeable ones in which in turn it is faster than that into the nonfractured porous host rock [<a href="#B116-geosciences-11-00119" class="html-bibr">116</a>]. </div><div class='html-p'>Therefore, for those fractures which are influenced by such increase, the internal fluid pressure is not counterbalanced by pore pressure in the surrounding rock, so enhancing fracture extension. In such condition, for sufficient pore pressure increase, fracture extension proceeds according to Secor’s model. The process of fracture extension is also described in detail in other interesting papers [<a href="#B117-geosciences-11-00119" class="html-bibr">117</a>,<a href="#B118-geosciences-11-00119" class="html-bibr">118</a>,<a href="#B119-geosciences-11-00119" class="html-bibr">119</a>]. It should be noted that, in case of strongly heterogeneous pore pressure, the concept of effective stress appears ambiguous. Indeed, in this case fluid pressure assumes different values also within a small control porous fractured volume and it may be not clear whether both the pressures to be subtracted from the total stress is the increased pressure, inside a fracture, or that present in the surrounding porous rock. Finally, we point out that such fracture growth model can be applied only to the case of pre-existing joints/cracks already connected to the fracture network, whereas it is not applicable to isolated cracks/flaws (i.e., to nucleation of new fractures), with exception for cases of extremely slow pore pressure increase.</div><div class='html-p'>In the case (ii) of tectonic extension, the horizontal stress σ3 slowly decreases and the least effective stress (σ3’ = σ3 − <span class='html-italic'>p</span>), may become tensional and eventually exceed the rock strength. </div><div class='html-p'>An opportunely oriented flaw, crack or fracture can extend if the stress at tips, namely the local stress at crystal lattice scale, is such that to produce detachment between adjacent crystals or two portions of the same crystal. At such scale of observation, notably stress concentrations occur and local stress, described by Equation (11), complies with Equations (12) and (13) (<a href="#sec4dot3-geosciences-11-00119" class="html-sec">Section 4.3</a>), therefore crystal detachment, as well as fracture extension, is controlled by Terzaghi’s ES. In such conditions, fracture extension proceeds according to Secor’smodel [<a href="#B113-geosciences-11-00119" class="html-bibr">113</a>,<a href="#B117-geosciences-11-00119" class="html-bibr">117</a>,<a href="#B118-geosciences-11-00119" class="html-bibr">118</a>,<a href="#B119-geosciences-11-00119" class="html-bibr">119</a>]. Analogous process is followed in case of very slow fluid pressure increase, as in such case pore pressure gradients are moderate and, therefore, pressure distribution is substantially homogeneous within rock.</div><div class='html-p'>It should be noted that in both above illustrated cases, fracture extension is always accompanied by pore pressure drop and, therefore, the trend of such pressure is always heterogeneous. This also applies in the above described case (ii), although the pore pressure is initially homogeneous. This makes the theoretical approach to jointing mechanisms problematic, because the definition of ES is not univocal; the condition of heterogeneous pore pressure should be carefully dealt with, as the derivation of Equation (11) requires a homogeneous distribution of these pressures.</div></section><section id='sec3dot6dot3-geosciences-11-00119' type=''><h4 class='' data-nested='3'> 3.6.3. Joint Spacing and Sequential Joint Filling</h4><div class='html-p'>Pore pressure can also affect spacing between consecutive joints belonging to the same set. This parameter is of fundamental importance for fractured rock characterisation and modelling, as it strongly influences their hydraulic and mechanical properties. Within the framework of study of joint sequential filling processes (i.e., joint network developing in bedded rocks) different models have been proposed in order to explain the temporal evolution of joint networks and namely the observed distributions of spacing values between consecutive joints [<a href="#B120-geosciences-11-00119" class="html-bibr">120</a>,<a href="#B121-geosciences-11-00119" class="html-bibr">121</a>,<a href="#B122-geosciences-11-00119" class="html-bibr">122</a>,<a href="#B123-geosciences-11-00119" class="html-bibr">123</a>,<a href="#B124-geosciences-11-00119" class="html-bibr">124</a>,<a href="#B125-geosciences-11-00119" class="html-bibr">125</a>,<a href="#B126-geosciences-11-00119" class="html-bibr">126</a>,<a href="#B127-geosciences-11-00119" class="html-bibr">127</a>], nevertheless, they appear in agreement with field data only in some cases, whereas in others they appear incompatible with such data. Hobbs [<a href="#B120-geosciences-11-00119" class="html-bibr">120</a>] provided a first model explaining the mechanism which produces tensile fractures showing spacing proportional to the mechanical layer thickness. Later, Ladeira and Price [<a href="#B121-geosciences-11-00119" class="html-bibr">121</a>] explained the possible role of pore pressure in controlling spacing between joints in thick mechanical layers. Narr and Suppe [<a href="#B122-geosciences-11-00119" class="html-bibr">122</a>] have improved Hobbs model by introducing the effect of flaws with random spatial distribution, which explains statistical variability of joint spacing around an average value. Furthermore, on the basis of this model, they have introduced the concept of joint saturation, i.e., a condition in which a fracture network is considered ’mature’ and a further bed extension tends to produce further extension of existing joint, rather than formation of new ones. Pollard and Segall [<a href="#B128-geosciences-11-00119" class="html-bibr">128</a>] as well as Gross [<a href="#B123-geosciences-11-00119" class="html-bibr">123</a>] explained and quantified the effect of stress shadow in the surroundings of a growing fracture, in hindering nucleation of new fractures in their vicinity, being fracture walls free from tensile stress. Therefore, stress gradually varies from zero, at the growing fracture walls, to the remote stress, far from such joint. The concept of stress shadow, as well as that of joint saturation, were then deepened by Bai and Pollard [<a href="#B124-geosciences-11-00119" class="html-bibr">124</a>,<a href="#B125-geosciences-11-00119" class="html-bibr">125</a>,<a href="#B126-geosciences-11-00119" class="html-bibr">126</a>,<a href="#B127-geosciences-11-00119" class="html-bibr">127</a>] by means of the stress transition model. Based on numerical simulations involving dry rock and a rigorous theoretical treatment based on the theory of elasticity, they quantitatively explained the effect of stress shadow and the concept of joint saturation that occurs when a critical value of the spacing to thickness ratio is reached. However, the same authors highlight how this model is not applicable in several cases in which the observed value of such ratio is well below the critical one [<a href="#B125-geosciences-11-00119" class="html-bibr">125</a>,<a href="#B126-geosciences-11-00119" class="html-bibr">126</a>], stating as such cases need to be explained by means of different models, possibly involving the effect of pore pressure. The above described models consider dry rock and can be adapted to the case in which pore pressure is present, only in the case in which the latter is homogeneous (<a href="#sec3dot6dot2-geosciences-11-00119" class="html-sec">Section 3.6.2</a> and <a href="#sec5dot2-geosciences-11-00119" class="html-sec">Section 5.2</a>). This represents an important limitation for such models as joint extension may be associated with heterogeneous pore pressure in pregrowth conditions in several cases and it always is during such growth. These criticalities of joint sequential filling models are discussed in <a href="#sec5dot2-geosciences-11-00119" class="html-sec">Section 5.2</a>.</div></section></section></section><section id='sec4-geosciences-11-00119' type=''><h2 data-nested='1'> 4. Revisitation of Two Main Works and a Theoretical Proof of ESP</h2><section id='sec4dot1-geosciences-11-00119' type=''><h4 class='html-italic' data-nested='2'> 4.1. Skempton and Nur and ByerleeProof of ESP</h4><div class='html-p'>Skempton [<a href="#B7-geosciences-11-00119" class="html-bibr">7</a>] has carried out an extensive review of available formulations, given by Equations (1)–(5), and experimental data in literature, in order to (i) reject some of these expressions, (ii) clarify what expression was appropriate according to several work hypotheses, such as stress–strain or strength behaviour, saturated or nonsaturated media, rock/concrete or soil behaviour, etc. At that time the common opinion was that the effective stress was the intergranular stress acting between particles and/or clasts; this led to a formulation of ES given by Equation (3). Based on experimental data about oedometer tests on lead shot, whose results are summarised in <a href="#geosciences-11-00119-t001" class="html-table">Table 1</a>, Skempton has proved that Equation (3) is invalid, whereas Equation (5) is appropriate for soil volume strain under high pressure.</div><div class='html-p'>Indeed, lead shot under high pressure experienced considerable plastic strain and so the contact area ratio <span class='html-italic'>a<sub>c</sub></span> varied significantly during the various compression steps, also approaching the unit value, differently than soils for which <span class='html-italic'>a<sub>c</sub></span> is always negligible with respect to the unity. Therefore, if the ES were described by Equation (3), in such experiments it should have significantly diverged from Terzaghi’s one. Instead, experimental data exhibited significant disagreement with Equation (3), whereas these were in excellent agreement with Equation (5) and displayed only small deviations from Terzaghi’s ES formulation, given by Equation (1) (<a href="#geosciences-11-00119-t001" class="html-table">Table 1</a>).</div><div class='html-p'>In the framework of rock strength behaviour, he established that the use of Equations (1) and (4) provide differences which are comparable with experimental uncertainties, so concluding that Terzaghi’s expression (Equation (1)) can accurately describe the strength behaviour of soil, concrete and rock, as well as the stress–strain behaviour of soil under ordinary stress conditions in geotechnical applications.</div><div class='html-p'>Although the experiment on lead shot illustrated by [<a href="#B7-geosciences-11-00119" class="html-bibr">7</a>] was perfectly adequate in order to define the role of contact area ratio variations on ES, the maximum reached stress is of the order of 100 MPa. It should be noted that, in case of higher stress values (e.g., of several hundreds of MPa) acting on soil or rock, the coefficient (1 − <span class='html-italic'>C<sub>s</sub></span>/<span class='html-italic'>C</span>) attains values below unit and may also approach zero.</div><div class='html-p'>In both works by Skempton [<a href="#B7-geosciences-11-00119" class="html-bibr">7</a>] and Nur and Byerlee [<a href="#B8-geosciences-11-00119" class="html-bibr">8</a>] the basic equation, referred to unjacketed tests where σ denotes a confining isotropic stress, from which Equation (5) is derived, is the following:<div class='html-disp-formula-info' id=''> <div class='f'> ΔV = ΔV<sub>0</sub> + ΔV<span class='html-italic'><sub>p</sub></span>, </div> <div class='l'> <label >(15)</label> </div> </div> where ΔV denotes the volume change of a control volume containing many pores (<a href="#sec2-geosciences-11-00119" class="html-sec">Section 2</a>), ΔV<sub>0</sub> due to the difference between confining stress and pore pressure, (σ − p) and ΔV<span class='html-italic'><sub>p</sub></span> due to pore pressure.</div><div class='html-p'>Analogous relation can be achieved in terms of volume strain, by dividing by the initial volume, denoted by V. <div class='html-disp-formula-info' id=''> <div class='f'> ε<sub>v</sub> = ΔV<sub>0</sub>/V + ΔV<span class='html-italic'><sub>p</sub></span>/V = ε<sub>0</sub> + ε<span class='html-italic'><sub>p</sub></span>, </div> <div class='l'> </div> </div> where ε<sub>v</sub>, ε<sub>0</sub> and ε<span class='html-italic'><sub>p</sub></span> assume the same meaning of the above illustrated volume changes in terms of volume strain. This relation is based on the superposition principle. This latter has been assumed by Skempton [<a href="#B7-geosciences-11-00119" class="html-bibr">7</a>], based on experimental evidence and by Nur and Byerlee [<a href="#B8-geosciences-11-00119" class="html-bibr">8</a>] as necessary, although not justified, in order to carry on their theoretical proof. As the effective stress can be defined as the stress which applied over a dry sample provides the same observed volume strain (<a href="#sec2dot1-geosciences-11-00119" class="html-sec">Section 2.1</a>), therefore,ε<sub>v</sub> can be substituted by (C σ’). Hence, substituting ε<sub>0</sub> and ε<span class='html-italic'><sub>p</sub></span>, in the latter equation, by (C(σ −<span class='html-italic'>p</span>)) and (C<sub>s</sub><span class='html-italic'>p</span>), respectively, it becomes:<div class='html-disp-formula-info' id=''> <div class='f'> C σ’ = C (σ - <span class='html-italic'>p</span>) + C<span class='html-italic'>s p</span>, </div> <div class='l'> <label >(16)</label> </div> </div> which, after simple manipulations provides the Equation (5). It should be noted as Equations (15) and consequently (16) can be easily achieved starting from Equation (11), taking into account that the validity of superposition principle locally, i.e., for all elementary volumes, implies its validity at the control volume scale, as well as at the whole porous body scale.</div><div class='html-p'>It should be noted as the Suklje [<a href="#B9-geosciences-11-00119" class="html-bibr">9</a>] ES expression (Equation (6)) can be achieved in an analogous way, where the second term on the right side of Equation (15) is substituted by the volume change of only grains, here denoted by ΔV<sub>s</sub>. <div class='html-disp-formula-info' id=''> <div class='f'> ΔV = ΔV<sub>0</sub> + ΔV<sub>s</sub>, </div> <div class='l'> </div> </div></div><div class='html-p'>This may be interpreted as volume change of the only solid phase.</div><div class='html-p'>Taking into account that the initial volume of the solid fraction is equal to ((1 − n) V), the second contribution is equal to ((1 − n) V ε<span class='html-italic'><sub>p</sub></span>) = ((1 − n) V C<sub>s</sub><span class='html-italic'>p</span>).</div><div class='html-p'>Hence:<div class='html-disp-formula-info' id=''> <div class='f'> ΔV = V C (σ − <span class='html-italic'>p</span>) + (1 − n) V C<span class='html-italic'><sub>s</sub> p</span>, </div> <div class='l'> </div> </div></div><div class='html-p'>Then, dividing all terms by V, we get the following equation:<div class='html-disp-formula-info' id=''> <div class='f'> ε<sub>v</sub> = C (σ − <span class='html-italic'>p</span>) + (1 − n) C<sub>s</sub><span class='html-italic'>p</span>, </div> <div class='l'> <label >(17)</label> </div> </div> where ε<sub>v</sub> now denotes the strain involving the only solid phase (skeleton and solid particles). The Equation (17) differs from Equation (16) only by the term (1 − n) at the right side. If we put ε<sub>v</sub>= C σ’, after simple manipulations the Equation (17) provides the Equation (6). It should be noted that the effective stress here defined should be intended as the stress producing strain involving the only solid phase and it should not be confused with the effective stress as defined in <a href="#sec2dot1-geosciences-11-00119" class="html-sec">Section 2.1</a>.</div><div class='html-p'>The above illustrated was the line of reasoning followed by Skempton, Nur and Byerlee, which led to an experimentally validated ES formulation (Equation (5)); this, nevertheless, appears in contrast with the inapplicability of the superposition principle in the case of nonlinear elastic rock behaviour and, even more so, with the inelastic behaviour of soils. This contrast is even more evident in the case of lead shot experiments, for which an inelastic behaviour is observed due to the spatial pellet rearrangement combined with phenomena of crystal plasticity involving individual lead spheres. In the next section we deal with the theoretical problem of superposition principle in the case of nonlinear elastic behaviour of rocks, referring to the following sections the case study of soils and lead shot.</div><div class='html-p'>The superposition principle is not generally applicable to the case of nonlinear elastic media (<a href="#sec2dot3-geosciences-11-00119" class="html-sec">Section 2.3</a>). For these reasons, the proof of applicability of the superposition principle assumes a key role in the theoretical treatment of ESP, as it allows us to validate Equation (11), from which (i) follows all the considerations drawn in <a href="#sec2-geosciences-11-00119" class="html-sec">Section 2</a> about stress–strain and strength behaviour of rocks and (ii) Equation (15) is derived, which provides the basis for the above illustrated Skempton–Nur–Byerlee proofs.</div><div class='html-p'>We rigorously prove below that, under the hypotheses introduced in <a href="#sec2dot2-geosciences-11-00119" class="html-sec">Section 2.2</a>, the superposition principle can be applied also to the case of nonlinear elastic porous solids.</div></section><section id='sec4dot2-geosciences-11-00119' type=''><h4 class='html-italic' data-nested='2'> 4.2. Proof of Applicability of the Superposition Principle</h4><div class='html-p'>The superposition principle requires that the elastic problem under consideration complies with two fundamental requirements: (i) linearity of governing equations and (ii) that there is no significant variation in geometry of the boundary surface (e.g., [<a href="#B57-geosciences-11-00119" class="html-bibr">57</a>]). In our model the first requirement is guaranteed by the linear elasticity of the material constituting the porous medium, whereas the second is not a cause of variation in pore surface shape, whose non-negligibility is proven by the often observed considerable change in the elastic parameters of the aggregate (we recall that linear elasticity of the constituent material does not imply the linearity for the porous aggregate which is mainly controlled by pore shape geometry; <a href="#sec2dot2-geosciences-11-00119" class="html-sec">Section 2.2</a>, <a href="#sec2dot3-geosciences-11-00119" class="html-sec">Section 2.3</a> and <a href="#sec3dot3-geosciences-11-00119" class="html-sec">Section 3.3</a>). It is pointed out that the solutions of the system of Equation (8) must fulfil the boundary conditions of Equation (9) on the deformed surface. To better understand this concept, consider the following example. Imagine subjecting a control volume, with an undeformed boundary surface Σ<sup>I</sup>, to a stress σ<span class='html-italic'><sub>a</sub></span>, then subsequently unloading the sample and applying a second stress σ<span class='html-italic'><sub>b</sub></span>. Let Σ<sup>II</sup>denote the deformed surface after application of σ<span class='html-italic'><sub>a</sub></span> and by Σ<sup>III</sup> that obtained after application of σ<span class='html-italic'><sub>b</sub></span>. Let ψa(x) denote the stress field associated toσ<span class='html-italic'><sub>a</sub></span> and byψb(x) that associated toσ<span class='html-italic'><sub>b</sub></span>. Note that ψa(x) fulfils the boundary conditions of Equation (9) on the surface Σ<sup>II</sup> and, correspondingly, ψb(x) on the surface Σ<sup>III</sup>. If we now imagine submitting the control volume to the stress (σ<span class='html-italic'><sub>a</sub></span> + σ<span class='html-italic'><sub>b</sub></span>), the boundary surface becomes Σ<sup>IV</sup>, which in general is different from Σ<sup>II</sup> and Σ<sup>III</sup> and, therefore, results:<div class='html-disp-formula-info' id=''> <div class='f'> ψ<sub>ij</sub>(σ<span class='html-italic'><sub>a</sub></span> + σ<span class='html-italic'><sub>b</sub></span>) ≠ ψa<sub>ij</sub>(σ<span class='html-italic'><sub>a</sub></span>) + ψb<sub>ij</sub>(σ<span class='html-italic'><sub>b</sub></span>), </div> <div class='l'> <label >(18)</label> </div> </div> as neither ψa(x) nor ψb(x) generally fulfil the boundary conditions on the surface Σ<sup>IV</sup>.</div><div class='html-p'>Therefore, the superposition principle is not valid in the considered case.</div><div class='html-p'>We will now prove that the superposition principle can also be applied in the case of nonlinear elasticity of the porous medium (as defined in <a href="#sec2dot2-geosciences-11-00119" class="html-sec">Section 2.2</a>), in the special case in which one of the two stress systems consists of a uniform hydrostatic pressure, applied to the whole boundary, i.e., on the external and pore surfaces.</div><div class='html-p'>Preliminarily, we provide the following proof that is achieved by applying well-known principles of similarity: </div><div class='html-p'><ul class='html-bullet'><li><div class='html-p'>Proof 1—the system of Equation (8) provides solutions that depend only on boundary surface shape and not on size.</div></li></ul></div><div class='html-p'>Let us consider two geometrically similar bodies indicated with B1 and B2, i.e., such that B2 can be obtained from B1 by setting x’ = λx (<a href="#geosciences-11-00119-f004" class="html-fig">Figure 4</a>). </div><div class='html-p'>Let us imagine submitting them to the same system of stresses, so that the boundary conditions are the same for B1 and B2. Let us now consider system (8). Dividing both sides by λ<sup>2</sup> and taking into account that (∂<sup>2</sup>/∂x’<sub>i</sub><sup>2</sup>) = 1/λ<sup>2</sup> (∂/∂x<sub>i</sub><sup>2</sup>), we obtain the system:<div class='html-disp-formula-info' id=''> <div class='f'> (1+ν) ∇’<sup>2</sup>ψ<sub>ij</sub> + ∂2ψ<sub>kk</sub>/∂x’<sub>i</sub>∂x’<sub>j</sub> = 0, </div> <div class='l'> <label >(19)</label> </div> </div> where∇’<sup>2</sup> denotes (1/λ<sup>2</sup>∇<sup>2</sup>), which is formally identical to the system (8). </div><div class='html-p'>The application of the equation system (19) to the body B2 provides the identical solution obtained by use of the system (8) for the body B1. We can therefore conclude that, denoted by ψ(x) the solution relating to the considered boundary conditions, it results ψB1(x) = ψB2(x’) for each x belonging to B1.</div><ul class='html-bullet'><li><div class='html-p'>Proof 2—the superposition principle can be applied, even in the case of nonlinear elasticity of the porous medium, in the special case in which one of the two stress systems consists of a uniform hydrostatic pressure, applied to the whole boundary surface.</div></li></ul><div class='html-p'>Let us now consider the same described above example of porous control volume submitted to the stress (σa + σb), in which the load σb is replaced by a uniform pressure p acting on the whole boundary, i.e., outer and pore surface, whose related solution is ψp(x): ψ<span class='html-italic'>p</span><sub>ij</sub> = δ<sub>ij</sub><span class='html-italic'>p</span>. Use the same notation as above for the deformed surfaces (<a href="#geosciences-11-00119-f005" class="html-fig">Figure 5</a>).</div><div class='html-p'>In this case, as the pressure p produces a strain consisting of a geometric similarity, it follows that the surface Σ<sup>IV</sup> is geometrically similar to Σ<sup>II</sup>, i.e., the one that would be obtained for <span class='html-italic'>p</span> = 0. Therefore, the solution ψ<span class='html-italic'><sub>a</sub></span>(x) fulfils the boundary conditions (9) also over Σ<sup>IV</sup>. Taking into account that the solution ψ<span class='html-italic'>p</span><sub>ij</sub>= δ<sub>ij</sub><span class='html-italic'>p</span>, fulfils the boundary condition relating to a uniform pressure for whatever boundary shape, then it results:</div><div class='html-disp-formula-info' id=''> <div class='f'> ψ<sub>ij</sub>(σ<span class='html-italic'><sub>a</sub></span><sub>ij</sub> + δ<sub>ij</sub><span class='html-italic'>p</span>) = ψ<span class='html-italic'>a</span><sub>ij</sub>(σ<span class='html-italic'><sub>a</sub></span><sub>ij</sub>) + δ<sub>ij</sub>p, </div> <div class='l'> <label >(20)</label> </div> </div><div class='html-p'>as both terms on the right side fulfil the boundary conditions on Σ<sup>IV</sup>.</div><div class='html-p'>By replacing σ<span class='html-italic'><sub>a</sub></span><sub>ij</sub> by the stress exceeding the pore pressure (σ<sub>ij</sub>–δ<sub>ij</sub><span class='html-italic'>p</span>), i.e., Terzaghi’s ES, we achieve the Equation (11), which is therefore valid together with all consequent above drawn considerations about ESP (<a href="#sec2-geosciences-11-00119" class="html-sec">Section 2</a>).</div></section><section id='sec4dot3-geosciences-11-00119' type=''><h4 class='html-italic' data-nested='2'> 4.3. ESP for Rock Strength</h4><div class='html-p'>Based on field observations and theoretical considerations, many authors agree that fractures in rock start at cavities and microcracks ([<a href="#B105-geosciences-11-00119" class="html-bibr">105</a>,<a href="#B112-geosciences-11-00119" class="html-bibr">112</a>,<a href="#B113-geosciences-11-00119" class="html-bibr">113</a>,<a href="#B125-geosciences-11-00119" class="html-bibr">125</a>,<a href="#B126-geosciences-11-00119" class="html-bibr">126</a>,<a href="#B128-geosciences-11-00119" class="html-bibr">128</a>,<a href="#B129-geosciences-11-00119" class="html-bibr">129</a>] and references therein, [<a href="#B130-geosciences-11-00119" class="html-bibr">130</a>,<a href="#B131-geosciences-11-00119" class="html-bibr">131</a>] and many others). Whilst shear fracturing dependence on Terzaghi’s ES can somewhat easily be explained by a reduction of the normal stress over the slip plane (e.g., [<a href="#B56-geosciences-11-00119" class="html-bibr">56</a>,<a href="#B132-geosciences-11-00119" class="html-bibr">132</a>]), tensile jointing is still controversial. Anyway, tensional, as well as shear, fracture growth is mainly affected by tensions acting in areas of high stress concentration, such as fracture tips. Namely, no matter if mode I, II or III fractures are considered, in the context of brittle strain the local stress needs to be sufficient to produce detachment between adjacent crystals or between two portions of the same crystal, associated to bond breaking at the crystal lattice scale. According to the leading models of mode I crack growth of Griffith [<a href="#B57-geosciences-11-00119" class="html-bibr">57</a>,<a href="#B133-geosciences-11-00119" class="html-bibr">133</a>,<a href="#B134-geosciences-11-00119" class="html-bibr">134</a>,<a href="#B135-geosciences-11-00119" class="html-bibr">135</a>], of Barenblatt (e.g., [<a href="#B136-geosciences-11-00119" class="html-bibr">136</a>]) as well as of Nonlocal Continuum Field Theory [<a href="#B137-geosciences-11-00119" class="html-bibr">137</a>,<a href="#B138-geosciences-11-00119" class="html-bibr">138</a>], such phenomenon is characterised by stresses at the fracture tips (microscale stress) greater than remote stress (macroscale stress) of several orders of magnitude. For the kind of glass used in his experiments, Griffith found a theoretical tensional strength of ca. 11 GPa (1.6 × 10<sup>6</sup> psi in his original paper). Theoretical tensile strength of common crystals, such as quartz or calcite, are of the same order of magnitude of that of Griffith’s glass (ca 10 GPa), whereas tensile rock strength commonly falls in the range 1–5 Mpa. Let us now consider a porous rock control volume, filled by fluid and under a total stress in the range 0–130 MPa (pertinent to depth in Earth crust within about 5 km). In order to achieve a tensional ES of the order of tensile strength, pore pressure ranges between the order of magnitude of tensile strength, at shallow depths, and that of total stress, at large depths. In all these cases pore pressure, which can attain maximum values of 0.13 Gpa, is negligible with respect to crystal lattice scale local stresses at crack/fracture tips, which are of the same order of magnitude of theoretical strength, i.e., about 10 GPa. Therefore, Equations (12) and (13) are always verified in Earth crust within 5 km depth and, with a good approximation also at a greater depth (e.g., 10 km).This is also valid for crystal plasticity, as also in correspondence of dislocations there are considerable stress concentrations which are responsible for various phenomena of dislocation creep, sliding etc., as evidenced by Burgers [<a href="#B139-geosciences-11-00119" class="html-bibr">139</a>] and references therein, as well as later theoretically discussed by Eringen ([<a href="#B137-geosciences-11-00119" class="html-bibr">137</a>,<a href="#B138-geosciences-11-00119" class="html-bibr">138</a>,<a href="#B140-geosciences-11-00119" class="html-bibr">140</a>], <a href="#sec6-geosciences-11-00119" class="html-sec">Section 6</a>). A rigorous proof of this argument, related to both cases of crack growth and crystal plasticity, may be achieved, starting from our results, through criteria of the Nonlocal Continuum Field Theory, by setting Equation (11) as remote stress in order to calculate the stress field at crystal lattice scale ([<a href="#B137-geosciences-11-00119" class="html-bibr">137</a>,<a href="#B138-geosciences-11-00119" class="html-bibr">138</a>,<a href="#B140-geosciences-11-00119" class="html-bibr">140</a>], Sections 6.10–6.15), nevertheless its formal development goes beyond the purposes of this work.</div><div class='html-p'>As rock brittle as well as ductile inelastic behaviour is mainly controlled by concentrated stresses according to Equation (13), which are fully dependent on Terzaghi’s ES, this explains why rock strength is substantially controlled by this latter ES.</div></section><section id='sec4dot4-geosciences-11-00119' type=''><h4 class='html-italic' data-nested='2'> 4.4. Extending the Achieved Theoretical Results about Rocks to Granular Materials</h4><div class='html-p'>The extension to soils and granular media of the above-illustrated model is not a trivial conclusion, as soils, unlike rocks, always exhibit inelastic behaviour. It is indeed pointed out how the differentiation between stress–strain and strength for soils is purely conventional, the strain process always being irreversible. Furthermore, as observed by Lade and de Boer [<a href="#B54-geosciences-11-00119" class="html-bibr">54</a>], in nature a variety of porous media exists with intermediate characteristics, such as e.g., pyroclastites, weakly cemented sediments etc., for which rock and soil represent two extreme situations of a continuum of possible cases. Therefore, strictly speaking, the behaviour of these media should be studied according to the plasticity theory. Nevertheless, taking into account that clasts and crystals which constitute the porous aggregate show linear elastic behaviour, the Theory of Elasticity can provide some useful answers about local stress distribution within granular media.</div><div class='html-p'>Soil inelastic strain is a consequence of reciprocal displacements of the component clasts, which depend on their elastic strain both in terms of small variation in shape and of variation of forces on the contact areas. Let consider two identical granular bodies, whereby identical here we mean that one is an unrealistic replica of the other, i.e., that they have identical corresponding particles with identical spatial arrangement; if for two even different combinations of boundary stress systems the solutions of the elastic equilibrium equations provide identical results for each corresponding clast at a certain time, then the subsequent particle rearrangements will be the same and the entire (inelastic) strain history will have the same course. Furthermore, in theory of elasticity, when we consider the stress acting on an ideal surface inside a body, no matter whether the body part on one side of such surface is replaced by the stress exerted by it or if the two body parts on this surface are simply at contact or welded. When considering a system of bodies in contact with each other, such as e.g., clasts in a soil, if the system is in equilibrium (i.e., the particles do not move reciprocally) it can be considered as a single porous elastic body. When the applied forces on the boundary are such that cause mutual displacements between particles (i.e., if the local tangential force exceeds the local friction on contact between two particles, producing a sliding) then the system will reorganise itself, reaching a new spatial arrangement. On this new configuration it will be possible hypothetically to reapply the equations of elasticity as if the set of particles were a single body. These considerations do not allow one to calculate local stresses within inelastic soils but are sufficient to conclude that Equation (11) is applicable also within soil constituting particles.</div><div class='html-p'>In soils, as well as in granular media of various nature such as e.g., metal powders, the reciprocal displacement between grains (i.e., the macroscopic strain of aggregate) can occur (i) in the absence of significant grain deformations, as in the case of soils under load conditions in usual geotechnical applications, (ii) accompanied by grain fracturing (e.g., experiment on gypsum sand under high pressure by Lade and de Boer, 1996 [<a href="#B54-geosciences-11-00119" class="html-bibr">54</a>]) and/or (iii) by means of a marked plastic strain of grains (e.g., experiment on lead shots under high pressure by Skempton [<a href="#B7-geosciences-11-00119" class="html-bibr">7</a>]).</div><dl class='html-roman-lower'><dt id=''>(i)</dt><dd><div class='html-p'>It is legitimate to assume that there is high stress concentration on the contact areas and that, therefore, in Equation (11) the pressure p is negligible with respect to the local stress between particles, being this latter of the same order of magnitude of the ratio between external stress σ and contact area ratio ac, as defined in <a href="#sec1-geosciences-11-00119" class="html-sec">Section 1</a>. It follows that local stresses at particle contacts comply with Equations (12) and (13) and therefore they depend, with excellent approximation, uniquely on Terzaghi’s ES.</div></dd><dt id=''>(ii)</dt><dd><div class='html-p'>Analogously to the case of rock fracturing, marked stress concentrations occur at fracture tips and, therefore, also particle brittle strain is controlled by Terzaghi’s ES.</div></dd><dt id=''>(iii)</dt><dd><div class='html-p'>This strain mechanism is common for metal powders and also explains lead shot behaviour, which was discussed by Skempton [<a href="#B7-geosciences-11-00119" class="html-bibr">7</a>]. In this case it can be assumed that there is no significant interaction between crystal plasticity phenomena and local hydrostatic pressure and namely that (a) pressure variations do not significantly hinder/favour phenomena such as dislocation sliding and (b) that following or simultaneously with dislocation gliding, the material always reacts to local hydrostatic pressure in the same way, i.e. according to elastic behaviour. The hypothesis of point (a) is guaranteed as metals exhibit negligible frictional behaviour showing intrinsic friction angle values near to zero (e.g., [<a href="#B7-geosciences-11-00119" class="html-bibr">7</a>]); furthermore, near dislocations relevant stress concentration occur and therefore local stress complies with Equations (12) and (13).The hypothesis (b) is clearly an approximation as local plasticisation can lead to local anisotropies and heterogeneity within single clasts, due to dislocation propagation/extension/formation. However, it appears reasonable and in agreement with the experimental evidence in which nonporous crystalline aggregates, which do not show significant iso-orientations of crystals, show macroscopic linear elastic isotropic response at hydrostatic pressures, although local deviatoric stresses may occur at the interface between neighbouring crystals. Anyway, the assumption that the rock behaves elastically in hydrostatic compression and that viscoelastic effects occur only in shear is commonly adopted (e.g., [<a href="#B56-geosciences-11-00119" class="html-bibr">56</a>], Chapter 9).</div></dd></dl><div class='html-p'>As particle aggregate strain is mainly controlled by concentrated stresses at the contact areas or at fracture tips within clasts or even in correspondence of crystal lattice dislocations, for which Equations (12) and (13) are valid, it follows that also granular media strain is mainly affected by Terzaghi’s ES. Analogously to the case of rocks, two identical loaded soil specimens, one subjected to pore pressure and one in dry condition but registering the same difference (σ<sub>ij</sub>−δ<sub>ij</sub><span class='html-italic'>p</span>), exhibit macroscopic strain which differ only by a small volume change associated to p. Therefore, also for granular media under high pressure the ES formulation according to Equation (5) may be suitable in order to take into account such small volume strain difference, whereas all transformations involving pore surface shape change, including strength behaviour, are governed by Terzaghi’s ES.</div></section><section id='sec4dot5-geosciences-11-00119' type=''><h4 class='html-italic' data-nested='2'> 4.5. Validity Limits of the Illustrated Proof</h4><div class='html-p'>The main restricting assumption in the here proposed proof of ESP is related to the hypothesis of linear elastic, homogeneous, isotropic constituting material. Rocks are constituted by crystals which commonly exhibit linear elastic behaviour for a wide range of stress values. Therefore, the linear elasticity of crystals is usually guaranteed in many geological processes, although this does not ensure linear elastic behaviour of the aggregate, a cause of change in shape of pores and/or fractures, pore collapse [<a href="#B8-geosciences-11-00119" class="html-bibr">8</a>,<a href="#B31-geosciences-11-00119" class="html-bibr">31</a>,<a href="#B55-geosciences-11-00119" class="html-bibr">55</a>,<a href="#B58-geosciences-11-00119" class="html-bibr">58</a>,<a href="#B59-geosciences-11-00119" class="html-bibr">59</a>,<a href="#B61-geosciences-11-00119" class="html-bibr">61</a>].</div><div class='html-p'>Many rocks are constituted by randomly oriented anisotropic crystals and as a consequence an elementary volume including many crystals, but no voids such as pores or fractures, shows isotropic features as well as with a good approximation linear elastic behaviour. Nevertheless, the hypothesis of elementary volume smaller than pores and/or clasts in some cases may be in contrast with that of elementary volume including many crystals, so leading considering volumes containing one or few crystals. In this instance the mentioned assumption implies an approximation that leads to neglecting local deviatoric stresses associated to local anisotropies and/or heterogeneities; so, in these cases, the validity of this model with the related approximation needs to be confirmed experimentally.</div><div class='html-p'>In some cases, rocks show preferentially oriented crystals (e.g., metamorphic rocks), so exhibiting an overall anisotropic aggregate behaviour or they show marked heterogeneities of the constituent material (i.e., not only associated to heterogeneous pore/fracture spatial distribution). In these cases, the above-mentioned assumption is strongly approximated or even invalid and, consequently, the derived model may fail. In such cases a more sophisticated theory, such as the Theory of Porous Media or Poroelasticity, may be needed in order to rigorously deal with the concept of effective stress.</div><div class='html-p'>Finally, as we are here mainly interested in the role of pore pressure at shallow crustal depths (i.e., up to 10 km) dominated by geological processes of brittle strain, in this paper we didnot consider the cases of: (i) unsaturated rocks, (ii) finite strain poroelasticity, and (iii) pressure exceeding the order of magnitude of some hundreds of MPa. The case of unsaturated soil and rock was not taken into account as it is pertinent to very shallow depths; nevertheless, given its relevance in soil and rock mechanics, interested readers are addressed to relevant papers [<a href="#B141-geosciences-11-00119" class="html-bibr">141</a>,<a href="#B142-geosciences-11-00119" class="html-bibr">142</a>,<a href="#B143-geosciences-11-00119" class="html-bibr">143</a>]. Poroelasticity at finite strain wasnot considered here as brittle strain phenomena (i.e., fracturing) occur before rock reaches large strain. However, recent interesting developments about this topic can be found in the literature [<a href="#B144-geosciences-11-00119" class="html-bibr">144</a>,<a href="#B145-geosciences-11-00119" class="html-bibr">145</a>,<a href="#B146-geosciences-11-00119" class="html-bibr">146</a>].</div></section></section><section id='sec5-geosciences-11-00119' type=''><h2 data-nested='1'> 5. Open Issues about Rock Fracturing and Perspective of Future Research</h2><section id='sec5dot1-geosciences-11-00119' type=''><h4 class='html-italic' data-nested='2'> 5.1. Rock Faulting and Earthquakes</h4><div class='html-p'>The role of coseismic thermal overpressurisation is still unclear; if it is known that it is among the competing phenomena in fault slip evolution [<a href="#B43-geosciences-11-00119" class="html-bibr">43</a>,<a href="#B47-geosciences-11-00119" class="html-bibr">47</a>,<a href="#B48-geosciences-11-00119" class="html-bibr">48</a>,<a href="#B49-geosciences-11-00119" class="html-bibr">49</a>,<a href="#B50-geosciences-11-00119" class="html-bibr">50</a>,<a href="#B51-geosciences-11-00119" class="html-bibr">51</a>,<a href="#B52-geosciences-11-00119" class="html-bibr">52</a>,<a href="#B53-geosciences-11-00119" class="html-bibr">53</a>], it is not clear what its weight is and how it varies at different depths in the Earth crust.</div><div class='html-p'>The coseismic increase in fluid pressure depends on tendency of fluid to increase its volume as a cause of phase transition when temperature increases and from elastic moduli of confining rock. The greater the rock stiffness, the smaller the increase in volume between fault walls and therefore the greater the increase in fluid pressure. At low effective pressure values (e.g., below 20–30 MPa) rock compressibility may be greater of one or two orders of magnitude than that observed at higher pressure (e.g., [<a href="#B7-geosciences-11-00119" class="html-bibr">7</a>,<a href="#B8-geosciences-11-00119" class="html-bibr">8</a>]). Therefore, for low ES values, e.g., at limited depths in the Earth crust, the co-eismic overpressure may be less relevant. On the other hand, according to overburden stress and geothermal gradient, water tendency in volume increase in case of phase transition resulting from increase in temperature may be less relevant at high depth. By way of example, at a depth of 10 km, temperature may be above 300 °C; when water temperature approaches the critical one (374 °C), the difference between volume of liquid phase and vapor phase is progressively reduced, until it disappears at the critical temperature. Under these conditions, any water phase transition may produce a minor increase in fluid pressure, compared to what occurs in more superficial rocks.</div><div class='html-p'>This phenomenon could contribute, together with well-known rheological behaviour criteria of rock materials at different pressure and temperature conditions, tohindering earthquake triggering at limited depth (less than 2–3 km) as well as at depths greater than 10 km (first brittle-ductile transition zone). It should be noted how this circumstance is in agreement with the statistical distribution of earthquakes in the upper crust observed by Marone and Scholz [<a href="#B147-geosciences-11-00119" class="html-bibr">147</a>], in which the frequency is very limited at depths of less than 3 km and greater than 10 km. This aspect of earthquake thermal overpressuring is still scarcely studied and might be object of future research.</div><div class='html-p'>On the other hand, the effect of fluid overpressure in enhancing faulting process instability still appears controversial and still needs confirmation. In recent a work Scuderi and Collettini [<a href="#B107-geosciences-11-00119" class="html-bibr">107</a>], based on experiments simulating induced seismicity, have pointed out how, according to the model illustrated by Scholz [<a href="#B148-geosciences-11-00119" class="html-bibr">148</a>], fluid overpressure should stabilise fault slip, favouring stable aseismic slip rather than dynamic earthquake triggering. With reference to this issue Scuderi and Collettini [<a href="#B107-geosciences-11-00119" class="html-bibr">107</a>] commented as follows: “This apparent contradiction of the role of fluid pressure in fault stability poses a serious problem in our understanding of earthquake physics with numerous implications, including a better assessment of the risk of human induced earthquakes”.</div></section><section id='sec5dot2-geosciences-11-00119' type=''><h4 class='html-italic' data-nested='2'> 5.2. Rock Jointing</h4><div class='html-p'>Several aspects of minor joint formation processes in rock are still unclear. Among these, main open problems about rock jointing are hydraulic fracturing, both natural and artificial, as well as natural joint sequential filling process whose related models often appears in contrast with field observations, particularly in fine-grained rocks. Main limitations of our understanding of hydraulic fracturing are likely due to the fact that leading models illustrated in <a href="#sec3dot6dot2-geosciences-11-00119" class="html-sec">Section 3.6.2</a> are focused on single joint growth processes, whereas many of joint sequential filling models do not take opportunely into account the role of fluid pressure heterogeneity in interaction between growing joints.</div><section id='sec5dot2dot1-geosciences-11-00119' type=''><h4 class='' data-nested='3'> 5.2.1. Natural and induced Hydraulic Fracturing</h4><div class='html-p'>Regarding hydraulic fracturing due to a rapid increase in pore pressure, there are two main problems: (i) fluid pressure heterogeneity and (ii) determining the increase of the latter in different fracture sets occurring in rock.</div><dl class='html-roman-lower'><dt id=''>(i)</dt><dd><div class='html-p'>When pore pressure is markedly heterogeneous, it also varies within any generic control volume containing pores and cracks, as defined in <a href="#sec2dot2-geosciences-11-00119" class="html-sec">Section 2.2</a>; therefore ES definition is not univocal (<a href="#sec3dot6dot2-geosciences-11-00119" class="html-sec">Section 3.6.2</a>) and, moreover, Equation (11) cannot be applied as it assumes that pore pressure is locally homogeneous within the control volume (<a href="#sec2dot2-geosciences-11-00119" class="html-sec">Section 2.2</a>). This makes it difficult to search for expressions in closed form able to describe the effect of pore pressure on fracturing processes; namely, it is complicated to predict the behaviour of saturated porous media on the basis of models involving dry media. By way of example, if we use the stress transition model proposed by Bai and Pollard [<a href="#B125-geosciences-11-00119" class="html-bibr">125</a>] to analyse the joint sequential filling process (<a href="#sec3dot6dot3-geosciences-11-00119" class="html-sec">Section 3.6.3</a>) in presence of pore pressure, there are no difficulties in the case where such pressure is homogeneous, whereas it is problematic in case it is heterogeneous. In fact, in the former case, by imagining superimposing a uniformly distributed fluid pressure over pore and external surfaces to the boundary stress, a solution is obtained which complies with Equation (11), in which the fracture tip stresses satisfy Equations (12) and (13). This allows us to reuse the solutions obtained by the authors (by means of finite element method numerical simulations) in order to evaluate the effect of stress transition on growth of new or pre-existing fractures. In case of heterogeneous fluid pressure, this operation is not allowed (<a href="#sec4dot2-geosciences-11-00119" class="html-sec">Section 4.2</a>) and the stress transition quantification would require the performance of new numerical or analytical simulations that take opportunely into account also the associated fluid dynamics.</div></dd><dt id=''>(ii)</dt><dd><div class='html-p'>Pore pressure distribution evaluation within the different overlying fracture subsystems occurring in rock requires use of multiple-porosity models based on adequate geological structural models, able to characterise the different hierarchies of fracture sets ([<a href="#B116-geosciences-11-00119" class="html-bibr">116</a>,<a href="#B149-geosciences-11-00119" class="html-bibr">149</a>], Chapter 3.4). Nevertheless, an analysis of the available scientific literature shows as such models are scarcely utilised. Consequently, also the development of theories and methods aimed at natural or artificial hydraulic fracturing modelling in complex fracture networks still shows serious limits and several unclear aspects. Use of hierarchical fracture network models associated to appropriate multiple porosity ones may be object of future research.</div></dd></dl></section><section id='sec5dot2dot2-geosciences-11-00119' type=''><h4 class='' data-nested='3'> 5.2.2. Natural Joint Sequential Filling</h4><div class='html-p'>With reference to natural joint sequential filling processes, there are still several unclear aspects as the proposed models cannot explain different field observations and it is still not clear how these processes are affected by the pore pressure. Odling et al. [<a href="#B150-geosciences-11-00119" class="html-bibr">150</a>] have pointed out that in bedded rocks it is possible to systematically recognise, within each joint set, two overlying subsets called stratabound and nonstratabound fractures. The former are those joints that completely cut a layer, show regular spacing, which commonly appears in good agreement with the above-illustrated joint saturation models (e.g., [<a href="#B151-geosciences-11-00119" class="html-bibr">151</a>,<a href="#B152-geosciences-11-00119" class="html-bibr">152</a>]). It is highlighted that the works by Bai and Pollard [<a href="#B124-geosciences-11-00119" class="html-bibr">124</a>,<a href="#B125-geosciences-11-00119" class="html-bibr">125</a>,<a href="#B126-geosciences-11-00119" class="html-bibr">126</a>,<a href="#B127-geosciences-11-00119" class="html-bibr">127</a>] were mainly aimed at the study of developing of stratabound fractures (although in these works this term was not yet in use) and therefore it is unclear if such models can also be used in order to understand the evolution processes of nonstratabound joint sets.</div><div class='html-p'>Nonstratabound joints exhibit irregular/clustered spacing and variable aperture values over several orders of magnitude (e.g., [<a href="#B116-geosciences-11-00119" class="html-bibr">116</a>,<a href="#B153-geosciences-11-00119" class="html-bibr">153</a>,<a href="#B154-geosciences-11-00119" class="html-bibr">154</a>,<a href="#B155-geosciences-11-00119" class="html-bibr">155</a>,<a href="#B156-geosciences-11-00119" class="html-bibr">156</a>,<a href="#B157-geosciences-11-00119" class="html-bibr">157</a>,<a href="#B158-geosciences-11-00119" class="html-bibr">158</a>,<a href="#B159-geosciences-11-00119" class="html-bibr">159</a>]). This is a key point of this topic as, mainly in fine grained rocks, for nonstratabound joints the concept of fracture spacing is meaningless if a lower aperture threshold value is not preliminarily defined [<a href="#B155-geosciences-11-00119" class="html-bibr">155</a>,<a href="#B156-geosciences-11-00119" class="html-bibr">156</a>], as for the same outcrop different mean spacing values may be associated to different (arbitrarily chosen) lower aperture threshold values. The smaller this latter threshold value the greater the fracture intensity, up to values of thousands of fractures per metre. Micro-structural analysis has pointed out that, at the crystal scale, a maximum fracture density is observable, which depends from crystal size [<a href="#B116-geosciences-11-00119" class="html-bibr">116</a>], with associated spacing values ranging from tens of centimetres scale in coarse grained rocks to submillimetre one in fine-grained rocks. Furthermore, in fine grained rocks such joints usually exhibit exponential statistical distribution of spacing values on different scales of observation (e.g., [<a href="#B156-geosciences-11-00119" class="html-bibr">156</a>,<a href="#B157-geosciences-11-00119" class="html-bibr">157</a>]) and also in the case of medium or coarse grained rocks, in which this distribution might be different from the exponential (e.g., Log Normal), it is usually characterised by a marked skewness. On the other hand, as observed experimentally by Rives et al. [<a href="#B160-geosciences-11-00119" class="html-bibr">160</a>] and through an accurate statistical analysis of field data by Bao et al. [<a href="#B161-geosciences-11-00119" class="html-bibr">161</a>], the distribution of spacing values shows a skewness gradually decreasing from high values in the early stage of sequential filling process (associated with high values of average spacing) until it vanishes when the joint saturation condition is reached (minimum average spacing).</div><div class='html-p'>For these reasons, the joint saturation condition envisaged by the stress transition theory—minimum spacing to bed thickness ratio equal to 0.27 [<a href="#B126-geosciences-11-00119" class="html-bibr">126</a>] and zero skewness statistical distribution—is incompatible with field observations involving nonstratabound joint sets in rocks of different grain size and particularly in medium-fine grained ones.</div><div class='html-p'>Regarding the nucleation of new fractures in the surrounding of pre-existing stratabound fractures, i.e., at a distance less than the critical one, Bai and Pollard [<a href="#B125-geosciences-11-00119" class="html-bibr">125</a>,<a href="#B126-geosciences-11-00119" class="html-bibr">126</a>] point out that their model is not applicable in these cases and that this phenomenon may be attributable to heterogeneity of the local stress field near flaws or microcracks or to the effect of pore pressure.</div><div class='html-p'>Hooker and Katz [<a href="#B162-geosciences-11-00119" class="html-bibr">162</a>] studied the effect of sin kinematic cementation on vein spacing, nevertheless they concluded that, although the resistance to fracture widening by cement can reduce such spacing, it is not sufficient to explain the systematic clustering of natural veins. An alternative model aimed at studying the development of nonstratabound joint networks could be provided by subcritical joint growth [<a href="#B163-geosciences-11-00119" class="html-bibr">163</a>,<a href="#B164-geosciences-11-00119" class="html-bibr">164</a>], which may explain several case studies. However, the hypothesis that all nonstratabound joint sets develop in subcritical conditions appears rather restrictive. An interesting joint sequential filling model has recently been proposed by Schopfer et al. [<a href="#B165-geosciences-11-00119" class="html-bibr">165</a>], which relates joint saturation and interfacial friction between mechanical layers and, although there are limits such as e.g., bidimensional modelling, could provide the basis for interesting future research.</div><div class='html-p'>The main issue related to the above-illustrated models is the incompatibility among the concepts of stress shadow and the often-observed exponential distribution of spacing values between nonstratabound joints. In fact, this kind of distribution indicates a uniform random location of the fractures along an ideal orthogonal line, which may imply that fracture nucleation occurs regardless of the occurrence of other fractures in the surrounding area.</div><div class='html-p'>Recent studies are aimed at analysing the interaction between fluid flow and fracture mechanics, as well as to the three-dimensionality of such phenomenon, at the level of fracture network rather than single fracture (e.g., [<a href="#B166-geosciences-11-00119" class="html-bibr">166</a>,<a href="#B167-geosciences-11-00119" class="html-bibr">167</a>]). Aspects of the joint filling problem that may be appropriately considered and that might be object of future research are related to (i) stress relaxation due to viscous phenomena in rock, (ii) three-dimensionality of the joint filling phenomenon and (iii) fluid dynamics.</div><dl class='html-roman-lower'><dt id=''>(i)</dt><dd><div class='html-p'>Rock elasto-viscous behaviour leads to relaxation of the internal elastic stresses. This phenomenon also affects joint related stress shadow, which, in a variable time range depending on rock properties as well as pressure and temperature conditions, can experience a significant reduction. By way of example, a recent fracture tends to close when the tensile stress that produced it is removed, whereas an ancient fracture shows residual opening even in the absence of traction. Therefore, it is presumed that, if immediately after the formation of a fracture at a certain distance from it, there is a reduction in tension stress by a certain percentage or a transition to compressive stress, after an extended time (e.g., hundreds or thousands of years) such stress reduction decreases.</div></dd><dt id=''>(ii)</dt><dd><div class='html-p'>Let us consider a scan line carried out orthogonally to a certain joint set. The intercepted fractures contribute to the extensional strain along the sampling line, nevertheless, they generally have nucleation points located outside the outcrop plane. Therefore, apparently closely spaced parallel fractures on the outcrop plane may have triggered in points far enough apart to avoid significant interaction during the nucleation phase.</div></dd><dt id=''>(iii)</dt><dd><div class='html-p'>Fluid dynamics is a fundamental aspect of hydraulic fracturing, as different joint subsets belonging to a fracture network, as well as other voids such as pores and microcracks, can be affected by different variations in fluid pressure [<a href="#B116-geosciences-11-00119" class="html-bibr">116</a>] in non-steady-state hydraulic condition. Here it is pointed out as in case of heterogeneous pore pressure, e.g.,in the event that a fracture shows internal fluid pressure different from that present in nearby pores and fractures, it happens that this difference in fluid pressure—positive or negative—is not counterbalanced by that in the surrounding rock, thus providing the fracturing driving stress.</div></dd></dl><div class='html-p'>In order to understand the significance of the above-illustrated aspects of fracturing processes, consider the following simple two-dimensional model. Let us consider a fracture network composed by two orthogonal to bedding, as well as orthogonal each to other, joint sets (<a href="#geosciences-11-00119-f006" class="html-fig">Figure 6</a>A). </div><div class='html-p'>Denoting by Set 1 the joint set N-S oriented and by Set 2 that E-W oriented, let us suppose the occurrence of several randomly distributed elliptical flaws (clearly the reasoning can be extended to variously shaped elongated flaws); in <a href="#geosciences-11-00119-f006" class="html-fig">Figure 6</a>B only those showing long axis parallel to the two fracture sets are represented: red flaws are parallel to Set 1 and yellow ones to Set 2. Furthermore, let us assume that such fractures are ancient and therefore, due to viscous relaxation, the fracture associated stress shadow is significantly declined. If a microcrack starts to grow (denoted by a vertical red segment in <a href="#geosciences-11-00119-f006" class="html-fig">Figure 6</a>A) a pore pressure drop occurs within it which induces a hydraulic gradient, as well as a tensional stress release, in the surrounding rock, which hinders rupture of parallel flaws (red flaw in <a href="#geosciences-11-00119-f006" class="html-fig">Figure 6</a>). Fracture propagation velocity and internal pressure drop proceed according to the Renshaw and Harvey model [<a href="#B118-geosciences-11-00119" class="html-bibr">118</a>,<a href="#B119-geosciences-11-00119" class="html-bibr">119</a>]. As the effective remote stress at equilibrium is inversely proportional to the fissure length square root (e.g., [<a href="#B56-geosciences-11-00119" class="html-bibr">56</a>,<a href="#B118-geosciences-11-00119" class="html-bibr">118</a>,<a href="#B119-geosciences-11-00119" class="html-bibr">119</a>]), this may experience notable decline. For instance, for a microcrack of millimetre initial length that reaches a 10 cm length, the equilibrium effective remote stress might be reduced of one order of magnitude; such decrease corresponds to an internal pore pressure decrease. If the growing fracture reaches the nearest joint belonging to the pre-existing network, a fluid flow starts from network to the growing fracture, which causes a pore pressure drop in the fracture network (<a href="#geosciences-11-00119-f006" class="html-fig">Figure 6</a>B). As commonly there is notable permeability difference between fractures and nonfractured host rock, we expect some relevant effects: (a) pressure drop substantially involves only the fracture network near the contact area and a sharp layer of nonfractured host rock (<a href="#geosciences-11-00119-f006" class="html-fig">Figure 6</a>B), pore pressure variations being more rapid within more permeable subsystems [<a href="#B116-geosciences-11-00119" class="html-bibr">116</a>], (b) propagation velocity of the growing fracture is significantly accelerated, it does not follow anymore the Renshaw and Harvey model, being now controlled by fracture network permeability, (c) the induced fluid pressure drop within fracture network causes a notable decrease of the associated stress shadow, which has already experienced a decline as consequence of rock viscous behaviour; namely, such internal pressure drop might be sufficient to trigger a new fracture from near flaws, in an orthogonal direction with respect to the growing joint, as pictured in <a href="#geosciences-11-00119-f006" class="html-fig">Figure 6</a>B. Therefore, a growing fracture which intersects an already existing joint network may trigger new fractures in its orthogonal direction. An analogous model can be applied also to fractures or microcracks already connected to a pre-existing fracture network.</div></section></section></section><section id='sec6-geosciences-11-00119' type=''><h2 data-nested='1'> 6. Concluding Remarks, Open Issues and Perspectives</h2><div class='html-p'>Over the past century the theoretical ESP foundations have been deeply investigated and established, nevertheless some perplexities remain and these do not appear to have been always entirely perceived by many in the science community, likely as (i) many different ES formulations have been proposed and (ii) most of related theory, involving Poroelasticity and Theory of Porous Media, is very specialised.</div><div class='html-p'>In this work we provided a theoretical justification of ESP based on classical theory of elasticity methods. It can be proved that in a porous medium made up of isotropic linear elastic material but generally showing anisotropic nonlinear elastic behaviour in accordance to shape, orientation and distribution of voids, the local stress at a scale smaller than pores and/or clasts is given by (ψ<sub>ij</sub> = ψ<sub>0ij</sub>(σ<sub>kl</sub>−δ<sub>kl</sub><span class='html-italic'>p</span>) + δ<sub>ij</sub><span class='html-italic'>p</span>) (Equation(11)), i.e., is the sum of two contributions, one depending on Terzaghi’s ES (σ<sub>kl</sub>−δ<sub>kl</sub><span class='html-italic'>p</span>) and one consisting of an isotopic pressure <span class='html-italic'>p</span>. The former produces the often more evident strain, at microscopic as well as macroscopic scale, in terms of aggregate volume and shape change as well as of pore surface shape transformation. The latter is only responsible for a small volume reduction, according to the intrinsic bulk modulus of the solid K<sub>s</sub>, with no shape—and pore shape—change.</div><div class='html-p'>This provides an explanation of the ESP for stress–strain behaviour of rock, as two identical porous bodies, one subjected to pore pressure and one in dry condition but showing the same difference (σ<sub>ij</sub>−δ<sub>ij</sub><span class='html-italic'>p</span>), exhibit macroscopic strains which differ only by a small uniform volume change associated to <span class='html-italic'>p</span>. Furthermore, also rock strength behaviour can be explained by means of the illustrated relation, as fracture growth is controlled by forces acting in areas of high stress concentration, such as fracture tips, in which the term (δ<sub>ij</sub><span class='html-italic'>p</span>) is negligible. Therefore, the driving stress, now given by (ψ<sub>ij</sub> = ψ<sub>0ij</sub>(σ<sub>kl</sub>−δ<sub>kl</sub><span class='html-italic'>p</span>)), depends uniquely onTerzaghi’s ES which, consequently, controls rock strength behaviour.</div><div class='html-p'>Such considerations can be extended to soils and granular media of various nature such as e.g., metal powders, as within these materials reciprocal displacements between grains can occur (i) in the absence of significant grain deformations, as in the case of soils under load conditions in usual geotechnical applications, (ii) accompanied by grain fracturing and/or (iii) by means of a marked plastic strain of grains. In all these cases, macroscopic strain is controlled by concentrated stresses (i) at contact area, (ii) at fracture tips and/or (iii) at crystal lattice dislocations, which, likely to rock, depend on Terzaghi’s ES. Furthermore, as within each clast Equation (11) holds, also for soil under high pressure the volume strain due to pore pressure p is superimposed to macroscopic strain, so justifying the Skempton’s ES formulation, in case of high pressure.</div><div class='html-p'>Based on such ESP model, various ES formulations were reviewed here. The illustrated discussion highlights as the ES definition is substantially conventional and related to the problem being treated. Among various ES formulations, that proposed by Terzaghi appears often particularly appropriate, for its simplicity and as it describes a stress system directly related to the internal geometry of pores and to the mechanical characteristics of the porous medium.</div><div class='html-p'>Furthermore, the role of pore pressure in affecting various geological fracturing processes at several scales of observation, such as faulting and jointing, was illustrated. In such research area, we find some still open questions, mainly related to not yet fully understood character and role of heterogeneous pore pressure fields in porous media. Issues of particular relevance and complexity are the following:</div><div class='html-p'><ul class='html-bullet'><li><div class='html-p'>Role of coseismic overpressurisation: if it is known as it is among the competing phenomena in fault slip evolution, it is not clear what its weight is and how it varies at different depths in the Earth crust. Furthermore, the effect of fluid overpressure in enhancing faulting process instability has been questioned by recent studies and still needs confirmation.</div></li><li><div class='html-p'>Natural and induced hydraulic fracturing: although the single fracture growth is now a well-established process, hydraulic fracturing modelling in complex fracture networks still shows serious limits and several unclear aspects, mainly a cause of use of often inadequate flow models. According to recent trends in modelling, pore pressure distribution evaluation within different fracture subsystems requires use of multiple-porosity models based on adequate geological structural models, able to characterise the different hierarchies of fracture subsets in rock.</div></li><li><div class='html-p'>Joint sequential filling: the observed geometrical features of nonstratabound joint networks, such as natural clustering, cannot be explained by means of currently available models in literature and so these remain substantially not yet understood. Aspects of the joint filling problem that may be appropriately considered and that might be object of future research are related to (i) stress relaxation due to viscous phenomena in fractured rock, (ii) three-dimensionality of the joint filling phenomenon and (iii) characterisation of fluid flow and the associated pore pressure field within fractured rock, as well as interaction between flow and fracture mechanics.</div></li></ul></div></section> </div> <div class="html-back"> <section class='html-notes'><h2 >Author Contributions</h2><div class='html-p'>Conceptualisation, V.G. and S.M.; methodology, V.G.; software, V.G.; validation, V.G. and S.M.; formal analysis, V.G.; investigation, V.G.; resources, S.M.; data curation, V.G. and S.M.; Writing—Original draft preparation, V.G.; Writing—Review and editing, S.M.; visualisation, V.G. and S.M.; supervision, S.M.; project administration, S.M.; funding acquisition, S.M. All authors have read and agreed to the published version of the manuscript.</div></section><section class='html-notes'><h2 >Funding</h2><div class='html-p'>This research received no external funding.</div></section><section class='html-notes'><h2 >Institutional Review Board Statement</h2><div class='html-p'>Not applicable.</div></section><section class='html-notes'><h2 >Informed Consent Statement</h2><div class='html-p'>Not applicable.</div></section><section class='html-notes'><h2 >Data Availability Statement</h2><div class='html-p'>Not applicable.</div></section><section id='html-ack' class='html-ack'><h2 >Acknowledgments</h2><div class='html-p'>Matteo Basilici is thanked for helping with formatting of the paper.</div></section><section class='html-notes'><h2 >Conflicts of Interest</h2><div class='html-p'>The authors declare no conflict of interest.</div></section><section><section id='app1-geosciences-11-00119' type=''><h2 data-nested='1'> Appendix A</h2><section id='AppendixA1RecallofBasicEquationsofElasticity' type=''><h4 class='html-italic' data-nested='2'> Appendix A.1. Recall of Basic Equations of Elasticity</h4><div class='html-p'>The equation system 8 provides the basic relations of the Theory of Elasticity and is derived by combining local equilibrium equations with the compatibility conditions between infinitesimal strain components, as well as the elastic relations, as illustrated by [<a href="#B57-geosciences-11-00119" class="html-bibr">57</a>,<a href="#B136-geosciences-11-00119" class="html-bibr">136</a>].</div><div class='html-p'>The equilibrium conditions of elementary volumes in static case and in absence of body forces (whose role in our treatment can be neglected) are given by the following three equation system:<div class='html-disp-formula-info' id=''> <div class='f'> ∂ ψ<sub>ij</sub>/∂ x<sub>j</sub> = 0. </div> <div class='l'> <label >(A1)</label> </div> </div></div><div class='html-p'>The term on the left side of each equation represents one component of the resulting force acting over the surface of a generic elementary volume.</div><div class='html-p'>Denoted by <span class='html-italic'>u<sub>i</sub></span> the components of (small) displacement at a point and by <span class='html-italic'>u<sub>ij</sub></span> the infinitesimal strain tensor components, these are defined as:<div class='html-disp-formula-info' id=''> <div class='f'> u<sub>ik</sub> = 1/2 ( ∂u<sub>j</sub>/∂ x<sub>k</sub> + ∂ u<sub>k</sub>/∂ x<sub>i</sub>). </div> <div class='l'> <label >(A2)</label> </div> </div></div><div class='html-p'>It can be easily verified that the strain components satisfy the following differential relations:<div class='html-disp-formula-info' id=''> <div class='f'> ∂<sup>2</sup>u<sub>ik</sub>/∂x<sub>l</sub> ∂x<sub>m</sub> + ∂<sup>2</sup>u<sub>lm</sub>/∂x<sub>i</sub> ∂x<sub>k</sub> = ∂<sup>2</sup>u<sub>il</sub>/∂ x<sub>k</sub> ∂ x<sub>m</sub> + ∂<sup>2</sup>u<sub>km</sub>/∂ x<sub>i</sub> ∂ x<sub>l</sub> ; </div> <div class='l'> <label >(A3)</label> </div> </div> these express the condition that strain components cannot be taken arbitrarily as functions of <b><span class='html-italic'>x</span></b> as these are function of only three independent variables<span class='html-italic'>u<sub>i</sub></span> [<a href="#B57-geosciences-11-00119" class="html-bibr">57</a>].</div><div class='html-p'>According to the hypothesis of linear elasticity, strain components are linear functions of stress ones:<div class='html-disp-formula-info' id=''> <div class='f'> u<sub>jk</sub> = 1/E ( (1 + ν) ψ<sub>jk</sub> − ν ψ<sub>mm</sub>δ<sub>jk</sub>); </div> <div class='l'> <label >(A4)</label> </div> </div> where <span class='html-italic'>E</span> denotes the Young modulus, <span class='html-italic'>ν</span> and <span class='html-italic'>δ<sub>jk</sub></span> have been defined above (i.e., Poisson ratio and Kronecker delta, respectively).</div><div class='html-p'>The Equation (A4) allows to put Equation (A3) in terms of stress components <span class='html-italic'>ψ<sub>jk</sub></span> by substitution. Then, combining the achieved equation system with Equation (1), after some manipulations, the above illustrated Equation (8) is derived. </div><div class='html-p'>Therefore, use of Equation (8) implies (i) compatibility of strain components (Equation (A3)), (ii) linear elasticity (Equation (A4)) and (iii) equilibrium for each elementary volume (Equation (A1)). This is a system of six elliptic differential equations which, together with appropriate boundary conditions, allows to determine the unknown stress field <span class='html-italic'>ψ<sub>jk</sub></span>(<b>x</b>).</div><div class='html-p'>Alternatively, the equilibrium equation system A1 may be put in terms of strain and then of displacement components, by use of Equation (A4) and successively Equation (A2). This criterion allows to achieve a system of three differential equations, having as unknown functions the three displacement components <span class='html-italic'>u<sub>j</sub></span>(<b>x</b>), as well as boundary conditions in terms of displacements. The choice between this latter system and that given by Equation (8) depends on the kind of boundary conditions, i.e., whether these are in terms of imposed external forces or imposed external displacements. In this study we adopt the former kind of conditions being primarily interested in studying the relation between the internal local stress field <span class='html-italic'>ψ<sub>jk</sub></span>(<b>x</b>) and the (control volume) boundary stress <span class='html-italic'>σ<sub>jk</sub></span> and pore pressure <span class='html-italic'>p</span>. </div></section></section></section><section id='html-references_list'><h2>References</h2><ol class='html-xxx'><li id='B1-geosciences-11-00119' class='html-x' data-content='1.'>Terzaghi, K. <span class='html-italic'>Die Berechnung der Durchlassigkeitsziffer des Tones aus Dem Verlauf der Hidrodynamichen Span-Nungserscheinungen Akademie der Wissenschaften in Wien</span>; Mathematish-Naturwissen-SchaftilicheKlasse: Mainz, Germany, 1923; pp. 125–138. [<a href="https://scholar.google.com/scholar_lookup?title=Die+Berechnung+der+Durchlassigkeitsziffer+des+Tones+aus+Dem+Verlauf+der+Hidrodynamichen+Span-Nungserscheinungen+Akademie+der+Wissenschaften+in+Wien&author=Terzaghi,+K.&publication_year=1923" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B2-geosciences-11-00119' class='html-x' data-content='2.'>Terzaghi, K. The shearing resistance of saturated soils. <span class='html-italic'>ISSMGE</span> <b>1936</b>, <span class='html-italic'>1</span>, 54–56. [<a href="https://scholar.google.com/scholar_lookup?title=The+shearing+resistance+of+saturated+soils&author=Terzaghi,+K.&publication_year=1936&journal=ISSMGE&volume=1&pages=54%E2%80%9356" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B3-geosciences-11-00119' class='html-x' data-content='3.'>Terzaghi, K.; Rendulic, L. Die wirksameFlachenporositat des Betons. <span class='html-italic'>Zeitschr. Osten. Ing. Arch. Ver.</span> <b>1934</b>, 1–9. [<a href="https://scholar.google.com/scholar_lookup?title=Die+wirksameFlachenporositat+des+Betons&author=Terzaghi,+K.&author=Rendulic,+L.&publication_year=1934&journal=Zeitschr.+Osten.+Ing.+Arch.+Ver.&pages=1%E2%80%939" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B4-geosciences-11-00119' class='html-x' data-content='4.'>Terzaghi, K.; Fröhlich, O.K. <span class='html-italic'>Theorie der Setzung von Tonschichten; Eine EinfüHrung in Die AnalytischeTonmechanik</span>; Leipzig Wien Deuticke: Wien, Austria, 1936. [<a href="https://scholar.google.com/scholar_lookup?title=Theorie+der+Setzung+von+Tonschichten;+Eine+Einf%C3%BCHrung+in+Die+AnalytischeTonmechanik&author=Terzaghi,+K.&author=Fr%C3%B6hlich,+O.K.&publication_year=1936" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B5-geosciences-11-00119' class='html-x' data-content='5.'>Fillunger, P. <span class='html-italic'>Erdbaumechanik?</span> Selbstverl. d. Verf.: Wien, Austria, 1936. [<a href="https://scholar.google.com/scholar_lookup?title=Erdbaumechanik?&author=Fillunger,+P.&publication_year=1936" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B6-geosciences-11-00119' class='html-x' data-content='6.'>De Boer, R. Theory of Porous Media—Past and Present. <span class='html-italic'>ZAMM</span> <b>1998</b>, <span class='html-italic'>78</span>, 441–466. [<a href="https://scholar.google.com/scholar_lookup?title=Theory+of+Porous+Media%E2%80%94Past+and+Present&author=De+Boer,+R.&publication_year=1998&journal=ZAMM&volume=78&pages=441%E2%80%93466&doi=10.1002/(SICI)1521-4001(199807)78:7%3C441::AID-ZAMM441%3E3.0.CO;2-V" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/(SICI)1521-4001(199807)78:7&lt;441::AID-ZAMM441&gt;3.0.CO;2-V" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B7-geosciences-11-00119' class='html-x' data-content='7.'>Skempton, A.W. <span class='html-italic'>Effective Stress in Soil, Concrete and Rocks</span>; Butterworth &amp; Company Ltd.: London, UK, 1960; pp. 4–16. [<a href="https://scholar.google.com/scholar_lookup?title=Effective+Stress+in+Soil,+Concrete+and+Rocks&author=Skempton,+A.W.&publication_year=1960" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B8-geosciences-11-00119' class='html-x' data-content='8.'>Nur, A.; Byerlee, J.D. An exact effective stress law for elastic deformation of rock with fluids. <span class='html-italic'>J. Geophys. Res.</span> <b>1971</b>, <span class='html-italic'>76</span>, 6414–6419. [<a href="https://scholar.google.com/scholar_lookup?title=An+exact+effective+stress+law+for+elastic+deformation+of+rock+with+fluids&author=Nur,+A.&author=Byerlee,+J.D.&publication_year=1971&journal=J.+Geophys.+Res.&volume=76&pages=6414%E2%80%936419&doi=10.1029/JB076i026p06414" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1029/JB076i026p06414" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B9-geosciences-11-00119' class='html-x' data-content='9.'>Šuklje, L. <span class='html-italic'>Rheological Aspects of Soil Mechanics</span>; Wiley-Interscience: London, UK, 1969. [<a href="https://scholar.google.com/scholar_lookup?title=Rheological+Aspects+of+Soil+Mechanics&author=%C5%A0uklje,+L.&publication_year=1969" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B10-geosciences-11-00119' class='html-xx' data-content='10.'>Biot, M.A. General Theory of Three-Dimensional Consolidation. <span class='html-italic'>J. Appl. Phys.</span> <b>1941</b>, <span class='html-italic'>12</span>, 155. [<a href="https://scholar.google.com/scholar_lookup?title=General+Theory+of+Three-Dimensional+Consolidation&author=Biot,+M.A.&publication_year=1941&journal=J.+Appl.+Phys.&volume=12&pages=155&doi=10.1063/1.1712886" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1063/1.1712886" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B11-geosciences-11-00119' class='html-xx' data-content='11.'>Biot, M.A. Theory of Elasticity and Consolidation for a Porous Anisotropic Solid. <span class='html-italic'>J. Appl. Phys.</span> <b>1955</b>, <span class='html-italic'>26</span>, 182. [<a href="https://scholar.google.com/scholar_lookup?title=Theory+of+Elasticity+and+Consolidation+for+a+Porous+Anisotropic+Solid&author=Biot,+M.A.&publication_year=1955&journal=J.+Appl.+Phys.&volume=26&pages=182&doi=10.1063/1.1721956" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1063/1.1721956" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B12-geosciences-11-00119' class='html-xx' data-content='12.'>Biot, M.A. General solutions of the equations of elasticity and consolidation for a porous material. <span class='html-italic'>J. Appl. Mech.</span> <b>1956</b>, <span class='html-italic'>78</span>, 91–96. [<a href="https://scholar.google.com/scholar_lookup?title=General+solutions+of+the+equations+of+elasticity+and+consolidation+for+a+porous+material&author=Biot,+M.A.&publication_year=1956&journal=J.+Appl.+Mech.&volume=78&pages=91%E2%80%9396" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B13-geosciences-11-00119' class='html-xx' data-content='13.'>Biot, M.A. Mechanics of deformation and acoustic propagation in porous media. <span class='html-italic'>J. Appl. Phys.</span> <b>1962</b>, <span class='html-italic'>33</span>, 1482–1498. [<a href="https://scholar.google.com/scholar_lookup?title=Mechanics+of+deformation+and+acoustic+propagation+in+porous+media&author=Biot,+M.A.&publication_year=1962&journal=J.+Appl.+Phys.&volume=33&pages=1482%E2%80%931498&doi=10.1063/1.1728759" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1063/1.1728759" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B14-geosciences-11-00119' class='html-xx' data-content='14.'>Biot, M.A. Surface instability of rubber in compression. <span class='html-italic'>Appl. Sci. Res.</span> <b>1963</b>, <span class='html-italic'>12</span>, 168–182. [<a href="https://scholar.google.com/scholar_lookup?title=Surface+instability+of+rubber+in+compression&author=Biot,+M.A.&publication_year=1963&journal=Appl.+Sci.+Res.&volume=12&pages=168%E2%80%93182&doi=10.1007/BF03184638" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/BF03184638" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B15-geosciences-11-00119' class='html-xx' data-content='15.'>Biot, M.A. Nonlinear and semilinear rheology of porous solids. <span class='html-italic'>J. Geophys. Res.</span> <b>1973</b>, <span class='html-italic'>78</span>, 4924–4937. [<a href="https://scholar.google.com/scholar_lookup?title=Nonlinear+and+semilinear+rheology+of+porous+solids&author=Biot,+M.A.&publication_year=1973&journal=J.+Geophys.+Res.&volume=78&pages=4924%E2%80%934937&doi=10.1029/JB078i023p04924" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1029/JB078i023p04924" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B16-geosciences-11-00119' class='html-xx' data-content='16.'>Biot, M.A. Variational Lagrangian-thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion. <span class='html-italic'>Int. J. Solids Struct.</span> <b>1977</b>, <span class='html-italic'>13</span>, 579–597. [<a href="https://scholar.google.com/scholar_lookup?title=Variational+Lagrangian-thermodynamics+of+nonisothermal+finite+strain+mechanics+of+porous+solids+and+thermomolecular+diffusion&author=Biot,+M.A.&publication_year=1977&journal=Int.+J.+Solids+Struct.&volume=13&pages=579%E2%80%93597&doi=10.1016/0020-7683(77)90031-2" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/0020-7683(77)90031-2" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B17-geosciences-11-00119' class='html-xx' data-content='17.'>Biot, M.A.; Willis, D.G. The elastic coefficients of the theory of consolidation. <span class='html-italic'>J. Appl. Mech.</span> <b>1957</b>, <span class='html-italic'>24</span>, 594–601. [<a href="https://scholar.google.com/scholar_lookup?title=The+elastic+coefficients+of+the+theory+of+consolidation&author=Biot,+M.A.&author=Willis,+D.G.&publication_year=1957&journal=J.+Appl.+Mech.&volume=24&pages=594%E2%80%93601" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B18-geosciences-11-00119' class='html-xx' data-content='18.'>Auriault, J.L.; Sanchez-Palencia, E. Etude du comportement d’un milieu poreuxsaturédéformable (Study of macroscopic behaviour of a deformable saturated porous medium). <span class='html-italic'>J. Mécanique</span> <b>1977</b>, <span class='html-italic'>16</span>, 575–603. [<a href="https://scholar.google.com/scholar_lookup?title=Etude+du+comportement+d%E2%80%99un+milieu+poreuxsatur%C3%A9d%C3%A9formable+(Study+of+macroscopic+behaviour+of+a+deformable+saturated+porous+medium)&author=Auriault,+J.L.&author=Sanchez-Palencia,+E.&publication_year=1977&journal=J.+M%C3%A9canique&volume=16&pages=575%E2%80%93603" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B19-geosciences-11-00119' class='html-xx' data-content='19.'>Auriault, J.L. Dynamic behaviour of a porous medium saturated by a Newtonian fluid. <span class='html-italic'>Int. J. Eng. Sci.</span> <b>1980</b>, <span class='html-italic'>18</span>, 775–785. [<a href="https://scholar.google.com/scholar_lookup?title=Dynamic+behaviour+of+a+porous+medium+saturated+by+a+Newtonian+fluid&author=Auriault,+J.L.&publication_year=1980&journal=Int.+J.+Eng.+Sci.&volume=18&pages=775%E2%80%93785&doi=10.1016/0020-7225(80)90025-7" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/0020-7225(80)90025-7" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B20-geosciences-11-00119' class='html-xx' data-content='20.'>Bonnet, G.; Auriault, J.L. Dynamics of saturated and deformable porous media: Homogenization theory and determination of the solid-liquid coupling coefficients. In <span class='html-italic'>Physics of Finely Divided Matter</span>; Boccara, N., Daoud, Z.M., Eds.; Springer: Les Houches, France, 1985; pp. 306–316. [<a href="https://scholar.google.com/scholar_lookup?title=Dynamics+of+saturated+and+deformable+porous+media:+Homogenization+theory+and+determination+of+the+solid-liquid+coupling+coefficients&author=Bonnet,+G.&author=Auriault,+J.L.&publication_year=1985&pages=306%E2%80%93316" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B21-geosciences-11-00119' class='html-xx' data-content='21.'>Oka, F. Validity and limits of the effective stress concept in geomechanics. <span class='html-italic'>Mech. Cohes. Frict. Mater.</span> <b>1996</b>, <span class='html-italic'>1</span>, 219–234. [<a href="https://scholar.google.com/scholar_lookup?title=Validity+and+limits+of+the+effective+stress+concept+in+geomechanics&author=Oka,+F.&publication_year=1996&journal=Mech.+Cohes.+Frict.+Mater.&volume=1&pages=219%E2%80%93234&doi=10.1002/(SICI)1099-1484(199604)1:2%3C219::AID-CFM11%3E3.0.CO;2-H" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/(SICI)1099-1484(199604)1:2&lt;219::AID-CFM11&gt;3.0.CO;2-H" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B22-geosciences-11-00119' class='html-xx' data-content='22.'>De Buhan, P.; Dormieux, L. On the validity of the effective stress concept for assessing the strength of satured porous materials: A homogenization approach. <span class='html-italic'>J. Mech. Phys. Solids</span> <b>1996</b>, <span class='html-italic'>44</span>, 1649–1667. [<a href="https://scholar.google.com/scholar_lookup?title=On+the+validity+of+the+effective+stress+concept+for+assessing+the+strength+of+satured+porous+materials:+A+homogenization+approach&author=De+Buhan,+P.&author=Dormieux,+L.&publication_year=1996&journal=J.+Mech.+Phys.+Solids&volume=44&pages=1649%E2%80%931667&doi=10.1016/0022-5096(96)00046-4" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/0022-5096(96)00046-4" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B23-geosciences-11-00119' class='html-xx' data-content='23.'>Bluhm, J.; De Boer, R. Effective stresses—A clarification. <span class='html-italic'>Arch. Appl. Mech.</span> <b>1996</b>, <span class='html-italic'>66</span>, 479–492. [<a href="https://scholar.google.com/scholar_lookup?title=Effective+stresses%E2%80%94A+clarification&author=Bluhm,+J.&author=De+Boer,+R.&publication_year=1996&journal=Arch.+Appl.+Mech.&volume=66&pages=479%E2%80%93492" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B24-geosciences-11-00119' class='html-xx' data-content='24.'>De Boer, R. <span class='html-italic'>Theory of Porous Media, Highlights in the Historical Development and Current State</span>; Springer: Berlin, Germany; New York, NY, USA, 2000; p. 618. [<a href="https://scholar.google.com/scholar_lookup?title=Theory+of+Porous+Media,+Highlights+in+the+Historical+Development+and+Current+State&author=De+Boer,+R.&publication_year=2000" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B25-geosciences-11-00119' class='html-xx' data-content='25.'>Coussy, O. <span class='html-italic'>Mechanics and Physics of Porous Solids</span>; Wiley: Chichester, UK, 2010. [<a href="https://scholar.google.com/scholar_lookup?title=Mechanics+and+Physics+of+Porous+Solids&author=Coussy,+O.&publication_year=2010" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B26-geosciences-11-00119' class='html-xx' data-content='26.'>Ehlers, W. Constitutive equations for granular materials in geomechanical context. In <span class='html-italic'>Continuum Mechanics in Environmental Sciences and Geophysics</span>; Hutter, K., Ed.; Springer: Wien, Austria, 1993; pp. 313–402. [<a href="https://scholar.google.com/scholar_lookup?title=Constitutive+equations+for+granular+materials+in+geomechanical+context&author=Ehlers,+W.&publication_year=1993&pages=313%E2%80%93402" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B27-geosciences-11-00119' class='html-xx' data-content='27.'>Ehlers, W. Challenges of porous media models in geo- and biomechanical engineering including electro-chemically active polymers and gels. <span class='html-italic'>Int. J. Adv. Eng. Sci. Appl. Math.</span> <b>2009</b>, <span class='html-italic'>1</span>, 1–24. [<a href="https://scholar.google.com/scholar_lookup?title=Challenges+of+porous+media+models+in+geo-+and+biomechanical+engineering+including+electro-chemically+active+polymers+and+gels&author=Ehlers,+W.&publication_year=2009&journal=Int.+J.+Adv.+Eng.+Sci.+Appl.+Math.&volume=1&pages=1%E2%80%9324&doi=10.1007/s12572-009-0001-z" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s12572-009-0001-z" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B28-geosciences-11-00119' class='html-xx' data-content='28.'>Coussy, O.; Dormieux, L.; Detournay, E. From Mixture Theory ToBiot’s Approach for Porous Media. <span class='html-italic'>Int. J. Solids Struct.</span> <b>1998</b>, <span class='html-italic'>35</span>, 4619–4635. [<a href="https://scholar.google.com/scholar_lookup?title=From+Mixture+Theory+ToBiot%E2%80%99s+Approach+for+Porous+Media&author=Coussy,+O.&author=Dormieux,+L.&author=Detournay,+E.&publication_year=1998&journal=Int.+J.+Solids+Struct.&volume=35&pages=4619%E2%80%934635&doi=10.1016/S0020-7683(98)00087-0" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/S0020-7683(98)00087-0" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B29-geosciences-11-00119' class='html-xx' data-content='29.'>De Boer, R.; Ehlers, W. The development of the concept of effective stresses. <span class='html-italic'>Acta Mech.</span> <b>1990</b>, <span class='html-italic'>83</span>, 77–92. [<a href="https://scholar.google.com/scholar_lookup?title=The+development+of+the+concept+of+effective+stresses&author=De+Boer,+R.&author=Ehlers,+W.&publication_year=1990&journal=Acta+Mech.&volume=83&pages=77%E2%80%9392&doi=10.1007/BF01174734" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/BF01174734" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B30-geosciences-11-00119' class='html-xx' data-content='30.'>De Boer, R. Theoretical poroelasticity—A new approach. <span class='html-italic'>Chaos Solitons Fractals</span> <b>2005</b>, <span class='html-italic'>25</span>, 861–878. [<a href="https://scholar.google.com/scholar_lookup?title=Theoretical+poroelasticity%E2%80%94A+new+approach&author=De+Boer,+R.&publication_year=2005&journal=Chaos+Solitons+Fractals&volume=25&pages=861%E2%80%93878&doi=10.1016/j.chaos.2004.11.076" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.chaos.2004.11.076" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B31-geosciences-11-00119' class='html-xx' data-content='31.'>Zimmerman, R.W. Compressibility of Two-Dimensional Cavities of Various Shapes. <span class='html-italic'>J. Appl. Mech.</span> <b>1986</b>, <span class='html-italic'>53</span>, 500–504. [<a href="https://scholar.google.com/scholar_lookup?title=Compressibility+of+Two-Dimensional+Cavities+of+Various+Shapes&author=Zimmerman,+R.W.&publication_year=1986&journal=J.+Appl.+Mech.&volume=53&pages=500%E2%80%93504&doi=10.1115/1.3171802" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1115/1.3171802" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B32-geosciences-11-00119' class='html-xx' data-content='32.'>Zimmerman, R.W. <span class='html-italic'>Compressibility of Sandstones</span>; Elsevier: Amsterdam, The Netherlands, 1991; ISBN 9780444883254. [<a href="https://scholar.google.com/scholar_lookup?title=Compressibility+of+Sandstones&author=Zimmerman,+R.W.&publication_year=1991" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B33-geosciences-11-00119' class='html-xx' data-content='33.'>Zimmerman, R.W.; Somerton, W.; King, M. Compressibility of Porous Rocks. <span class='html-italic'>J. Geophys. Res.</span> <b>1986</b>, <span class='html-italic'>91</span>, 12765–12777. [<a href="https://scholar.google.com/scholar_lookup?title=Compressibility+of+Porous+Rocks&author=Zimmerman,+R.W.&author=Somerton,+W.&author=King,+M.&publication_year=1986&journal=J.+Geophys.+Res.&volume=91&pages=12765%E2%80%9312777&doi=10.1029/JB091iB12p12765" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1029/JB091iB12p12765" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B34-geosciences-11-00119' class='html-xx' data-content='34.'>Zimmerman, R.W.; Myer, L.R.; Cook, N.G.W. Grain and Void Compression in Fractured and Porous Rocks. <span class='html-italic'>Int. J. Rock Mech. Min. Sci. Geomech. Abstr.</span> <b>1994</b>, <span class='html-italic'>31</span>, 179–184. [<a href="https://scholar.google.com/scholar_lookup?title=Grain+and+Void+Compression+in+Fractured+and+Porous+Rocks&author=Zimmerman,+R.W.&author=Myer,+L.R.&author=Cook,+N.G.W.&publication_year=1994&journal=Int.+J.+Rock+Mech.+Min.+Sci.+Geomech.+Abstr.&volume=31&pages=179%E2%80%93184&doi=10.1016/0148-9062(94)92809-6" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/0148-9062(94)92809-6" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://escholarship.org/content/qt4h5283mv/qt4h5283mv.pdf?t=p0hhq2" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B35-geosciences-11-00119' class='html-xx' data-content='35.'>Zimmerman, R.W. Pore compressibility under uniaxial strain. In Proceedings of the 6th International Symposium Land Subsidence, Ravenna, Italy, 24–29 September 2000; pp. 57–65. [<a href="https://scholar.google.com/scholar_lookup?title=Pore+compressibility+under+uniaxial+strain&conference=Proceedings+of+the+6th+International+Symposium+Land+Subsidence&author=Zimmerman,+R.W.&publication_year=2000&pages=57%E2%80%9365" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B36-geosciences-11-00119' class='html-xx' data-content='36.'>David, E.C.; Brantut, N.; Schubnel, A.; Zimmerman, R.W. Sliding crack model for nonlinearity and hysteresis in the uniaxial stress–strain curve of rock. <span class='html-italic'>Int. J. Rock Mech. Min. Sci.</span> <b>2012</b>, <span class='html-italic'>52</span>, 9–17. [<a href="https://scholar.google.com/scholar_lookup?title=Sliding+crack+model+for+nonlinearity+and+hysteresis+in+the+uniaxial+stress%E2%80%93strain+curve+of+rock&author=David,+E.C.&author=Brantut,+N.&author=Schubnel,+A.&author=Zimmerman,+R.W.&publication_year=2012&journal=Int.+J.+Rock+Mech.+Min.+Sci.&volume=52&pages=9%E2%80%9317&doi=10.1016/j.ijrmms.2012.02.001" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.ijrmms.2012.02.001" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B37-geosciences-11-00119' class='html-xx' data-content='37.'>Pijaudier-Cabot, G.; Vermorel, R.; Miqueu, C.; Mendiboure, B. Revisiting poromechanics in the context of microporous materials. <span class='html-italic'>Comptes Rendus Mécanique</span> <b>2011</b>, <span class='html-italic'>339</span>, 770–778. [<a href="https://scholar.google.com/scholar_lookup?title=Revisiting+poromechanics+in+the+context+of+microporous+materials&author=Pijaudier-Cabot,+G.&author=Vermorel,+R.&author=Miqueu,+C.&author=Mendiboure,+B.&publication_year=2011&journal=Comptes+Rendus+M%C3%A9canique&volume=339&pages=770%E2%80%93778&doi=10.1016/j.crme.2011.09.003" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.crme.2011.09.003" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://hal.archives-ouvertes.fr/hal-00643305/document" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B38-geosciences-11-00119' class='html-xx' data-content='38.'>Cheng, A.H.D. <span class='html-italic'>Poroelasticity</span>; Springer: Cham, Switzerland, 2016; p. 877. [<a href="https://scholar.google.com/scholar_lookup?title=Poroelasticity&author=Cheng,+A.H.D.&publication_year=2016" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B39-geosciences-11-00119' class='html-xx' data-content='39.'>Sibson, R.H. Interactions between Temperature and Pore-Fluid Pressure during Earthquake Faulting and a Mechanism for Partial or Total Stress Relief. <span class='html-italic'>Nat. Phys. Sci.</span> <b>1973</b>, <span class='html-italic'>243</span>, 66–68. [<a href="https://scholar.google.com/scholar_lookup?title=Interactions+between+Temperature+and+Pore-Fluid+Pressure+during+Earthquake+Faulting+and+a+Mechanism+for+Partial+or+Total+Stress+Relief&author=Sibson,+R.H.&publication_year=1973&journal=Nat.+Phys.+Sci.&volume=243&pages=66%E2%80%9368&doi=10.1038/physci243066a0" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/physci243066a0" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B40-geosciences-11-00119' class='html-xx' data-content='40.'>Rudnicki, J.W. Slip on an impermeable fault in a fluid saturated rock mass. In <span class='html-italic'>Earthquake Source Mechanic</span>; Das, S., Boatwrigth, J., Scholz, C.H., Eds.; American Geophysical Union: Washington, DC, USA, 1986. [<a href="https://scholar.google.com/scholar_lookup?title=Slip+on+an+impermeable+fault+in+a+fluid+saturated+rock+mass&author=Rudnicki,+J.W.&publication_year=1986" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B41-geosciences-11-00119' class='html-xx' data-content='41.'>Rudnicki, J.W.; Rice, J.R. Effective normal stress alteration due to pore pressure changes induced by dynamic slip propagation on a plane between dissimilar materials. <span class='html-italic'>J. Geophys. Res.</span> <b>2006</b>, <span class='html-italic'>111</span>, B10308. [<a href="https://scholar.google.com/scholar_lookup?title=Effective+normal+stress+alteration+due+to+pore+pressure+changes+induced+by+dynamic+slip+propagation+on+a+plane+between+dissimilar+materials&author=Rudnicki,+J.W.&author=Rice,+J.R.&publication_year=2006&journal=J.+Geophys.+Res.&volume=111&pages=B10308&doi=10.1029/2006JB004396" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1029/2006JB004396" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://dash.harvard.edu/bitstream/1/2668811/1/Rice_PorePressDynSlip.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B42-geosciences-11-00119' class='html-xx' data-content='42.'>Acosta, M.; Passelègue, F.X.; Schubnel, A.; Violay, M. Dynamic weakening during earthquakes controlled by fluid thermodynamics. <span class='html-italic'>Nat. Commun.</span> <b>2018</b>, <span class='html-italic'>9</span>, 3074. [<a href="https://scholar.google.com/scholar_lookup?title=Dynamic+weakening+during+earthquakes+controlled+by+fluid+thermodynamics&author=Acosta,+M.&author=Passel%C3%A8gue,+F.X.&author=Schubnel,+A.&author=Violay,+M.&publication_year=2018&journal=Nat.+Commun.&volume=9&pages=3074&doi=10.1038/s41467-018-05603-9&pmid=30082789" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41467-018-05603-9" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/30082789" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B43-geosciences-11-00119' class='html-xx' data-content='43.'>Ishikawa, T.; Tanimizu, M.; Nagaishi, K.; Matsuoka, J.; Tadai, O.; Sakaguchi, M.; Hirono, T.; Mishima, T.; Tanikawa, W.; Lin, W.; et al. Coseismic fluid–rock interactions at high temperatures in the Chelungpu fault. <span class='html-italic'>Nat. Geosci.</span> <b>2008</b>, <span class='html-italic'>1</span>, 679–683. [<a href="https://scholar.google.com/scholar_lookup?title=Coseismic+fluid%E2%80%93rock+interactions+at+high+temperatures+in+the+Chelungpu+fault&author=Ishikawa,+T.&author=Tanimizu,+M.&author=Nagaishi,+K.&author=Matsuoka,+J.&author=Tadai,+O.&author=Sakaguchi,+M.&author=Hirono,+T.&author=Mishima,+T.&author=Tanikawa,+W.&author=Lin,+W.&publication_year=2008&journal=Nat.+Geosci.&volume=1&pages=679%E2%80%93683&doi=10.1038/ngeo308" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/ngeo308" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B44-geosciences-11-00119' class='html-xx' data-content='44.'>Di Toro, G.; Han, R.; Hirose, T.; Hirose, T.; De Paola, N.; Nielsen, S.; Mizoguchi, K.; Ferri, F.; Cocco, M.; Shimamoto, T. Fault lubrication during earthquakes. <span class='html-italic'>Nature</span> <b>2011</b>, <span class='html-italic'>471</span>, 494–498. [<a href="https://scholar.google.com/scholar_lookup?title=Fault+lubrication+during+earthquakes&author=Di+Toro,+G.&author=Han,+R.&author=Hirose,+T.&author=Hirose,+T.&author=De+Paola,+N.&author=Nielsen,+S.&author=Mizoguchi,+K.&author=Ferri,+F.&author=Cocco,+M.&author=Shimamoto,+T.&publication_year=2011&journal=Nature&volume=471&pages=494%E2%80%93498&doi=10.1038/nature09838" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nature09838" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B45-geosciences-11-00119' class='html-xx' data-content='45.'>Hirose, T.; Bystricky, M. Extreme dynamic weakening of faults during dehydration by coseismic shear heating. <span class='html-italic'>Geophys. Res. Lett.</span> <b>2007</b>, <span class='html-italic'>34</span>, L14311. [<a href="https://scholar.google.com/scholar_lookup?title=Extreme+dynamic+weakening+of+faults+during+dehydration+by+coseismic+shear+heating&author=Hirose,+T.&author=Bystricky,+M.&publication_year=2007&journal=Geophys.+Res.+Lett.&volume=34&pages=L14311&doi=10.1029/2007GL030049" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1029/2007GL030049" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B46-geosciences-11-00119' class='html-xx' data-content='46.'>Di Toro, G.; Goldsby, D.; Tullis, T. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. <span class='html-italic'>Nature</span> <b>2004</b>, <span class='html-italic'>427</span>, 436–439. [<a href="https://scholar.google.com/scholar_lookup?title=Friction+falls+towards+zero+in+quartz+rock+as+slip+velocity+approaches+seismic+rates&author=Di+Toro,+G.&author=Goldsby,+D.&author=Tullis,+T.&publication_year=2004&journal=Nature&volume=427&pages=436%E2%80%93439&doi=10.1038/nature02249&pmid=14749829" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nature02249" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/14749829" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B47-geosciences-11-00119' class='html-xx' data-content='47.'>Tse, S.T.; Rice, J.R. Crustal earthquake instability in relation to the depth variation of frictional slip properties. <span class='html-italic'>J. Geophys. Res.</span> <b>1986</b>, <span class='html-italic'>91</span>, 9452–9472. [<a href="https://scholar.google.com/scholar_lookup?title=Crustal+earthquake+instability+in+relation+to+the+depth+variation+of+frictional+slip+properties&author=Tse,+S.T.&author=Rice,+J.R.&publication_year=1986&journal=J.+Geophys.+Res.&volume=91&pages=9452%E2%80%939472&doi=10.1029/JB091iB09p09452" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1029/JB091iB09p09452" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://pdfs.semanticscholar.org/9f90/1e8d60afac89a36a6fa3077f39468f213e0f.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B48-geosciences-11-00119' class='html-xx' data-content='48.'>Rice, J.R. Heating and weakening of faults during earthquake slip. <span class='html-italic'>J. Geophys. Res.</span> <b>2006</b>, <span class='html-italic'>111</span>, B05311. [<a href="https://scholar.google.com/scholar_lookup?title=Heating+and+weakening+of+faults+during+earthquake+slip&author=Rice,+J.R.&publication_year=2006&journal=J.+Geophys.+Res.&volume=111&pages=B05311&doi=10.1029/2005JB004006" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1029/2005JB004006" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://dash.harvard.edu/bitstream/1/5029988/1/218_Rice_heat_weak_JGR06.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B49-geosciences-11-00119' class='html-xx' data-content='49.'>Rice, J.R.; Rudnicki, J.W.; Tsai, V.C. Shear Localization in Fluid-Saturated Fault Gouge by Instability of Spatially Uniform, Adiabatic, Undrained Shear. In Proceedings of the AGU Fall Meeting 2005, San Francisco, CA, USA, 5–9 December 2005. Abstract Number T13E-05. [<a href="https://scholar.google.com/scholar_lookup?title=Shear+Localization+in+Fluid-Saturated+Fault+Gouge+by+Instability+of+Spatially+Uniform,+Adiabatic,+Undrained+Shear&conference=Proceedings+of+the+AGU+Fall+Meeting+2005&author=Rice,+J.R.&author=Rudnicki,+J.W.&author=Tsai,+V.C.&publication_year=2005" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B50-geosciences-11-00119' class='html-xx' data-content='50.'>Rice, J.R.; Rudnicki, J.W.; Platt, J.D. Stability and localization of rapid shear in fluid-saturated fault gouge: 1. Linearized stability analysis. <span class='html-italic'>J. Geophys. Res. Solid Earth</span> <b>2014</b>, <span class='html-italic'>119</span>, 4311–4333. [<a href="https://scholar.google.com/scholar_lookup?title=Stability+and+localization+of+rapid+shear+in+fluid-saturated+fault+gouge:+1.+Linearized+stability+analysis&author=Rice,+J.R.&author=Rudnicki,+J.W.&author=Platt,+J.D.&publication_year=2014&journal=J.+Geophys.+Res.+Solid+Earth&volume=119&pages=4311%E2%80%934333&doi=10.1002/2013JB010710" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/2013JB010710" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://dash.harvard.edu/bitstream/1/12992312/1/250_RiceRudnickiPlatt_ThermLocalizPart1_Linear_JGR14.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B51-geosciences-11-00119' class='html-xx' data-content='51.'>Rice, J.R.; Sammis, C.G.; Parsons, R. Off-fault secondary failure induced by a dynamic slip-pulse. <span class='html-italic'>Bull. Seismol. Soc. Am.</span> <b>2005</b>, <span class='html-italic'>95</span>, 109–134. [<a href="https://scholar.google.com/scholar_lookup?title=Off-fault+secondary+failure+induced+by+a+dynamic+slip-pulse&author=Rice,+J.R.&author=Sammis,+C.G.&author=Parsons,+R.&publication_year=2005&journal=Bull.+Seismol.+Soc.+Am.&volume=95&pages=109%E2%80%93134&doi=10.1785/0120030166" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1785/0120030166" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://esag.harvard.edu/rice/211_RiceSammisPars_BSSA05.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B52-geosciences-11-00119' class='html-xx' data-content='52.'>Chiarabba, C.; Buttinelli, M.; Cattaneo, M.; De Gori, P. Large earthquakes driven by fluid overpressure: The Apennines normal faulting system case. <span class='html-italic'>Tectonics</span> <b>2020</b>, <span class='html-italic'>39</span>, e2019TC006014. [<a href="https://scholar.google.com/scholar_lookup?title=Large+earthquakes+driven+by+fluid+overpressure:+The+Apennines+normal+faulting+system+case&author=Chiarabba,+C.&author=Buttinelli,+M.&author=Cattaneo,+M.&author=De+Gori,+P.&publication_year=2020&journal=Tectonics&volume=39&pages=e2019TC006014&doi=10.1029/2019TC006014" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1029/2019TC006014" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B53-geosciences-11-00119' class='html-xx' data-content='53.'>Rattez, H.; Veveakis, M. Weak phases production and heat generation control fault friction during seismic slip. <span class='html-italic'>Nat Commun.</span> <b>2020</b>, <span class='html-italic'>11</span>, 350. [<a href="https://scholar.google.com/scholar_lookup?title=Weak+phases+production+and+heat+generation+control+fault+friction+during+seismic+slip&author=Rattez,+H.&author=Veveakis,+M.&publication_year=2020&journal=Nat+Commun.&volume=11&pages=350&doi=10.1038/s41467-019-14252-5" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41467-019-14252-5" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.nature.com/articles/s41467-019-14252-5.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B54-geosciences-11-00119' class='html-xx' data-content='54.'>Lade, P.V.; De Boer, R. The concept of effective stress for soil, concrete and rock. <span class='html-italic'>Gèotecnique</span> <b>1997</b>, <span class='html-italic'>47</span>, 61–78. [<a href="https://scholar.google.com/scholar_lookup?title=The+concept+of+effective+stress+for+soil,+concrete+and+rock&author=Lade,+P.V.&author=De+Boer,+R.&publication_year=1997&journal=G%C3%A8otecnique&volume=47&pages=61%E2%80%9378&doi=10.1680/geot.1997.47.1.61" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1680/geot.1997.47.1.61" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B55-geosciences-11-00119' class='html-xx' data-content='55.'>Garg, S.K.; Nur, A. Effective Stress Laws for Fluid-Saturated Porous Rocks. <span class='html-italic'>J. Geophys. Res.</span> <b>1973</b>, <span class='html-italic'>78</span>, 5911–5921. [<a href="https://scholar.google.com/scholar_lookup?title=Effective+Stress+Laws+for+Fluid-Saturated+Porous+Rocks&author=Garg,+S.K.&author=Nur,+A.&publication_year=1973&journal=J.+Geophys.+Res.&volume=78&pages=5911%E2%80%935921&doi=10.1029/JB078i026p05911" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1029/JB078i026p05911" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B56-geosciences-11-00119' class='html-xx' data-content='56.'>Jaeger, J.C.; Cook, N.G.W.; Zimmerman, R.W. <span class='html-italic'>Fundamentals of Rock Mechanics</span>; Wiley-Blackwell: Oxford, UK, 2007; ISBN 978-0632057597. [<a href="https://scholar.google.com/scholar_lookup?title=Fundamentals+of+Rock+Mechanics&author=Jaeger,+J.C.&author=Cook,+N.G.W.&author=Zimmerman,+R.W.&publication_year=2007" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B57-geosciences-11-00119' class='html-xx' data-content='57.'>Timoshenko, S.; Goodier, N.J. <span class='html-italic'>Theory of Elasticity</span>; McGraw-Hill Book Company: New York, NY, USA, 1951. [<a href="https://scholar.google.com/scholar_lookup?title=Theory+of+Elasticity&author=Timoshenko,+S.&author=Goodier,+N.J.&publication_year=1951" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B58-geosciences-11-00119' class='html-xx' data-content='58.'>Walsh, J.B. Effect of cracks on compressibility of rock. <span class='html-italic'>J. Geophys. Res.</span> <b>1965</b>, <span class='html-italic'>70</span>, 381–389. [<a href="https://scholar.google.com/scholar_lookup?title=Effect+of+cracks+on+compressibility+of+rock&author=Walsh,+J.B.&publication_year=1965&journal=J.+Geophys.+Res.&volume=70&pages=381%E2%80%93389&doi=10.1029/JZ070i002p00381" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1029/JZ070i002p00381" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B59-geosciences-11-00119' class='html-xx' data-content='59.'>Walsh, J.B. Effect of cracks on uniaxial elastic compression of rocks. <span class='html-italic'>J. Geophys. Res.</span> <b>1965</b>, <span class='html-italic'>70</span>, 399–411. [<a href="https://scholar.google.com/scholar_lookup?title=Effect+of+cracks+on+uniaxial+elastic+compression+of+rocks&author=Walsh,+J.B.&publication_year=1965&journal=J.+Geophys.+Res.&volume=70&pages=399%E2%80%93411&doi=10.1029/JZ070i002p00399" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1029/JZ070i002p00399" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B60-geosciences-11-00119' class='html-xx' data-content='60.'>Walsh, J.B. Effect of cracks in rocks on Poisson’s ratio. <span class='html-italic'>J. Geophys. Res.</span> <b>1965</b>, <span class='html-italic'>70</span>, 5249–5257. [<a href="https://scholar.google.com/scholar_lookup?title=Effect+of+cracks+in+rocks+on+Poisson%E2%80%99s+ratio&author=Walsh,+J.B.&publication_year=1965&journal=J.+Geophys.+Res.&volume=70&pages=5249%E2%80%935257&doi=10.1029/JZ070i020p05249" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1029/JZ070i020p05249" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B61-geosciences-11-00119' class='html-xx' data-content='61.'>Walsh, J.B.; Grosenbaugh, M.A. A New Model for Analyzing the Effect of Fractures on Compressibility. <span class='html-italic'>J. Geophys. Res.</span> <b>1979</b>, <span class='html-italic'>84</span>, 3532–3536. [<a href="https://scholar.google.com/scholar_lookup?title=A+New+Model+for+Analyzing+the+Effect+of+Fractures+on+Compressibility&author=Walsh,+J.B.&author=Grosenbaugh,+M.A.&publication_year=1979&journal=J.+Geophys.+Res.&volume=84&pages=3532%E2%80%933536&doi=10.1029/JB084iB07p03532" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1029/JB084iB07p03532" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B62-geosciences-11-00119' class='html-xx' data-content='62.'>Zimmerman, R.W. The Effect of Pore Structure on the Pore and Bulk Compressibilities of Consolidated Sandstones. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1984. [<a href="https://scholar.google.com/scholar_lookup?title=The+Effect+of+Pore+Structure+on+the+Pore+and+Bulk+Compressibilities+of+Consolidated+Sandstones&author=Zimmerman,+R.W.&publication_year=1984" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B63-geosciences-11-00119' class='html-xx' data-content='63.'>Zimmerman, R.W. The effect of microcracks on the elastic moduli of brittle materials. <span class='html-italic'>J. Mater. Sci. Lett.</span> <b>1985</b>, <span class='html-italic'>4</span>, 1457–1460. [<a href="https://scholar.google.com/scholar_lookup?title=The+effect+of+microcracks+on+the+elastic+moduli+of+brittle+materials&author=Zimmerman,+R.W.&publication_year=1985&journal=J.+Mater.+Sci.+Lett.&volume=4&pages=1457%E2%80%931460&doi=10.1007/BF00721363" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/BF00721363" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B64-geosciences-11-00119' class='html-xx' data-content='64.'>Pimienta, L.; Fortin, J.; Guéguen, Y. New method for measuring Compressibility &amp;Poroelasticitycoeffcients in porous and permeable rocks. <span class='html-italic'>J. Geophys. Res. Solid Earth</span> <b>2017</b>, <span class='html-italic'>122</span>, 2670–2689. [<a href="https://scholar.google.com/scholar_lookup?title=New+method+for+measuring+Compressibility+%2526Poroelasticitycoeffcients+in+porous+and+permeable+rocks&author=Pimienta,+L.&author=Fortin,+J.&author=Gu%C3%A9guen,+Y.&publication_year=2017&journal=J.+Geophys.+Res.+Solid+Earth&volume=122&pages=2670%E2%80%932689&doi=10.1002/2016JB013791" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/2016JB013791" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B65-geosciences-11-00119' class='html-xx' data-content='65.'>Robin, A. Note on Effective Pressure. <span class='html-italic'>J. Geophys. Res.</span> <b>1973</b>, <span class='html-italic'>78</span>, 2434–2437. [<a href="https://scholar.google.com/scholar_lookup?title=Note+on+Effective+Pressure&author=Robin,+A.&publication_year=1973&journal=J.+Geophys.+Res.&volume=78&pages=2434%E2%80%932437&doi=10.1029/JB078i014p02434" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1029/JB078i014p02434" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B66-geosciences-11-00119' class='html-xx' data-content='66.'>Hampton, J.C.; Boitnott, G.N. The misnomer of “Effective Stress” and its relation to Biot Coefficients. In Proceedings of the 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, WA, USA, 17–20 June 2018. ARMA-2018-1130. [<a href="https://scholar.google.com/scholar_lookup?title=The+misnomer+of+%E2%80%9CEffective+Stress%E2%80%9D+and+its+relation+to+Biot+Coefficients&conference=Proceedings+of+the+52nd+U.S.+Rock+Mechanics/Geomechanics+Symposium&author=Hampton,+J.C.&author=Boitnott,+G.N.&publication_year=2018" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B67-geosciences-11-00119' class='html-xx' data-content='67.'>Fillunger, P. Versuche uber die ZugfestigkeitbeiallseitigemWasserdruck. <span class='html-italic'>Osterr. Wochenschr. Offentl. Baudienst</span> <b>1915</b>, <span class='html-italic'>29</span>, 443–448. [<a href="https://scholar.google.com/scholar_lookup?title=Versuche+uber+die+ZugfestigkeitbeiallseitigemWasserdruck&author=Fillunger,+P.&publication_year=1915&journal=Osterr.+Wochenschr.+Offentl.+Baudienst&volume=29&pages=443%E2%80%93448" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B68-geosciences-11-00119' class='html-xx' data-content='68.'>De Boer, R. Reflections on the development of the theory of porous media. <span class='html-italic'>Appl. Mech. Rev.</span> <b>2003</b>, <span class='html-italic'>56</span>, 27–42. [<a href="https://scholar.google.com/scholar_lookup?title=Reflections+on+the+development+of+the+theory+of+porous+media&author=De+Boer,+R.&publication_year=2003&journal=Appl.+Mech.+Rev.&volume=56&pages=27%E2%80%9342&doi=10.1115/1.1614815" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1115/1.1614815" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B69-geosciences-11-00119' class='html-xx' data-content='69.'>Carroll, M.M. Compaction of dry or fluid-filled porous materials. <span class='html-italic'>J. Eng. Mech. Div.</span> <b>1980</b>, <span class='html-italic'>106</span>, 969–990. [<a href="https://scholar.google.com/scholar_lookup?title=Compaction+of+dry+or+fluid-filled+porous+materials&author=Carroll,+M.M.&publication_year=1980&journal=J.+Eng.+Mech.+Div.&volume=106&pages=969%E2%80%93990&doi=10.1061/JMCEA3.0002648" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1061/JMCEA3.0002648" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B70-geosciences-11-00119' class='html-xx' data-content='70.'>Burland, J. Interaction between structural and geotechnical engineers. In Proceedings of the Evening Meeting—IstructE/ICE Annual Joint Meeting, London, UK, 26 April 2006. [<a href="https://scholar.google.com/scholar_lookup?title=Interaction+between+structural+and+geotechnical+engineers&conference=Proceedings+of+the+Evening+Meeting%E2%80%94IstructE/ICE+Annual+Joint+Meeting&author=Burland,+J.&publication_year=2006" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B71-geosciences-11-00119' class='html-xx' data-content='71.'>Skempton, A.W. Significance of Terzaghi’s concept of effective stress (Terzaghi’s discovery of effective stress). In <span class='html-italic'>From Theory to Practice in Soil Mechanics</span>; Bjerrum, L., Casagrande, A., Peek, R.B., Skempton, A.W., Eds.; John Wiley &amp; Sons: New York, NY, USA; London, UK, 1960. [<a href="https://scholar.google.com/scholar_lookup?title=Significance+of+Terzaghi%E2%80%99s+concept+of+effective+stress+(Terzaghi%E2%80%99s+discovery+of+effective+stress)&author=Skempton,+A.W.&publication_year=1960" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B72-geosciences-11-00119' class='html-xx' data-content='72.'>Goodman, R.E. Karl Terzaghi’s legacy in geotechnical engineering. <span class='html-italic'>Geo-Strata Geo Inst. ASCE</span> <b>2002</b>, <span class='html-italic'>3</span>, 18–21. [<a href="https://scholar.google.com/scholar_lookup?title=Karl+Terzaghi%E2%80%99s+legacy+in+geotechnical+engineering&author=Goodman,+R.E.&publication_year=2002&journal=Geo-Strata+Geo+Inst.+ASCE&volume=3&pages=18%E2%80%9321" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B73-geosciences-11-00119' class='html-xx' data-content='73.'>Heinrich, G.; Desoyer, K. HydromechanischeGrundlagenfür die Behandlung von stationären und instationärenGrundwasserströmungen. <span class='html-italic'>Ing. Arch.</span> <b>1955</b>, <span class='html-italic'>23</span>, 73–84. [<a href="https://scholar.google.com/scholar_lookup?title=HydromechanischeGrundlagenf%C3%BCr+die+Behandlung+von+station%C3%A4ren+und+instation%C3%A4renGrundwasserstr%C3%B6mungen&author=Heinrich,+G.&author=Desoyer,+K.&publication_year=1955&journal=Ing.+Arch.&volume=23&pages=73%E2%80%9384&doi=10.1007/BF00536761" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/BF00536761" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B74-geosciences-11-00119' class='html-xx' data-content='74.'>Heinrich, G.; Desoyer, K. HydromechanischeGrundlagenfür die Behandlung von stationären und instationärenGrundwasserströmungen, II Mitteilung. <span class='html-italic'>Ing. Arch.</span> <b>1956</b>, <span class='html-italic'>24</span>, 81–84. [<a href="https://scholar.google.com/scholar_lookup?title=HydromechanischeGrundlagenf%C3%BCr+die+Behandlung+von+station%C3%A4ren+und+instation%C3%A4renGrundwasserstr%C3%B6mungen,+II+Mitteilung&author=Heinrich,+G.&author=Desoyer,+K.&publication_year=1956&journal=Ing.+Arch.&volume=24&pages=81%E2%80%9384&doi=10.1007/BF00537153" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/BF00537153" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B75-geosciences-11-00119' class='html-xx' data-content='75.'>De Boer, R. Highlights in the historical development of the porous media theory—Toward a consistent macroscopic theory. <span class='html-italic'>Appl. Mech. Rev.</span> <b>1996</b>, <span class='html-italic'>49</span>, 201–262. [<a href="https://scholar.google.com/scholar_lookup?title=Highlights+in+the+historical+development+of+the+porous+media+theory%E2%80%94Toward+a+consistent+macroscopic+theory&author=De+Boer,+R.&publication_year=1996&journal=Appl.+Mech.+Rev.&volume=49&pages=201%E2%80%93262&doi=10.1115/1.3101926" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1115/1.3101926" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B76-geosciences-11-00119' class='html-xx' data-content='76.'>Biot, M.A. Le problème de la consolidation des matières argileuses sous une charge (The problem of consolidation of clay material under load). <span class='html-italic'>Ann. Soc. Sci. Brux.</span> <b>1935</b>, <span class='html-italic'>B55</span>, 110–113. [<a href="https://scholar.google.com/scholar_lookup?title=Le+probl%C3%A8me+de+la+consolidation+des+mati%C3%A8res+argileuses+sous+une+charge+(The+problem+of+consolidation+of+clay+material+under+load)&author=Biot,+M.A.&publication_year=1935&journal=Ann.+Soc.+Sci.+Brux.&volume=B55&pages=110%E2%80%93113" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B77-geosciences-11-00119' class='html-xx' data-content='77.'>Geertsma, J. The effect of fluid pressure decline on volumetric changes of porous rocks. <span class='html-italic'>Trans. AIME</span> <b>1957</b>, <span class='html-italic'>210</span>, 331–340. [<a href="https://scholar.google.com/scholar_lookup?title=The+effect+of+fluid+pressure+decline+on+volumetric+changes+of+porous+rocks&author=Geertsma,+J.&publication_year=1957&journal=Trans.+AIME&volume=210&pages=331%E2%80%93340&doi=10.2118/728-G" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.2118/728-G" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B78-geosciences-11-00119' class='html-xx' data-content='78.'>Biot, M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. 1. Low-frequency range. <span class='html-italic'>J. Acoust. Soc. Am.</span> <b>1956</b>, <span class='html-italic'>28</span>, 168–178. [<a href="https://scholar.google.com/scholar_lookup?title=Theory+of+propagation+of+elastic+waves+in+a+fluid-saturated+porous+solid.+1.+Low-frequency+range&author=Biot,+M.A.&publication_year=1956&journal=J.+Acoust.+Soc.+Am.&volume=28&pages=168%E2%80%93178&doi=10.1121/1.1908239" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1121/1.1908239" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B79-geosciences-11-00119' class='html-xx' data-content='79.'>Biot, M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. 2. Higher frequency range. <span class='html-italic'>J. Acoust. Soc. Am.</span> <b>1956</b>, <span class='html-italic'>28</span>, 179–191. [<a href="https://scholar.google.com/scholar_lookup?title=Theory+of+propagation+of+elastic+waves+in+a+fluid-saturated+porous+solid.+2.+Higher+frequency+range&author=Biot,+M.A.&publication_year=1956&journal=J.+Acoust.+Soc.+Am.&volume=28&pages=179%E2%80%93191&doi=10.1121/1.1908241" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1121/1.1908241" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B80-geosciences-11-00119' class='html-xx' data-content='80.'>Biot, M.A. Generalized theory of acoustic propagation in porous dissipative media. <span class='html-italic'>J. Acoust. Soc. Am.</span> <b>1962</b>, <span class='html-italic'>34</span>, 1254–1264. [<a href="https://scholar.google.com/scholar_lookup?title=Generalized+theory+of+acoustic+propagation+in+porous+dissipative+media&author=Biot,+M.A.&publication_year=1962&journal=J.+Acoust.+Soc.+Am.&volume=34&pages=1254%E2%80%931264&doi=10.1121/1.1918315" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1121/1.1918315" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B81-geosciences-11-00119' class='html-xx' data-content='81.'>Chateau, X.; Dormieux, L. Micromechanics of saturated and unsaturated porous media. <span class='html-italic'>Int. J. Numer. Anal. Methods Geomech.</span> <b>2002</b>, <span class='html-italic'>26</span>, 831–844. [<a href="https://scholar.google.com/scholar_lookup?title=Micromechanics+of+saturated+and+unsaturated+porous+media&author=Chateau,+X.&author=Dormieux,+L.&publication_year=2002&journal=Int.+J.+Numer.+Anal.+Methods+Geomech.&volume=26&pages=831%E2%80%93844&doi=10.1002/nag.227" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/nag.227" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B82-geosciences-11-00119' class='html-xx' data-content='82.'>Mei, C.C.; Auriault, J.L. Mechanics of heterogeneous porous media with several spatial scales. <span class='html-italic'>Proc. R. Soc. Lond.</span> <b>1989</b>, <span class='html-italic'>426</span>, 391–423. [<a href="https://scholar.google.com/scholar_lookup?title=Mechanics+of+heterogeneous+porous+media+with+several+spatial+scales&author=Mei,+C.C.&author=Auriault,+J.L.&publication_year=1989&journal=Proc.+R.+Soc.+Lond.&volume=426&pages=391%E2%80%93423&doi=10.1098/rspa.1989.0132" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1098/rspa.1989.0132" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B83-geosciences-11-00119' class='html-xx' data-content='83.'>Terada, K.; Ito, T.; Kikuchi, N. Characterization of the mechanical behaviours of solid-fluid mixture by the homogenization method. <span class='html-italic'>Comput. Methods. Appl. Mech. Eng.</span> <b>1998</b>, <span class='html-italic'>153</span>, 223–257. [<a href="https://scholar.google.com/scholar_lookup?title=Characterization+of+the+mechanical+behaviours+of+solid-fluid+mixture+by+the+homogenization+method&author=Terada,+K.&author=Ito,+T.&author=Kikuchi,+N.&publication_year=1998&journal=Comput.+Methods.+Appl.+Mech.+Eng.&volume=153&pages=223%E2%80%93257&doi=10.1016/S0045-7825(97)00071-6" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/S0045-7825(97)00071-6" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B84-geosciences-11-00119' class='html-xx' data-content='84.'>Bear, J.; Cheng, A.H.D. <span class='html-italic'>Modeling Groundwater Flow and Contaminant Transport</span>; Springer: Dordrecht, The Netherlands; London, UK, 2010; p. 834. [<a href="https://scholar.google.com/scholar_lookup?title=Modeling+Groundwater+Flow+and+Contaminant+Transport&author=Bear,+J.&author=Cheng,+A.H.D.&publication_year=2010" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B85-geosciences-11-00119' class='html-xx' data-content='85.'>Ene, H.I.; Poliševski, D. <span class='html-italic'>Thermal Flow in Porous Media</span>; D. Reidel: Dordrecht, The Netherlands; Boston, MA, USA, 1987; p. 194. [<a href="https://scholar.google.com/scholar_lookup?title=Thermal+Flow+in+Porous+Media&author=Ene,+H.I.&author=Poli%C5%A1evski,+D.&publication_year=1987" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B86-geosciences-11-00119' class='html-xx' data-content='86.'>Hornung, U. <span class='html-italic'>Homogenization and Porous Media</span>; Springer: New York, NY, USA, 1997; p. 279. [<a href="https://scholar.google.com/scholar_lookup?title=Homogenization+and+Porous+Media&author=Hornung,+U.&publication_year=1997" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B87-geosciences-11-00119' class='html-xx' data-content='87.'>Levy, T. Propagation of waves in a fluid-saturated porous elastic solid. <span class='html-italic'>Int. J. Eng. Sci.</span> <b>1979</b>, <span class='html-italic'>17</span>, 1005–1014. [<a href="https://scholar.google.com/scholar_lookup?title=Propagation+of+waves+in+a+fluid-saturated+porous+elastic+solid&author=Levy,+T.&publication_year=1979&journal=Int.+J.+Eng.+Sci.&volume=17&pages=1005%E2%80%931014&doi=10.1016/0020-7225(79)90022-3" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/0020-7225(79)90022-3" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B88-geosciences-11-00119' class='html-xx' data-content='88.'>Sanchez-Palencia, E. <span class='html-italic'>Non-Homogeneous Media and Vibration Theory</span>; Springer: Berlin, Germany; New York, NY, USA, 1980; p. 398. [<a href="https://scholar.google.com/scholar_lookup?title=Non-Homogeneous+Media+and+Vibration+Theory&author=Sanchez-Palencia,+E.&publication_year=1980" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B89-geosciences-11-00119' class='html-xx' data-content='89.'>Moyne, C.; Murad, M.A. Electro-chemo-mechanical couplings in swelling clays derived from a micro/macro-homogenization procedure. <span class='html-italic'>Int. J. Solids. Struct.</span> <b>2002</b>, <span class='html-italic'>39</span>, 6159–6190. [<a href="https://scholar.google.com/scholar_lookup?title=Electro-chemo-mechanical+couplings+in+swelling+clays+derived+from+a+micro/macro-homogenization+procedure&author=Moyne,+C.&author=Murad,+M.A.&publication_year=2002&journal=Int.+J.+Solids.+Struct.&volume=39&pages=6159%E2%80%936190&doi=10.1016/S0020-7683(02)00461-4" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/S0020-7683(02)00461-4" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B90-geosciences-11-00119' class='html-xx' data-content='90.'>De Boer, R. Introduction to the Porous Media Theory. In <span class='html-italic'>IUTAM Symposium on Theoretical and Numerical Methods in Continuum Mechanics of Porous Materials. Solid Mechanics and Its Application</span>; Ehlers, W., Ed.; Springer: Dordrecht, The Netherlands, 2001; Volume 87. [<a href="https://scholar.google.com/scholar_lookup?title=Introduction+to+the+Porous+Media+Theory&author=De+Boer,+R.&publication_year=2001" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/0-306-46953-7_1" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B91-geosciences-11-00119' class='html-xx' data-content='91.'>Morland, L.W. A simple constitutive theory for a fluid-saturate porous solid. <span class='html-italic'>J. Geophys. Res.</span> <b>1972</b>, <span class='html-italic'>77</span>, 890–900. [<a href="https://scholar.google.com/scholar_lookup?title=A+simple+constitutive+theory+for+a+fluid-saturate+porous+solid&author=Morland,+L.W.&publication_year=1972&journal=J.+Geophys.+Res.&volume=77&pages=890%E2%80%93900&doi=10.1029/JB077i005p00890" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1029/JB077i005p00890" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B92-geosciences-11-00119' class='html-xx' data-content='92.'>Didwania, A.K.; De Boer, R. Saturated Compressible and Incompressible Porous Solids: Macro- and Micromechanical Approaches. <span class='html-italic'>Transp. Porous Media</span> <b>1999</b>, <span class='html-italic'>34</span>, 101–115. [<a href="https://scholar.google.com/scholar_lookup?title=Saturated+Compressible+and+Incompressible+Porous+Solids:+Macro-+and+Micromechanical+Approaches&author=Didwania,+A.K.&author=De+Boer,+R.&publication_year=1999&journal=Transp.+Porous+Media&volume=34&pages=101%E2%80%93115&doi=10.1023/A:1006505323208" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1023/A:1006505323208" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B93-geosciences-11-00119' class='html-xx' data-content='93.'>Bowen, R.M. Incompressible porous media models by use of the theory of mixtures. <span class='html-italic'>Int. J. Eng. Sci.</span> <b>1980</b>, <span class='html-italic'>18</span>, 1129–1148. [<a href="https://scholar.google.com/scholar_lookup?title=Incompressible+porous+media+models+by+use+of+the+theory+of+mixtures&author=Bowen,+R.M.&publication_year=1980&journal=Int.+J.+Eng.+Sci.&volume=18&pages=1129%E2%80%931148&doi=10.1016/0020-7225(80)90114-7" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/0020-7225(80)90114-7" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B94-geosciences-11-00119' class='html-xx' data-content='94.'>Bowen, R.M. Compressible porous media models by use of the theory of mixtures. <span class='html-italic'>Int. J. Eng. Sci.</span> <b>1982</b>, <span class='html-italic'>20</span>, 697–735. [<a href="https://scholar.google.com/scholar_lookup?title=Compressible+porous+media+models+by+use+of+the+theory+of+mixtures&author=Bowen,+R.M.&publication_year=1982&journal=Int.+J.+Eng.+Sci.&volume=20&pages=697%E2%80%93735&doi=10.1016/0020-7225(82)90082-9" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/0020-7225(82)90082-9" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B95-geosciences-11-00119' class='html-xx' data-content='95.'>De Boer, R. The thermodynamic structure and constitutive equations for fluid-saturated compressible and incompressible elastic porous solids. <span class='html-italic'>Int. J. Solids Struct.</span> <b>1998</b>, <span class='html-italic'>35</span>, 4557–4573. [<a href="https://scholar.google.com/scholar_lookup?title=The+thermodynamic+structure+and+constitutive+equations+for+fluid-saturated+compressible+and+incompressible+elastic+porous+solids&author=De+Boer,+R.&publication_year=1998&journal=Int.+J.+Solids+Struct.&volume=35&pages=4557%E2%80%934573&doi=10.1016/S0020-7683(98)00083-3" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/S0020-7683(98)00083-3" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B96-geosciences-11-00119' class='html-xx' data-content='96.'>Crochet, M.J.; Naghdi, P.M. On constitutive equations for flow of fluid through an elastic solid. <span class='html-italic'>Int. J. Eng. Sci.</span> <b>1966</b>, <span class='html-italic'>4</span>, 383–401. [<a href="https://scholar.google.com/scholar_lookup?title=On+constitutive+equations+for+flow+of+fluid+through+an+elastic+solid&author=Crochet,+M.J.&author=Naghdi,+P.M.&publication_year=1966&journal=Int.+J.+Eng.+Sci.&volume=4&pages=383%E2%80%93401&doi=10.1016/0020-7225(66)90038-3" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/0020-7225(66)90038-3" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B97-geosciences-11-00119' class='html-xx' data-content='97.'>Atkin, R.J.; Craine, R.E. Continuum theories of mixtures—basic theory and historical development. <span class='html-italic'>Q. J. Mech. Appl. Math.</span> <b>1976</b>, <span class='html-italic'>29</span>, 209–244. [<a href="https://scholar.google.com/scholar_lookup?title=Continuum+theories+of+mixtures%E2%80%94basic+theory+and+historical+development&author=Atkin,+R.J.&author=Craine,+R.E.&publication_year=1976&journal=Q.+J.+Mech.+Appl.+Math.&volume=29&pages=209%E2%80%93244&doi=10.1093/qjmam/29.2.209" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/qjmam/29.2.209" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B98-geosciences-11-00119' class='html-xx' data-content='98.'>Dell’Isola, F.; GuarascioMHutter, K. A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi’s effective stress principle. <span class='html-italic'>Arch. Appl. Mech.</span> <b>2000</b>, <span class='html-italic'>70</span>, 323–337. [<a href="https://scholar.google.com/scholar_lookup?title=A+variational+approach+for+the+deformation+of+a+saturated+porous+solid.+A+second-gradient+theory+extending+Terzaghi%E2%80%99s+effective+stress+principle&author=Dell%E2%80%99Isola,+F.&author=GuarascioMHutter,+K.&publication_year=2000&journal=Arch.+Appl.+Mech.&volume=70&pages=323%E2%80%93337&doi=10.1007/s004199900020" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s004199900020" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://arxiv.org/pdf/1007.2084" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B99-geosciences-11-00119' class='html-xx' data-content='99.'>Bowen, R.M.; Lockett, R.R. Inertial effects in poroelasticity. <span class='html-italic'>J. Appl. Mech.</span> <b>1983</b>, <span class='html-italic'>50</span>, 334–342. [<a href="https://scholar.google.com/scholar_lookup?title=Inertial+effects+in+poroelasticity&author=Bowen,+R.M.&author=Lockett,+R.R.&publication_year=1983&journal=J.+Appl.+Mech.&volume=50&pages=334%E2%80%93342&doi=10.1115/1.3167041" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1115/1.3167041" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B100-geosciences-11-00119' class='html-xxx' data-content='100.'>De Boer, R.; Ehlers, W.; Liu, Z.F. One-dimensional transient wave propagation in fluid saturated incompressible porous media. <span class='html-italic'>Arch. Appl. Mech.</span> <b>1993</b>, <span class='html-italic'>63</span>, 59–72. [<a href="https://scholar.google.com/scholar_lookup?title=One-dimensional+transient+wave+propagation+in+fluid+saturated+incompressible+porous+media&author=De+Boer,+R.&author=Ehlers,+W.&author=Liu,+Z.F.&publication_year=1993&journal=Arch.+Appl.+Mech.&volume=63&pages=59%E2%80%9372&doi=10.1007/BF00787910" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/BF00787910" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B101-geosciences-11-00119' class='html-xxx' data-content='101.'>Achanta, S.; Cushman, J.H.; Okos, M.R. On multicomponent, multiphase thermomechanics with interfaces. <span class='html-italic'>Int. J. Eng. Sci.</span> <b>1994</b>, <span class='html-italic'>32</span>, 1717–1738. [<a href="https://scholar.google.com/scholar_lookup?title=On+multicomponent,+multiphase+thermomechanics+with+interfaces&author=Achanta,+S.&author=Cushman,+J.H.&author=Okos,+M.R.&publication_year=1994&journal=Int.+J.+Eng.+Sci.&volume=32&pages=1717%E2%80%931738&doi=10.1016/0020-7225(94)90104-X" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/0020-7225(94)90104-X" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B102-geosciences-11-00119' class='html-xxx' data-content='102.'>Huyghe, J.M.; Janssen, J.D. Quadriphasic mechanics of swelling incompressible porous media. <span class='html-italic'>Int. J. Eng. Sci.</span> <b>1997</b>, <span class='html-italic'>35</span>, 793–802. [<a href="https://scholar.google.com/scholar_lookup?title=Quadriphasic+mechanics+of+swelling+incompressible+porous+media&author=Huyghe,+J.M.&author=Janssen,+J.D.&publication_year=1997&journal=Int.+J.+Eng.+Sci.&volume=35&pages=793%E2%80%93802&doi=10.1016/S0020-7225(96)00119-X" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/S0020-7225(96)00119-X" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://pure.tue.nl/ws/files/1384172/605163.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B103-geosciences-11-00119' class='html-xxx' data-content='103.'>Bennethum, L.; Murad, M.; Cushman, J. Macroscale thermodynamics and the chemical potential for swelling porous media. <span class='html-italic'>Transp. Porous Media</span> <b>2000</b>, <span class='html-italic'>39</span>, 187–225. [<a href="https://scholar.google.com/scholar_lookup?title=Macroscale+thermodynamics+and+the+chemical+potential+for+swelling+porous+media&author=Bennethum,+L.&author=Murad,+M.&author=Cushman,+J.&publication_year=2000&journal=Transp.+Porous+Media&volume=39&pages=187%E2%80%93225&doi=10.1023/A:1006661330427" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1023/A:1006661330427" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B104-geosciences-11-00119' class='html-xxx' data-content='104.'>Brochard, L.; Vandamme, M.; Pellenq, R. Poromechanics of microporous media. <span class='html-italic'>J. Mech. Phys. Solids</span> <b>2012</b>, <span class='html-italic'>60</span>, 606–622. [<a href="https://scholar.google.com/scholar_lookup?title=Poromechanics+of+microporous+media&author=Brochard,+L.&author=Vandamme,+M.&author=Pellenq,+R.&publication_year=2012&journal=J.+Mech.+Phys.+Solids&volume=60&pages=606%E2%80%93622&doi=10.1016/j.jmps.2012.01.001" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jmps.2012.01.001" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B105-geosciences-11-00119' class='html-xxx' data-content='105.'>Price, N.J.; Cosgrove, J.W. <span class='html-italic'>Analysis of Geological Structures</span>; Cambridge University Press: Cambridge, UK, 1990. [<a href="https://scholar.google.com/scholar_lookup?title=Analysis+of+Geological+Structures&author=Price,+N.J.&author=Cosgrove,+J.W.&publication_year=1990" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B106-geosciences-11-00119' class='html-xxx' data-content='106.'>Hubbert, M.; Rubey, W. Role of fluid pressure in mechanics of overthrust faulting. <span class='html-italic'>Geol. Soc. Am.</span> <b>1959</b>, <span class='html-italic'>70</span>, 115–166. [<a href="https://scholar.google.com/scholar_lookup?title=Role+of+fluid+pressure+in+mechanics+of+overthrust+faulting&author=Hubbert,+M.&author=Rubey,+W.&publication_year=1959&journal=Geol.+Soc.+Am.&volume=70&pages=115%E2%80%93166&doi=10.1130/0016-7606(1959)70[115:ROFPIM]2.0.CO;2" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1130/0016-7606(1959)70[115:ROFPIM]2.0.CO;2" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B107-geosciences-11-00119' class='html-xxx' data-content='107.'>Scuderi, M.; Collettini, C. The role of fluid pressure in induced vs. triggered seismicity: Insights from rock deformation experiments on carbonates. <span class='html-italic'>Nature Sci. Rep.</span> <b>2016</b>, <span class='html-italic'>6</span>, 24852. [<a href="https://scholar.google.com/scholar_lookup?title=The+role+of+fluid+pressure+in+induced+vs.+triggered+seismicity:+Insights+from+rock+deformation+experiments+on+carbonates&author=Scuderi,+M.&author=Collettini,+C.&publication_year=2016&journal=Nature+Sci.+Rep.&volume=6&pages=24852&doi=10.1038/srep24852" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/srep24852" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.nature.com/articles/srep24852.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B108-geosciences-11-00119' class='html-xxx' data-content='108.'>Nur, A.; Booker, J.R. Aftershocks Caused by Pore Fluid Flow? <span class='html-italic'>Science</span> <b>1972</b>, <span class='html-italic'>175</span>, 885–887. [<a href="https://scholar.google.com/scholar_lookup?title=Aftershocks+Caused+by+Pore+Fluid+Flow?&author=Nur,+A.&author=Booker,+J.R.&publication_year=1972&journal=Science&volume=175&pages=885%E2%80%93887&doi=10.1126/science.175.4024.885" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1126/science.175.4024.885" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B109-geosciences-11-00119' class='html-xxx' data-content='109.'>Scuderi, M.; Marone, C.; Tinti, E.; Di Stefano, G.; Collettini, C. Precursory changes in seismic velocity for the spectrum of earthquake failure modes. <span class='html-italic'>Nat. Geosci.</span> <b>2016</b>, <span class='html-italic'>9</span>, 695–700. [<a href="https://scholar.google.com/scholar_lookup?title=Precursory+changes+in+seismic+velocity+for+the+spectrum+of+earthquake+failure+modes&author=Scuderi,+M.&author=Marone,+C.&author=Tinti,+E.&author=Di+Stefano,+G.&author=Collettini,+C.&publication_year=2016&journal=Nat.+Geosci.&volume=9&pages=695%E2%80%93700&doi=10.1038/ngeo2775" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/ngeo2775" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://europepmc.org/articles/pmc5010128?pdf=render" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B110-geosciences-11-00119' class='html-xxx' data-content='110.'>Scuderi, M.; Collettini, C.; Marone, C. Frictional stability and earthquake triggering during fluid pressure stimulation of an experimental fault. <span class='html-italic'>Earth Planet. Sci. Lett.</span> <b>2017</b>, <span class='html-italic'>477</span>, 84–96. [<a href="https://scholar.google.com/scholar_lookup?title=Frictional+stability+and+earthquake+triggering+during+fluid+pressure+stimulation+of+an+experimental+fault&author=Scuderi,+M.&author=Collettini,+C.&author=Marone,+C.&publication_year=2017&journal=Earth+Planet.+Sci.+Lett.&volume=477&pages=84%E2%80%9396&doi=10.1016/j.epsl.2017.08.009" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.epsl.2017.08.009" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://zenodo.org/record/1147671/files/Scuderietal_06_05_17EPSL.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B111-geosciences-11-00119' class='html-xxx' data-content='111.'>Hubbert, M.K.; Willis, D.G. Mechanics of Hydraulic Fracturing. <span class='html-italic'>Trans. AIME</span> <b>1957</b>, <span class='html-italic'>210</span>, 153–168. [<a href="https://scholar.google.com/scholar_lookup?title=Mechanics+of+Hydraulic+Fracturing&author=Hubbert,+M.K.&author=Willis,+D.G.&publication_year=1957&journal=Trans.+AIME&volume=210&pages=153%E2%80%93168&doi=10.2118/686-G" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.2118/686-G" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B112-geosciences-11-00119' class='html-xxx' data-content='112.'>Secor, D.T. Role of fluid pressure in jointing. <span class='html-italic'>Am. J. Sci.</span> <b>1965</b>, <span class='html-italic'>263</span>, 633–646. [<a href="https://scholar.google.com/scholar_lookup?title=Role+of+fluid+pressure+in+jointing&author=Secor,+D.T.&publication_year=1965&journal=Am.+J.+Sci.&volume=263&pages=633%E2%80%93646&doi=10.2475/ajs.263.8.633" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.2475/ajs.263.8.633" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B113-geosciences-11-00119' class='html-xxx' data-content='113.'>Secor, D.T. Mechanics of natural extension fracturing at depth in the earth’s crust. In <span class='html-italic'>Research in Tectonics</span>; Baer, A.J., Norris, D.K., Eds.; Geological Survey of Canada Paper 68-52; Geological Survey of Canada: Ottawa, ON, Canada, 1969; pp. 3–48. [<a href="https://scholar.google.com/scholar_lookup?title=Mechanics+of+natural+extension+fracturing+at+depth+in+the+earth%E2%80%99s+crust&author=Secor,+D.T.&publication_year=1969&pages=3%E2%80%9348" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B114-geosciences-11-00119' class='html-xxx' data-content='114.'>Fyfe, W.S.; Price, N.J.; Thompson, A.B. <span class='html-italic'>Fluids in the Earth’s Crust</span>; Elsevier: New York, NY, USA, 1978; p. 383. [<a href="https://scholar.google.com/scholar_lookup?title=Fluids+in+the+Earth%E2%80%99s+Crust&author=Fyfe,+W.S.&author=Price,+N.J.&author=Thompson,+A.B.&publication_year=1978" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B115-geosciences-11-00119' class='html-xxx' data-content='115.'>Engelder, T.; Lacazette, A. Natural hydraulic fracturing. In <span class='html-italic'>Rock Joints</span>; Barton, C., Stephansson, O., Eds.; Balkema: Rotterdam, The Netherlands, 1990; pp. 35–43. [<a href="https://scholar.google.com/scholar_lookup?title=Natural+hydraulic+fracturing&author=Engelder,+T.&author=Lacazette,+A.&publication_year=1990&pages=35%E2%80%9343" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B116-geosciences-11-00119' class='html-xxx' data-content='116.'>Guerriero, V.; Mazzoli, S.; Iannace, A.; Vitale, S.; Carravetta, A.; Strauss, C. A permeability model for naturally fractured carbonate reservoirs. <span class='html-italic'>Mar. Pet. Geol.</span> <b>2013</b>, <span class='html-italic'>40</span>, 115–134. [<a href="https://scholar.google.com/scholar_lookup?title=A+permeability+model+for+naturally+fractured+carbonate+reservoirs&author=Guerriero,+V.&author=Mazzoli,+S.&author=Iannace,+A.&author=Vitale,+S.&author=Carravetta,+A.&author=Strauss,+C.&publication_year=2013&journal=Mar.+Pet.+Geol.&volume=40&pages=115%E2%80%93134&doi=10.1016/j.marpetgeo.2012.11.002" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.marpetgeo.2012.11.002" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B117-geosciences-11-00119' class='html-xxx' data-content='117.'>Detournay, E.; Cheng, A.H.D. Plane strain analysis of a stationary hydraulic fracture in a poroelastic medium. <span class='html-italic'>Int. J. SolidsStructurs</span> <b>1991</b>, <span class='html-italic'>27</span>, 1645–1662. [<a href="https://scholar.google.com/scholar_lookup?title=Plane+strain+analysis+of+a+stationary+hydraulic+fracture+in+a+poroelastic+medium&author=Detournay,+E.&author=Cheng,+A.H.D.&publication_year=1991&journal=Int.+J.+SolidsStructurs&volume=27&pages=1645%E2%80%931662&doi=10.1016/0020-7683(91)90067-P" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/0020-7683(91)90067-P" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B118-geosciences-11-00119' class='html-xxx' data-content='118.'>Renshaw, C.E.; Harvey, C.F. Propagation velocity of a natural hydraulic fracture in a poroelastic medium. <span class='html-italic'>J. Geoph. Res.</span> <b>1994</b>, <span class='html-italic'>99</span>, 21667–21677. [<a href="https://scholar.google.com/scholar_lookup?title=Propagation+velocity+of+a+natural+hydraulic+fracture+in+a+poroelastic+medium&author=Renshaw,+C.E.&author=Harvey,+C.F.&publication_year=1994&journal=J.+Geoph.+Res.&volume=99&pages=21667%E2%80%9321677&doi=10.1029/94JB01255" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1029/94JB01255" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B119-geosciences-11-00119' class='html-xxx' data-content='119.'>Berchenko, I.; Detournay, E.; Chandler, N. Propagation of natural hydraulic fractures. <span class='html-italic'>Int. J. Rock Mech. Min. Sci.</span> <b>1997</b>, <span class='html-italic'>34</span>, 3–4. [<a href="https://scholar.google.com/scholar_lookup?title=Propagation+of+natural+hydraulic+fractures&author=Berchenko,+I.&author=Detournay,+E.&author=Chandler,+N.&publication_year=1997&journal=Int.+J.+Rock+Mech.+Min.+Sci.&volume=34&pages=3%E2%80%934&doi=10.1016/S1365-1609(97)00189-5" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/S1365-1609(97)00189-5" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B120-geosciences-11-00119' class='html-xxx' data-content='120.'>Hobbs, D.W. The formation of tension joints in sedimentary rocks: An explanation. <span class='html-italic'>Geol. Mag.</span> <b>1967</b>, <span class='html-italic'>104</span>, 550–556. [<a href="https://scholar.google.com/scholar_lookup?title=The+formation+of+tension+joints+in+sedimentary+rocks:+An+explanation&author=Hobbs,+D.W.&publication_year=1967&journal=Geol.+Mag.&volume=104&pages=550%E2%80%93556&doi=10.1017/S0016756800050226" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1017/S0016756800050226" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B121-geosciences-11-00119' class='html-xxx' data-content='121.'>Ladeira, F.L.; Price, N.J. Relationship between fracture spacing and bed thickness. <span class='html-italic'>J. Struct. Geol.</span> <b>1981</b>, <span class='html-italic'>3</span>, 179–183. [<a href="https://scholar.google.com/scholar_lookup?title=Relationship+between+fracture+spacing+and+bed+thickness&author=Ladeira,+F.L.&author=Price,+N.J.&publication_year=1981&journal=J.+Struct.+Geol.&volume=3&pages=179%E2%80%93183&doi=10.1016/0191-8141(81)90013-4" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/0191-8141(81)90013-4" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B122-geosciences-11-00119' class='html-xxx' data-content='122.'>Narr, W.; Suppe, J. Joint spacing in sedimentary rocks. <span class='html-italic'>J. Struct. Geol.</span> <b>1991</b>, <span class='html-italic'>13</span>, 1037–1048. [<a href="https://scholar.google.com/scholar_lookup?title=Joint+spacing+in+sedimentary+rocks&author=Narr,+W.&author=Suppe,+J.&publication_year=1991&journal=J.+Struct.+Geol.&volume=13&pages=1037%E2%80%931048&doi=10.1016/0191-8141(91)90055-N" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/0191-8141(91)90055-N" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B123-geosciences-11-00119' class='html-xxx' data-content='123.'>Gross, M.R. The origin and spacing of cross joints: Examples from Monterey Formation, Santa Barbara Coastline, California. <span class='html-italic'>J. Struct. Geol.</span> <b>1993</b>, <span class='html-italic'>15</span>, 737–751. [<a href="https://scholar.google.com/scholar_lookup?title=The+origin+and+spacing+of+cross+joints:+Examples+from+Monterey+Formation,+Santa+Barbara+Coastline,+California&author=Gross,+M.R.&publication_year=1993&journal=J.+Struct.+Geol.&volume=15&pages=737%E2%80%93751&doi=10.1016/0191-8141(93)90059-J" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/0191-8141(93)90059-J" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B124-geosciences-11-00119' class='html-xxx' data-content='124.'>Bai, T.; Pollard, D.D. Spacing of fractures in a multilayer at fracture saturation. <span class='html-italic'>Int. J. Fract.</span> <b>1999</b>, <span class='html-italic'>100</span>, L23–L28. [<a href="https://scholar.google.com/scholar_lookup?title=Spacing+of+fractures+in+a+multilayer+at+fracture+saturation&author=Bai,+T.&author=Pollard,+D.D.&publication_year=1999&journal=Int.+J.+Fract.&volume=100&pages=L23%E2%80%93L28&doi=10.1023/A:1018748026019" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1023/A:1018748026019" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B125-geosciences-11-00119' class='html-xxx' data-content='125.'>Bai, T.; Pollard, D.D. Fracture spacing in layered rocks: A new explanation based on the stress transition. <span class='html-italic'>J. Struct. Geol.</span> <b>2000</b>, <span class='html-italic'>22</span>, 43–57. [<a href="https://scholar.google.com/scholar_lookup?title=Fracture+spacing+in+layered+rocks:+A+new+explanation+based+on+the+stress+transition&author=Bai,+T.&author=Pollard,+D.D.&publication_year=2000&journal=J.+Struct.+Geol.&volume=22&pages=43%E2%80%9357&doi=10.1016/S0191-8141(99)00137-6" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/S0191-8141(99)00137-6" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B126-geosciences-11-00119' class='html-xxx' data-content='126.'>Bai, T.; Pollard, D.D. Closely spaced fractures in layered rocks: Initiation mechanism and propagation kinematics. <span class='html-italic'>J. Struct. Geol.</span> <b>2000</b>, <span class='html-italic'>22</span>, 1409–1425. [<a href="https://scholar.google.com/scholar_lookup?title=Closely+spaced+fractures+in+layered+rocks:+Initiation+mechanism+and+propagation+kinematics&author=Bai,+T.&author=Pollard,+D.D.&publication_year=2000&journal=J.+Struct.+Geol.&volume=22&pages=1409%E2%80%931425&doi=10.1016/S0191-8141(00)00062-6" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/S0191-8141(00)00062-6" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B127-geosciences-11-00119' class='html-xxx' data-content='127.'>Bai, T.; Pollard, D.D.; Gao, H. Explanation for fracture spacing in layered materials. <span class='html-italic'>Nature</span> <b>2000</b>, <span class='html-italic'>403</span>, 753–756. [<a href="https://scholar.google.com/scholar_lookup?title=Explanation+for+fracture+spacing+in+layered+materials&author=Bai,+T.&author=Pollard,+D.D.&author=Gao,+H.&publication_year=2000&journal=Nature&volume=403&pages=753%E2%80%93756&doi=10.1038/35001550&pmid=10693800" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/35001550" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/10693800" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B128-geosciences-11-00119' class='html-xxx' data-content='128.'>Pollard, D.D.; Segall, P. Theoretical displacement and stresses near fractures in rock: With applications to fault, joints veins, dikes, and solution surfaces. In <span class='html-italic'>Fracture Mechanics of Rock</span>; Atkinson, B.K., Ed.; Academic Press: London, UK, 1987; pp. 277–350. [<a href="https://scholar.google.com/scholar_lookup?title=Theoretical+displacement+and+stresses+near+fractures+in+rock:+With+applications+to+fault,+joints+veins,+dikes,+and+solution+surfaces&author=Pollard,+D.D.&author=Segall,+P.&publication_year=1987&pages=277%E2%80%93350" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B129-geosciences-11-00119' class='html-xxx' data-content='129.'>Pollard, D.D.; Aydin, A. Progress in understanding jointing over the past century. <span class='html-italic'>Bull. Geol. Soc. Am.</span> <b>1988</b>, <span class='html-italic'>100</span>, 1181–1204. [<a href="https://scholar.google.com/scholar_lookup?title=Progress+in+understanding+jointing+over+the+past+century&author=Pollard,+D.D.&author=Aydin,+A.&publication_year=1988&journal=Bull.+Geol.+Soc.+Am.&volume=100&pages=1181%E2%80%931204&doi=10.1130/0016-7606(1988)100%3C1181:PIUJOT%3E2.3.CO;2" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1130/0016-7606(1988)100&lt;1181:PIUJOT&gt;2.3.CO;2" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B130-geosciences-11-00119' class='html-xxx' data-content='130.'>Olson, J.; Pollard, D.D. Inferring paleostresses from natural fracture patterns: A new method. <span class='html-italic'>Geology</span> <b>1989</b>, <span class='html-italic'>17</span>, 345–348. [<a href="https://scholar.google.com/scholar_lookup?title=Inferring+paleostresses+from+natural+fracture+patterns:+A+new+method&author=Olson,+J.&author=Pollard,+D.D.&publication_year=1989&journal=Geology&volume=17&pages=345%E2%80%93348&doi=10.1130/0091-7613(1989)017%3C0345:IPFNFP%3E2.3.CO;2" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1130/0091-7613(1989)017&lt;0345:IPFNFP&gt;2.3.CO;2" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B131-geosciences-11-00119' class='html-xxx' data-content='131.'>Davy, P.; Le Goc, R.; Darcel, C. A model of fracture nucleation, growth and arrest, and consequences for fracture density and scaling. <span class='html-italic'>J. Geophys. Res. Solid Earth</span> <b>2013</b>, <span class='html-italic'>118</span>, 1393–1407. [<a href="https://scholar.google.com/scholar_lookup?title=A+model+of+fracture+nucleation,+growth+and+arrest,+and+consequences+for+fracture+density+and+scaling&author=Davy,+P.&author=Le+Goc,+R.&author=Darcel,+C.&publication_year=2013&journal=J.+Geophys.+Res.+Solid+Earth&volume=118&pages=1393%E2%80%931407&doi=10.1002/jgrb.50120" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/jgrb.50120" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://hal-insu.archives-ouvertes.fr/insu-00843306/file/PL03146.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B132-geosciences-11-00119' class='html-xxx' data-content='132.'>Verruijt, A. <span class='html-italic'>An Introduction to Soil Mechanics</span>; Springer International Publishing: Cham, Switzerland, 2018. [<a href="https://scholar.google.com/scholar_lookup?title=An+Introduction+to+Soil+Mechanics&author=Verruijt,+A.&publication_year=2018" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/978-3-319-61185-3_1" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B133-geosciences-11-00119' class='html-xxx' data-content='133.'>Griffith, A.A. The phenomena of rupture and flow in solids. <span class='html-italic'>Philos. Trans. R. Soc. Lond. Ser. A</span> <b>1921</b>, <span class='html-italic'>221</span>, 163–198. [<a href="https://scholar.google.com/scholar_lookup?title=The+phenomena+of+rupture+and+flow+in+solids&author=Griffith,+A.A.&publication_year=1921&journal=Philos.+Trans.+R.+Soc.+Lond.+Ser.+A&volume=221&pages=163%E2%80%93198&doi=10.1098/rsta.1921.0006" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1098/rsta.1921.0006" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.1921.0006" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B134-geosciences-11-00119' class='html-xxx' data-content='134.'>Murrell, S.A.F. A criterion for brittle fracture of rocks and Concrete under triaxial stress and the effect of pore pressure on the criterion. In <span class='html-italic'>Proc. 5th Rock Mech. Symp</span>; Fairhurst, C., Ed.; Pergamon Press: Oxford, UK, 1963; pp. 563–577. [<a href="https://scholar.google.com/scholar_lookup?title=A+criterion+for+brittle+fracture+of+rocks+and+Concrete+under+triaxial+stress+and+the+effect+of+pore+pressure+on+the+criterion&author=Murrell,+S.A.F.&publication_year=1963&pages=563%E2%80%93577" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B135-geosciences-11-00119' class='html-xxx' data-content='135.'>Murrell, S.A.F. Theory of the propagation of elliptical Griffith cracks under various conditions of plane stress or plane strain. <span class='html-italic'>Brit. J. Appl. Phys.</span> <b>1964</b>, <span class='html-italic'>15</span>, 1195–1223. [<a href="https://scholar.google.com/scholar_lookup?title=Theory+of+the+propagation+of+elliptical+Griffith+cracks+under+various+conditions+of+plane+stress+or+plane+strain&author=Murrell,+S.A.F.&publication_year=1964&journal=Brit.+J.+Appl.+Phys.&volume=15&pages=1195%E2%80%931223&doi=10.1088/0508-3443/15/10/308" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1088/0508-3443/15/10/308" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B136-geosciences-11-00119' class='html-xxx' data-content='136.'>Landau, L.D.; Lifshits, E.M. <span class='html-italic'>Theory of Elasticity</span>; Pergamon Press: Oxford, UK, 1970. [<a href="https://scholar.google.com/scholar_lookup?title=Theory+of+Elasticity&author=Landau,+L.D.&author=Lifshits,+E.M.&publication_year=1970" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B137-geosciences-11-00119' class='html-xxx' data-content='137.'>Eringen, A.C. Continuum Mechanics at the Atomic Scale. <span class='html-italic'>Cryst. Lattice Def. Amorph. Mater.</span> <b>1977</b>, <span class='html-italic'>120</span>, 109–130. [<a href="https://scholar.google.com/scholar_lookup?title=Continuum+Mechanics+at+the+Atomic+Scale&author=Eringen,+A.C.&publication_year=1977&journal=Cryst.+Lattice+Def.+Amorph.+Mater.&volume=120&pages=109%E2%80%93130" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B138-geosciences-11-00119' class='html-xxx' data-content='138.'>Ari, N.; Eringen, A.C. Nonlocal stress field at Griffith crack. <span class='html-italic'>Cryst. Lattice Def. Amorph. Mater.</span> <b>1983</b>, <span class='html-italic'>10</span>, 33–38. [<a href="https://scholar.google.com/scholar_lookup?title=Nonlocal+stress+field+at+Griffith+crack&author=Ari,+N.&author=Eringen,+A.C.&publication_year=1983&journal=Cryst.+Lattice+Def.+Amorph.+Mater.&volume=10&pages=33%E2%80%9338" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B139-geosciences-11-00119' class='html-xxx' data-content='139.'>Burgers, W.G. Crystal plasticity. In <span class='html-italic'>Elasticity, Plasticity and Structure of Matter</span>; Houwink, R., Ed.; Cambridge University Press: Cambridge, UK, 1937. [<a href="https://scholar.google.com/scholar_lookup?title=Crystal+plasticity&author=Burgers,+W.G.&publication_year=1937" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B140-geosciences-11-00119' class='html-xxx' data-content='140.'>Eringen, A.C. <span class='html-italic'>Nonlocal Continuum Field Theories</span>; Springer: New York, NY, USA, 2002. [<a href="https://scholar.google.com/scholar_lookup?title=Nonlocal+Continuum+Field+Theories&author=Eringen,+A.C.&publication_year=2002" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B141-geosciences-11-00119' class='html-xxx' data-content='141.'>Laloui, L. <span class='html-italic'>Mechanics of Unsaturated Geomaterials</span>; ISTE Ltd.: London, UK, 2010. [<a href="https://scholar.google.com/scholar_lookup?title=Mechanics+of+Unsaturated+Geomaterials&author=Laloui,+L.&publication_year=2010" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B142-geosciences-11-00119' class='html-xxx' data-content='142.'>D’Onza, F.; Gallipoli, D.; Wheeler, S.; Casini, F.; Vaunat, J.; Khalili, N.; Laloui, L.; Mancuso, C.; Mašín, D.; Nuth, M.; et al. Benchmark of constitutive models for unsaturated soils. <span class='html-italic'>Géotechnique</span> <b>2011</b>, <span class='html-italic'>61</span>, 283–302. [<a href="https://scholar.google.com/scholar_lookup?title=Benchmark+of+constitutive+models+for+unsaturated+soils&author=D%E2%80%99Onza,+F.&author=Gallipoli,+D.&author=Wheeler,+S.&author=Casini,+F.&author=Vaunat,+J.&author=Khalili,+N.&author=Laloui,+L.&author=Mancuso,+C.&author=Ma%C5%A1%C3%ADn,+D.&author=Nuth,+M.&publication_year=2011&journal=G%C3%A9otechnique&volume=61&pages=283%E2%80%93302&doi=10.1680/geot.2011.61.4.283" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1680/geot.2011.61.4.283" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://web.natur.cuni.cz/uhigug/masin/download/DOnza-etal-Geot2011-pp.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B143-geosciences-11-00119' class='html-xxx' data-content='143.'>Nasser Khalili, N.; Russell, A.; Khoshghalb, A. <span class='html-italic'>Unsaturated Soils: Research &amp; Applications</span>; CRC Press: London, UK, 2014. [<a href="https://scholar.google.com/scholar_lookup?title=Unsaturated+Soils:+Research+&+Applications&author=Nasser+Khalili,+N.&author=Russell,+A.&author=Khoshghalb,+A.&publication_year=2014" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B144-geosciences-11-00119' class='html-xxx' data-content='144.'>Li, C.; Borja, R.I.; Regueiro, R.A. Dynamics of porous media at finite strain. <span class='html-italic'>Comput. Methods Appl. Mech. Engrg.</span> <b>2004</b>, <span class='html-italic'>193</span>, 3837–3870. [<a href="https://scholar.google.com/scholar_lookup?title=Dynamics+of+porous+media+at+finite+strain&author=Li,+C.&author=Borja,+R.I.&author=Regueiro,+R.A.&publication_year=2004&journal=Comput.+Methods+Appl.+Mech.+Engrg.&volume=193&pages=3837%E2%80%933870&doi=10.1016/j.cma.2004.02.014" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.cma.2004.02.014" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.stanford.edu/~borja/pub/cmame2004(2).pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B145-geosciences-11-00119' class='html-xxx' data-content='145.'>Uzuoka, R.; Borja, R.I. Dynamics of unsaturated poroelastic solids at finite strain. <span class='html-italic'>Int. J. Numer. Anal. Meth. Geomech.</span> <b>2012</b>, <span class='html-italic'>36</span>, 1535–1573. [<a href="https://scholar.google.com/scholar_lookup?title=Dynamics+of+unsaturated+poroelastic+solids+at+finite+strain&author=Uzuoka,+R.&author=Borja,+R.I.&publication_year=2012&journal=Int.+J.+Numer.+Anal.+Meth.+Geomech.&volume=36&pages=1535%E2%80%931573&doi=10.1002/nag.1061" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/nag.1061" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B146-geosciences-11-00119' class='html-xxx' data-content='146.'>MacMinn, C.W.; Dufresne, E.R.; Wettlaufer, J.S. Large Deformations of a Soft Porous Material. <span class='html-italic'>Phys. Rev. Appl.</span> <b>2016</b>, <span class='html-italic'>5</span>, 044020. [<a href="https://scholar.google.com/scholar_lookup?title=Large+Deformations+of+a+Soft+Porous+Material&author=MacMinn,+C.W.&author=Dufresne,+E.R.&author=Wettlaufer,+J.S.&publication_year=2016&journal=Phys.+Rev.+Appl.&volume=5&pages=044020&doi=10.1103/PhysRevApplied.5.044020" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1103/PhysRevApplied.5.044020" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B147-geosciences-11-00119' class='html-xxx' data-content='147.'>Marone, C.; Scholz, C. The depth of seismic faulting and the upper transition from stable to unstable slip regimes. <span class='html-italic'>Geophys. Res. Lett.</span> <b>1988</b>, <span class='html-italic'>15</span>, 621–624. [<a href="https://scholar.google.com/scholar_lookup?title=The+depth+of+seismic+faulting+and+the+upper+transition+from+stable+to+unstable+slip+regimes&author=Marone,+C.&author=Scholz,+C.&publication_year=1988&journal=Geophys.+Res.+Lett.&volume=15&pages=621%E2%80%93624&doi=10.1029/GL015i006p00621" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1029/GL015i006p00621" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www3.geosc.psu.edu/~cjm38/papers_talks/MaroneScholzGRL1988.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B148-geosciences-11-00119' class='html-xxx' data-content='148.'>Scholz, C. Earthquakes and friction laws. <span class='html-italic'>Nature</span> <b>1998</b>, <span class='html-italic'>391</span>, 37–42. [<a href="https://scholar.google.com/scholar_lookup?title=Earthquakes+and+friction+laws&author=Scholz,+C.&publication_year=1998&journal=Nature&volume=391&pages=37%E2%80%9342&doi=10.1038/34097" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/34097" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B149-geosciences-11-00119' class='html-xxx' data-content='149.'>Lorenz, J.C.; Cooper, S.P. <span class='html-italic'>Applied Concepts in Fractured Reservoirs</span>; Wiley: Chichester, UK, 2020. [<a href="https://scholar.google.com/scholar_lookup?title=Applied+Concepts+in+Fractured+Reservoirs&author=Lorenz,+J.C.&author=Cooper,+S.P.&publication_year=2020" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/9781119055938" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B150-geosciences-11-00119' class='html-xxx' data-content='150.'>Odling, N.E.; Gillespie, P.; Bourgine, B.; Castaing, C.; Chiles, J.P.; Christensen, N.P.; Fillion, E.; Genter, A.; Olsen, C.; Thrane, L.; et al. Variations in fracture system geometry and their implications for fluid flow in fractures hydrocarbon reservoir. <span class='html-italic'>Pet. Geosci.</span> <b>1999</b>, <span class='html-italic'>5</span>, 373. [<a href="https://scholar.google.com/scholar_lookup?title=Variations+in+fracture+system+geometry+and+their+implications+for+fluid+flow+in+fractures+hydrocarbon+reservoir&author=Odling,+N.E.&author=Gillespie,+P.&author=Bourgine,+B.&author=Castaing,+C.&author=Chiles,+J.P.&author=Christensen,+N.P.&author=Fillion,+E.&author=Genter,+A.&author=Olsen,+C.&author=Thrane,+L.&publication_year=1999&journal=Pet.+Geosci.&volume=5&pages=373&doi=10.1144/petgeo.5.4.373" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1144/petgeo.5.4.373" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B151-geosciences-11-00119' class='html-xxx' data-content='151.'>Hooker, J.N.; Laubach, E.; Marrett, R. Fracture-aperture size—Frequency, spatial distribution, and growth processes in strata-bounded and non-strata-bounded fractures, Cambrian Mesón Group, NW Argentina. <span class='html-italic'>J. Struct. Geol.</span> <b>2013</b>, <span class='html-italic'>54</span>, 54–71. [<a href="https://scholar.google.com/scholar_lookup?title=Fracture-aperture+size%E2%80%94Frequency,+spatial+distribution,+and+growth+processes+in+strata-bounded+and+non-strata-bounded+fractures,+Cambrian+Mes%C3%B3n+Group,+NW+Argentina&author=Hooker,+J.N.&author=Laubach,+E.&author=Marrett,+R.&publication_year=2013&journal=J.+Struct.+Geol.&volume=54&pages=54%E2%80%9371&doi=10.1016/j.jsg.2013.06.011" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jsg.2013.06.011" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B152-geosciences-11-00119' class='html-xxx' data-content='152.'>Guerriero, V.; Dati, F.; Giorgioni, M.; Iannace, A.; Mazzoli, S.; Vitale, S. The role of stratabound fractures for fluid migration pathways and storage in well bedded carbonates. <span class='html-italic'>Ital. J. Geosci.</span> <b>2015</b>, <span class='html-italic'>134</span>, 383–395. [<a href="https://scholar.google.com/scholar_lookup?title=The+role+of+stratabound+fractures+for+fluid+migration+pathways+and+storage+in+well+bedded+carbonates&author=Guerriero,+V.&author=Dati,+F.&author=Giorgioni,+M.&author=Iannace,+A.&author=Mazzoli,+S.&author=Vitale,+S.&publication_year=2015&journal=Ital.+J.+Geosci.&volume=134&pages=383%E2%80%93395&doi=10.3301/IJG.2014.27" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3301/IJG.2014.27" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B153-geosciences-11-00119' class='html-xxx' data-content='153.'>Marrett, R.; Ortega, O.J.; Kelsey, C.M. Extent of power-law scaling for natural fractures in rock. <span class='html-italic'>Geology</span> <b>1999</b>, <span class='html-italic'>27</span>, 799–802. [<a href="https://scholar.google.com/scholar_lookup?title=Extent+of+power-law+scaling+for+natural+fractures+in+rock&author=Marrett,+R.&author=Ortega,+O.J.&author=Kelsey,+C.M.&publication_year=1999&journal=Geology&volume=27&pages=799%E2%80%93802&doi=10.1130/0091-7613(1999)027%3C0799:EOPLSF%3E2.3.CO;2" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1130/0091-7613(1999)027&lt;0799:EOPLSF&gt;2.3.CO;2" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B154-geosciences-11-00119' class='html-xxx' data-content='154.'>Ortega, O.; Marrett, R. Prediction of macrofracture properties using microfracture information, Mesaverde Group sandstones, San Juan Basin, New Mexico. <span class='html-italic'>J. Struct. Geol.</span> <b>2000</b>, <span class='html-italic'>22</span>, 571–588. [<a href="https://scholar.google.com/scholar_lookup?title=Prediction+of+macrofracture+properties+using+microfracture+information,+Mesaverde+Group+sandstones,+San+Juan+Basin,+New+Mexico&author=Ortega,+O.&author=Marrett,+R.&publication_year=2000&journal=J.+Struct.+Geol.&volume=22&pages=571%E2%80%93588&doi=10.1016/S0191-8141(99)00186-8" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/S0191-8141(99)00186-8" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B155-geosciences-11-00119' class='html-xxx' data-content='155.'>Ortega, O.; Marrett, R.; Laubach, E. Scale-independent approach to fracture intensity and average spacing measurement. <span class='html-italic'>AAPG Bull.</span> <b>2006</b>, <span class='html-italic'>90</span>, 193–208. [<a href="https://scholar.google.com/scholar_lookup?title=Scale-independent+approach+to+fracture+intensity+and+average+spacing+measurement&author=Ortega,+O.&author=Marrett,+R.&author=Laubach,+E.&publication_year=2006&journal=AAPG+Bull.&volume=90&pages=193%E2%80%93208&doi=10.1306/08250505059" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1306/08250505059" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B156-geosciences-11-00119' class='html-xxx' data-content='156.'>Guerriero, V.; Iannace, A.; Mazzoli, S.; Parente, M.; Vitale, S.; Giorgioni, M. Quantifying uncertainties in multi-scale studies of fractured reservoir analogues: Implemented statistical analysis of scan line data from carbonate rocks. <span class='html-italic'>J. Struct. Geol.</span> <b>2010</b>, <span class='html-italic'>32</span>, 1271–1278. [<a href="https://scholar.google.com/scholar_lookup?title=Quantifying+uncertainties+in+multi-scale+studies+of+fractured+reservoir+analogues:+Implemented+statistical+analysis+of+scan+line+data+from+carbonate+rocks&author=Guerriero,+V.&author=Iannace,+A.&author=Mazzoli,+S.&author=Parente,+M.&author=Vitale,+S.&author=Giorgioni,+M.&publication_year=2010&journal=J.+Struct.+Geol.&volume=32&pages=1271%E2%80%931278&doi=10.1016/j.jsg.2009.04.016" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jsg.2009.04.016" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B157-geosciences-11-00119' class='html-xxx' data-content='157.'>Guerriero, V.; Vitale, S.; Ciarcia, S.; Mazzoli, S. Improved statistical multi-scale analysis of fractured reservoir analogues. <span class='html-italic'>Tectonophysics</span> <b>2011</b>, <span class='html-italic'>504</span>, 14e24. [<a href="https://scholar.google.com/scholar_lookup?title=Improved+statistical+multi-scale+analysis+of+fractured+reservoir+analogues&author=Guerriero,+V.&author=Vitale,+S.&author=Ciarcia,+S.&author=Mazzoli,+S.&publication_year=2011&journal=Tectonophysics&volume=504&pages=14e24&doi=10.1016/j.tecto.2011.01.003" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.tecto.2011.01.003" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B158-geosciences-11-00119' class='html-xxx' data-content='158.'>Hooker, J.N.; Laubach, E.; Marrett, R. A universal power-law scaling exponent for fracture apertures in sandstone. <span class='html-italic'>Bull. Geol. Soc. Am.</span> <b>2014</b>, <span class='html-italic'>126</span>, 1340–1362. [<a href="https://scholar.google.com/scholar_lookup?title=A+universal+power-law+scaling+exponent+for+fracture+apertures+in+sandstone&author=Hooker,+J.N.&author=Laubach,+E.&author=Marrett,+R.&publication_year=2014&journal=Bull.+Geol.+Soc.+Am.&volume=126&pages=1340%E2%80%931362&doi=10.1130/B30945.1" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1130/B30945.1" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B159-geosciences-11-00119' class='html-xxx' data-content='159.'>Anders, M.H.; Laubach, S.E.; Scholz, C.H. Microfractures: A review. <span class='html-italic'>J. Struct. Geol.</span> <b>2014</b>, <span class='html-italic'>69</span>, 377–394. [<a href="https://scholar.google.com/scholar_lookup?title=Microfractures:+A+review&author=Anders,+M.H.&author=Laubach,+S.E.&author=Scholz,+C.H.&publication_year=2014&journal=J.+Struct.+Geol.&volume=69&pages=377%E2%80%93394&doi=10.1016/j.jsg.2014.05.011" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jsg.2014.05.011" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B160-geosciences-11-00119' class='html-xxx' data-content='160.'>Rives, T.; Razack, M.; Petit, J.P.; Rawnsley, K.D. Joint spacing: Analogue and numerical simulations. <span class='html-italic'>J. Struct. Geol.</span> <b>1992</b>, <span class='html-italic'>14</span>, 925–937. [<a href="https://scholar.google.com/scholar_lookup?title=Joint+spacing:+Analogue+and+numerical+simulations&author=Rives,+T.&author=Razack,+M.&author=Petit,+J.P.&author=Rawnsley,+K.D.&publication_year=1992&journal=J.+Struct.+Geol.&volume=14&pages=925%E2%80%93937&doi=10.1016/0191-8141(92)90024-Q" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/0191-8141(92)90024-Q" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B161-geosciences-11-00119' class='html-xxx' data-content='161.'>Bao, H.; Zhai, Y.; Lan, H.; Zhang, K.; Qi, Q.; Yan, C. Distribution characteristics and controlling factors of vertical joint spacing in sand-mud interbedded strata. <span class='html-italic'>J. Struct. Geol.</span> <b>2019</b>, <span class='html-italic'>128</span>, 103886. [<a href="https://scholar.google.com/scholar_lookup?title=Distribution+characteristics+and+controlling+factors+of+vertical+joint+spacing+in+sand-mud+interbedded+strata&author=Bao,+H.&author=Zhai,+Y.&author=Lan,+H.&author=Zhang,+K.&author=Qi,+Q.&author=Yan,+C.&publication_year=2019&journal=J.+Struct.+Geol.&volume=128&pages=103886&doi=10.1016/j.jsg.2019.103886" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jsg.2019.103886" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B162-geosciences-11-00119' class='html-xxx' data-content='162.'>Hooker, J.N.; Katz, R.F. Vein spacing in extending, layered rock: The effect of synkinematic cementation. <span class='html-italic'>Am. J. Sci.</span> <b>2015</b>, <span class='html-italic'>315</span>, 557–588. [<a href="https://scholar.google.com/scholar_lookup?title=Vein+spacing+in+extending,+layered+rock:+The+effect+of+synkinematic+cementation&author=Hooker,+J.N.&author=Katz,+R.F.&publication_year=2015&journal=Am.+J.+Sci.&volume=315&pages=557%E2%80%93588&doi=10.2475/06.2015.03" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.2475/06.2015.03" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B163-geosciences-11-00119' class='html-xxx' data-content='163.'>Olson, J.E. Joint pattern development: Effects of subcritical crack growth and mechanical crack interaction. <span class='html-italic'>J. Geophys. Res.</span> <b>1993</b>, <span class='html-italic'>98</span>, 12251–12265. [<a href="https://scholar.google.com/scholar_lookup?title=Joint+pattern+development:+Effects+of+subcritical+crack+growth+and+mechanical+crack+interaction&author=Olson,+J.E.&publication_year=1993&journal=J.+Geophys.+Res.&volume=98&pages=12251%E2%80%9312265&doi=10.1029/93JB00779" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1029/93JB00779" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B164-geosciences-11-00119' class='html-xxx' data-content='164.'>Olson, J.E. Predicting fracture swarms—The influence of subcritical crack growth and the crack-tip process zone on joint spacing in rock. <span class='html-italic'>Geol. Soc. Lond. Spec. Publ.</span> <b>2004</b>, <span class='html-italic'>231</span>, 73–88. [<a href="https://scholar.google.com/scholar_lookup?title=Predicting+fracture+swarms%E2%80%94The+influence+of+subcritical+crack+growth+and+the+crack-tip+process+zone+on+joint+spacing+in+rock&author=Olson,+J.E.&publication_year=2004&journal=Geol.+Soc.+Lond.+Spec.+Publ.&volume=231&pages=73%E2%80%9388&doi=10.1144/GSL.SP.2004.231.01.05" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1144/GSL.SP.2004.231.01.05" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B165-geosciences-11-00119' class='html-xxx' data-content='165.'>Schöpfer, M.P.J.; Arslan, A.; Walsh, J.J.; Childs, C. Reconciliation of contrasting theories for fracture spacing in layered rocks. <span class='html-italic'>J. Struct. Geol.</span> <b>2011</b>, <span class='html-italic'>33</span>, 551–565. [<a href="https://scholar.google.com/scholar_lookup?title=Reconciliation+of+contrasting+theories+for+fracture+spacing+in+layered+rocks&author=Sch%C3%B6pfer,+M.P.J.&author=Arslan,+A.&author=Walsh,+J.J.&author=Childs,+C.&publication_year=2011&journal=J.+Struct.+Geol.&volume=33&pages=551%E2%80%93565&doi=10.1016/j.jsg.2011.01.008" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jsg.2011.01.008" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://researchrepository.ucd.ie/bitstream/10197/3026/1/Schopfer_et_al_JSG_2011_repository.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B166-geosciences-11-00119' class='html-xxx' data-content='166.'>Zhang, X.; Jeffrey, R.G. The role of friction and secondary flaws on deflection and re-initiation of hydraulic fractures at orthogonal pre-existing fractures. <span class='html-italic'>Geophys. J. Int.</span> <b>2006</b>, <span class='html-italic'>166</span>, 1454–1465. [<a href="https://scholar.google.com/scholar_lookup?title=The+role+of+friction+and+secondary+flaws+on+deflection+and+re-initiation+of+hydraulic+fractures+at+orthogonal+pre-existing+fractures&author=Zhang,+X.&author=Jeffrey,+R.G.&publication_year=2006&journal=Geophys.+J.+Int.&volume=166&pages=1454%E2%80%931465&doi=10.1111/j.1365-246X.2006.03062.x" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1111/j.1365-246X.2006.03062.x" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://academic.oup.com/gji/article-pdf/166/3/1454/6100847/166-3-1454.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B167-geosciences-11-00119' class='html-xxx' data-content='167.'>Zhang, X.; Jeffrey, R.G.; Thiercelin, M. Mechanics of fluid-driven fracture growth in naturally fractured reservoirs with simple network geometries. <span class='html-italic'>J. Geophys. Res. Solid Earth</span> <b>2009</b>, <span class='html-italic'>114</span>, 1–16. [<a href="https://scholar.google.com/scholar_lookup?title=Mechanics+of+fluid-driven+fracture+growth+in+naturally+fractured+reservoirs+with+simple+network+geometries&author=Zhang,+X.&author=Jeffrey,+R.G.&author=Thiercelin,+M.&publication_year=2009&journal=J.+Geophys.+Res.+Solid+Earth&volume=114&pages=1%E2%80%9316&doi=10.1029/2009JB006548" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1029/2009JB006548" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li></ol></section><section id='FiguresandTable' type='display-objects'><div class="html-fig-wrap" id="geosciences-11-00119-f001"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3263/11/3/119/display" href="#fig_body_display_geosciences-11-00119-f001"> <img alt="Geosciences 11 00119 g001 550" data-large="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g001.png" data-original="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g001.png" data-lsrc="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g001-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3263/11/3/119/display" href="#fig_body_display_geosciences-11-00119-f001"></a> </div> </div> <div class="html-fig_description"> <b>Figure 1.</b> Control volumes of soil and rock. The elastic problem considers here elementary volumes smaller than pores; the stress σ<sub>ij</sub>, acting over the control volume, should be viewed as boundary condition for the elastic problem having as unknown the stress field ψ<sub>ij</sub>. Note that the boundary surface is given by union of pore and outer surfaces. <!-- <p><a class="html-figpopup" href="#fig_body_display_geosciences-11-00119-f001"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_geosciences-11-00119-f001" > <div class="html-caption" > <b>Figure 1.</b> Control volumes of soil and rock. The elastic problem considers here elementary volumes smaller than pores; the stress σ<sub>ij</sub>, acting over the control volume, should be viewed as boundary condition for the elastic problem having as unknown the stress field ψ<sub>ij</sub>. Note that the boundary surface is given by union of pore and outer surfaces.</div> <div class="html-img"><img alt="Geosciences 11 00119 g001" data-large="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g001.png" data-original="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g001.png" data-lsrc="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g001.png" /></div> </div><div class="html-fig-wrap" id="geosciences-11-00119-f002"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3263/11/3/119/display" href="#fig_body_display_geosciences-11-00119-f002"> <img alt="Geosciences 11 00119 g002 550" data-large="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g002.png" data-original="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g002.png" data-lsrc="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g002-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3263/11/3/119/display" href="#fig_body_display_geosciences-11-00119-f002"></a> </div> </div> <div class="html-fig_description"> <b>Figure 2.</b> Fillunger’s interpretation of ES. According to such model, the ES is viewed as the force per unit (porous) area borne by the only solid phase. <!-- <p><a class="html-figpopup" href="#fig_body_display_geosciences-11-00119-f002"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_geosciences-11-00119-f002" > <div class="html-caption" > <b>Figure 2.</b> Fillunger’s interpretation of ES. According to such model, the ES is viewed as the force per unit (porous) area borne by the only solid phase.</div> <div class="html-img"><img alt="Geosciences 11 00119 g002" data-large="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g002.png" data-original="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g002.png" data-lsrc="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g002.png" /></div> </div><div class="html-fig-wrap" id="geosciences-11-00119-f003"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3263/11/3/119/display" href="#fig_body_display_geosciences-11-00119-f003"> <img alt="Geosciences 11 00119 g003 550" data-large="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g003.png" data-original="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g003.png" data-lsrc="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g003-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3263/11/3/119/display" href="#fig_body_display_geosciences-11-00119-f003"></a> </div> </div> <div class="html-fig_description"> <b>Figure 3.</b> Results of finite difference numerical simulation, involving a simple model of porous body including two hierarchical joint sets under sudden pore pressure increase (in the top right of the figure). Diagram showing the pore pressure trend (on the ordinate axis) for several time steps within the analysed system (T0 denotes the time step value). The diagrams point out how the function p shows, for several time values, some concavities bounded by larger fractures, whilst the detail image of a single cell (bounded by major fractures) allows to recognise, at a smaller scale, similar concavities bounded by smaller fractures (modified after Guerriero et al. [<a href="#B116-geosciences-11-00119" class="html-bibr">116</a>]). <!-- <p><a class="html-figpopup" href="#fig_body_display_geosciences-11-00119-f003"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_geosciences-11-00119-f003" > <div class="html-caption" > <b>Figure 3.</b> Results of finite difference numerical simulation, involving a simple model of porous body including two hierarchical joint sets under sudden pore pressure increase (in the top right of the figure). Diagram showing the pore pressure trend (on the ordinate axis) for several time steps within the analysed system (T0 denotes the time step value). The diagrams point out how the function p shows, for several time values, some concavities bounded by larger fractures, whilst the detail image of a single cell (bounded by major fractures) allows to recognise, at a smaller scale, similar concavities bounded by smaller fractures (modified after Guerriero et al. [<a href="#B116-geosciences-11-00119" class="html-bibr">116</a>]).</div> <div class="html-img"><img alt="Geosciences 11 00119 g003" data-large="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g003.png" data-original="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g003.png" data-lsrc="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g003.png" /></div> </div><div class="html-fig-wrap" id="geosciences-11-00119-f004"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3263/11/3/119/display" href="#fig_body_display_geosciences-11-00119-f004"> <img alt="Geosciences 11 00119 g004 550" data-large="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g004.png" data-original="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g004.png" data-lsrc="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g004-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3263/11/3/119/display" href="#fig_body_display_geosciences-11-00119-f004"></a> </div> </div> <div class="html-fig_description"> <b>Figure 4.</b> Two geometrically similar bodies B1 and B2, under the same external stress system, show similar local stress fields, i.e., within such bodies the same local stress tensor is associated to corresponding points. <!-- <p><a class="html-figpopup" href="#fig_body_display_geosciences-11-00119-f004"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_geosciences-11-00119-f004" > <div class="html-caption" > <b>Figure 4.</b> Two geometrically similar bodies B1 and B2, under the same external stress system, show similar local stress fields, i.e., within such bodies the same local stress tensor is associated to corresponding points.</div> <div class="html-img"><img alt="Geosciences 11 00119 g004" data-large="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g004.png" data-original="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g004.png" data-lsrc="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g004.png" /></div> </div><div class="html-fig-wrap" id="geosciences-11-00119-f005"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3263/11/3/119/display" href="#fig_body_display_geosciences-11-00119-f005"> <img alt="Geosciences 11 00119 g005 550" data-large="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g005.png" data-original="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g005.png" data-lsrc="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g005-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3263/11/3/119/display" href="#fig_body_display_geosciences-11-00119-f005"></a> </div> </div> <div class="html-fig_description"> <b>Figure 5.</b> Schematic diagram showing a generic volume of porous aggregate experiencing the stress systems σa = (σ −<span class='html-italic'>P</span>) and <span class='html-italic'>p</span>. The local stress field ψ<sub>ij</sub> is a valid solution when the stress σ<span class='html-italic'><sub>a</sub></span> is applied over Σ<sup>II</sup> or all its similar surfaces. The solution associated to a uniform isotropic pressure <span class='html-italic'>p</span> is independent from the boundary surface shape. <!-- <p><a class="html-figpopup" href="#fig_body_display_geosciences-11-00119-f005"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_geosciences-11-00119-f005" > <div class="html-caption" > <b>Figure 5.</b> Schematic diagram showing a generic volume of porous aggregate experiencing the stress systems σa = (σ −<span class='html-italic'>P</span>) and <span class='html-italic'>p</span>. The local stress field ψ<sub>ij</sub> is a valid solution when the stress σ<span class='html-italic'><sub>a</sub></span> is applied over Σ<sup>II</sup> or all its similar surfaces. The solution associated to a uniform isotropic pressure <span class='html-italic'>p</span> is independent from the boundary surface shape.</div> <div class="html-img"><img alt="Geosciences 11 00119 g005" data-large="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g005.png" data-original="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g005.png" data-lsrc="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g005.png" /></div> </div><div class="html-fig-wrap" id="geosciences-11-00119-f006"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3263/11/3/119/display" href="#fig_body_display_geosciences-11-00119-f006"> <img alt="Geosciences 11 00119 g006 550" data-large="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g006.png" data-original="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g006.png" data-lsrc="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g006-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3263/11/3/119/display" href="#fig_body_display_geosciences-11-00119-f006"></a> </div> </div> <div class="html-fig_description"> <b>Figure 6.</b> (<b>A</b>) Growing fracture near a pre-existing joint network with randomly distributed flaws within host rock. Near the growing fracture (denoted by red line) a stress shadow hinders enucleating of new parallel fractures from flaws, so reducing its probability of rupture. (<b>B</b>) When the growing fracture reaches the pre-existing joint network, it causes a pore pressure drop within the nearest fractures, so reducing or erasing or also reverting the stress shadow (e.g., for the EW oriented fracture). As a consequence, the probability of rupture of flaws in the neighbouring rock, is increased and new fractures could be triggered, whose extension is preferentially orthogonal to the here-considered growing joint. <!-- <p><a class="html-figpopup" href="#fig_body_display_geosciences-11-00119-f006"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_geosciences-11-00119-f006" > <div class="html-caption" > <b>Figure 6.</b> (<b>A</b>) Growing fracture near a pre-existing joint network with randomly distributed flaws within host rock. Near the growing fracture (denoted by red line) a stress shadow hinders enucleating of new parallel fractures from flaws, so reducing its probability of rupture. (<b>B</b>) When the growing fracture reaches the pre-existing joint network, it causes a pore pressure drop within the nearest fractures, so reducing or erasing or also reverting the stress shadow (e.g., for the EW oriented fracture). As a consequence, the probability of rupture of flaws in the neighbouring rock, is increased and new fractures could be triggered, whose extension is preferentially orthogonal to the here-considered growing joint.</div> <div class="html-img"><img alt="Geosciences 11 00119 g006" data-large="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g006.png" data-original="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g006.png" data-lsrc="/geosciences/geosciences-11-00119/article_deploy/html/images/geosciences-11-00119-g006.png" /></div> </div><div class="html-table-wrap" id="geosciences-11-00119-t001"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3263/11/3/119/display" href='#table_body_display_geosciences-11-00119-t001'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3263/11/3/119/display" href="#table_body_display_geosciences-11-00119-t001"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 1.</b> Experimental data from oedometric test on lead shots. The test was carried out in steps; for each of them, an increment of total confining pressure was applied together with a known increment of pore pressure. Then, once the sample strain was measured, the pore pressure was reduced to zero. Modified from Skempton (1960). </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_geosciences-11-00119-t001" > <div class="html-caption" ><b>Table 1.</b> Experimental data from oedometric test on lead shots. The test was carried out in steps; for each of them, an increment of total confining pressure was applied together with a known increment of pore pressure. Then, once the sample strain was measured, the pore pressure was reduced to zero. Modified from Skempton (1960).</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Total Confining Stress (kg/cm<sup>2</sup>)</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Pore Pressure (kg/cm<sup>2</sup>)</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Contact Area Ratio <span class='html-italic'>a<sub>c</sub></span></th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Biotcoeff.<br>(1 − C<sub>s</sub>/C)</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >InterganularStress<br>Equation (3)</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Terzaghi<br>Equation (1)</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >SkemptonBiot<br>Equation (5) </th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Experimental</th></tr></thead><tbody ><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >256</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.35</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.995</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >170</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >128</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >129</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >129</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >512</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >128</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.6</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.99</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >50</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >128</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >127</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >127</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >512</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.8</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.98</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >460</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >256</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >261</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >268</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >1024</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >256</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.9</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.95</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >20</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >256</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >243</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >244</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >1024</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td></tr></tbody> </table> </div></section><section class='html-fn_group'><table><tr id=''><td></td><td><div class='html-p'><b>Publisher’s Note:</b> MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.</div></td></tr></table></section> <section id="html-copyright"><br>© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<a href='http://creativecommons.org/licenses/by/4.0/' target='_blank' rel="noopener noreferrer" >http://creativecommons.org/licenses/by/4.0/</a>).</section> </div> </div> <div class="additional-content"> <h2><a name="cite"></a>Share and Cite</h2> <div class="social-media-links" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#a59a83c4c8d59ed6d0c7cfc0c6d198e3d7cac8809795e8e1f5ec8096e4809795809797f1cdc0cad7dc809795cac3809795e0c3c3c0c6d1ccd3c0809795f6d1d7c0d6d6809795cccb809795f6caccc9809795c4cbc1809795f7cac6ce809795c4cbc1809795ecc8d5c9ccc6c4d1cccacbd6809795c3cad7809795e3d7c4c6d1d0d7cccbc2809795f5d7cac6c0d6d6c0d68096e4809795e4809795f7c0d3ccc0d283d4d0cad19e83c4c8d59ec7cac1dc98cdd1d1d5d69f8a8ad2d2d28bc8c1d5cc8bc6cac88a9495979695929d8096e48095e48095e4f1cdc0cad7dc809795cac3809795e0c3c3c0c6d1ccd3c0809795f6d1d7c0d6d6809795cccb809795f6caccc9809795c4cbc1809795f7cac6ce809795c4cbc1809795ecc8d5c9ccc6c4d1cccacbd6809795c3cad7809795e3d7c4c6d1d0d7cccbc2809795f5d7cac6c0d6d6c0d68096e4809795e4809795f7c0d3ccc0d28095e48095e4e4c7d6d1d7c4c6d18096e4809795f1cdc0809795c0c3c3c0c6d1ccd3c0809795d6d1d7c0d6d6809795d5d7cccbc6ccd5c9c080979580979de0f6f580979c809795d5c9c4dcd6809795c4809795c7c4d6ccc6809795d7cac9c0809795cccb809795c2c0cac9cac2dc809795c4cbc1809795c0cbc2cccbc0c0d7cccbc2809795d5d7cac7c9c0c8d6809795c4d6809795ccd1809795ccd6809795cccbd3cac9d3c0c1809795cccb809795c3d0cbc1c4c8c0cbd1c4c9809795ccd6d6d0c0d6809795c6cacbc6c0d7cbcccbc2809795d6d1d7c4cccb809795c4cbc1809795c3c4ccc9d0d7c0809795cac3809795d7cac6ce809795c4cbc1809795d6caccc98097e6809795c4d6809795d2c0c9c9809795c4d6809795cac3809795cad1cdc0d7809795d5cad7cad0d6809795c8c4d1c0d7ccc4c9d6809795d6d0c6cd809795c4d6809795c6cacbc6d7c0d1c08097e6809795c8c0d1c4c9809795d5cad2c1c0d7d68097e6809795c7cccac9cac2ccc6c4c9809795d1ccd6d6d0c0d68097e6809795c0d1c68b809795e4c9d1cdcad0c2cd809795d6cccbc6c0809795ccd1d6809795cccbd1d7cac1d0c6d1cccacb809795cccb809795d1cdc0809795949c9795d6809795d1cdc0809795c8c4cccb809795e0f6f5809795c4d6d5c0c6d1d6809795cdc4d3c0809795c7c0c0cb809795d0cbd7c4d3c0c9c9c0c1809795c4cbc1809795d1cdc0cad7c0d1ccc6c4c9c9dc809795c1c0d7ccd3c0c18097e6809795d1cdc0d6c0809795c1ca809795cbcad1809795c4d5d5c0c4d7809795d1ca809795cdc4d3c0809795c7c0c0cb809795c4c9d2c4dcd6809795c0cbd1ccd7c0c9dc809795d5c0d7c6c0ccd3c0c1809795c7dc809795c8c4cbdc809795cccb809795d1cdc0809795d6c6ccc0cbc6c0809795c6cac8c8d0cbccd1dc809795c1c0c4c9cccbc2809795d2ccd1cd809795e0f6f588d7c0c9c4d1c0c1809795d1cad5ccc6d6809795c7d0d1809795cdc4d3cccbc2809795c9ccd1d1c9c0809795c3c4c8ccc9ccc4d7ccd1dc809795d2ccd1cd809795d1cdc0809795c6cac8d5c9c0dd809795d1cdc0cad7ccc0d6809795cac3809795d5cad7cad0d6809795c8c0c1ccc4809795c4cbc1809795d5cad7cac0c9c4d6d1ccc6ccd1dc8b809795f1cdc0809795d5d0d7d5cad6c0809795cac3809795d1cdccd6809795d7c0d3ccc0d2809795ccd6809795d1ca809795d5d7cad3ccc1c0809795c4809795c2d0ccc1c4cbc6c0809795c3cad7809795d1cdc0809795d7c0c4c1c0d7809795d2cdca809795cbc0c0c1d6809795c4cb809795d0d5c1c4d1c0c1809795cad3c0d7d3ccc0d2809795cac3809795d1cdc0809795c1ccc3c3c0d7c0cbd1809795d1cdc0cad7c0d1ccc6c4c9809795c4cbc1809795c0ddd5c0d7ccc8c0cbd1c4c9809795c4d5d5d7cac4c6cdc0d6809795d1ca809795d1cdc0809795e0f6f5809795c4cbc1809795d7c0c9c4d1c0c1809795d1cad5ccc6d6809795cad3c0d7809795d1cdc0809795d5c4d6d1809795c6c0cbd1d0d7dc8097e6809795d2ccd1cd809795d5c4d7d1ccc6d0c9c4d7809795d7c0c3c0d7c0cbc6c0809795d1ca809795c2c0cac9cac2ccc6c4c9809795c3d7c4c6d1d0d7cccbc2809795d5d7cac6c0d6d6c0d68b809795f2c0809795c7c0c2cccb809795c7dc809795ccc9c9d0d6d1d7c4d1cccbc28097e6809795c4c3d1c0d7809795d6cac8c0809795cccbd1d7cac1d0c6d1ccd3c0809795cdccd6d1cad7ccc6c4c9809795d7c0c8c4d7ced68097e6809795d1cdc0809795c7c4d6ccc6809795d1cdc0cad7dc809795d0cbc1c0d7c9dccccbc2809795d1cdc0809795e0f6f58097e6809795c7c4d6c0c1809795cacb809795d1cdc0cad7dc809795cac3809795c0c9c4d6d1ccc6ccd1dc809795c8c0d1cdcac1d68b809795f1cdc0cb809795d1cdc0809795c1ccc3c3c0d7c0cbd1809795e0f6f588d7c0c9c4d1c0c1809795d1cdc0cad7ccc0d6809795c4cbc1809795c0ddd5c0d7ccc8c0cbd1c4c9809795d7c0d6d0c9d1d68097e6809795c4d6809795d2c0c9c9809795c4d6809795c8c4cccb809795cccbd1c0d7d5d7c0d1c4d1cccacbd6809795cac3809795d7cac6ce809795cfcacccbd1cccbc2809795c4cbc1809795c3d7c4c6d1d0d7cccbc2809795d5cdc0cbcac8c0cbc48097e6809795c4d7c0809795c1ccd6c6d0d6d6c0c18b809795f1d2ca809795c8c4cccb809795c6c9c4d6d6ccc6c4c9809795d2cad7ced6fe8b8b8bf8" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=Theory+of+Effective+Stress+in+Soil+and+Rock+and+Implications+for+Fracturing+Processes%3A+A+Review&amp;hashtags=mdpigeosciences&amp;url=https%3A%2F%2Fwww.mdpi.com%2F1023078&amp;via=Geosciences_OA" onclick="windowOpen(this.href,600,800); return false" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&amp;url=https%3A%2F%2Fwww.mdpi.com%2F1023078&amp;title=Theory%20of%20Effective%20Stress%20in%20Soil%20and%20Rock%20and%20Implications%20for%20Fracturing%20Processes%3A%20A%20Review%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DThe%20effective%20stress%20principle%20%28ESP%29%20plays%20a%20basic%20role%20in%20geology%20and%20engineering%20problems%20as%20it%20is%20involved%20in%20fundamental%20issues%20concerning%20strain%20and%20failure%20of%20rock%20and%20soil%2C%20as%20well%20as%20of%20other%20porous%20materials%20such%20as%20concrete%2C%20metal%20powders%2C%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/1023078" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/1023078" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/1023078" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> </div> <div class="in-tab" style="padding-top: 0px!important; margin-top: 15px;"> <div><b>MDPI and ACS Style</b></div> <p> Guerriero, V.; Mazzoli, S. Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review. <em>Geosciences</em> <b>2021</b>, <em>11</em>, 119. https://doi.org/10.3390/geosciences11030119 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Guerriero V, Mazzoli S. Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review. <em>Geosciences</em>. 2021; 11(3):119. https://doi.org/10.3390/geosciences11030119 </p> <b>Chicago/Turabian Style</b><br> <p> Guerriero, Vincenzo, and Stefano Mazzoli. 2021. "Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review" <em>Geosciences</em> 11, no. 3: 119. https://doi.org/10.3390/geosciences11030119 </p> <b>APA Style</b><br> <p> Guerriero, V., & Mazzoli, S. (2021). Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review. <em>Geosciences</em>, <em>11</em>(3), 119. https://doi.org/10.3390/geosciences11030119 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> <h2><a name="metrics"></a>Article Metrics</h2> <div class="row"> <div class="small-12 columns"> <div id="loaded_cite_count" style="display:none">No</div> <div id="framed_div_cited_count" class="in-tab" style="display: none; overflow: auto;"></div> <div id="loaded" style="display:none">No</div> <div id="framed_div" class="in-tab" style="display: none; margin-top: 10px;"></div> </div> <div class="small-12 columns"> <div id="article_stats_div" style="display: none; margin-bottom: 1em;"> <h3>Article Access Statistics</h3> <div id="article_stats_swf" ></div> For more information on the journal statistics, click <a href="/journal/geosciences/stats">here</a>. <div class="info-box"> Multiple requests from the same IP address are counted as one view. </div> </div> </div> </div> </div> </div> </article> </div> </div></div> <div class="webpymol-controls webpymol-controls-template" style="margin-top: 10px; display: none;"> <a class="bzoom">Zoom</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="borient"> Orient </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="blines"> As Lines </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsticks"> As Sticks </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bcartoon"> As Cartoon </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsurface"> As Surface </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bprevscene">Previous Scene</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bnextscene">Next Scene</a> </div> <div id="scifeed-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="recommended-articles-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="author-biographies-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="cite-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Cite</h2> </div> <div class="small-12 columns"> <!-- BibTeX --> <form style="margin:0; padding:0; display:inline;" name="export-bibtex" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="511539"> <input type="hidden" name="export_format_top" value="bibtex"> <input type="hidden" name="export_submit_top" value=""> </form> <!-- EndNote --> <form style="margin:0; padding:0; display:inline;" name="export-endnote" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="511539"> <input type="hidden" name="export_format_top" value="endnote_no_abstract"> <input type="hidden" name="export_submit_top" value=""> </form> <!-- RIS --> <form style="margin:0; padding:0; display:inline;" name="export-ris" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="511539"> <input type="hidden" name="export_format_top" value="ris"> <input type="hidden" name="export_submit_top" value=""> </form> <div> Export citation file: <a href="javascript:window.document.forms['export-bibtex'].submit()">BibTeX</a> | <a href="javascript:window.document.forms['export-endnote'].submit()">EndNote</a> | <a href="javascript:window.document.forms['export-ris'].submit()">RIS</a> </div> </div> <div class="small-12 columns"> <div class="in-tab"> <div><b>MDPI and ACS Style</b></div> <p> Guerriero, V.; Mazzoli, S. Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review. <em>Geosciences</em> <b>2021</b>, <em>11</em>, 119. https://doi.org/10.3390/geosciences11030119 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Guerriero V, Mazzoli S. Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review. <em>Geosciences</em>. 2021; 11(3):119. https://doi.org/10.3390/geosciences11030119 </p> <b>Chicago/Turabian Style</b><br> <p> Guerriero, Vincenzo, and Stefano Mazzoli. 2021. "Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review" <em>Geosciences</em> 11, no. 3: 119. https://doi.org/10.3390/geosciences11030119 </p> <b>APA Style</b><br> <p> Guerriero, V., & Mazzoli, S. (2021). Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review. <em>Geosciences</em>, <em>11</em>(3), 119. https://doi.org/10.3390/geosciences11030119 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> </div> </div> </div> </section> <div id="footer"> <div class="journal-info"> <span> <em><a class="Var_JournalInfo" href="/journal/geosciences">Geosciences</a></em>, EISSN 2076-3263, Published by MDPI </span> <div class="large-right"> <span> <a href="/rss/journal/geosciences" class="rss-link">RSS</a> </span> <span> <a href="/journal/geosciences/toc-alert">Content Alert</a> </span> </div> </div> <div class="row full-width footer-links" data-equalizer="footer" data-equalizer-mq="small"> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Further Information </h3> <a href="/apc"> Article Processing Charges </a> <a href="/about/payment"> Pay an Invoice </a> <a href="/openaccess"> Open Access Policy </a> <a href="/about/contact"> Contact MDPI </a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Jobs at MDPI </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Guidelines </h3> <a href="/authors"> For Authors </a> <a href="/reviewers"> For Reviewers </a> <a href="/editors"> For Editors </a> <a href="/librarians"> For Librarians </a> <a href="/publishing_services"> For Publishers </a> <a href="/societies"> For Societies </a> <a href="/conference_organizers"> For Conference Organizers </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns"> <h3> MDPI Initiatives </h3> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> <a href="https://www.scilit.com" target="_blank" rel="noopener noreferrer"> Scilit </a> <a href="https://sciprofiles.com?utm_source=mpdi.com&utm_medium=bottom_menu&utm_campaign=initiative" target="_blank" rel="noopener noreferrer"> SciProfiles </a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> <a href="/about/proceedings"> Proceedings Series </a> </div> <div class="large-2 large-push-4 medium-3 small-6 right-border-large-without columns UA_FooterFollowMDPI"> <h3> Follow MDPI </h3> <a href="https://www.linkedin.com/company/mdpi" target="_blank" rel="noopener noreferrer"> LinkedIn </a> <a href="https://www.facebook.com/MDPIOpenAccessPublishing" target="_blank" rel="noopener noreferrer"> Facebook </a> <a href="https://twitter.com/MDPIOpenAccess" target="_blank" rel="noopener noreferrer"> Twitter </a> </div> <div id="footer-subscribe" class="large-4 large-pull-8 medium-12 small-12 left-border-large columns"> <div class="footer-subscribe__container"> <img class="show-for-large-up" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-white-small.png?71d18e5f805839ab?1740558760" alt="MDPI" title="MDPI Open Access Journals" style="height: 50px; margin-bottom: 10px;"> <form id="newsletter" method="POST" action="/subscribe"> <p> Subscribe to receive issue release notifications and newsletters from MDPI journals </p> <select multiple id="newsletter-journal" class="foundation-select" name="journals[]"> <option value="acoustics">Acoustics</option> <option value="amh">Acta Microbiologica Hellenica</option> <option value="actuators">Actuators</option> <option value="adhesives">Adhesives</option> <option value="admsci">Administrative Sciences</option> <option value="adolescents">Adolescents</option> <option value="arm">Advances in Respiratory Medicine</option> <option value="aerobiology">Aerobiology</option> <option value="aerospace">Aerospace</option> <option value="agriculture">Agriculture</option> <option value="agriengineering">AgriEngineering</option> <option value="agrochemicals">Agrochemicals</option> <option value="agronomy">Agronomy</option> <option value="ai">AI</option> <option value="aisens">AI Sensors</option> <option value="air">Air</option> <option value="algorithms">Algorithms</option> <option value="allergies">Allergies</option> <option value="alloys">Alloys</option> <option value="analytica">Analytica</option> <option value="analytics">Analytics</option> <option value="anatomia">Anatomia</option> <option value="anesthres">Anesthesia Research</option> <option value="animals">Animals</option> <option value="antibiotics">Antibiotics</option> <option value="antibodies">Antibodies</option> <option value="antioxidants">Antioxidants</option> <option value="applbiosci">Applied Biosciences</option> <option value="applmech">Applied Mechanics</option> <option value="applmicrobiol">Applied Microbiology</option> <option value="applnano">Applied Nano</option> <option value="applsci">Applied Sciences</option> <option value="asi">Applied System Innovation</option> <option value="appliedchem">AppliedChem</option> <option value="appliedmath">AppliedMath</option> <option value="aquacj">Aquaculture Journal</option> <option value="architecture">Architecture</option> <option value="arthropoda">Arthropoda</option> <option value="arts">Arts</option> <option value="astronomy">Astronomy</option> <option value="atmosphere">Atmosphere</option> <option value="atoms">Atoms</option> <option value="audiolres">Audiology Research</option> <option value="automation">Automation</option> <option value="axioms">Axioms</option> <option value="bacteria">Bacteria</option> <option value="batteries">Batteries</option> <option value="behavsci">Behavioral Sciences</option> <option value="beverages">Beverages</option> <option value="BDCC">Big Data and Cognitive Computing</option> <option value="biochem">BioChem</option> <option value="bioengineering">Bioengineering</option> <option value="biologics">Biologics</option> <option value="biology">Biology</option> <option value="blsf">Biology and Life Sciences Forum</option> <option value="biomass">Biomass</option> <option value="biomechanics">Biomechanics</option> <option value="biomed">BioMed</option> <option value="biomedicines">Biomedicines</option> <option value="biomedinformatics">BioMedInformatics</option> <option value="biomimetics">Biomimetics</option> <option value="biomolecules">Biomolecules</option> <option value="biophysica">Biophysica</option> <option value="biosensors">Biosensors</option> <option value="biosphere">Biosphere</option> <option value="biotech">BioTech</option> <option value="birds">Birds</option> <option value="blockchains">Blockchains</option> <option value="brainsci">Brain Sciences</option> <option value="buildings">Buildings</option> <option value="businesses">Businesses</option> <option value="carbon">C</option> <option value="cancers">Cancers</option> <option value="cardiogenetics">Cardiogenetics</option> <option value="catalysts">Catalysts</option> <option value="cells">Cells</option> <option value="ceramics">Ceramics</option> <option value="challenges">Challenges</option> <option value="ChemEngineering">ChemEngineering</option> <option value="chemistry">Chemistry</option> <option value="chemproc">Chemistry Proceedings</option> <option value="chemosensors">Chemosensors</option> <option value="children">Children</option> <option value="chips">Chips</option> <option value="civileng">CivilEng</option> <option value="cleantechnol">Clean Technologies</option> <option value="climate">Climate</option> <option value="ctn">Clinical and Translational Neuroscience</option> <option value="clinbioenerg">Clinical Bioenergetics</option> <option value="clinpract">Clinics and Practice</option> <option value="clockssleep">Clocks &amp; Sleep</option> <option value="coasts">Coasts</option> <option value="coatings">Coatings</option> <option value="colloids">Colloids and Interfaces</option> <option value="colorants">Colorants</option> <option value="commodities">Commodities</option> <option value="complications">Complications</option> <option value="compounds">Compounds</option> <option value="computation">Computation</option> <option value="csmf">Computer Sciences &amp; Mathematics Forum</option> <option value="computers">Computers</option> <option value="condensedmatter">Condensed Matter</option> <option value="conservation">Conservation</option> <option value="constrmater">Construction Materials</option> <option value="cmd">Corrosion and Materials Degradation</option> <option value="cosmetics">Cosmetics</option> <option value="covid">COVID</option> <option value="cmtr">Craniomaxillofacial Trauma &amp; Reconstruction</option> <option value="crops">Crops</option> <option value="cryo">Cryo</option> <option value="cryptography">Cryptography</option> <option value="crystals">Crystals</option> <option value="cimb">Current Issues in Molecular Biology</option> <option value="curroncol">Current Oncology</option> <option value="dairy">Dairy</option> <option value="data">Data</option> <option value="dentistry">Dentistry Journal</option> <option value="dermato">Dermato</option> <option value="dermatopathology">Dermatopathology</option> <option value="designs">Designs</option> <option value="diabetology">Diabetology</option> <option value="diagnostics">Diagnostics</option> <option value="dietetics">Dietetics</option> <option value="digital">Digital</option> <option value="disabilities">Disabilities</option> <option value="diseases">Diseases</option> <option value="diversity">Diversity</option> <option value="dna">DNA</option> <option value="drones">Drones</option> <option value="ddc">Drugs and Drug Candidates</option> <option value="dynamics">Dynamics</option> <option value="earth">Earth</option> <option value="ecologies">Ecologies</option> <option value="econometrics">Econometrics</option> <option value="economies">Economies</option> <option value="education">Education Sciences</option> <option value="electricity">Electricity</option> <option value="electrochem">Electrochem</option> <option value="electronicmat">Electronic Materials</option> <option value="electronics">Electronics</option> <option value="ecm">Emergency Care and Medicine</option> <option value="encyclopedia">Encyclopedia</option> <option value="endocrines">Endocrines</option> <option value="energies">Energies</option> <option value="esa">Energy Storage and Applications</option> <option value="eng">Eng</option> <option value="engproc">Engineering Proceedings</option> <option value="entropy">Entropy</option> <option value="eesp">Environmental and Earth Sciences Proceedings</option> <option value="environments">Environments</option> <option value="epidemiologia">Epidemiologia</option> <option value="epigenomes">Epigenomes</option> <option value="ebj">European Burn Journal</option> <option value="ejihpe">European Journal of Investigation in Health, Psychology and Education</option> <option value="fermentation">Fermentation</option> <option value="fibers">Fibers</option> <option value="fintech">FinTech</option> <option value="fire">Fire</option> <option value="fishes">Fishes</option> <option value="fluids">Fluids</option> <option value="foods">Foods</option> <option value="forecasting">Forecasting</option> <option value="forensicsci">Forensic Sciences</option> <option value="forests">Forests</option> <option value="fossstud">Fossil Studies</option> <option value="foundations">Foundations</option> <option value="fractalfract">Fractal and Fractional</option> <option value="fuels">Fuels</option> <option value="future">Future</option> <option value="futureinternet">Future Internet</option> <option value="futurepharmacol">Future Pharmacology</option> <option value="futuretransp">Future Transportation</option> <option value="galaxies">Galaxies</option> <option value="games">Games</option> <option value="gases">Gases</option> <option value="gastroent">Gastroenterology Insights</option> <option value="gastrointestdisord">Gastrointestinal Disorders</option> <option value="gastronomy">Gastronomy</option> <option value="gels">Gels</option> <option value="genealogy">Genealogy</option> <option value="genes">Genes</option> <option value="geographies">Geographies</option> <option value="geohazards">GeoHazards</option> <option value="geomatics">Geomatics</option> <option value="geometry">Geometry</option> <option value="geosciences">Geosciences</option> <option value="geotechnics">Geotechnics</option> <option value="geriatrics">Geriatrics</option> <option value="glacies">Glacies</option> <option value="gucdd">Gout, Urate, and Crystal Deposition Disease</option> <option value="grasses">Grasses</option> <option value="greenhealth">Green Health</option> <option value="hardware">Hardware</option> <option value="healthcare">Healthcare</option> <option value="hearts">Hearts</option> <option value="hemato">Hemato</option> <option value="hematolrep">Hematology Reports</option> <option value="heritage">Heritage</option> <option value="histories">Histories</option> <option value="horticulturae">Horticulturae</option> <option value="hospitals">Hospitals</option> <option value="humanities">Humanities</option> <option value="humans">Humans</option> <option value="hydrobiology">Hydrobiology</option> <option value="hydrogen">Hydrogen</option> <option value="hydrology">Hydrology</option> <option value="hygiene">Hygiene</option> <option value="immuno">Immuno</option> <option value="idr">Infectious Disease Reports</option> <option value="informatics">Informatics</option> <option value="information">Information</option> <option value="infrastructures">Infrastructures</option> <option value="inorganics">Inorganics</option> <option value="insects">Insects</option> <option value="instruments">Instruments</option> <option value="iic">Intelligent Infrastructure and Construction</option> <option value="ijerph">International Journal of Environmental Research and Public Health</option> <option value="ijfs">International Journal of Financial Studies</option> <option value="ijms">International Journal of Molecular Sciences</option> <option value="IJNS">International Journal of Neonatal Screening</option> <option value="ijom">International Journal of Orofacial Myology and Myofunctional Therapy</option> <option value="ijpb">International Journal of Plant Biology</option> <option value="ijt">International Journal of Topology</option> <option value="ijtm">International Journal of Translational Medicine</option> <option value="ijtpp">International Journal of Turbomachinery, Propulsion and Power</option> <option value="ime">International Medical Education</option> <option value="inventions">Inventions</option> <option value="IoT">IoT</option> <option value="ijgi">ISPRS International Journal of Geo-Information</option> <option value="J">J</option> <option value="jal">Journal of Ageing and Longevity</option> <option value="jcdd">Journal of Cardiovascular Development and Disease</option> <option value="jcto">Journal of Clinical &amp; Translational Ophthalmology</option> <option value="jcm">Journal of Clinical Medicine</option> <option value="jcs">Journal of Composites Science</option> <option value="jcp">Journal of Cybersecurity and Privacy</option> <option value="jdad">Journal of Dementia and Alzheimer&#039;s Disease</option> <option value="jdb">Journal of Developmental Biology</option> <option value="jeta">Journal of Experimental and Theoretical Analyses</option> <option value="jemr">Journal of Eye Movement Research</option> <option value="jfb">Journal of Functional Biomaterials</option> <option value="jfmk">Journal of Functional Morphology and Kinesiology</option> <option value="jof">Journal of Fungi</option> <option value="jimaging">Journal of Imaging</option> <option value="jintelligence">Journal of Intelligence</option> <option value="jlpea">Journal of Low Power Electronics and Applications</option> <option value="jmmp">Journal of Manufacturing and Materials Processing</option> <option value="jmse">Journal of Marine Science and Engineering</option> <option value="jmahp">Journal of Market Access &amp; Health Policy</option> <option value="jmms">Journal of Mind and Medical Sciences</option> <option value="jmp">Journal of Molecular Pathology</option> <option value="jnt">Journal of Nanotheranostics</option> <option value="jne">Journal of Nuclear Engineering</option> <option value="ohbm">Journal of Otorhinolaryngology, Hearing and Balance Medicine</option> <option value="jop">Journal of Parks</option> <option value="jpm">Journal of Personalized Medicine</option> <option value="jpbi">Journal of Pharmaceutical and BioTech Industry</option> <option value="jor">Journal of Respiration</option> <option value="jrfm">Journal of Risk and Financial Management</option> <option value="jsan">Journal of Sensor and Actuator Networks</option> <option value="joma">Journal of the Oman Medical Association</option> <option value="jtaer">Journal of Theoretical and Applied Electronic Commerce Research</option> <option value="jvd">Journal of Vascular Diseases</option> <option value="jox">Journal of Xenobiotics</option> <option value="jzbg">Journal of Zoological and Botanical Gardens</option> <option value="journalmedia">Journalism and Media</option> <option value="kidneydial">Kidney and Dialysis</option> <option value="kinasesphosphatases">Kinases and Phosphatases</option> <option value="knowledge">Knowledge</option> <option value="labmed">LabMed</option> <option value="laboratories">Laboratories</option> <option value="land">Land</option> <option value="languages">Languages</option> <option value="laws">Laws</option> <option value="life">Life</option> <option value="limnolrev">Limnological Review</option> <option value="lipidology">Lipidology</option> <option value="liquids">Liquids</option> <option value="literature">Literature</option> <option value="livers">Livers</option> <option value="logics">Logics</option> <option value="logistics">Logistics</option> <option value="lubricants">Lubricants</option> <option value="lymphatics">Lymphatics</option> <option value="make">Machine Learning and Knowledge Extraction</option> <option value="machines">Machines</option> <option value="macromol">Macromol</option> <option value="magnetism">Magnetism</option> <option value="magnetochemistry">Magnetochemistry</option> <option value="marinedrugs">Marine Drugs</option> <option value="materials">Materials</option> <option value="materproc">Materials Proceedings</option> <option value="mca">Mathematical and Computational Applications</option> <option value="mathematics">Mathematics</option> <option value="medsci">Medical Sciences</option> <option value="msf">Medical Sciences Forum</option> <option value="medicina">Medicina</option> <option value="medicines">Medicines</option> <option value="membranes">Membranes</option> <option value="merits">Merits</option> <option value="metabolites">Metabolites</option> <option value="metals">Metals</option> <option value="meteorology">Meteorology</option> <option value="methane">Methane</option> <option value="mps">Methods and Protocols</option> <option value="metrics">Metrics</option> <option value="metrology">Metrology</option> <option value="micro">Micro</option> <option value="microbiolres">Microbiology Research</option> <option value="micromachines">Micromachines</option> <option value="microorganisms">Microorganisms</option> <option value="microplastics">Microplastics</option> <option value="microwave">Microwave</option> <option value="minerals">Minerals</option> <option value="mining">Mining</option> <option value="modelling">Modelling</option> <option value="mmphys">Modern Mathematical Physics</option> <option value="molbank">Molbank</option> <option value="molecules">Molecules</option> <option value="mti">Multimodal Technologies and Interaction</option> <option value="muscles">Muscles</option> <option value="nanoenergyadv">Nanoenergy Advances</option> <option value="nanomanufacturing">Nanomanufacturing</option> <option value="nanomaterials">Nanomaterials</option> <option value="ndt">NDT</option> <option value="network">Network</option> <option value="neuroglia">Neuroglia</option> <option value="neurolint">Neurology International</option> <option value="neurosci">NeuroSci</option> <option value="nitrogen">Nitrogen</option> <option value="ncrna">Non-Coding RNA</option> <option value="nursrep">Nursing Reports</option> <option value="nutraceuticals">Nutraceuticals</option> <option value="nutrients">Nutrients</option> <option value="obesities">Obesities</option> <option value="oceans">Oceans</option> <option value="onco">Onco</option> <option value="optics">Optics</option> <option value="oral">Oral</option> <option value="organics">Organics</option> <option value="organoids">Organoids</option> <option value="osteology">Osteology</option> <option value="oxygen">Oxygen</option> <option value="parasitologia">Parasitologia</option> <option value="particles">Particles</option> <option value="pathogens">Pathogens</option> <option value="pathophysiology">Pathophysiology</option> <option value="pediatrrep">Pediatric Reports</option> <option value="pets">Pets</option> <option value="pharmaceuticals">Pharmaceuticals</option> <option value="pharmaceutics">Pharmaceutics</option> <option value="pharmacoepidemiology">Pharmacoepidemiology</option> <option value="pharmacy">Pharmacy</option> <option value="philosophies">Philosophies</option> <option value="photochem">Photochem</option> <option value="photonics">Photonics</option> <option value="phycology">Phycology</option> <option value="physchem">Physchem</option> <option value="psf">Physical Sciences Forum</option> <option value="physics">Physics</option> <option value="physiologia">Physiologia</option> <option value="plants">Plants</option> <option value="plasma">Plasma</option> <option value="platforms">Platforms</option> <option value="pollutants">Pollutants</option> <option value="polymers">Polymers</option> <option value="polysaccharides">Polysaccharides</option> <option value="populations">Populations</option> <option value="poultry">Poultry</option> <option value="powders">Powders</option> <option value="proceedings">Proceedings</option> <option value="processes">Processes</option> <option value="prosthesis">Prosthesis</option> <option value="proteomes">Proteomes</option> <option value="psychiatryint">Psychiatry International</option> <option value="psychoactives">Psychoactives</option> <option value="psycholint">Psychology International</option> <option value="publications">Publications</option> <option value="purification">Purification</option> <option value="qubs">Quantum Beam Science</option> <option value="quantumrep">Quantum Reports</option> <option value="quaternary">Quaternary</option> <option value="radiation">Radiation</option> <option value="reactions">Reactions</option> <option value="realestate">Real Estate</option> <option value="receptors">Receptors</option> <option value="recycling">Recycling</option> <option value="rsee">Regional Science and Environmental Economics</option> <option value="religions">Religions</option> <option value="remotesensing">Remote Sensing</option> <option value="reports">Reports</option> <option value="reprodmed">Reproductive Medicine</option> <option value="resources">Resources</option> <option value="rheumato">Rheumato</option> <option value="risks">Risks</option> <option value="robotics">Robotics</option> <option value="ruminants">Ruminants</option> <option value="safety">Safety</option> <option value="sci">Sci</option> <option value="scipharm">Scientia Pharmaceutica</option> <option value="sclerosis">Sclerosis</option> <option value="seeds">Seeds</option> <option value="sensors">Sensors</option> <option value="separations">Separations</option> <option value="sexes">Sexes</option> <option value="signals">Signals</option> <option value="sinusitis">Sinusitis</option> <option value="smartcities">Smart Cities</option> <option value="socsci">Social Sciences</option> <option value="siuj">Société Internationale d’Urologie Journal</option> <option value="societies">Societies</option> <option value="software">Software</option> <option value="soilsystems">Soil Systems</option> <option value="solar">Solar</option> <option value="solids">Solids</option> <option value="spectroscj">Spectroscopy Journal</option> <option value="sports">Sports</option> <option value="standards">Standards</option> <option value="stats">Stats</option> <option value="stresses">Stresses</option> <option value="surfaces">Surfaces</option> <option value="surgeries">Surgeries</option> <option value="std">Surgical Techniques Development</option> <option value="sustainability">Sustainability</option> <option value="suschem">Sustainable Chemistry</option> <option value="symmetry">Symmetry</option> <option value="synbio">SynBio</option> <option value="systems">Systems</option> <option value="targets">Targets</option> <option value="taxonomy">Taxonomy</option> <option value="technologies">Technologies</option> <option value="telecom">Telecom</option> <option value="textiles">Textiles</option> <option value="thalassrep">Thalassemia Reports</option> <option value="therapeutics">Therapeutics</option> <option value="thermo">Thermo</option> <option value="timespace">Time and Space</option> <option value="tomography">Tomography</option> <option value="tourismhosp">Tourism and Hospitality</option> <option value="toxics">Toxics</option> <option value="toxins">Toxins</option> <option value="transplantology">Transplantology</option> <option value="traumacare">Trauma Care</option> <option value="higheredu">Trends in Higher Education</option> <option value="tropicalmed">Tropical Medicine and Infectious Disease</option> <option value="universe">Universe</option> <option value="urbansci">Urban Science</option> <option value="uro">Uro</option> <option value="vaccines">Vaccines</option> <option value="vehicles">Vehicles</option> <option value="venereology">Venereology</option> <option value="vetsci">Veterinary Sciences</option> <option value="vibration">Vibration</option> <option value="virtualworlds">Virtual Worlds</option> <option value="viruses">Viruses</option> <option value="vision">Vision</option> <option value="waste">Waste</option> <option value="water">Water</option> <option value="wild">Wild</option> <option value="wind">Wind</option> <option value="women">Women</option> <option value="world">World</option> <option value="wevj">World Electric Vehicle Journal</option> <option value="youth">Youth</option> <option value="zoonoticdis">Zoonotic Diseases</option> </select> <input name="email" type="email" placeholder="Enter your email address..." required="required" /> <button class="genericCaptcha button button--dark UA_FooterNewsletterSubscribeButton" type="submit">Subscribe</button> </form> </div> </div> </div> <div id="footer-copyright"> <div class="row"> <div class="columns large-6 medium-6 small-12 text-left"> © 1996-2025 MDPI (Basel, Switzerland) unless otherwise stated </div> <div class="columns large-6 medium-6 small-12 small-text-left medium-text-right large-text-right"> <a data-dropdown="drop-view-disclaimer" aria-controls="drop-view-disclaimer" aria-expanded="false" data-options="align:top; is_hover:true; hover_timeout:2000;"> Disclaimer </a> <div id="drop-view-disclaimer" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide text-left" data-dropdown-content aria-hidden="true" tabindex="-1"> Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. </div> <a href="/about/terms-and-conditions"> Terms and Conditions </a> <a href="/about/privacy"> Privacy Policy </a> </div> </div> </div> </div> <div id="cookie-notification" class="js-allow-cookies" style="display: none;"> <div class="columns large-10 medium-10 small-12"> We use cookies on our website to ensure you get the best experience.<br class="show-for-medium-up"/> Read more about our cookies <a href="/about/privacy">here</a>. </div> <div class="columns large-2 medium-2 small-12 small-only-text-left text-right"> <a class="button button--default" href="/accept_cookies">Accept</a> </div> </div> </div> <div id="main-share-modal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Share Link</h2> </div> <div class="small-12 columns"> <div class="social-media-links UA_ShareModalLinks" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#645b420509145f1711060e0107105922160b094156542920342d415725415654415656300c010b161d4156540b024156542102020107100d12014156543710160117174156540d0a415654370b0d08415654050a00415654360b070f415654050a004156542d0914080d0705100d0b0a17415654020b16415654221605071011160d0a0341565434160b070117170117415725415654254156543601120d01134215110b105f420509145f060b001d590c101014175e4b4b1313134a0900140d4a070b094b5554565754535c415725415425415425300c010b161d4156540b024156542102020107100d12014156543710160117174156540d0a415654370b0d08415654050a00415654360b070f415654050a004156542d0914080d0705100d0b0a17415654020b16415654221605071011160d0a0341565434160b070117170117415725415654254156543601120d01136e6e300c014156540102020107100d120141565417101601171741565414160d0a070d14080141565441565c21373441565d4156541408051d17415654054156540605170d07415654160b08014156540d0a41565403010b080b031d415654050a00415654010a030d0a0101160d0a0341565414160b060801091741565405174156540d104156540d174156540d0a120b081201004156540d0a41565402110a000509010a1005084156540d1717110117415654070b0a0701160a0d0a03415654171016050d0a415654050a0041565402050d081116014156540b02415654160b070f415654050a00415654170b0d0841562741565405174156541301080841565405174156540b024156540b100c0116415654140b160b111741565409051001160d0508174156541711070c4156540517415654070b0a07160110014156274156540901100508415654140b1300011617415627415654060d0b080b030d070508415654100d17171101174156274156540110074a4156542508100c0b11030c415654170d0a07014156540d10174156540d0a10160b001107100d0b0a4156540d0a415654100c01415654555d565417415654100c0141565409050d0a415654213734415654051714010710174156540c0512014156540601010a415654110a1605120108080100415654050a00415654100c010b1601100d070508081d4156540001160d120100415627415654100c011701415654000b4156540a0b10415654051414010516415654100b4156540c0512014156540601010a415654050813051d17415654010a100d1601081d41565414011607010d120100415654061d41565409050a1d4156540d0a415654100c0141565417070d010a0701415654070b0909110a0d101d415654000105080d0a03415654130d100c4156542137344916010805100100415654100b140d07174156540611104156540c05120d0a03415654080d101008014156540205090d080d05160d101d415654130d100c415654100c01415654070b091408011c415654100c010b160d01174156540b02415654140b160b11174156540901000d05415654050a00415654140b160b01080517100d070d101d4a415654300c01415654141116140b17014156540b02415654100c0d174156541601120d01134156540d17415654100b41565414160b120d00014156540541565403110d00050a0701415654020b16415654100c01415654160105000116415654130c0b4156540a01010017415654050a415654111400051001004156540b120116120d01134156540b02415654100c01415654000d02020116010a10415654100c010b1601100d070508415654050a00415654011c1401160d09010a100508415654051414160b05070c0117415654100b415654100c01415654213734415654050a0041565416010805100100415654100b140d07174156540b120116415654100c014156541405171041565407010a1011161d415627415654130d100c415654140516100d07110805164156541601020116010a0701415654100b41565403010b080b030d070508415654021605071011160d0a0341565414160b0701171701174a41565433014156540601030d0a415654061d4156540d08081117101605100d0a034156274156540502100116415654170b09014156540d0a10160b001107100d12014156540c0d17100b160d07050841565416010905160f17415627415654100c014156540605170d07415654100c010b161d415654110a000116081d0d0a03415654100c0141565421373441562741565406051701004156540b0a415654100c010b161d4156540b0241565401080517100d070d101d4156540901100c0b00174a415654300c010a415654100c01415654000d02020116010a104156542137344916010805100100415654100c010b160d0117415654050a00415654011c1401160d09010a10050841565416011711081017415627415654051741565413010808415654051741565409050d0a4156540d0a1001161416011005100d0b0a174156540b02415654160b070f4156540e0b0d0a100d0a03415654050a00415654021605071011160d0a03415654140c010a0b09010a05415627415654051601415654000d170711171701004a41565430130b41565409050d0a41565407080517170d070508415654130b160f17415654051601415654100c010a3f4a4a4a39" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=Theory+of+Effective+Stress+in+Soil+and+Rock+and+Implications+for+Fracturing+Processes%3A+A+Review&amp;hashtags=mdpigeosciences&amp;url=https%3A%2F%2Fwww.mdpi.com%2F1023078&amp;via=Geosciences_OA" onclick="windowOpen(this.href,600,800); return false" title="Twitter" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&amp;url=https%3A%2F%2Fwww.mdpi.com%2F1023078&amp;title=Theory%20of%20Effective%20Stress%20in%20Soil%20and%20Rock%20and%20Implications%20for%20Fracturing%20Processes%3A%20A%20Review%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DThe%20effective%20stress%20principle%20%28ESP%29%20plays%20a%20basic%20role%20in%20geology%20and%20engineering%20problems%20as%20it%20is%20involved%20in%20fundamental%20issues%20concerning%20strain%20and%20failure%20of%20rock%20and%20soil%2C%20as%20well%20as%20of%20other%20porous%20materials%20such%20as%20concrete%2C%20metal%20powders%2C%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/1023078" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/1023078" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/1023078" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> <a href="http://www.citeulike.org/posturl?url=https://www.mdpi.com/1023078" title="CiteULike" target="_blank" rel="noopener noreferrer"> <i class="fa fa-citeulike-square" style="font-size: 30px;"></i> </a> </div> </div> <div class="small-9 columns"> <input id="js-clipboard-text" type="text" readonly value="https://www.mdpi.com/1023078" /> </div> <div class="small-3 columns text-left"> <a class="button button--color js-clipboard-copy" data-clipboard-target="#js-clipboard-text">Copy</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="weixin-share-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="weixin-share-modal-title" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="weixin-share-modal-title" style="margin: 0;">Share</h2> </div> <div class="small-12 columns"> <div class="weixin-qr-code-section"> <?xml version="1.0" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <svg width="300" height="300" version="1.1" xmlns="http://www.w3.org/2000/svg"> <desc>https://www.mdpi.com/1023078</desc> <g id="elements" fill="black" stroke="none"> <rect x="0" y="0" width="12" height="12" /> <rect x="12" y="0" width="12" height="12" /> <rect x="24" y="0" width="12" height="12" /> <rect x="36" y="0" width="12" height="12" /> <rect x="48" y="0" width="12" height="12" /> <rect x="60" y="0" width="12" height="12" /> <rect x="72" y="0" width="12" height="12" /> <rect x="120" y="0" width="12" height="12" /> <rect x="168" y="0" width="12" height="12" /> <rect x="180" y="0" width="12" height="12" /> <rect x="216" y="0" width="12" height="12" /> <rect x="228" y="0" width="12" height="12" /> <rect x="240" y="0" width="12" height="12" /> <rect x="252" y="0" width="12" height="12" /> <rect x="264" y="0" width="12" height="12" /> <rect x="276" y="0" width="12" height="12" /> <rect x="288" y="0" width="12" height="12" /> <rect x="0" y="12" width="12" height="12" /> <rect x="72" y="12" width="12" height="12" /> <rect x="108" y="12" width="12" height="12" /> <rect x="180" y="12" width="12" height="12" /> <rect x="216" y="12" width="12" height="12" /> <rect x="288" y="12" width="12" height="12" /> <rect x="0" y="24" width="12" height="12" /> <rect x="24" y="24" width="12" height="12" /> <rect x="36" y="24" width="12" height="12" /> <rect x="48" y="24" width="12" height="12" /> <rect x="72" y="24" width="12" height="12" /> <rect x="96" y="24" width="12" height="12" /> <rect x="132" y="24" width="12" height="12" /> <rect x="180" y="24" width="12" height="12" /> <rect x="216" y="24" width="12" height="12" /> <rect x="240" y="24" width="12" height="12" /> <rect x="252" y="24" width="12" height="12" /> <rect x="264" y="24" width="12" height="12" /> <rect x="288" y="24" width="12" height="12" /> <rect x="0" y="36" width="12" height="12" /> <rect x="24" y="36" width="12" height="12" /> <rect x="36" y="36" width="12" height="12" /> <rect x="48" y="36" width="12" height="12" /> <rect x="72" y="36" width="12" height="12" /> <rect x="108" y="36" width="12" height="12" /> <rect x="168" y="36" width="12" height="12" /> <rect x="216" y="36" width="12" height="12" /> <rect x="240" y="36" width="12" height="12" /> <rect x="252" y="36" width="12" height="12" /> <rect x="264" y="36" width="12" height="12" /> <rect x="288" y="36" width="12" height="12" /> <rect x="0" y="48" width="12" height="12" /> <rect x="24" y="48" width="12" height="12" /> <rect x="36" y="48" width="12" height="12" /> <rect x="48" y="48" width="12" height="12" /> <rect x="72" y="48" width="12" height="12" /> <rect x="108" y="48" width="12" height="12" /> <rect x="144" y="48" width="12" height="12" /> <rect x="156" y="48" width="12" height="12" /> <rect x="168" y="48" width="12" height="12" /> <rect x="180" y="48" width="12" height="12" /> <rect x="192" y="48" width="12" height="12" /> <rect x="216" y="48" width="12" height="12" /> <rect x="240" y="48" width="12" height="12" /> <rect x="252" y="48" width="12" height="12" /> <rect x="264" y="48" width="12" height="12" /> <rect x="288" y="48" width="12" height="12" /> <rect x="0" y="60" width="12" height="12" /> <rect x="72" y="60" width="12" height="12" /> <rect x="120" y="60" width="12" height="12" /> <rect x="132" y="60" width="12" height="12" /> <rect x="168" y="60" width="12" height="12" /> <rect x="180" y="60" width="12" height="12" /> <rect x="192" y="60" width="12" height="12" /> <rect x="216" y="60" width="12" height="12" /> <rect x="288" y="60" width="12" height="12" /> <rect x="0" y="72" width="12" height="12" /> <rect x="12" y="72" width="12" height="12" /> <rect x="24" y="72" width="12" height="12" /> <rect x="36" y="72" width="12" height="12" /> <rect x="48" y="72" width="12" height="12" /> <rect x="60" y="72" width="12" height="12" /> <rect x="72" y="72" width="12" height="12" /> <rect x="96" y="72" width="12" height="12" /> <rect x="120" y="72" width="12" height="12" /> <rect x="144" y="72" width="12" height="12" /> <rect x="168" y="72" width="12" height="12" /> <rect x="192" y="72" width="12" height="12" /> <rect x="216" y="72" width="12" height="12" /> <rect x="228" y="72" width="12" height="12" /> <rect x="240" y="72" width="12" height="12" /> <rect x="252" y="72" width="12" height="12" /> <rect x="264" y="72" width="12" height="12" /> <rect x="276" y="72" width="12" height="12" /> <rect x="288" y="72" width="12" height="12" /> <rect x="96" y="84" width="12" height="12" /> <rect x="132" y="84" width="12" height="12" /> <rect x="156" y="84" width="12" height="12" /> <rect x="168" y="84" width="12" height="12" /> <rect x="180" y="84" width="12" height="12" /> <rect x="0" y="96" width="12" height="12" /> <rect x="12" y="96" width="12" height="12" /> <rect x="24" y="96" width="12" height="12" /> <rect x="48" y="96" width="12" height="12" /> <rect x="60" y="96" width="12" height="12" /> <rect x="72" y="96" width="12" height="12" /> <rect x="84" y="96" width="12" height="12" /> <rect x="96" y="96" width="12" height="12" /> <rect x="144" y="96" width="12" height="12" /> <rect x="156" y="96" width="12" height="12" /> <rect x="180" y="96" width="12" height="12" /> <rect x="192" y="96" width="12" height="12" /> <rect x="204" y="96" width="12" height="12" /> <rect x="216" y="96" width="12" height="12" /> <rect x="264" y="96" width="12" height="12" /> <rect x="0" y="108" width="12" height="12" /> <rect x="36" y="108" width="12" height="12" /> <rect x="84" y="108" width="12" height="12" /> <rect x="108" y="108" width="12" height="12" /> <rect x="132" y="108" width="12" height="12" /> <rect x="192" y="108" width="12" height="12" /> <rect x="216" y="108" width="12" height="12" /> <rect x="288" y="108" width="12" height="12" /> <rect x="24" y="120" width="12" height="12" /> <rect x="60" y="120" width="12" height="12" /> <rect x="72" y="120" width="12" height="12" /> <rect x="120" y="120" width="12" height="12" /> <rect x="132" y="120" width="12" height="12" /> <rect x="192" y="120" width="12" height="12" /> <rect x="204" y="120" width="12" height="12" /> <rect x="216" y="120" width="12" height="12" /> <rect x="228" y="120" width="12" height="12" /> <rect x="264" y="120" width="12" height="12" /> <rect x="276" y="120" width="12" height="12" /> <rect x="288" y="120" width="12" height="12" /> <rect x="0" y="132" width="12" height="12" /> <rect x="24" y="132" width="12" height="12" /> <rect x="60" y="132" width="12" height="12" /> <rect x="84" y="132" width="12" height="12" /> <rect x="108" y="132" width="12" height="12" /> <rect x="120" y="132" width="12" height="12" /> <rect x="132" y="132" width="12" height="12" /> <rect x="156" y="132" width="12" height="12" /> <rect x="168" y="132" width="12" height="12" /> <rect x="180" y="132" width="12" height="12" /> <rect x="216" y="132" width="12" height="12" /> <rect x="276" y="132" width="12" height="12" /> <rect x="36" y="144" width="12" height="12" /> <rect x="72" y="144" width="12" height="12" /> <rect x="96" y="144" width="12" height="12" /> <rect x="120" y="144" width="12" height="12" /> <rect x="144" y="144" width="12" height="12" /> <rect x="156" y="144" width="12" height="12" /> <rect x="168" y="144" width="12" height="12" /> <rect x="204" y="144" width="12" height="12" /> <rect x="216" y="144" width="12" height="12" /> <rect x="228" y="144" width="12" height="12" /> <rect x="252" y="144" width="12" height="12" /> <rect x="276" y="144" width="12" height="12" /> <rect x="288" y="144" width="12" height="12" /> <rect x="36" y="156" width="12" height="12" /> <rect x="48" y="156" width="12" height="12" /> <rect x="60" y="156" width="12" height="12" /> <rect x="84" y="156" width="12" height="12" /> <rect x="96" y="156" width="12" height="12" /> <rect x="108" y="156" width="12" height="12" /> <rect x="120" y="156" width="12" height="12" /> <rect x="156" y="156" width="12" height="12" /> <rect x="192" y="156" width="12" height="12" /> <rect x="216" y="156" width="12" height="12" /> <rect x="252" y="156" width="12" height="12" /> <rect x="288" y="156" width="12" height="12" /> <rect x="0" y="168" width="12" height="12" /> <rect x="24" y="168" width="12" height="12" /> <rect x="36" y="168" width="12" height="12" /> <rect x="72" y="168" width="12" height="12" /> <rect x="96" y="168" width="12" height="12" /> <rect x="120" y="168" width="12" height="12" /> <rect x="132" y="168" width="12" height="12" /> <rect x="144" y="168" width="12" height="12" /> <rect x="168" y="168" width="12" height="12" /> <rect x="192" y="168" width="12" height="12" /> <rect x="204" y="168" width="12" height="12" /> <rect x="216" y="168" width="12" height="12" /> <rect x="228" y="168" width="12" height="12" /> <rect x="264" y="168" width="12" height="12" /> <rect x="276" y="168" width="12" height="12" /> <rect x="288" y="168" width="12" height="12" /> <rect x="12" y="180" width="12" height="12" /> <rect x="24" y="180" width="12" height="12" /> <rect x="48" y="180" width="12" height="12" /> <rect x="84" y="180" width="12" height="12" /> <rect x="96" y="180" width="12" height="12" /> <rect x="132" y="180" width="12" height="12" /> <rect x="144" y="180" width="12" height="12" /> <rect x="156" y="180" width="12" height="12" /> <rect x="180" y="180" width="12" height="12" /> <rect x="192" y="180" width="12" height="12" /> <rect x="216" y="180" width="12" height="12" /> <rect x="240" y="180" width="12" height="12" /> <rect x="276" y="180" width="12" height="12" /> <rect x="0" y="192" width="12" height="12" /> <rect x="24" y="192" width="12" height="12" /> <rect x="60" y="192" width="12" height="12" /> <rect x="72" y="192" width="12" height="12" /> <rect x="132" y="192" width="12" height="12" /> <rect x="192" y="192" width="12" height="12" /> <rect x="204" y="192" width="12" height="12" /> <rect x="216" y="192" width="12" height="12" /> <rect x="228" y="192" width="12" height="12" /> <rect x="240" y="192" width="12" height="12" /> <rect x="252" y="192" width="12" height="12" /> <rect x="96" y="204" width="12" height="12" /> <rect x="120" y="204" width="12" height="12" /> <rect x="132" y="204" width="12" height="12" /> <rect x="156" y="204" width="12" height="12" /> <rect x="180" y="204" width="12" height="12" /> <rect x="192" y="204" width="12" height="12" /> <rect x="240" y="204" width="12" height="12" /> <rect x="252" y="204" width="12" height="12" /> <rect x="276" y="204" width="12" height="12" /> <rect x="288" y="204" width="12" height="12" /> <rect x="0" y="216" width="12" height="12" /> <rect x="12" y="216" width="12" height="12" /> <rect x="24" y="216" width="12" height="12" /> <rect x="36" y="216" width="12" height="12" /> <rect x="48" y="216" width="12" height="12" /> <rect x="60" y="216" width="12" height="12" /> <rect x="72" y="216" width="12" height="12" /> <rect x="96" y="216" width="12" height="12" /> <rect x="108" y="216" width="12" height="12" /> <rect x="120" y="216" width="12" height="12" /> <rect x="144" y="216" width="12" height="12" /> <rect x="156" y="216" width="12" height="12" /> <rect x="180" y="216" width="12" height="12" /> <rect x="192" y="216" width="12" height="12" /> <rect x="216" y="216" width="12" height="12" /> <rect x="240" y="216" width="12" height="12" /> <rect x="252" y="216" width="12" height="12" /> <rect x="276" y="216" width="12" height="12" /> <rect x="288" y="216" width="12" height="12" /> <rect x="0" y="228" width="12" height="12" /> <rect x="72" y="228" width="12" height="12" /> <rect x="96" y="228" width="12" height="12" /> <rect x="108" y="228" width="12" height="12" /> <rect x="120" y="228" width="12" height="12" /> <rect x="168" y="228" width="12" height="12" /> <rect x="192" y="228" width="12" height="12" /> <rect x="240" y="228" width="12" height="12" /> <rect x="252" y="228" width="12" height="12" /> <rect x="276" y="228" width="12" height="12" /> <rect x="0" y="240" width="12" height="12" /> <rect x="24" y="240" width="12" height="12" /> <rect x="36" y="240" width="12" height="12" /> <rect x="48" y="240" width="12" height="12" /> <rect x="72" y="240" width="12" height="12" /> <rect x="96" y="240" width="12" height="12" /> <rect x="120" y="240" width="12" height="12" /> <rect x="144" y="240" width="12" height="12" /> <rect x="168" y="240" width="12" height="12" /> <rect x="192" y="240" width="12" height="12" /> <rect x="204" y="240" width="12" height="12" /> <rect x="216" y="240" width="12" height="12" /> <rect x="228" y="240" width="12" height="12" /> <rect x="240" y="240" width="12" height="12" /> <rect x="252" y="240" width="12" height="12" /> <rect x="276" y="240" width="12" height="12" /> <rect x="288" y="240" width="12" height="12" /> <rect x="0" y="252" width="12" height="12" /> <rect x="24" y="252" width="12" height="12" /> <rect x="36" y="252" width="12" height="12" /> <rect x="48" y="252" width="12" height="12" /> <rect x="72" y="252" width="12" height="12" /> <rect x="132" y="252" width="12" height="12" /> <rect x="144" y="252" width="12" height="12" /> <rect x="156" y="252" width="12" height="12" /> <rect x="168" y="252" width="12" height="12" /> <rect x="204" y="252" width="12" height="12" /> <rect x="228" y="252" width="12" height="12" /> <rect x="240" y="252" width="12" height="12" /> <rect x="252" y="252" width="12" height="12" /> <rect x="264" y="252" width="12" height="12" /> <rect x="0" y="264" width="12" height="12" /> <rect x="24" y="264" width="12" height="12" /> <rect x="36" y="264" width="12" height="12" /> <rect x="48" y="264" width="12" height="12" /> <rect x="72" y="264" width="12" height="12" /> <rect x="96" y="264" width="12" height="12" /> <rect x="108" y="264" width="12" height="12" /> <rect x="144" y="264" width="12" height="12" /> <rect x="168" y="264" width="12" height="12" /> <rect x="180" y="264" width="12" height="12" /> <rect x="240" y="264" width="12" height="12" /> <rect x="288" y="264" width="12" height="12" /> <rect x="0" y="276" width="12" height="12" /> <rect x="72" y="276" width="12" height="12" /> <rect x="96" y="276" width="12" height="12" /> <rect x="108" y="276" width="12" height="12" /> <rect x="132" y="276" width="12" height="12" /> <rect x="156" y="276" width="12" height="12" /> <rect x="180" y="276" width="12" height="12" /> <rect x="192" y="276" width="12" height="12" /> <rect x="216" y="276" width="12" height="12" /> <rect x="240" y="276" width="12" height="12" /> <rect x="252" y="276" width="12" height="12" /> <rect x="276" y="276" width="12" height="12" /> <rect x="0" y="288" width="12" height="12" /> <rect x="12" y="288" width="12" height="12" /> <rect x="24" y="288" width="12" height="12" /> <rect x="36" y="288" width="12" height="12" /> <rect x="48" y="288" width="12" height="12" /> <rect x="60" y="288" width="12" height="12" /> <rect x="72" y="288" width="12" height="12" /> <rect x="96" y="288" width="12" height="12" /> <rect x="108" y="288" width="12" height="12" /> <rect x="120" y="288" width="12" height="12" /> <rect x="144" y="288" width="12" height="12" /> <rect x="168" y="288" width="12" height="12" /> <rect x="180" y="288" width="12" height="12" /> <rect x="192" y="288" width="12" height="12" /> <rect x="228" y="288" width="12" height="12" /> <rect x="276" y="288" width="12" height="12" /> <rect x="288" y="288" width="12" height="12" /> </g> </svg> </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <a href="#" class="back-to-top"><span class="show-for-medium-up">Back to Top</span><span class="show-for-small">Top</span></a> <script data-cfasync="false" src="/cdn-cgi/scripts/5c5dd728/cloudflare-static/email-decode.min.js"></script><script src="https://pub.mdpi-res.com/assets/js/modernizr-2.8.3.min.js?5227e0738f7f421d?1740558760"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery-1.12.4.min.js?4f252523d4af0b47?1740558760"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.min.js?6b2ec41c18b29054?1740558760"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.equalizer.min.js?0f6c549b75ec554c?1740558760"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.multiselect.js?0edd3998731d1091?1740558760"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.cycle2.min.js?63413052928f97ee?1740558760"></script> <script> // old browser fix - this way the console log rows won't throw (silent) errors in browsers not supporting console log if (!window.console) window.console = {}; if (!window.console.log) window.console.log = function () { }; var currentJournalNameSystem = "geosciences"; $(document).ready(function() { $('select.foundation-select').multiselect({ search: true, minHeight: 130, maxHeight: 130, }); $(document).foundation({ orbit: { timer_speed: 4000, }, reveal: { animation: 'fadeAndPop', animation_speed: 100, } }); $(".chosen-select").each(function(element) { var maxSelected = (undefined !== $(this).data('maxselectedoptions') ? $(this).data('maxselectedoptions') : 100); $(this).on('chosen:ready', function(event, data) { var select = $(data.chosen.form_field); if (select.attr('id') === 'journal-browser-volume') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Volume_Options'); } if (select.attr('id') === 'journal-browser-issue') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Issue_Options'); } }).chosen({ display_disabled_options: false, disable_search_threshold: 7, max_selected_options: maxSelected, width: "100%" }); }); $(".toEncode").each(function(e) { var oldHref = $(this).attr("href"); var newHref = oldHref.replace('.botdefense.please.enable.javascript.','@'); $(this).attr("href", newHref); if (!$(this).hasClass("emailCaptcha")) { $(this).html(newHref.replace('mailto:', '')); } $(this).removeClass("visibility-hidden"); }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { $(document).foundation('equalizer', 'reflow'); }); // fix the images that have tag height / width defined // otherwise the default foundation styles overwrite the tag definitions $("img").each(function() { if ($(this).attr('width') != undefined || $(this).attr('height') != undefined) { $(this).addClass("img-fixed"); } }); $("#basic_search, #advanced_search").submit(function(e) { var searchArguments = false; $(this).find("input,select").not("#search,.search-button").each(function() { if (undefined === $(this).val() || "" === $(this).val()) { $(this).attr('name', null); } else { $(this).attr('name'); searchArguments = true; } }); if (!searchArguments) { window.location = $(this).attr('action'); return false; } }); $(".hide-show-desktop-option").click(function(e) { e.preventDefault(); var parentDiv = $(this).closest("div"); $.ajax({ url: $(this).attr('href'), success: function(msg) { parentDiv.removeClass().hide(); } }); }); $(".generic-toggleable-header").click(function(e) { $(this).toggleClass("active"); $(this).next(".generic-toggleable-content").toggleClass("active"); }); /* * handle whole row as a link if the row contains only one visible link */ $("table.new tr").hover(function() { if ($(this).find("td:visible a").length == 1) { $(this).addClass("single-link"); } }, function() { $(this).removeClass("single-link"); }); $("table.new:not(.table-of-tables)").on("click", "tr.single-link", function(e) { var target = $(e.target); if (!e.ctrlKey && !target.is("a")) { $(this).find("td:visible a")[0].click(); } }); $(document).on("click", ".custom-accordion-for-small-screen-link", function(e) { if ($(this).closest("#basic_search").length > 0) { if ($(".search-container__advanced").first().is(":visible")) { openAdvanced() } } if (Foundation.utils.is_small_only()) { if ($(this).hasClass("active")) { $(this).removeClass("active"); $(this).next(".custom-accordion-for-small-screen-content").addClass("show-for-medium-up"); } else { $(this).addClass("active"); $(this).next(".custom-accordion-for-small-screen-content").removeClass("show-for-medium-up"); $(document).foundation('orbit', 'reflow'); } } if (undefined !== $(this).data("callback")) { var customCallback = $(this).data("callback"); func = window[customCallback]; func(); } }); $(document).on("click", ".js-open-small-search", function(e) { e.preventDefault(); $(this).toggleClass("active").closest(".tab-bar").toggleClass("active"); $(".search-container").toggleClass("hide-for-small-down"); }); $(document).on("click", ".js-open-menu", function(e) { $(".search-container").addClass("hide-for-small-down"); }); $(window).on('resize', function() { recalculate_main_browser_position(); recalculate_responsive_moving_containers(); }); updateSearchLabelVisibilities(); recalculate_main_browser_position(); recalculate_responsive_moving_containers(); if (window.document.documentMode == 11) { $("<link/>", { rel: "stylesheet", type: "text/css", href: "https://fonts.googleapis.com/icon?family=Material+Icons"}).appendTo("head"); } }); function recalculate_main_browser_position() { if (Foundation.utils.is_small_only()) { if ($("#js-main-top-container").parent("#js-large-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-small-main-top-container")); } } else { if ($("#js-main-top-container").parent("#js-small-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-large-main-top-container")); } } } function recalculate_responsive_moving_containers() { $(".responsive-moving-container.large").each(function() { var previousParent = $(".responsive-moving-container.active[data-id='"+$(this).data("id")+"']"); var movingContent = previousParent.html(); if (Foundation.utils.is_small_only()) { var currentParent = $(".responsive-moving-container.small[data-id='"+$(this).data("id")+"']"); } else if (Foundation.utils.is_medium_only()) { var currentParent = $(".responsive-moving-container.medium[data-id='"+$(this).data("id")+"']"); } else { var currentParent = $(".responsive-moving-container.large[data-id='"+$(this).data("id")+"']"); } if (previousParent.attr("class") !== currentParent.attr("class")) { currentParent.html(movingContent); previousParent.html(); currentParent.addClass("active"); previousParent.removeClass("active"); } }); } // cookies allowed is checked from a) local storage and b) from server separately so that the footer bar doesn't // get included in the custom page caches function checkCookiesAllowed() { var cookiesEnabled = localStorage.getItem("mdpi_cookies_enabled"); if (null === cookiesEnabled) { $.ajax({ url: "/ajax_cookie_value/mdpi_cookies_accepted", success: function(data) { if (data.value) { localStorage.setItem("mdpi_cookies_enabled", true); checkDisplaySurvey(); } else { $(".js-allow-cookies").show(); } } }); } else { checkDisplaySurvey(); } } function checkDisplaySurvey() { } $(".js-toggle-desktop-layout-link").css("display", "inline-block"); var hash = $(location).attr('hash'); if ("#share" === hash) { if (1 === $("#main-share-modal").length) { $('#main-share-modal').foundation('reveal', 'open'); } } </script> <script src="https://pub.mdpi-res.com/assets/js/lib.js?d08246beebd631b7?1740558760"></script> <script src="https://pub.mdpi-res.com/assets/js/mdpi.js?c267ce58392b15da?1740558760"></script> <script>var banners_url = 'https://serve.mdpi.com';</script> <script type='text/javascript' src='https://pub.mdpi-res.com/assets/js/ifvisible.min.js?c621d19ecb761212?1740558760'></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?ac4ea55275297c15?1740558760"></script> <script src="https://pub.mdpi-res.com/assets/js/clipboard.min.js?3f3688138a1b9fc4?1740558760"></script> <script type="text/javascript"> $(document).ready(function() { var helpFunctions = $(".middle-column__help__fixed"); var leftColumnAffix = $(".left-column__fixed"); var middleColumn = $("#middle-column"); var clone = null; helpFunctions.affix({ offset: { top: function() { return middleColumn.offset().top - 8 - (Foundation.utils.is_medium_only() ? 30 : 0); }, bottom: function() { return $("#footer").innerHeight() + 74 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); if (leftColumnAffix.length > 0) { clone = leftColumnAffix.clone(); clone.addClass("left-column__fixed__affix"); clone.insertBefore(leftColumnAffix); clone.css('width', leftColumnAffix.outerWidth() + 50); clone.affix({ offset: { top: function() { return leftColumnAffix.offset().top - 30 - (Foundation.utils.is_medium_only() ? 50 : 0); }, bottom: function() { return $("#footer").innerHeight() + 92 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); } $(window).on("resize", function() { if (clone !== null) { clone.css('width', leftColumnAffix.outerWidth() + 50); } }); new ClipboardJS('.js-clipboard-copy'); }); </script> <script src="https://pub.mdpi-res.com/assets/js/jquery-ui-1.13.2.min.js?1e2047978946a1d2?1740558760"></script> <script src="https://pub.mdpi-res.com/assets/js/slick.min.js?d5a61c749e44e471?1740558760"></script> <script> $(document).ready(function() { $(".link-article-menu").click(function(e) { e.preventDefault(); $(this).find('span').toggle(); $(this).next("div").toggleClass("active"); }); $(".js-similarity-related-articles").click(function(e) { e.preventDefault(); if ('' !== $('#recommended-articles-modal').attr('data-url')) { $('#recommended-articles-modal').foundation('reveal', 'open', $('#recommended-articles-modal').attr('data-url')); } }); $.ajax({ url: "/article/511539/similarity-related/show-link", success: function(result) { if (result.show) { $('#recommended-articles-modal').attr('data-url', result.link); $('.js-article-similarity-container').show(); } } }); $("#recommended-articles-modal").on("click", ".ga-title-link-recommended-article", function(e) { var clickEventUrl = $(this).data("click-event-url"); if (typeof clickEventUrl !== "undefined") { fetch(clickEventUrl, { method: "GET", mode: "no-cors" }); } }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { var modal = $(this); if (modal.attr('id') === "author-biographies-modal") { modal.find('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, draggable: false, }); modal.find('.multiple-items').slick('refresh'); } }); }); </script> <script type="text/javascript"> if (-1 !== window.location.href.indexOf("?src=")) { window.history.replaceState({}, '', `${location.pathname}`); } $(document).ready(function() { var scifeedCounter = 0; var search = window.location.search; var mathjaxReady = false; // late image file loading $("img[data-lsrc]").each(function() { $(this).attr("src", $(this).data("lsrc")); }); // late mathjax initialization var head = document.getElementsByTagName("head")[0]; var script = document.createElement("script"); script.type = "text/x-mathjax-config"; script[(window.opera ? "innerHTML" : "text")] = "MathJax.Hub.processSectionDelay = 0;\n" + "MathJax.Hub.Config({\n" + " \"menuSettings\": {\n" + " CHTMLpreview: false\n" + " },\n" + " \"CHTML-preview\":{\n" + " disabled: true\n" + " },\n" + " \"HTML-CSS\": {\n" + " scale: 90,\n" + " availableFonts: [],\n" + " preferredFont: null,\n" + " preferredFonts: null,\n" + " webFont:\"Gyre-Pagella\",\n" + " imageFont:'TeX',\n" + " undefinedFamily:\"'Arial Unicode MS',serif\",\n" + " linebreaks: { automatic: false }\n" + " },\n" + " \"TeX\": {\n" + " extensions: ['noErrors.js'],\n" + " noErrors: {\n" + " inlineDelimiters: [\"\",\"\"],\n" + " multiLine: true,\n" + " style: {\n" + " 'font-size': '90%',\n" + " 'text-align': 'left',\n" + " 'color': 'black',\n" + " 'padding': '1px 3px',\n" + " 'border': '1px solid'\n" + " }\n" + " }\n" + " }\n" + "});\n" + "MathJax.Hub.Register.StartupHook('End', function() {\n" + " refreshMathjaxWidths();\n" + " mathjaxReady = true;\n" + "});\n" + "MathJax.Hub.Startup.signal.Interest(function (message) {\n" + " if (message == 'End') {\n" + " var hypoLink = document.getElementById('hypothesis_frame');\n" + " if (null !== hypoLink) {\n" + " hypoLink.setAttribute('src', 'https://commenting.mdpi.com/embed.js');\n" + " }\n" + " }\n" + "});"; head.appendChild(script); script = document.createElement("script"); script.type = "text/javascript"; script.src = "https://pub.mdpi-res.com/bundles/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"; head.appendChild(script); // article version checker if (0 === search.indexOf('?type=check_update&version=')) { $.ajax({ url: "/2076-3263/11/3/119" + "/versioncheck" + search, success: function(result) { $(".js-check-update-container").html(result); } }); } $('#feed_option').click(function() { // tracker if ($('#scifeed_clicked').length<1) { $(this).append('<span style="display:none" id="scifeed_clicked">done</span>'); } $('#feed_data').toggle('slide', { direction: 'up'}, '1000'); // slideToggle(700); OR toggle(700) $("#scifeed_error_msg").html('').hide(); $("#scifeed_notice_msg").html('').hide(); }); $('#feed_option').click(function(event) { setTimeout(function(){ var captchaSection = $("#captchaSection"); captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); // var img = captchaSection.find('img'); // img.attr('src', img.data('url') + "?" + (new Date()).getTime()); // $(".captcha_reload").trigger("click"); var img = document.getElementById('gregwar_captcha_scifeed'); img.src = '/generate-captcha/gcb_captcha?n=' + (new Date()).getTime(); },800); }); $(document).on('click', '.split_feeds', function() { var name = $( this ).attr('name'); var flag = 1 - ($(this).is(":checked")*1); $('.split_feeds').each(function (index) { if ($( this ).attr('name') !== name) { $(this)[0].checked = flag; } }); }); $(document).on('click', '#scifeed_submit, #scifeed_submit1', function(event) { event.preventDefault(); $(".captcha_reload").trigger("click"); $("#scifeed_error_msg").html(""); $("#scifeed_error_msg").hide(); }); $(document).on('click', '.subscription_toggle', function(event) { if ($(this).val() === 'Create SciFeed' && $('#scifeed_hidden_flag').length>0) { event.preventDefault(); // alert('Here there would be a captcha because user is not logged in'); var captchaSection = $("#captchaSection"); if (captchaSection.hasClass('ui-helper-hidden')) { captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); var img = captchaSection.find('img'); img.attr('src', img.data('url') + "?" + (new Date()).getTime()); $("#reloadCaptcha").trigger("click"); } } }); $(document).on('click', '.scifeed_msg', function(){ $(this).hide(); }); $(document).on('click', '.article-scilit-search', function(e) { e.preventDefault(); var data = $(".article-scilit-search-data").val(); var dataArray = data.split(';').map(function(keyword) { return "(\"" + keyword.trim() + "\")"; }); var searchQuery = dataArray.join(" OR "); var searchUrl = encodeURI("https://www.scilit.com/articles/search?q="+ searchQuery + "&advanced=1&highlight=1"); var win = window.open(searchUrl, '_blank'); if (win) { win.focus(); } else { window.location(searchUrl); } }); display_stats(); citedCount(); follow_goto(); // Select the node that will be observed for mutations const targetNodes = document.getElementsByClassName('hypothesis-count-container'); // Options for the observer (which mutations to observe) const config = { attributes: false, childList: true, subtree: false }; // Callback function to execute when mutations are observed const callback = function(mutationList, observer) { for(const mutation of mutationList) { if (mutation.type === 'childList') { let node = $(mutation.target); if (parseInt(node.html()) > 0) { node.show(); } } } }; // Create an observer instance linked to the callback function const observer = new MutationObserver(callback); // Start observing the target node for configured mutations for(const targetNode of targetNodes) { observer.observe(targetNode, config); } // Select the node that will be observed for mutations const mathjaxTargetNode = document.getElementById('middle-column'); // Callback function to execute when mutations are observed const mathjaxCallback = function(mutationList, observer) { if (mathjaxReady && typeof(MathJax) !== 'undefined') { refreshMathjaxWidths(); } }; // Create an observer instance linked to the callback function const mathjaxObserver = new ResizeObserver(mathjaxCallback); // Start observing the target node for configured mutations mathjaxObserver.observe(mathjaxTargetNode); }); /* END $(document).ready */ function refreshMathjaxWidths() { let width = ($('.html-body').width()*0.9) + "px"; $('.MathJax_Display').css('max-width', width); $('.MJXc-display').css('max-width', width); } function sendScifeedFrom(form) { if (!$('#scifeed_email').val().trim()) { // empty email alert('Please, provide an email for subscribe to this scifeed'); return false; } else if (!$('#captchaSection').hasClass('ui-helper-hidden') && !$('#captchaSection').find('input').val().trim()) { // empty captcha alert('Please, fill the captcha field.'); return false; } else if( ((($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds:checked').length))<1) || ($('#scifeed_kwd_txt').length < 0 && !$('#scifeed_kwd_txt').val().trim()) || ($('#scifeed_author_txt').length<0 &&!$('#scifeed_author_txt').val().trim()) ) { alert('You did not select anything to subscribe'); return false; } else if(($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds2:checked').length)<1){ alert("You did not select anything to subscribe"); return false; } else { var url = $('#scifeed_subscribe_url').html(); var formData = $(form).serializeArray(); $.post(url, formData).done(function (data) { if (JSON.parse(data)) { $('.scifeed_msg').hide(); var res = JSON.parse(data); var successFeeds = 0; var errorFeeds = 0; if (res) { $('.scifeed_msg').html(''); $.each(res, function (index, val) { if (val) { if (val.error) { errorFeeds++; $("#scifeed_error_msg").append(index+' - '+val.error+'<br>'); } if (val.notice) // for successful feed creation { successFeeds++; // $("#scifeed_notice_msg").append(index+' - '+val.notice+'<br>'); $("#scifeed_notice_msg").append('<li>'+index+'</li>'); } } }); if (successFeeds>0) { text = $('#scifeed_notice_msg').html(); text = 'The following feed'+(successFeeds>1?'s have':' has')+ ' been sucessfully created:<br><ul>'+ text + '</ul>' +($('#scifeed_hidden_flag').length>0 ? 'You are not logged in, so you probably need to validate '+ (successFeeds>1?'them':' it')+'.<br>' :'' ) +'Please check your email'+(successFeeds>1?'s':'')+' for more details.'; //(successFeeds>1?' for each of them':'')+'.<br>'; $("#scifeed_notice_msg").html(text); $("#scifeed_notice_msg").show(); } if (errorFeeds>0) { $("#scifeed_error_msg").show();; } } $("#feed_data").hide(); } }); } } function follow_goto() { var hashStr = location.hash.replace("#",""); if(typeof hashStr !== 'undefined') { if( hashStr == 'supplementary') { document.getElementById('suppl_id').scrollIntoView(); } if( hashStr == 'citedby') { document.getElementById('cited_id').scrollIntoView(); } } } function cited() { $("#framed_div").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded"); if(loaded.innerHTML == "No") { // Load Xref result var container = document.getElementById("framed_div"); // This replace the content container.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1740558760\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; var url = "/citedby/10.3390%252Fgeosciences11030119/79"; $.post(url, function(result) { if (result.success) { container.innerHTML = result.view; } loaded.innerHTML = "Yes"; }); } } return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } function detect_device() { // Added by Bastien (18/08/2014): based on the http://detectmobilebrowsers.com/ detector var check = false; (function(a){if(/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino/i.test(a)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(a.substr(0,4)))check = true})(navigator.userAgent||navigator.vendor||window.opera); return check; } function display_stats(){ $("#article_stats_div").toggle(); return false; } /* * Cited By Scopus */ function citedCount(){ $("#framed_div_cited_count").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded_cite_count"); // to load only once the result! if(loaded.innerHTML == "No") { // Load Xref result var d = document.getElementById("framed_div_cited_count"); // This replace the content d.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1740558760\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; $.ajax({ method : "POST", url : "/cite-count/10.3390%252Fgeosciences11030119", success : function(data) { if (data.succ) { d.innerHTML = data.view; loaded.innerHTML = "Yes"; follow_goto(); } } }); } } // end else return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } </script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/highcharts.js?bdd06f45e34c33df?1740558760"></script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/modules/exporting.js?944dc938d06de3a8?1740558760"></script><script type="text/javascript" defer="defer"> var advancedStatsData; var selectedStatsType = "abstract"; $(function(){ var countWrapper = $('#counts-wrapper'); $('#author_stats_id #type_links a').on('click', function(e) { e.preventDefault(); selectedStatsType = $(this).data('type'); $('#article_advanced_stats').vectorMap('set', 'values', advancedStatsData[selectedStatsType]); $('#advanced_stats_max').html(advancedStatsData[selectedStatsType].max); $('#type_links a').removeClass('active'); $(this).addClass('active'); }); $.get('/2076-3263/11/3/119/stats', function (result) { if (!result.success) { return; } // process article metrics part in left column var viewNumber = countWrapper.find(".view-number"); viewNumber.html(result.metrics.views); viewNumber.parent().toggleClass("count-div--grey", result.metrics.views == 0); var downloadNumber = countWrapper.find(".download-number"); downloadNumber.html(result.metrics.downloads); downloadNumber.parent().toggleClass("count-div--grey", result.metrics.downloads == 0); var citationsNumber = countWrapper.find(".citations-number"); citationsNumber.html(result.metrics.citations); citationsNumber.parent().toggleClass("count-div--grey", result.metrics.citations == 0); if (result.metrics.views > 0 || result.metrics.downloads > 0 || result.metrics.citations > 0) { countWrapper.find("#js-counts-wrapper__views, #js-counts-wrapper__downloads").addClass("visible").show(); if (result.metrics.citations > 0) { countWrapper.find('.citations-number').html(result.metrics.citations).show(); countWrapper.find("#js-counts-wrapper__citations").addClass("visible").show(); } else { countWrapper.find("#js-counts-wrapper__citations").remove(); } $("[data-id='article-counters']").removeClass("hidden"); } if (result.metrics.altmetrics_score > 0) { $("#js-altmetrics-donut").show(); } // process view chart in main column var jsondata = result.chart; var series = new Array(); $.each(jsondata.elements, function(i, element) { var dataValues = new Array(); $.each(element.values, function(i, value) { dataValues.push(new Array(value.tip, value.value)); }); series[i] = {name: element.text, data:dataValues}; }); Highcharts.setOptions({ chart: { style: { fontFamily: 'Arial,sans-serif' } } }); $('#article_stats_swf').highcharts({ chart: { type: 'line', width: $("#tabs").width() //* 0.91 }, credits: { enabled: false }, exporting: { enabled: true }, title: { text: jsondata.title.text, x: -20 //center }, xAxis: { categories: jsondata.x_axis.labels.labels, offset: jsondata.x_axis.offset, labels:{ step: jsondata.x_axis.labels.steps, rotation: 30 } }, yAxis: { max: jsondata.y_axis.max, min: jsondata.y_axis.min, offset: jsondata.y_axis.offset, labels: { steps: jsondata.y_axis.steps }, title: { enabled: false } }, tooltip: { formatter: function (){ return this.key.replace("#val#", this.y); } }, legend: { align: 'top', itemDistance: 50 }, series: series }); }); $('#supplement_link').click(function() { document.getElementById('suppl_id').scrollIntoView(); }); $('#stats_link').click(function() { document.getElementById('stats_id').scrollIntoView(); }); // open mol viewer for molbank special supplementary files $('.showJmol').click(function(e) { e.preventDefault(); var jmolModal = $("#jmolModal"); var url = "/article/511539/jsmol_viewer/__supplementary_id__"; url = url.replace(/__supplementary_id__/g, $(this).data('index')); $('#jsmol-content').attr('src', url); jmolModal.find(".content").html($(this).data('description')); jmolModal.foundation("reveal", "open"); }); }); !function() { "use strict"; function e(e) { try { if ("undefined" == typeof console) return; "error"in console ? console.error(e) : console.log(e) } catch (e) {} } function t(e) { return d.innerHTML = '<a href="' + e.replace(/"/g, "&quot;") + '"></a>', d.childNodes[0].getAttribute("href") || "" } function n(n, c) { var o = ""; var k = parseInt(n.substr(c + 4, 2), 16); for (var i = c; i < n.length; i += 2) { if (i != c + 4) { var s = parseInt(n.substr(i, 2), 16) ^ k; o += String.fromCharCode(s); } } try { o = decodeURIComponent(escape(o)); } catch (error) { console.error(error); } return t(o); } function c(t) { for (var r = t.querySelectorAll("a"), c = 0; c < r.length; c++) try { var o = r[c] , a = o.href.indexOf(l); a > -1 && (o.href = "mailto:" + n(o.href, a + l.length)) } catch (i) { e(i) } } function o(t) { for (var r = t.querySelectorAll(u), c = 0; c < r.length; c++) try { var o = r[c] , a = o.parentNode , i = o.getAttribute(f); if (i) { var l = n(i, 0) , d = document.createTextNode(l); a.replaceChild(d, o) } } catch (h) { e(h) } } function a(t) { for (var r = t.querySelectorAll("template"), n = 0; n < r.length; n++) try { i(r[n].content) } catch (c) { e(c) } } function i(t) { try { c(t), o(t), a(t) } catch (r) { e(r) } } var l = "/cnd-cgi/l/email-protection#" , u = ".__cf_email__" , f = "data-cfemail" , d = document.createElement("div"); i(document), function() { var e = document.currentScript || document.scripts[document.scripts.length - 1]; e.parentNode.removeChild(e) }() }(); </script><script type="text/javascript"> function setCookie(cname, cvalue, ctime) { ctime = (typeof ctime === 'undefined') ? 10*365*24*60*60*1000 : ctime; // default => 10 years var d = new Date(); d.setTime(d.getTime() + ctime); // ==> 1 hour = 60*60*1000 var expires = "expires="+d.toUTCString(); document.cookie = cname + "=" + cvalue + "; " + expires +"; path=/"; } function getCookie(cname) { var name = cname + "="; var ca = document.cookie.split(';'); for(var i=0; i<ca.length; i++) { var c = ca[i]; while (c.charAt(0)==' ') c = c.substring(1); if (c.indexOf(name) == 0) return c.substring(name.length, c.length); } return ""; } </script><script type="text/javascript" src="https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js"></script><script> $(document).ready(function() { if ($("#js-similarity-related-data").length > 0) { $.ajax({ url: '/article/511539/similarity-related', success: function(response) { $("#js-similarity-related-data").html(response); $("#js-related-articles-menu").show(); $(document).foundation('tab', 'reflow'); MathJax.Hub.Queue(["Typeset", MathJax.Hub]); } }); } }); </script><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1740558760"><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1740558760"><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/magnific-popup.min.js?2be3d9e7dc569146?1740558760"></script><script> $(function() { $(".js-show-more-academic-editors").on("click", function(e) { e.preventDefault(); $(this).hide(); $(".academic-editor-container").removeClass("hidden"); }); }); </script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/vmap/jqvmap.min.css?126a06688aa11c13?1740558760"> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.min.js?935f68d33bdd88a1?1740558760"></script> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.world.js?16677403c0e1bef1?1740558760"></script> <script> function updateSlick() { $('.multiple-items').slick('setPosition'); } $(document).ready(function() { $('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, responsive: [ { breakpoint: 1024, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 600, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 480, settings: { slidesToShow: 1, slidesToScroll: 1, } } ] }); $('.multiple-items').show(); $(document).on('click', '.reviewReportSelector', function(e) { let path = $(this).attr('data-path'); handleReviews(path, $(this)); }); $(document).on('click', '.viewReviewReports', function(e) { let versionOne = $('#versionTab_1'); if (!versionOne.hasClass('activeTab')) { let path = $(this).attr('data-path'); handleReviews(path, versionOne); } location.href = "#reviewReports"; }); $(document).on('click', '.reviewersResponse, .authorResponse', function(e) { let version = $(this).attr('data-version'); let targetVersion = $('#versionTab_' + version); if (!targetVersion.hasClass('activeTab')) { let path = targetVersion.attr('data-path'); handleReviews(path, targetVersion); } location.href = $(this).attr('data-link'); }); $(document).on('click', '.tab', function (e) { e.preventDefault(); $('.tab').removeClass('activeTab'); $(this).addClass('activeTab') $('.tab').each(function() { $(this).closest('.tab-title').removeClass('active'); }); $(this).closest('.tab-title').addClass('active') }); }); function handleReviews(path, target) { $.ajax({ url: path, context: this, success: function (data) { $('.activeTab').removeClass('activeTab'); target.addClass('activeTab'); $('#reviewSection').html(data.view); }, error: function (xhr, ajaxOptions, thrownError) { console.log(xhr.status); console.log(thrownError); } }); } </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?v1?1740558760"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/storage.js?e9b262d3a3476d25?1740558760"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/jquery-scrollspy.js?09cbaec0dbb35a67?1740558760"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/magnific-popup.js?4a09c18460afb26c?1740558760"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/underscore.js?f893e294cde60c24?1740558760"></script> <script type="text/javascript"> $('document').ready(function(){ $("#left-column").addClass("show-for-large-up"); $("#middle-column").removeClass("medium-9").removeClass("left-bordered").addClass("medium-12"); $(window).on('resize scroll', function() { /* if ($('.button--drop-down').isInViewport($(".top-bar").outerHeight())) { */ if ($('.button--drop-down').isInViewport()) { $("#js-button-download").hide(); } else { $("#js-button-download").show(); } }); }); $(document).on('DOMNodeInserted', function(e) { var element = $(e.target); if (element.hasClass('menu') && element.hasClass('html-nav') ) { element.addClass("side-menu-ul"); } }); </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/articles.js?5118449d9ad8913a?1740558760"></script> <script> repositionOpenSideBar = function() { $('#left-column').addClass("show-for-large-up show-for-medium-up").show(); $('#middle-column').removeClass('large-12').removeClass('medium-12'); $('#middle-column').addClass('large-9'); } repositionCloseSideBar = function() { $('#left-column').removeClass("show-for-large-up show-for-medium-up").hide(); $('#middle-column').removeClass('large-9'); $('#middle-column').addClass('large-12').addClass('medium-12'); } </script> <!--[if lt IE 9]> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8.js?6eef8fcbc831f5bd?1740558760"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/jquery.xdomainrequest.min.js?a945caca315782b0?1740558760"></script> <![endif]--> <script>(function(){function c(){var b=a.contentDocument||a.contentWindow.document;if(b){var d=b.createElement('script');d.innerHTML="window.__CF$cv$params={r:'9182b937fc84fe18',t:'MTc0MDYwMjE0Ny4wMDAwMDA='};var a=document.createElement('script');a.nonce='';a.src='/cdn-cgi/challenge-platform/scripts/jsd/main.js';document.getElementsByTagName('head')[0].appendChild(a);";b.getElementsByTagName('head')[0].appendChild(d)}}if(document.body){var a=document.createElement('iframe');a.height=1;a.width=1;a.style.position='absolute';a.style.top=0;a.style.left=0;a.style.border='none';a.style.visibility='hidden';document.body.appendChild(a);if('loading'!==document.readyState)c();else if(window.addEventListener)document.addEventListener('DOMContentLoaded',c);else{var e=document.onreadystatechange||function(){};document.onreadystatechange=function(b){e(b);'loading'!==document.readyState&&(document.onreadystatechange=e,c())}}}})();</script></body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10