CINXE.COM
Search results for: blowing agent
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: blowing agent</title> <meta name="description" content="Search results for: blowing agent"> <meta name="keywords" content="blowing agent"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="blowing agent" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="blowing agent"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1585</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: blowing agent</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1585</span> Properties of Rigid Polyurethane Foam for Imitation Wood Blown by Distilled Water and Cyclopentane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratchanon%20Boonachathong">Ratchanon Boonachathong</a>, <a href="https://publications.waset.org/abstracts/search?q=Bordin%20Kaewnok"> Bordin Kaewnok</a>, <a href="https://publications.waset.org/abstracts/search?q=Suksun%20Amornraksa"> Suksun Amornraksa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rigid polyurethane foam (RPUF) used for imitation wood is typically prepared by using 1-Dichloro-1-fluoroethane (HCFC-141b) as a blowing agent. However, this chemical is a hydrofluorocarbon which severely causes ozone depletion to the atmosphere. In this work, a more environmental-friendly RPUF was prepared by using distilled water and cyclopentane (CP) as alternative blowing agent. Several properties of the prepared RPUF were investigated and measured such as density (kg/m³), surface hardness (shore D), and glass transition temperature (°C). It was found that when the amount of the blowing agents decreased, the foam density is increased as well as the surface hardness and glass transition temperature. The results showed that the proper amount of water and cylopentane blowing agent is around 0.3–1.2% and 0.5-1.3% respectively. And the new RPUF produced has a good potential to substitute for a conventional RPUF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blowing%20agent" title="blowing agent">blowing agent</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclopentane%20co-blown" title=" cyclopentane co-blown"> cyclopentane co-blown</a>, <a href="https://publications.waset.org/abstracts/search?q=imitation%20wood" title=" imitation wood"> imitation wood</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid%20polyurethane%20foam" title=" rigid polyurethane foam"> rigid polyurethane foam</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20hardness" title=" surface hardness"> surface hardness</a> </p> <a href="https://publications.waset.org/abstracts/85853/properties-of-rigid-polyurethane-foam-for-imitation-wood-blown-by-distilled-water-and-cyclopentane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1584</span> Anti-Corruption Effect on Whistle Blowing Act</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Na%20Young%20Kim">Na Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This is a study on the relation between the introduction bill of the Whistle Blowing Act and the CPI (Corruption Perception Index) from 1998 to 2019. It shows that the degree of corruption can be relatively lowered when WBA is introduced, and the system is matured. And when WBA was introduced at the national level and matured, it was found that it could have a greater impact on corruption. Secondly, it shows that OECD countries may have relatively low levels of corruption. In addition to the two variables representing democracy, when additional control variables (GDP (economic power), population size, HDI (education level), etc.) are controlled under the same conditions, the degree of corruption in countries with high political rights can be low (it means clean), while those with high civil freedom can be serious (it means not clean). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Whistle%20Blowing%20Act" title="Whistle Blowing Act">Whistle Blowing Act</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-corruption" title=" anti-corruption"> anti-corruption</a>, <a href="https://publications.waset.org/abstracts/search?q=CPI" title=" CPI"> CPI</a>, <a href="https://publications.waset.org/abstracts/search?q=GDP" title=" GDP"> GDP</a> </p> <a href="https://publications.waset.org/abstracts/164727/anti-corruption-effect-on-whistle-blowing-act" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1583</span> Stress Analysis of Water Wall Tubes of a Coal-fired Boiler during Soot Blowing Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratch%20Kittipongpattana">Pratch Kittipongpattana</a>, <a href="https://publications.waset.org/abstracts/search?q=Thongchai%20Fongsamootr"> Thongchai Fongsamootr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aimed to study the influences of a soot blowing operation and geometrical variables to the stress characteristic of water wall tubes located in soot blowing areas which caused the boilers of Mae Moh power plant to lose their generation hour. The research method is divided into 2 parts (a) measuring the strain on water wall tubes by using 3-element rosette strain gages orientation during a full capacity plant operation and in periods of soot blowing operations (b) creating a finite element model in order to calculate stresses on tubes and validating the model by using experimental data in a steady state plant operation. Then, the geometrical variables in the model were changed to study stresses on the tubes. The results revealed that the stress was not affected by the soot blowing process and the finite element model gave the results 1.24% errors from the experiment. The geometrical variables influenced the stress, with the most optimum tubes design in this research reduced the average stress from the present design 31.28%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boiler%20water%20wall%20tube" title="boiler water wall tube">boiler water wall tube</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20analysis" title=" stress analysis"> stress analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20gage%20rosette" title=" strain gage rosette"> strain gage rosette</a> </p> <a href="https://publications.waset.org/abstracts/45920/stress-analysis-of-water-wall-tubes-of-a-coal-fired-boiler-during-soot-blowing-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1582</span> Broadcasting Stabilization for Dynamical Multi-Agent Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myung-Gon%20Yoon">Myung-Gon Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon"> Jung-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with a stabilization problem for multi-agent systems, when all agents in a multi-agent system receive the same broadcasting control signal and the controller can measure not each agent output but the sum of all agent outputs. It is analytically shown that when the sum of all agent outputs is bounded with a certain broadcasting controller for a given reference, each agent output is separately bounded:stabilization of the sum of agent outputs always results in the stability of every agent output. A numerical example is presented to illustrate our theoretic findings in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broadcasting%20control" title="broadcasting control">broadcasting control</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20function" title=" transfer function"> transfer function</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a> </p> <a href="https://publications.waset.org/abstracts/11214/broadcasting-stabilization-for-dynamical-multi-agent-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1581</span> Numerical Modeling of Film Cooling of the Surface at Non-Uniform Heat Flux Distributions on the Wall</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Bartashevich">M. V. Bartashevich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of heat transfer at thin laminar liquid film is solved numerically. A thin film of liquid flows down an inclined surface under conditions of variable heat flux on the wall. The use of thin films of liquid allows to create the effective technologies for cooling surfaces. However, it is important to investigate the most suitable cooling regimes from a safety point of view, in order, for example, to avoid overheating caused by the ruptures of the liquid film, and also to study the most effective cooling regimes depending on the character of the distribution of the heat flux on the wall, as well as the character of the blowing of the film surface, i.e., the external shear stress on its surface. In the statement of the problem on the film surface, the heat transfer coefficient between the liquid and gas is set, as well as a variable external shear stress - the intensity of blowing. It is shown that the combination of these factors - the degree of uniformity of the distribution of heat flux on the wall and the intensity of blowing, affects the efficiency of heat transfer. In this case, with an increase in the intensity of blowing, the cooling efficiency increases, reaching a maximum, and then decreases. It is also shown that the more uniform the heating of the wall, the more efficient the heat sink. A separate study was made for the flow regime along the horizontal surface when the liquid film moves solely due to external stress influence. For this mode, the analytical solution is used for the temperature at the entrance region for further numerical calculations downstream. Also the influence of the degree of uniformity of the heat flux distribution on the wall and the intensity of blowing of the film surface on the heat transfer efficiency was also studied. This work was carried out at the Kutateladze Institute of Thermophysics SB RAS (Russia) and supported by FASO Russia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heat%20Flux" title="Heat Flux">Heat Flux</a>, <a href="https://publications.waset.org/abstracts/search?q=Heat%20Transfer%20Enhancement" title=" Heat Transfer Enhancement"> Heat Transfer Enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=External%20Blowing" title=" External Blowing"> External Blowing</a>, <a href="https://publications.waset.org/abstracts/search?q=Thin%20Liquid%20Film" title=" Thin Liquid Film"> Thin Liquid Film</a> </p> <a href="https://publications.waset.org/abstracts/121069/numerical-modeling-of-film-cooling-of-the-surface-at-non-uniform-heat-flux-distributions-on-the-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1580</span> Development and Characterization of Expandable TPEs Compounds for Footwear Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Elisa%20Ribeiro%20Costa">Ana Elisa Ribeiro Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%B3nia%20Daniela%20Ferreira%20Miranda"> Sónia Daniela Ferreira Miranda</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Pedro%20De%20Carvalho%20Pereira"> João Pedro De Carvalho Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Carlos%20Sim%C3%B5es%20Bernardo"> João Carlos Simões Bernardo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elastomeric thermoplastics (TPEs) have been widely used in the footwear industry over the years. Recently this industry has been requesting materials that can combine lightweight and high abrasion resistance. Although there are blowing agents on the market to improve the lightweight, when these are incorporated into molten polymers during the extrusion or injection molding, it is necessary to have some specific processing conditions (e.g. effect of temperature and hydrodynamic stresses) to obtain good properties and acceptable surface appearance on the final products. Therefore, it is a great advantage for the compounder industry to acquire compounds that already include the blowing agents. In this way, they can be handled and processed under the same conditions as a conventional raw material. In this work, the expandable TPEs compounds, namely a TPU and a SEBS, with the incorporation of blowing agents, have been developed through a co-rotating modular twin-screw parallel extruder. Different blowing agents such as thermo-expandable microspheres and an azodicarbonamide were selected and different screw configurations and temperature profiles were evaluated since these parameters have a particular influence on the expansion inhibition of the blowing agents. Furthermore, percentages of incorporation were varied in order to investigate their influence on the final product properties. After the extrusion of these compounds, expansion was tested by the injection process. The mechanical and physical properties were characterized by different analytical methods like tensile, flexural and abrasive tests, determination of hardness and density measurement. Also, scanning electron microscopy (SEM) was performed. It was observed that it is possible to incorporate the blowing agents on the TPEs without their expansion on the extrusion process. Only with reprocessing (injection molding) did the expansion of the agents occur. These results are corroborated by SEM micrographs, which show a good distribution of blowing agents in the polymeric matrices. The other experimental results showed a good mechanical performance and its density decrease (30% for SEBS and 35% for TPU). This study suggested that it is possible to develop optimized compounds for footwear applications (e.g., sole shoes), which only will be able to expand during the injection process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blowing%20agents" title="blowing agents">blowing agents</a>, <a href="https://publications.waset.org/abstracts/search?q=expandable%20thermoplastic%20elastomeric%20compounds" title=" expandable thermoplastic elastomeric compounds"> expandable thermoplastic elastomeric compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20density" title=" low density"> low density</a>, <a href="https://publications.waset.org/abstracts/search?q=footwear%20applications" title=" footwear applications"> footwear applications</a> </p> <a href="https://publications.waset.org/abstracts/142442/development-and-characterization-of-expandable-tpes-compounds-for-footwear-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1579</span> Study of Effective Parameters on Mechanical Properties of Toughened PP Compounds in Presence of Biofillers and Blowing Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koosha%20Rezaei">Koosha Rezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Moghri%20bidgoli"> Mehdi Moghri bidgoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazyar%20Khakpour"> Mazyar Khakpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood-plastic composites foam is one of the most used products were the industry today. In this study, composite foam polypropylene in the presence of different biofilers such as Spruce wood, wheat and rice husk as well as 3 different types toughening agents such as polyolefin elastomer, styrene butadiene styrene and styrene-ethylene butadiene styrene, and two types of cause blowing agents azodicarbonamide and sodium bicarbonate was prepared. For improving dispersion of biofilers, in the mixing process we used polypropylene coupling agent grafted with maleic anhydride. Due to the large number of variables, the statistical analysis of response surface to analyze the results of the impact test, tensile modulus and tensile strength and modeling were used. Co-rotating twine extruder was made composite melt mixing method and then to perform mechanical tests using injection molding, respectively.Images from electron microscopy showed cell sandwich structure in composite amply demonstrates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title="polypropylene">polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20%20plastic%20composite%20foam" title=" wood plastic composite foam"> wood plastic composite foam</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20analysis" title=" response surface analysis"> response surface analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/38680/study-of-effective-parameters-on-mechanical-properties-of-toughened-pp-compounds-in-presence-of-biofillers-and-blowing-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1578</span> Fapitow: An Advanced AI Agent for Travel Agent Competition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faiz%20Ul%20Haque%20Zeya">Faiz Ul Haque Zeya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, Fapitow’s bidding strategy and approach to participate in Travel Agent Competition (TAC) is described. Previously, Fapitow is designed using the agents provided by the TAC Team and mainly used their modification for developing our strategy. But later, by observing the behavior of the agent, it is decided to come up with strategies that will be the main cause of improved utilities of the agent, and by theoretical examination, it is evident that the strategies will provide a significant improvement in performance which is later proved by agent’s performance in the games. The techniques and strategies for further possible improvement are also described. TAC provides a real-time, uncertain environment for learning, experimenting, and implementing various AI techniques. Some lessons learned about handling uncertain environments are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent" title="agent">agent</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20agent%20competition" title=" travel agent competition"> travel agent competition</a>, <a href="https://publications.waset.org/abstracts/search?q=bidding" title=" bidding"> bidding</a>, <a href="https://publications.waset.org/abstracts/search?q=TAC" title=" TAC"> TAC</a> </p> <a href="https://publications.waset.org/abstracts/171771/fapitow-an-advanced-ai-agent-for-travel-agent-competition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1577</span> Corporate Governance Mechanisms, Whistle-Blowing Policy and Earnings Management Practices of Firms in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mujeeb%20Saif%20Mohsen%20Al-Absy">Mujeeb Saif Mohsen Al-Absy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ku%20Nor%20Izah%20Ku%20Ismail"> Ku Nor Izah Ku Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Sitraselvi%20Chandren"> Sitraselvi Chandren </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines whether corporate governance (CG) mechanisms in firms that have a whistle-blowing policy (WHBLP) are more effective in constraining earnings management (EM), than those without. A sample of 288 Malaysian firms for the years 2013 to 2015, amounting to 864 firm-years were grouped into firms with and without WHBLP. Results show that for firms without WHBLP, the board chairman tenure would minimize EM activities. Meanwhile, for firms with WHBLP, board chairman independence, board chairman tenure, audit committee size, audit committee meeting and women in the audit committees are found to be associated with less EM activities. Further, it is found that ownership concentration and Big 4 auditing firms help to reduce EM activities in firms with WHBLP, while not in firms without WHBLP. Hence, functional and effective governance can be achieved by having a WHBLP, which is in line with agency and resource dependent theories. Therefore, this study suggests that firms should have a WHBLP in place, and policymakers should come up with enhanced criteria to strengthen the mechanisms of WHBLP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corporate%20governance" title="corporate governance">corporate governance</a>, <a href="https://publications.waset.org/abstracts/search?q=earnings%20management" title=" earnings management"> earnings management</a>, <a href="https://publications.waset.org/abstracts/search?q=whistle-blowing%20policy" title=" whistle-blowing policy"> whistle-blowing policy</a>, <a href="https://publications.waset.org/abstracts/search?q=audit%20committee" title=" audit committee"> audit committee</a>, <a href="https://publications.waset.org/abstracts/search?q=board%20of%20directors" title=" board of directors"> board of directors</a> </p> <a href="https://publications.waset.org/abstracts/107473/corporate-governance-mechanisms-whistle-blowing-policy-and-earnings-management-practices-of-firms-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1576</span> Robust Stabilization against Unknown Consensus Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myung-Gon%20Yoon">Myung-Gon Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon"> Jung-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper considers a robust stabilization problem of a single agent in a multi-agent consensus system composed of identical agents, when the network topology of the system is completely unknown. It is shown that the transfer function of an agent in a consensus system can be described as a multiplicative perturbation of the isolated agent transfer function in frequency domain. Applying known robust stabilization results, we present sufficient conditions for a robust stabilization of an agent against unknown network topology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20agent%20control" title="single agent control">single agent control</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20function" title=" transfer function"> transfer function</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20angle" title=" graph angle"> graph angle</a> </p> <a href="https://publications.waset.org/abstracts/11150/robust-stabilization-against-unknown-consensus-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1575</span> Lifetime Assessment of Highly Efficient Metal-Based Air-Diffuser through Accelerated Degradation Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinyoung%20Choi">Jinyoung Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Ho%20Yoon"> Tae-Ho Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunmook%20Lee"> Sunmook Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Degradation of standard oxygen transfer efficiency (SOTE) with time was observed for the assessment of lifetime of metal-based air-diffuser, which displaced a polymer composite-based air-diffuser in order to attain a longer lifetime in the actual field. The degradation of air-diffuser occurred due to the failure of the formation of small and uniform air bubbles since the patterns formed on the disc of air-diffuser deteriorated and/or changed from their initial shapes while they were continuously exposed to the air blowing condition during the operation in the field. Therefore, the lifetime assessment of metal-based air-diffuser was carried out through an accelerated degradation test by accelerating the air-blowing conditions in 200 L/min, 300 L/min, and 400 L/min and the lifetime of normal operating condition at 120 L/min was predicted. It was found that Weibull distribution was the most proper one for describing the lifetime distribution of metal-based air-diffuser in the present study. The shape and scale parameters indicated that the accelerated blowing conditions were all within the acceleration domain. The lifetime was predicted by adopting inverse power model for a stress-life relationship and estimated to be B10=94,004 hrs with CL=95%. Acknowledgement: This work was financially supported by the Ministry of Trade, Industry and Energy (Grant number: N0001475). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerated%20degradation%20test" title="accelerated degradation test">accelerated degradation test</a>, <a href="https://publications.waset.org/abstracts/search?q=air-diffuser" title=" air-diffuser"> air-diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime%20assessment" title=" lifetime assessment"> lifetime assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=SOTE" title=" SOTE"> SOTE</a> </p> <a href="https://publications.waset.org/abstracts/64857/lifetime-assessment-of-highly-efficient-metal-based-air-diffuser-through-accelerated-degradation-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">562</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1574</span> Numerical Study on the Effects of Truncated Ribs on Film Cooling with Ribbed Cross-Flow Coolant Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qijiao%20He">Qijiao He</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Ye"> Lin Ye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To evaluate the effect of the ribs on internal structure in film hole and the film cooling performance on outer surface, the numerical study investigates on the effects of rib configuration on the film cooling performance with ribbed cross-flow coolant channel. The base smooth case and three ribbed cases, including the continuous rib case and two cross-truncated rib cases with different arrangement, are studied. The distributions of adiabatic film cooling effectiveness and heat transfer coefficient are obtained under the blowing ratios with the value of 0.5 and 1.0, respectively. A commercial steady RANS (Reynolds-averaged Navier-Stokes) code with realizable k-ε turbulence model and enhanced wall treatment were performed for numerical simulations. The numerical model is validated against available experimental data. The two cross-truncated rib cases produce approximately identical cooling effectiveness compared with the smooth case under lower blowing ratio. The continuous rib case significantly outperforms the other cases. With the increase of blowing ratio, the cases with ribs are inferior to the smooth case, especially in the upstream region. The cross-truncated rib I case produces the highest cooling effectiveness among the studied the ribbed channel case. It is found that film cooling effectiveness deteriorates with the increase of spiral intensity of the cross-flow inside the film hole. Lower spiral intensity leads to a better film coverage and thus results in better cooling effectiveness. The distinct relative merits among the cases at different blowing ratios are explored based on the aforementioned dominant mechanism. With regard to the heat transfer coefficient, the smooth case has higher heat transfer intensity than the ribbed cases under the studied blowing ratios. The laterally-averaged heat transfer coefficient of the cross-truncated rib I case is higher than the cross-truncated rib II case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-flow" title="cross-flow">cross-flow</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-truncated%20rib" title=" cross-truncated rib"> cross-truncated rib</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20cooling" title=" film cooling"> film cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/96482/numerical-study-on-the-effects-of-truncated-ribs-on-film-cooling-with-ribbed-cross-flow-coolant-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1573</span> An Approach to Secure Mobile Agent Communication in Multi-Agent Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olumide%20Simeon%20Ogunnusi">Olumide Simeon Ogunnusi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shukor%20Abd%20Razak"> Shukor Abd Razak</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Kolade%20Adu"> Michael Kolade Adu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inter-agent communication manager facilitates communication among mobile agents via message passing mechanism. Until now, all Foundation for Intelligent Physical Agents (FIPA) compliant agent systems are capable of exchanging messages following the standard format of sending and receiving messages. Previous works tend to secure messages to be exchanged among a community of collaborative agents commissioned to perform specific tasks using cryptosystems. However, the approach is characterized by computational complexity due to the encryption and decryption processes required at the two ends. The proposed approach to secure agent communication allows only agents that are created by the host agent server to communicate via the agent communication channel provided by the host agent platform. These agents are assumed to be harmless. Therefore, to secure communication of legitimate agents from intrusion by external agents, a 2-phase policy enforcement system was developed. The first phase constrains the external agent to run only on the network server while the second phase confines the activities of the external agent to its execution environment. To implement the proposed policy, a controller agent was charged with the task of screening any external agent entering the local area network and preventing it from migrating to the agent execution host where the legitimate agents are running. On arrival of the external agent at the host network server, an introspector agent was charged to monitor and restrain its activities. This approach secures legitimate agent communication from Man-in-the Middle and Replay attacks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent%20communication" title="agent communication">agent communication</a>, <a href="https://publications.waset.org/abstracts/search?q=introspective%20agent" title=" introspective agent"> introspective agent</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation%20of%20agent" title=" isolation of agent"> isolation of agent</a>, <a href="https://publications.waset.org/abstracts/search?q=policy%20enforcement%20system" title=" policy enforcement system"> policy enforcement system</a> </p> <a href="https://publications.waset.org/abstracts/75444/an-approach-to-secure-mobile-agent-communication-in-multi-agent-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1572</span> Control Flow around NACA 4415 Airfoil Using Slot and Injection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imine%20Zakaria">Imine Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Meftah%20Sidi%20Mohamed%20El%20Amine"> Meftah Sidi Mohamed El Amine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most vital aerodynamic organs of a flying machine is the wing, which allows it to fly in the air efficiently. The flow around the wing is very sensitive to changes in the angle of attack. Beyond a value, there is a phenomenon of the boundary layer separation on the upper surface, which causes instability and total degradation of aerodynamic performance called a stall. However, controlling flow around an airfoil has become a researcher concern in the aeronautics field. There are two techniques for controlling flow around a wing to improve its aerodynamic performance: passive and active controls. Blowing and suction are among the active techniques that control the boundary layer separation around an airfoil. Their objective is to give energy to the air particles in the boundary layer separation zones and to create vortex structures that will homogenize the velocity near the wall and allow control. Blowing and suction have long been used as flow control actuators around obstacles. In 1904 Prandtl applied a permanent blowing to a cylinder to delay the boundary layer separation. In the present study, several numerical investigations have been developed to predict a turbulent flow around an aerodynamic profile. CFD code was used for several angles of attack in order to validate the present work with that of the literature in the case of a clean profile. The variation of the lift coefficient CL with the momentum coefficient <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20flow" title=" control flow"> control flow</a>, <a href="https://publications.waset.org/abstracts/search?q=lift" title=" lift"> lift</a>, <a href="https://publications.waset.org/abstracts/search?q=slot" title=" slot"> slot</a> </p> <a href="https://publications.waset.org/abstracts/133748/control-flow-around-naca-4415-airfoil-using-slot-and-injection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1571</span> Multi Agent System Architecture Oriented Prometheus Methodology Design for Reverse Logistics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Lhafiane">F. Lhafiane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Elbyed"> A. Elbyed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouchoum"> M. Bouchoum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of Reverse logistics Network has attracted growing attention with the stringent pressures from both environmental awareness and business sustainability. Reverse logistical activities include return, remanufacture, disassemble and dispose of products can be quite complex to manage. In addition, demand can be difficult to predict, and decision making is one of the challenges tasks. This complexity has amplified the need to develop an integrated architecture for product return as an enterprise system. The main purpose of this paper is to design Multi agent system (MAS) architecture using the Prometheus methodology to efficiently manage reverse logistics processes. The proposed MAS architecture includes five types of agents: Gate keeping Agent, Collection Agent, Sorting Agent, Processing Agent and Disposal Agent which act respectively during the five steps of reverse logistics Network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20logistics" title="reverse logistics">reverse logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20agent%20system" title=" multi agent system"> multi agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=prometheus%20methodology" title=" prometheus methodology "> prometheus methodology </a> </p> <a href="https://publications.waset.org/abstracts/32686/multi-agent-system-architecture-oriented-prometheus-methodology-design-for-reverse-logistics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1570</span> Numerical Investigation of Turbulent Flow Control by Suction and Injection on a Subsonic NACA23012 Airfoil by Proper Orthogonal Decomposition Analysis and Perturbed Reynolds Averaged Navier‐Stokes Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azam%20Zare">Azam Zare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Separation flow control for performance enhancement over airfoils at high incidence angle has become an increasingly important topic. This work details the characteristics of an efficient feedback control of the turbulent subsonic flow over NACA23012 airfoil using forced reduced‐order model based on the proper orthogonal decomposition/Galerkin projection and perturbation method on the compressible Reynolds Averaged Navier‐Stokes equations. The forced reduced‐order model is used in the optimal control of the turbulent separated flow over a NACA23012 airfoil at Mach number of 0.2, Reynolds number of 5×106, and high incidence angle of 24° using blowing/suction controlling jets. The Spallart-Almaras turbulence model is implemented for high Reynolds number calculations. The main shortcoming of the POD/Galerkin projection on flow equations for controlling purposes is that the blowing/suction controlling jet velocity does not show up explicitly in the resulting reduced order model. Combining perturbation method and POD/Galerkin projection on flow equations introduce a forced reduced‐order model that can predict the time-varying influence of the blowing/suction controlling jet velocity. An optimal control theory based on forced reduced‐order system is used to design a control law for a nonlinear reduced‐order model, which attempts to minimize the vorticity content in the turbulent flow field over NACA23012 airfoil. Numerical simulations were performed to help understand the behavior of the controlled suction jet at 12% to 18% chord from leading edge and a pair of blowing/suction jets at 15% to 18% and 24% to 30% chord from leading edge, respectively. Analysis of streamline profiles indicates that the blowing/suction jets are efficient in removing separation bubbles and increasing the lift coefficient up to 22%, while the perturbation method can predict the flow field in an accurate Manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20control" title="flow control">flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=POD" title=" POD"> POD</a>, <a href="https://publications.waset.org/abstracts/search?q=Galerkin%20projection" title=" Galerkin projection"> Galerkin projection</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a> </p> <a href="https://publications.waset.org/abstracts/95962/numerical-investigation-of-turbulent-flow-control-by-suction-and-injection-on-a-subsonic-naca23012-airfoil-by-proper-orthogonal-decomposition-analysis-and-perturbed-reynolds-averaged-navierstokes-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1569</span> Using Cooperation without Communication in a Multi-Agent Unpredictable Dynamic Real-Time Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Khosravi">Abbas Khosravi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the use of cooperation without communication in a multi-agent, unpredictable, dynamic real-time environment. The architecture of the Persian Gulf agent consists of three layers: fixed rule, low level, and high level layers, allowing for cooperation without direct communication. A scenario is presented to each agent in the form of a file, specifying each player's role and actions in the game. The scenario helps in cases of miscommunication, improving team performance. Cooperation without communication enhances reliability and coordination among agents, leading to better results in challenging situations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20systems" title="multi-agent systems">multi-agent systems</a>, <a href="https://publications.waset.org/abstracts/search?q=communication" title=" communication"> communication</a>, <a href="https://publications.waset.org/abstracts/search?q=Robocop" title=" Robocop"> Robocop</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20engineering" title=" software engineering"> software engineering</a> </p> <a href="https://publications.waset.org/abstracts/186339/using-cooperation-without-communication-in-a-multi-agent-unpredictable-dynamic-real-time-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1568</span> Cooperative Learning Mechanism in Intelligent Multi-Agent System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayman%20M.%20Mansour">Ayman M. Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Hawashin"> Bilal Hawashin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20A.%20Mansour"> Mohammed A. Mansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a cooperative learning mechanism in a multi-agent intelligent system. The basic idea is that intelligent agents are capable of collaborating with one another by sharing their knowledge. The agents will start collaboration by providing their knowledge rules to the other agents. This will allow the most important and insightful detection rules produced by the most experienced agent to bubble up for the benefit of the entire agent community. The updated rules will lead to improving the agents’ decision performance. To evaluate our approach, we designed a five–agent system and implemented it using JADE and FuzzyJess software packages. The agents will work with each other to make a decision about a suspicious medical case. This system provides quick response rate and the decision is faster than the manual methods. This will save patients life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intelligent" title="intelligent">intelligent</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=cooperative" title=" cooperative"> cooperative</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy" title=" fuzzy"> fuzzy</a>, <a href="https://publications.waset.org/abstracts/search?q=learning" title=" learning"> learning</a> </p> <a href="https://publications.waset.org/abstracts/47913/cooperative-learning-mechanism-in-intelligent-multi-agent-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">684</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1567</span> Durability and Early-Age Behavior of Sprayed Concrete with an Expansion Admixture </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyong-Ku%20Yun">Kyong-Ku Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyeo-Re%20Lee"> Kyeo-Re Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyong%20Namkung"> Kyong Namkung</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Yeon%20Han"> Seung-Yeon Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Pan-Gil%20Choi"> Pan-Gil Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sprayed concrete is a way to spray a concrete using a machinery with high air pressure. There are insufficient studies on the durability and early-age behavior of sprayed concrete using high quality expansion agent. A series of an experiment were executed with 5 varying expansion agent replacement rates, while all the other conditions were kept constant, including cement binder content and water-cement ratio. The tests includes early-age shrinkage test, rapid chloride permeability test, and image analysis of air void structure. The early-age expansion test with the variation of expansion agent show that the expansion strain increases as the ratio of expansion agent increases. The rapid chloride permeability test shows that it decrease as the expansion agent increase. Therefore, expansion agent affects into the rapid chloride permeability in a better way. As expansion agent content increased, spacing factor slightly decreased while specific surface kept relatively stable. As a results, the optimum ratio of expansion agent would be selected between 7 % and 11%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sprayed%20concrete" title="sprayed concrete">sprayed concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=early-age%20behavior" title=" early-age behavior"> early-age behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=expansion%20admixture" title=" expansion admixture "> expansion admixture </a> </p> <a href="https://publications.waset.org/abstracts/30715/durability-and-early-age-behavior-of-sprayed-concrete-with-an-expansion-admixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1566</span> Experimental Study of Particle Deposition on Leading Edge of Turbine Blade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Xiao-Jun">Yang Xiao-Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Tian-Hao"> Yu Tian-Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20Ying-Qi"> Hu Ying-Qi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breathing in foreign objects during the operation of the aircraft engine, impurities in the aircraft fuel and products of incomplete combustion can produce deposits on the surface of the turbine blades. These deposits reduce not only the turbine's operating efficiency but also the life of the turbine blades. Based on the small open wind tunnel, the simulation of deposits on the leading edge of the turbine has been carried out in this work. The effect of film cooling on particulate deposition was investigated. Based on the analysis, the adhesive mechanism for the molten pollutants’ reaching to the turbine surface was simulated by matching the Stokes number, TSP (a dimensionless number characterizing particle phase transition) and Biot number of the test facility and that of the real engine. The thickness distribution and growth trend of the deposits have been observed by high power microscope and infrared camera under different temperature of the main flow, the solidification temperature of the particulate objects, and the blowing ratio. The experimental results from the leading edge particulate deposition demonstrate that the thickness of the deposition increases with time until a quasi-stable thickness is reached, showing a striking effect of the blowing ratio on the deposition. Under different blowing ratios, there exists a large difference in the thickness distribution of the deposition, and the deposition is minimal at the specific blow ratio. In addition, the temperature of main flow and the solidification temperature of the particulate have a great influence on the deposition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deposition" title="deposition">deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=experiment" title=" experiment"> experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20cooling" title=" film cooling"> film cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=leading%20edge" title=" leading edge"> leading edge</a>, <a href="https://publications.waset.org/abstracts/search?q=paraffin%20particles" title=" paraffin particles"> paraffin particles</a> </p> <a href="https://publications.waset.org/abstracts/100690/experimental-study-of-particle-deposition-on-leading-edge-of-turbine-blade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1565</span> A Multi-agent System Framework for Stakeholder Analysis of Local Energy Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mengqiu%20Deng">Mengqiu Deng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Peng"> Xiao Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhao"> Yang Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of local energy systems requires the collective involvement of different actors from various levels of society. However, the stakeholder analysis of local energy systems still has been under-developed. This paper proposes an multi-agent system (MAS) framework to facilitate the development of stakeholder analysis of local energy systems. The framework takes into account the most influencing stakeholders, including prosumers/consumers, system operators, energy companies and government bodies. Different stakeholders are modeled based on agent architectures for example the belief-desire-intention (BDI) to better reflect their motivations and interests in participating in local energy systems. The agent models of different stakeholders are then integrated in one model of the whole energy system. An illustrative case study is provided to elaborate how to develop a quantitative agent model for different stakeholders, as well as to demonstrate the practicability of the proposed framework. The findings from the case study indicate that the suggested framework and agent model can serve as analytical instruments for enhancing the government’s policy-making process by offering a systematic view of stakeholder interconnections in local energy systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title="multi-agent system">multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=BDI%20agent" title=" BDI agent"> BDI agent</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20energy%20systems" title=" local energy systems"> local energy systems</a>, <a href="https://publications.waset.org/abstracts/search?q=stakeholders" title=" stakeholders"> stakeholders</a> </p> <a href="https://publications.waset.org/abstracts/176640/a-multi-agent-system-framework-for-stakeholder-analysis-of-local-energy-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1564</span> Impact Position Method Based on Distributed Structure Multi-Agent Coordination with JADE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=YU%20Kaijun">YU Kaijun</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Dong"> Liang Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Yarong"> Zhang Yarong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Zhenzhou"> Jin Zhenzhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhaobao"> Yang Zhaobao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the impact monitoring of distributed structures, the traditional positioning methods are based on the time difference, which includes the four-point arc positioning method and the triangulation positioning method. But in the actual operation, these two methods have errors. In this paper, the Multi-Agent Blackboard Coordination Principle is used to combine the two methods. Fusion steps: (1) The four-point arc locating agent calculates the initial point and records it to the Blackboard Module.(2) The triangulation agent gets its initial parameters by accessing the initial point.(3) The triangulation agent constantly accesses the blackboard module to update its initial parameters, and it also logs its calculated point into the blackboard.(4) When the subsequent calculation point and the initial calculation point are within the allowable error, the whole coordination fusion process is finished. This paper presents a Multi-Agent collaboration method whose agent framework is JADE. The JADE platform consists of several agent containers, with the agent running in each container. Because of the perfect management and debugging tools of the JADE, it is very convenient to deal with complex data in a large structure. Finally, based on the data in Jade, the results show that the impact location method based on Multi-Agent coordination fusion can reduce the error of the two methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impact%20monitoring" title="impact monitoring">impact monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring%28SHM%29" title=" structural health monitoring(SHM)"> structural health monitoring(SHM)</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system%28MAS%29" title=" multi-agent system(MAS)"> multi-agent system(MAS)</a>, <a href="https://publications.waset.org/abstracts/search?q=black-board%20coordination" title=" black-board coordination"> black-board coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=JADE" title=" JADE"> JADE</a> </p> <a href="https://publications.waset.org/abstracts/149911/impact-position-method-based-on-distributed-structure-multi-agent-coordination-with-jade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1563</span> Detection of Extrusion Blow Molding Defects by Airflow Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eva%20Savy">Eva Savy</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Ruiz"> Anthony Ruiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In extrusion blow molding, there is great variability in product quality due to the sensitivity of the machine settings. These variations lead to unnecessary rejects and loss of time. Yet production control is a major challenge for companies in this sector to remain competitive within their market. Current quality control methods only apply to finished products (vision control, leak test...). It has been shown that material melt temperature, blowing pressure, and ambient temperature have a significant impact on the variability of product quality. Since blowing is a key step in the process, we have studied this parameter in this paper. The objective is to determine if airflow analysis allows the identification of quality problems before the full completion of the manufacturing process. We conducted tests to determine if it was possible to identify a leakage defect and an obstructed defect, two common defects on products. The results showed that it was possible to identify a leakage defect by airflow analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extrusion%20blow%20molding" title="extrusion blow molding">extrusion blow molding</a>, <a href="https://publications.waset.org/abstracts/search?q=signal" title=" signal"> signal</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects"> defects</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a> </p> <a href="https://publications.waset.org/abstracts/161761/detection-of-extrusion-blow-molding-defects-by-airflow-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1562</span> Structure and Properties of Meltblown Polyetherimide as High Temperature Filter Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gajanan%20Bhat">Gajanan Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Kandagor"> Vincent Kandagor</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Prather"> Daniel Prather</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Bhave"> Ramesh Bhave</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyetherimide (PEI), an engineering plastic with very high glass transition temperature and excellent chemical and thermal stability, has been processed into a controlled porosity filter media of varying pore size, performance, and surface characteristics. A special grade of the PEI was processed by melt blowing to produce microfiber nonwovens suitable as filter media. The resulting microfiber webs were characterized to evaluate their structure and properties. The fiber webs were further modified by hot pressing, a post processing technique, which reduces the pore size in order to improve the barrier properties of the resulting membranes. This ongoing research has shown that PEI can be a good candidate for filter media requiring high temperature and chemical resistance with good mechanical properties. Also, by selecting the appropriate processing conditions, it is possible to achieve desired filtration performance from this engineering plastic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonwovens" title="nonwovens">nonwovens</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20blowing" title=" melt blowing"> melt blowing</a>, <a href="https://publications.waset.org/abstracts/search?q=polyehterimide" title=" polyehterimide"> polyehterimide</a>, <a href="https://publications.waset.org/abstracts/search?q=filter%20media" title=" filter media"> filter media</a>, <a href="https://publications.waset.org/abstracts/search?q=microfibers" title=" microfibers"> microfibers</a> </p> <a href="https://publications.waset.org/abstracts/72623/structure-and-properties-of-meltblown-polyetherimide-as-high-temperature-filter-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1561</span> Effect of Depressurization Rate in Batch Foaming of Porous Microcellular Polycarbonate on Microstructure Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indrajeet%20Singh">Indrajeet Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Gandhi"> Abhishek Gandhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Smita%20Mohanty"> Smita Mohanty</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Nayak"> S. K. Nayak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, a focused study has been performed to comprehend the influence of change in depressurization rate on microcellular polycarbonate foamed morphological attributes. The depressurization rate considered in this study were 0.5, 0.05, 0.01 and 0.005 MPa/sec and the physical blowing agent utilized was carbon dioxide owing to its high solubility in polycarbonate at room temperature. The study was performed on two distinct saturation pressures, i.e., 3 MPa and 6 MPa to understand if saturation pressure has any effects on it. It is reported that with increase in depressurization rate, a higher amount of thermodynamic instability was induced which resulted in generation of larger number of smaller sized cells. This article puts forward an understanding of how depressurization rate control could be well exploited during the batch foaming process to develop high quality microcellular foamed products with exceedingly well controlled cell size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depressurization" title="depressurization">depressurization</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20polymer" title=" porous polymer"> porous polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming" title=" foaming"> foaming</a>, <a href="https://publications.waset.org/abstracts/search?q=microcellular" title=" microcellular"> microcellular</a> </p> <a href="https://publications.waset.org/abstracts/93891/effect-of-depressurization-rate-in-batch-foaming-of-porous-microcellular-polycarbonate-on-microstructure-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1560</span> Mobile Agent Security Using Reference Monitor Based Security Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandhya%20Armoogum">Sandhya Armoogum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In distributed systems and in open systems such as the Internet, often mobile code has to run on unknown and potentially hostile hosts. Mobile code such as a mobile agent is vulnerable when executing on remote hosts. The mobile agent may be subjected to various attacks such as tampering, inspection, and replay attack by a malicious host. Much research has been done to provide solutions for various security problems, such as authentication of mobile agent and hosts, integrity and confidentiality of the data carried by the mobile agent. Many of such proposed solutions in literature are not suitable for open systems whereby the mobile code arrives and executes on a host which is not known and trusted by the mobile agent owner. In this paper, we propose the adoption of the reference monitor by hosts in an open system for providing trust and security for mobile code execution. A secure protocol for the distribution of the reference monitor entity is described. This reference monitor entity on the remote host may also provide several security services such as authentication and integrity to the mobile code. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=security" title="security">security</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20agents" title=" mobile agents"> mobile agents</a>, <a href="https://publications.waset.org/abstracts/search?q=reference%20monitor" title=" reference monitor"> reference monitor</a>, <a href="https://publications.waset.org/abstracts/search?q=trust" title=" trust"> trust</a> </p> <a href="https://publications.waset.org/abstracts/31788/mobile-agent-security-using-reference-monitor-based-security-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1559</span> Multi-Agent Approach for Monitoring and Control of Biotechnological Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivanka%20Valova">Ivanka Valova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is aimed at using a multi-agent approach to monitor and diagnose a biotechnological system in order to validate certain control actions depending on the process development and the operating conditions. A multi-agent system is defined as a network of interacting software modules that collectively solve complex tasks. Remote monitoring and control of biotechnological processes is a necessity when automated and reliable systems operating with no interruption of certain activities are required. The advantage of our approach is in its flexibility, modularity and the possibility of improving by acquiring functionalities through the integration of artificial intelligence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20approach" title="multi-agent approach">multi-agent approach</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechnological%20processes" title=" biotechnological processes"> biotechnological processes</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20biodegradation" title=" anaerobic biodegradation"> anaerobic biodegradation</a> </p> <a href="https://publications.waset.org/abstracts/177672/multi-agent-approach-for-monitoring-and-control-of-biotechnological-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1558</span> Business-Intelligence Mining of Large Decentralized Multimedia Datasets with a Distributed Multi-Agent System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Qayumi">Karima Qayumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Norta"> Alex Norta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid generation of high volume and a broad variety of data from the application of new technologies pose challenges for the generation of business-intelligence. Most organizations and business owners need to extract data from multiple sources and apply analytical methods for the purposes of developing their business. Therefore, the recently decentralized data management environment is relying on a distributed computing paradigm. While data are stored in highly distributed systems, the implementation of distributed data-mining techniques is a challenge. The aim of this technique is to gather knowledge from every domain and all the datasets stemming from distributed resources. As agent technologies offer significant contributions for managing the complexity of distributed systems, we consider this for next-generation data-mining processes. To demonstrate agent-based business intelligence operations, we use agent-oriented modeling techniques to develop a new artifact for mining massive datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent-oriented%20modeling%20%28AOM%29" title="agent-oriented modeling (AOM)">agent-oriented modeling (AOM)</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20intelligence%20model%20%28BIM%29" title=" business intelligence model (BIM)"> business intelligence model (BIM)</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20data%20mining%20%28DDM%29" title=" distributed data mining (DDM)"> distributed data mining (DDM)</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system%20%28MAS%29" title=" multi-agent system (MAS)"> multi-agent system (MAS)</a> </p> <a href="https://publications.waset.org/abstracts/44164/business-intelligence-mining-of-large-decentralized-multimedia-datasets-with-a-distributed-multi-agent-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1557</span> Multi-Agent System for Irrigation Using Fuzzy Logic Algorithm and Open Platform Communication Data Access</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Wanyama">T. Wanyama</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Far"> B. Far</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic irrigation systems usually conveniently protect landscape investment. While conventional irrigation systems are known to be inefficient, automated ones have the potential to optimize water usage. In fact, there is a new generation of irrigation systems that are smart in the sense that they monitor the weather, soil conditions, evaporation and plant water use, and automatically adjust the irrigation schedule. In this paper, we present an agent based smart irrigation system. The agents are built using a mix of commercial off the shelf software, including MATLAB, Microsoft Excel and KEPServer Ex5 OPC server, and custom written code. The Irrigation Scheduler Agent uses fuzzy logic to integrate the information that affect the irrigation schedule. In addition, the Multi-Agent system uses Open Platform Connectivity (OPC) technology to share data. OPC technology enables the Irrigation Scheduler Agent to communicate over the Internet, making the system scalable to a municipal or regional agent based water monitoring, management, and optimization system. Finally, this paper presents simulation and pilot installation test result that show the operational effectiveness of our system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20water%20usage" title="community water usage">community water usage</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a> </p> <a href="https://publications.waset.org/abstracts/60277/multi-agent-system-for-irrigation-using-fuzzy-logic-algorithm-and-open-platform-communication-data-access" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1556</span> AI Tutor: A Computer Science Domain Knowledge Graph-Based QA System on JADE platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingqi%20Cui">Yingqi Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Changran%20Huang"> Changran Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Raymond%20Lee"> Raymond Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we proposed an AI Tutor using ontology and natural language process techniques to generate a computer science domain knowledge graph and answer users’ questions based on the knowledge graph. We define eight types of relation to extract relationships between entities according to the computer science domain text. The AI tutor is separated into two agents: learning agent and Question-Answer (QA) agent and developed on JADE (a multi-agent system) platform. The learning agent is responsible for reading text to extract information and generate a corresponding knowledge graph by defined patterns. The QA agent can understand the users’ questions and answer humans’ questions based on the knowledge graph generated by the learning agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20Language%20processing" title=" natural Language processing"> natural Language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20graph" title=" knowledge graph"> knowledge graph</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20agents" title=" intelligent agents"> intelligent agents</a>, <a href="https://publications.waset.org/abstracts/search?q=QA%20system" title=" QA system"> QA system</a> </p> <a href="https://publications.waset.org/abstracts/131977/ai-tutor-a-computer-science-domain-knowledge-graph-based-qa-system-on-jade-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blowing%20agent&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blowing%20agent&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blowing%20agent&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blowing%20agent&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blowing%20agent&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blowing%20agent&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blowing%20agent&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blowing%20agent&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blowing%20agent&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blowing%20agent&page=52">52</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blowing%20agent&page=53">53</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blowing%20agent&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>