CINXE.COM

Search results for: process intensification

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: process intensification</title> <meta name="description" content="Search results for: process intensification"> <meta name="keywords" content="process intensification"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="process intensification" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="process intensification"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15299</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: process intensification</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15299</span> Urban Intensification and the Character of Urban Landscape: A Morphological Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xindong%20An">Xindong An</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai%20Gu"> Kai Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban intensification is regarded as the prevalent strategy in many cities of the world to ease the pressures of urban sprawl and deliver sustainable development through increasing the density of built form and activities. However, within the context of intensive development, planning and design control measures that help to maintain and promote the character of existing residential environments have been slow to develop. This causes the possible loss of the character of an area that makes a place unique and distinctive. The purpose of this paper is to explore the way of identifying the character of an urban area for the planning of urban landscape in the implementation of intensification. By employing the theory of urban morphology, the concept of morphological region is used for the analysis and characterisation of the spatial structure of the urban landscape in terms of ground plans, building types, and building and land utilisation. The morphological mapping of the character of urban landscape is suggested, which lays a foundation for more sensitive planning of urban landscape changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=character%20areas" title="character areas">character areas</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20intensification" title=" urban intensification"> urban intensification</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20morphology" title=" urban morphology"> urban morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20landscape" title=" urban landscape"> urban landscape</a> </p> <a href="https://publications.waset.org/abstracts/94449/urban-intensification-and-the-character-of-urban-landscape-a-morphological-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15298</span> Phenomena-Based Approach for Automated Generation of Process Options and Process Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parminder%20Kaur%20Heer">Parminder Kaur Heer</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexei%20Lapkin"> Alexei Lapkin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to global challenges of increased competition and demand for more sustainable products/processes, there is a rising pressure on the industry to develop innovative processes. Through Process Intensification (PI) the existing and new processes may be able to attain higher efficiency. However, very few PI options are generally considered. This is because processes are typically analysed at a unit operation level, thus limiting the search space for potential process options. PI performed at more detailed levels of a process can increase the size of the search space. The different levels at which PI can be achieved is unit operations, functional and phenomena level. Physical/chemical phenomena form the lowest level of aggregation and thus, are expected to give the highest impact because all the intensification options can be described by their enhancement. The objective of the current work is thus, generation of numerous process alternatives based on phenomena, and development of their corresponding computer aided models. The methodology comprises: a) automated generation of process options, and b) automated generation of process models. The process under investigation is disintegrated into functions viz. reaction, separation etc., and these functions are further broken down into the phenomena required to perform them. E.g., separation may be performed via vapour-liquid or liquid-liquid equilibrium. A list of phenomena for the process is formed and new phenomena, which can overcome the difficulties/drawbacks of the current process or can enhance the effectiveness of the process, are added to the list. For instance, catalyst separation issue can be handled by using solid catalysts; the corresponding phenomena are identified and added. The phenomena are then combined to generate all possible combinations. However, not all combinations make sense and, hence, screening is carried out to discard the combinations that are meaningless. For example, phase change phenomena need the co-presence of the energy transfer phenomena. Feasible combinations of phenomena are then assigned to the functions they execute. A combination may accomplish a single or multiple functions, i.e. it might perform reaction or reaction with separation. The combinations are then allotted to the functions needed for the process. This creates a series of options for carrying out each function. Combination of these options for different functions in the process leads to the generation of superstructure of process options. These process options, which are formed by a list of phenomena for each function, are passed to the model generation algorithm in the form of binaries (1, 0). The algorithm gathers the active phenomena and couples them to generate the model. A series of models is generated for the functions, which are combined to get the process model. The most promising process options are then chosen subjected to a performance criterion, for example purity of product, or via a multi-objective Pareto optimisation. The methodology was applied to a two-step process and the best route was determined based on the higher product yield. The current methodology can identify, produce and evaluate process intensification options from which the optimal process can be determined. It can be applied to any chemical/biochemical process because of its generic nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phenomena" title="Phenomena">Phenomena</a>, <a href="https://publications.waset.org/abstracts/search?q=Process%20intensification" title=" Process intensification"> Process intensification</a>, <a href="https://publications.waset.org/abstracts/search?q=Process%20models" title=" Process models "> Process models </a>, <a href="https://publications.waset.org/abstracts/search?q=Process%20options" title=" Process options"> Process options</a> </p> <a href="https://publications.waset.org/abstracts/57202/phenomena-based-approach-for-automated-generation-of-process-options-and-process-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15297</span> Intensification of Heat Transfer in Magnetically Assisted Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawid%20So%C5%82oducha">Dawid Sołoducha</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Borowski"> Tomasz Borowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Kordas"> Marian Kordas</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Rakoczy"> Rafał Rakoczy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnetic field in the past few years became an important part of many studies. Magnetic field (MF) may be used to affect the process in many ways; for example, it can be used as a factor to stabilize the system. We can use MF to steer the operation, to activate or inhibit the process, or even to affect the vital activity of microorganisms. Using various types of magnetic field generators is always connected with the delivery of some heat to the system. Heat transfer is a very important phenomenon; it can influence the process positively and negatively, so it’s necessary to measure heat stream transferred from the place of generation and prevent negative influence on the operation. The aim of the presented work was to apply various types of magnetic fields and to measure heat transfer phenomena. The results were obtained by continuous measurement at several measuring points with temperature probes. Results were compilated in the form of temperature profiles. The study investigated the undetermined heat transfer in a custom system equipped with a magnetic field generator. Experimental investigations are provided for the explanation of the influence of the various type of magnetic fields on the heat transfer process. The tested processes are described by means of the criteria which defined heat transfer intensification under the action of magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=undetermined%20heat%20transfer" title=" undetermined heat transfer"> undetermined heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20profile" title=" temperature profile"> temperature profile</a> </p> <a href="https://publications.waset.org/abstracts/140931/intensification-of-heat-transfer-in-magnetically-assisted-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15296</span> Towards a Better Understanding of Planning for Urban Intensification: Case Study of Auckland, New Zealand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen%20Liu">Wen Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Errol%20Haarhoff"> Errol Haarhoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Beattie"> Lee Beattie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2010, New Zealand’s central government re-organise the local governments arrangements in Auckland, New Zealand by amalgamating its previous regional council and seven supporting local government units into a single unitary council, the Auckland Council. The Auckland Council is charged with providing local government services to approximately 1.5 million people (a third of New Zealand’s total population). This includes addressing Auckland’s strategic urban growth management and setting its urban planning policy directions for the next 40 years. This is expressed in the first ever spatial plan in the region – the Auckland Plan (2012). The Auckland plan supports implementing a compact city model by concentrating the larger part of future urban growth and development in, and around, existing and proposed transit centres, with the intention of Auckland to become globally competitive city and achieving ‘the most liveable city in the world’. Turning that vision into reality is operatized through the statutory land use plan, the Auckland Unitary Plan. The Unitary plan replaced the previous regional and local statutory plans when it became operative in 2016, becoming the ‘rule book’ on how to manage and develop the natural and built environment, using land use zones and zone standards. Common to the broad range of literature on urban growth management, one significant issue stands out about intensification. The ‘gap’ between strategic planning and what has been achieved is evident in the argument for the ‘compact’ urban form. Although the compact city model may have a wide range of merits, the extent to which these are actualized largely rely on how intensification actually is delivered. The transformation of the rhetoric of the residential intensification model into reality is of profound influence, yet has enjoyed limited empirical analysis. In Auckland, the establishment of the Auckland Plan set up the strategies to deliver intensification into diversified arenas. Nonetheless, planning policy itself does not necessarily achieve the envisaged objectives, delivering the planning system and high capacity to enhance and sustain plan implementation is another demanding agenda. Though the Auckland Plan provides a wide ranging strategic context, its actual delivery is beholden on the Unitary Plan. However, questions have been asked if the Unitary Plan has the necessary statutory tools to deliver the Auckland Plan’s policy outcomes. In Auckland, there is likely to be continuing tension between the strategies for intensification and their envisaged objectives, and made it doubtful whether the main principles of the intensification strategies could be realized. This raises questions over whether the Auckland Plan’s policy goals can be achieved in practice, including delivering ‘quality compact city’ and residential intensification. Taking Auckland as an example of traditionally sprawl cities, this article intends to investigate the efficacy plan making and implementation directed towards higher density development. This article explores the process of plan development, plan making and implementation frameworks of the first ever spatial plan in Auckland, so as to explicate the objectives and processes involved, and consider whether this will facilitate decision making processes to realize the anticipated intensive urban development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20intensification" title="urban intensification">urban intensification</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=plan%20making" title=" plan making"> plan making</a>, <a href="https://publications.waset.org/abstracts/search?q=governance%20and%20implementation" title=" governance and implementation"> governance and implementation</a> </p> <a href="https://publications.waset.org/abstracts/86789/towards-a-better-understanding-of-planning-for-urban-intensification-case-study-of-auckland-new-zealand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">556</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15295</span> Diversification of Rice-Based Cropping Systems under Irrigated Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Nanher">A. H. Nanher</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20P.%20Singh"> N. P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In India, Agriculture is largely in rice- based cropping system. It has indicated decline in factor productivity along with emergence of multi - nutrient deficiency, buildup of soil pathogen and weed flora because it operates and removes nutrients from the same rooting depth. In designing alternative cropping systems, the common approaches are crop intensification, crop diversification and cultivar options. The intensification leads to the diversification of the cropping system. Intensification is achieved by introducing an additional component crop in a pre-dominant sequential system by desirable adjustments in cultivars of one or all the component crops. Invariably, this results in higher land use efficiency and productivity per unit time Crop Diversification through such crop and inclusion of fodder crops help to improve the economic situation of small and marginal farmers because of higher income. Inclusion of crops in sequential and intercropping systems reduces some obnoxious weeds through formation of canopies due to competitive planting pattern and thus provides an opportunity to utilize cropping systems as a tool of weed management with non-chemical means. Use of organic source not only acts as supplement for fertilizer (nitrogen) but also improve the physico-chemical properties of soils. Production and use of nitrogen rich biomass offer better prospect for supplementing chemical fertilizers on regular basis. Such biological diversity brings yield and economic stability because of its potential for compensation among components of the system. In a particular agro-climatic and resource condition, the identification of most suitable crop sequence is based on its productivity, stability, land use efficiency as well as production efficiency and its performance is chiefly judged in terms of productivity and net return. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrated%20farming%20systems" title="integrated farming systems">integrated farming systems</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20intensification" title=" sustainable intensification"> sustainable intensification</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20of%20crop%20intensification" title=" system of crop intensification"> system of crop intensification</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a> </p> <a href="https://publications.waset.org/abstracts/23291/diversification-of-rice-based-cropping-systems-under-irrigated-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15294</span> Intensification of Wet Air Oxidation of Landfill Leachate Reverse Osmosis Concentrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emilie%20Gout">Emilie Gout</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Monnot"> Mathias Monnot</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Boutin"> Olivier Boutin</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Vanloot"> Pierre Vanloot</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Moulin"> Philippe Moulin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is a precious resource. Treating industrial wastewater remains a considerable technical challenge of our century. The effluent considered for this study is landfill leachate treated by reverse osmosis (RO). Nowadays, in most developed countries, sanitary landfilling is the main method to deal with municipal solid waste. Rainwater percolates through solid waste, generating leachates mostly comprised of organic and inorganic matter. Whilst leachate ages, its composition varies, becoming more and more bio-refractory. RO is already used for landfill leachates as it generates good quality permeate. However, its mains drawback is the production of highly polluted concentrates that cannot be discharged in the environment or reused, which is an important industrial issue. It is against this background that the study of coupling RO with wet air oxidation (WAO) was set to intensify and optimize processes to meet current regulations for water discharge in the environment. WAO is widely studied for effluents containing bio-refractory compounds. Oxidation consists of a destruction reaction capable of mineralizing the recalcitrant organic fraction of pollution into carbon dioxide and water when complete. WAO process in subcritical conditions requires a high-energy consumption, but it can be autothermic in a certain range of chemical oxygen demand (COD) concentrations (10-100 g.L⁻¹). Appropriate COD concentrations are reached in landfill leachate RO concentrates. Therefore, the purpose of this work is to report the performances of mineralization during WAO on RO concentrates. The coupling of RO/WAO has shown promising results in previous works on both synthetic and real effluents in terms of organic carbon (TOC) reduction by WAO and retention by RO. Non-catalytic WAO with air as oxidizer was performed in a lab-scale stirred autoclave (1 L) on landfill leachates RO concentrates collected in different seasons in a sanitary landfill in southern France. The yield of WAO depends on operating parameters such as total pressure, temperature, and time. Compositions of the effluent are also important aspects for process intensification. An experimental design methodology was used to minimize the number of experiments whilst finding the operating conditions achieving the best pollution reduction. The simulation led to a set of 18 experiments, and the responses to highlight process efficiency are pH, conductivity, turbidity, COD, TOC, and inorganic carbon. A 70% oxygen excess was chosen for all the experiments. First experiments showed that COD and TOC abatements of at least 70% were obtained after 90 min at 300°C and 20 MPa, which attested the possibility to treat RO leachate concentrates with WAO. In order to meet French regulations and validate process intensification with industrial effluents, some continuous experiments in a bubble column are foreseen, and some further analyses will be performed, such as biological oxygen demand and study of gas composition. Meanwhile, other industrial effluents are treated to compare RO-WAO performances. These effluents, coming from pharmaceutical, petrochemical, and tertiary wastewater industries, present different specific pollutants that will provide a better comprehension of the hybrid process and prove the intensification and feasibility of the process at an industrial scale. Acknowledgments: This work has been supported by the French National Research Agency (ANR) for the Project TEMPO under the reference number ANR-19-CE04-0002-01. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20process" title="hybrid process">hybrid process</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill%20leachates" title=" landfill leachates"> landfill leachates</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20intensification" title=" process intensification"> process intensification</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20osmosis" title=" reverse osmosis"> reverse osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20air%20oxidation" title=" wet air oxidation"> wet air oxidation</a> </p> <a href="https://publications.waset.org/abstracts/133659/intensification-of-wet-air-oxidation-of-landfill-leachate-reverse-osmosis-concentrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15293</span> A Comprehensive Planning Model for Amalgamation of Intensification and Green Infrastructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Saboonian">Sara Saboonian</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Filion"> Pierre Filion</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dispersed-suburban model has been the dominant one across North America for the past seventy years, characterized by automobile reliance, low density, and land-use specialization. Two planning models have emerged as possible alternatives to address the ills inflicted by this development pattern. First, there is intensification, which promotes efficient infrastructure by connecting high-density, multi-functional, and walkable nodes with public transit services within the suburban landscape. Second is green infrastructure, which provides environmental health and human well-being by preserving and restoring ecosystem services. This research studies incompatibilities and the possibility of amalgamating the two alternatives in an attempt to develop a comprehensive alternative to suburban model that advocates density, multi-functionality and transit- and pedestrian-conduciveness, with measures capable of mitigating the adverse environmental impacts of compactness. The research investigates three Canadian urban growth centers, where intensification is the current planning practice, and the awareness of green infrastructure benefits is on the rise. However, these three centers are contrasted by their development stage, the presence or absence of protected natural land, their environmental approach, and their adverse environmental consequences according to the planning cannons of different periods. The methods include reviewing the literature on green infrastructure planning, criticizing the Ontario provincial plans for intensification, surveying residents’ preferences for alternative models, and interviewing officials who deal with the local planning for the centers. Moreover, the research draws on recalling debates between New Urbanism and Landscape/Ecological Urbanism. The case studies expose the difficulties in creating urban growth centres that accommodate green infrastructure while adhering to intensification principles. First, the dominant status of intensification and the obstacles confronting intensification have monopolized the planners’ concerns. Second, the tension between green infrastructure and intensification explains the absence of the green infrastructure typologies that correspond to intensification-compatible forms and dynamics. Finally, the lack of highlighted social-economic benefits of green infrastructure reduces residents’ participation. Moreover, the results from the research provide insight into predominating urbanization theories, New Urbanism and Landscape/Ecological Urbanism. In order to understand political, planning, and ecological dynamics of such blending, dexterous context-specific planning is required. Findings suggest the influence of the following factors on amalgamating intensification and green infrastructure. Initially, producing ecosystem services-based justifications for green infrastructure development in the intensification context provides an expert-driven backbone for the implementation programs. This knowledge-base should be translated to effectively imbue different urban stakeholders. Moreover, due to the limited greenfields in intensified areas, spatial distribution and development of multi-level corridors such as pedestrian-hospitable settings and transportation networks along green infrastructure measures are required. Finally, to ensure the long-term integrity of implemented green infrastructure measures, significant investment in public engagement and education, as well as clarification of management responsibilities is essential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20services" title="ecosystem services">ecosystem services</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20infrastructure" title=" green infrastructure"> green infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=intensification" title=" intensification"> intensification</a>, <a href="https://publications.waset.org/abstracts/search?q=planning" title=" planning"> planning</a> </p> <a href="https://publications.waset.org/abstracts/61356/a-comprehensive-planning-model-for-amalgamation-of-intensification-and-green-infrastructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15292</span> Automation of Pneumatic Seed Planter for System of Rice Intensification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tukur%20Daiyabu%20Abdulkadir">Tukur Daiyabu Abdulkadir</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Ishak%20Wan%20Ismail"> Wan Ishak Wan Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Saufi%20Mohd%20Kassim"> Muhammad Saufi Mohd Kassim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seed singulation and accuracy in seed spacing are the major challenges associated with the adoption of mechanical seeder for system of rice intensification. In this research the metering system of a pneumatic planter was modified and automated for increase precision to meet the demand of system of rice intensification SRI. The chain and sprocket mechanism of a conventional vacuum planter were now replaced with an electro mechanical system made up of a set of servo motors, limit switch, micro controller and a wheel divided into 10 equal angles. The circumference of the planter wheel was determined based on which seed spacing was computed and mapped to the angles of the metering wheel. A program was then written and uploaded to arduino micro controller and it automatically turns the seed plates for seeding upon covering the required distance. The servo motor was calibrated with the aid of labVIEW. The machine was then calibrated using a grease belt and varying the servo rpm through voltage variation between 37 rpm to 47 rpm until an optimum value of 40 rpm was obtained with a forward speed of 5 kilometers per hour. A pressure of 1.5 kpa was found to be optimum under which no skip or double was recorded. Precision in spacing (coefficient of variation), miss index, multiple index, doubles and skips were investigated. No skip or double was recorded both at laboratory and field levels. The operational parameters under consideration were both evaluated at laboratory and field. Even though there was little variation between the laboratory and field values of precision in spacing, multiple index and miss index, the different is not significant as both laboratory and field values fall within the acceptable range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=calibration" title=" calibration"> calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=pneumatic%20seed%20planter" title=" pneumatic seed planter"> pneumatic seed planter</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20of%20rice%20intensification" title=" system of rice intensification"> system of rice intensification</a> </p> <a href="https://publications.waset.org/abstracts/17167/automation-of-pneumatic-seed-planter-for-system-of-rice-intensification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">642</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15291</span> Optimized Algorithm for Particle Swarm Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuzhang%20Zhao">Fuzhang Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particle swarm optimization (PSO) is becoming one of the most important swarm intelligent paradigms for solving global optimization problems. Although some progress has been made to improve PSO algorithms over the last two decades, additional work is still needed to balance parameters to achieve better numerical properties of accuracy, efficiency, and stability. In the optimal PSO algorithm, the optimal weightings of (√ 5 − 1)/2 and (3 − √5)/2 are used for the cognitive factor and the social factor, respectively. By the same token, the same optimal weightings have been applied for intensification searches and diversification searches, respectively. Perturbation and constriction effects are optimally balanced. Simulations of the de Jong, the Rosenbrock, and the Griewank functions show that the optimal PSO algorithm indeed achieves better numerical properties and outperforms the canonical PSO algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diversification%20search" title="diversification search">diversification search</a>, <a href="https://publications.waset.org/abstracts/search?q=intensification%20search" title=" intensification search"> intensification search</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20weighting" title=" optimal weighting"> optimal weighting</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a> </p> <a href="https://publications.waset.org/abstracts/36390/optimized-algorithm-for-particle-swarm-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15290</span> Sustainable Intensification of Agriculture in Victoria’s Food Bowl: Optimizing Productivity with the use of Decision-Support Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Johnson">M. Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Faggian"> R. Faggian</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sposito"> V. Sposito</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A participatory and engaged approach is key in connecting agricultural managers to sustainable agricultural systems to support and optimize production in Victoria&rsquo;s food bowl. A sustainable intensification (SI) approach is well documented globally, but participation rates amongst Victorian farmers is fragmentary, and key outcomes and implementation strategies are poorly understood. Improvement in decision-support management tools and a greater understanding of the productivity gains available upon implementation of SI is necessary. This paper reviews the current understanding and uptake of SI practices amongst farmers in one of Victoria&rsquo;s premier food producing regions, the Goulburn Broken; and it spatially analyses the potential for this region to adapt to climate change and optimize food production. A Geographical Information Systems (GIS) approach is taken to develop an interactive decision-support tool that can be accessible to on-ground agricultural managers. The tool encompasses multiple criteria analysis (MCA) that identifies factors during the construction phase of the tool, using expert witnesses and regional knowledge, framed within an Analytical Hierarchy Process. Given the complexities of the interrelations between each of the key outcomes, this participatory approach, in which local realities and factors inform the key outcomes and help to strategies for a particular region, results in a robust strategy for sustainably intensifying production in key food producing regions. The creation of an interactive, locally embedded, decision-support management and education tool can help to close the gap between farmer knowledge and production, increase on-farm adoption of sustainable farming strategies and techniques, and optimize farm productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=decision-support%20management%20tool" title=" decision-support management tool"> decision-support management tool</a>, <a href="https://publications.waset.org/abstracts/search?q=Geographic%20Information%20System" title=" Geographic Information System"> Geographic Information System</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20intensification" title=" sustainable intensification"> sustainable intensification</a> </p> <a href="https://publications.waset.org/abstracts/88111/sustainable-intensification-of-agriculture-in-victorias-food-bowl-optimizing-productivity-with-the-use-of-decision-support-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15289</span> An Inexhaustible Will of Infinite, or the Creative Will in the Psychophysiological Artistic Practice: An Analysis through Nietzsche&#039;s Will to Power</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Filipa%20Cruz">Filipa Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Grecia%20P.%20Matos"> Grecia P. Matos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An Inexhaustible Will of Infinite is ongoing practice-based research focused on a psychophysiological conception of body and on the creative will that seeks to examine the possibility of art being simultaneously a pacifier and an intensifier in a physiological artistic production. This is a study where philosophy and art converge in a commentary on the affection of the concept of will to power in the art world through Nietzsche’s commentaries, through the analysis of case studies and a reflection arising from artistic practice. Through Nietzsche, it is sought to compare concepts that communicate with the artistic practice since creation is an intensification and engenders perspectives. It is also a practice highly embedded in the body, in the non-verbal, in the physiology of art and in the coexistence between the sensorial and the thought. It is questioned if the physiology of art could be thought of as a thinking-feeling with no primacy of the thought over the sensorial. Art as a manifestation of the will to power participates in a comprehension of the world. In this article, art is taken as a privileged way of communication – implicating corporeal-sensorial-conceptual – and of connection between humans. Problematized is the dream and the drunkenness as intensifications and expressions of life’s comprehension. Therefore, art is perceived as suggestion and invention, where the artistic intoxication breaks limits in the experience of life, and the artist, dominated by creative forces, claims, orders, obeys, proclaims love for life. The intention is also to consider how one can start from pain to create and how one can generate new and endless artistic forms through nightmares, daydreams, impulses, intoxication, enhancement, intensification in a plurality of subjects and matters. It is taken into consideration the fact that artistic creation is something that is intensified corporeally, expanded, continuously generated and acting on bodies. It is inextinguishable and a constant movement intertwining Apollonian and Dionysian instincts of destruction and creation of new forms. The concept of love also appears associated with conquering, that, in a process of intensification and drunkenness, impels the artist to generate and to transform matter. Just like a love relationship, love in Nietzsche requires time, patience, effort, courage, conquest, seduction, obedience, and command, potentiating the amplification of knowledge of the other / the world. Interlacing Nietzsche's philosophy, not with Modern Art, but with Contemporary Art, it is argued that intoxication, will to power (strongly connected with the creative will) and love still have a place in the artistic production as creative agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artistic%20creation" title="artistic creation">artistic creation</a>, <a href="https://publications.waset.org/abstracts/search?q=body" title=" body"> body</a>, <a href="https://publications.waset.org/abstracts/search?q=intensification" title=" intensification"> intensification</a>, <a href="https://publications.waset.org/abstracts/search?q=psychophysiology" title=" psychophysiology"> psychophysiology</a>, <a href="https://publications.waset.org/abstracts/search?q=will%20to%20power" title=" will to power"> will to power</a> </p> <a href="https://publications.waset.org/abstracts/119003/an-inexhaustible-will-of-infinite-or-the-creative-will-in-the-psychophysiological-artistic-practice-an-analysis-through-nietzsches-will-to-power" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15288</span> Sludge Densification: Emerging and Efficient Way to Look at Biological Nutrient Removal Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raj%20Chavan">Raj Chavan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, there are over 14,500 Water Resource Recovery Facilities (WRRFs) in the United States, with ~35% of them having some type of nutrient limits in place. These WRRFs account for about 1% of overall power demand and 2% of total greenhouse gas emissions (GHG) in the United States and contribute for 10 to 15% of the overall nutrient load to surface rivers in the United States. The evolution of densification technologies toward more compact and energy-efficient nutrient removal processes has been impacted by a number of factors. Existing facilities that require capacity expansion or biomass densification for higher treatability within the same footprint are being subjected to more stringent requirements relating to nutrient removal prior to surface water discharge. Densification of activated sludge has received recent widespread interest as a means for achieving process intensification and nutrient removal at WRRFs. At the core of the technology are the aerobic sludge granules where the biological processes occur. There is considerable interest in the prospect of producing granular sludge in continuous (or traditional) activated sludge processes (CAS) or densification of biomass by moving activated sludge flocs to a denser aggregate of biomass as a highly effective technique of intensification. This presentation will provide a fundamental understanding of densification by presenting insights and practical issues. The topics that will be discussed include methods used to generate and retain densified granules; the mechanisms that allow biological flocs to densify; the role that physical selectors play in the densification of biological flocs; some viable ways for managing biological flocs that have become densified; effects of physical selection design parameters on the retention of densified biological flocs and finally some operational solutions for customizing the flocs and granules required to meet performance and capacity targets. In addition, it will present some case studies where biological and physical parameters were used to generate aerobic granular sludge in the continuous flow system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=densification" title="densification">densification</a>, <a href="https://publications.waset.org/abstracts/search?q=aerobic%20granular%20sludge" title=" aerobic granular sludge"> aerobic granular sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20removal" title=" nutrient removal"> nutrient removal</a>, <a href="https://publications.waset.org/abstracts/search?q=intensification" title=" intensification"> intensification</a> </p> <a href="https://publications.waset.org/abstracts/152616/sludge-densification-emerging-and-efficient-way-to-look-at-biological-nutrient-removal-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15287</span> Transesterification of Refined Palm Oil to Biodiesel in a Continuous Spinning Disc Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weerinda%20%20Appamana">Weerinda Appamana</a>, <a href="https://publications.waset.org/abstracts/search?q=Jirapong%20Keawkoon"> Jirapong Keawkoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamonporn%20Pacthong"> Yamonporn Pacthong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jirathiti%20Chitsanguansuk"> Jirathiti Chitsanguansuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanyong%20Sookklay"> Yanyong Sookklay </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, spinning disc reactor has been used for the intensification of synthesis of biodiesel from refined palm oil (RPO) based on the transesterification reaction. Experiments have been performed using different spinning disc surface and under varying operating parameters viz. molar ratio of oil to methanol (over the range of 1:4.5–1:9), rotational speed (over the range of 500–2,000 rpm), total flow rate (over the range of 260-520 ml/min), and KOH catalyst loading of 1.50% by weight of oil. Maximum FAME (fatty acid methyl esters) yield (97.5 %) of biodiesel from RPO was obtained at oil to methanol ratio of 1:6, temperature of 60 °C, and rotational speed of 1500 rpm and flow rate of 520 mL/min using groove disc at KOH catalyst loading of 1.5 wt%. Also, higher yield efficiency (biodiesel produced per unit energy consumed) was obtained for using the spinning disc reactor based approach as compared to the ultrasound hydrodynamic cavitation and conventional mechanical stirrer reactors. It obviously offers a significant reduction in the reaction time for the transesterification, especially when compared with the reaction time of 90 minutes required for the conventional mechanical stirrer. It can be concluded that the spinning disk reactor is a promising alternative method for continuous biodiesel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spinning%20disc%20reactor" title="spinning disc reactor">spinning disc reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20intensification" title=" process intensification"> process intensification</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20efficiency" title=" yield efficiency"> yield efficiency</a> </p> <a href="https://publications.waset.org/abstracts/92625/transesterification-of-refined-palm-oil-to-biodiesel-in-a-continuous-spinning-disc-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15286</span> Sludge Marvel (Densification): The Ultimate Solution For Doing More With Less Effort!</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raj%20Chavan">Raj Chavan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, the United States is home to more than 14,000 Water Resource Recovery Facilities (WRRFs), of which approximately 35% have implemented nutrient limits of some kind. These WRRFs contribute 10 to 15% of the total nutrient burden to surface rivers in the United States and account for approximately 1% of total power demand and 2% of total greenhouse gas emissions (GHG). There are several factors that have influenced the development of densification technologies in the direction of more compact and energy-efficient nutrient removal processes. Prior to surface water discharge, existing facilities that necessitate capacity expansion or biomass densification for greater treatability within the same footprint are being subjected to stricter nutrient removal requirements. Densification of activated sludge as a method for nutrient removal and process intensification at WRRFs has garnered considerable attention in recent times. The biological processes take place within the aerobic sediment granules, which form the basis of the technology. The possibility of generating granular sludge through continuous (or conventional) activated sludge processes (CAS) or densification of biomass through the transfer of activated sludge flocs to a denser biomass aggregate as an exceptionally efficient intensification technique has generated considerable interest. This presentation aims to furnish attendees with a foundational comprehension of densification through the illustration of practical concerns and insights. The subsequent subjects will be deliberated upon. What are some potential techniques for producing and preserving densified granules? What processes are responsible for the densification of biological flocs? How do physical selectors contribute to the process of biological flocs becoming denser? What viable strategies exist for the management of densified biological flocs, and which design parameters of physical selection influence the retention of densified biological flocs? determining operational solutions for floc and granule customization in order to meet capacity and performance objectives? The answers to these pivotal questions will be derived from existing full-scale treatment facilities, bench-scale and pilot-scale investigations, and existing literature data. By the conclusion of the presentation, the audience will possess a fundamental comprehension of the densification concept and its significance in attaining effective effluent treatment. Additionally, case studies pertaining to the design and operation of densification procedures will be incorporated into the presentation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=densification" title="densification">densification</a>, <a href="https://publications.waset.org/abstracts/search?q=intensification" title=" intensification"> intensification</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20removal" title=" nutrient removal"> nutrient removal</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20sludge" title=" granular sludge"> granular sludge</a> </p> <a href="https://publications.waset.org/abstracts/178969/sludge-marvel-densification-the-ultimate-solution-for-doing-more-with-less-effort" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15285</span> Human’s Sensitive Reactions during Different Geomagnetic Activity: An Experimental Study in Natural and Simulated Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ketevan%20Janashia">Ketevan Janashia</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Tsibadze"> Tamar Tsibadze</a>, <a href="https://publications.waset.org/abstracts/search?q=Levan%20Tvildiani"> Levan Tvildiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikoloz%20Invia"> Nikoloz Invia</a>, <a href="https://publications.waset.org/abstracts/search?q=Elguja%20Kubaneishvili"> Elguja Kubaneishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasili%20Kukhianidze"> Vasili Kukhianidze</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Ramishvili"> George Ramishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study considers the possible effects of geomagnetic activity (GMA) on humans situated on Earth by performing experiments concerning specific sensitive reactions in humans in both: natural conditions during different GMA and by the simulation of different GMA in the lab. The measurements of autonomic nervous system (ANS) responses to different GMA via measuring the heart rate variability (HRV) indices and stress index (SI) and their comparison with the K-index of GMA have been presented and discussed. The results of experiments indicate an intensification of the sympathetic part of the ANS as a stress reaction of the human organism when it is exposed to high level of GMA as natural as well as in simulated conditions. Aim: We tested the hypothesis whether the GMF when disturbed can have effects on human ANS causing specific sensitive stress-reactions depending on the initial type of ANS. Methods: The study focuses on the effects of different GMA on ANS by comparing of HRV indices and stress index (SI) of n= 78, 18-24 years old healthy male volunteers. Experiments were performed as natural conditions on days of low (K= 1-3) and high (K= 5-7) GMA as well as in the lab by the simulation of different GMA using the device of geomagnetic storm (GMS) compensation and simulation. Results: In comparison with days of low GMA (K=1-3) the initial values of HRV shifted towards the intensification of the sympathetic part (SP) of the ANS during days of GMSs (K=5-7) with statistical significance p-values: HR (heart rate, p= 0.001), SDNN (Standard deviation of all Normal to Normal intervals, p= 0.0001), RMSSD (The square root of the arithmetical mean of the sum of the squares of differences between adjacent NN intervals, p= 0.0001). In comparison with conditions during GMSs compensation mode (K= 0, B= 0-5nT), the ANS balance was observed to shift during exposure to simulated GMSs with intensities in the range of natural GMSs (K= 7, B= 200nT). However, the initial values of the ANS resulted in different dynamics in its variation depending of GMA level. In the case of initial balanced regulation type (HR > 80) significant intensification of SP was observed with p-values: HR (p= 0.0001), SDNN (p= 0.047), RMSSD (p= 0.28), LF/HF (p=0.03), SI (p= 0.02); while in the case of initial parasympathetic regulation type (HR < 80), an insignificant shift to the intensification of the parasympathetic part (PP) was observed. Conclusions: The results indicate an intensification of SP as a stress reaction of the human organism when it is exposed to high level of GMA in both natural and simulated conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomic%20nervous%20system" title="autonomic nervous system">autonomic nervous system</a>, <a href="https://publications.waset.org/abstracts/search?q=device%20of%20magneto%20compensation%2Fsimulation" title=" device of magneto compensation/simulation"> device of magneto compensation/simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=geomagnetic%20storms" title=" geomagnetic storms"> geomagnetic storms</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20variability" title=" heart rate variability"> heart rate variability</a> </p> <a href="https://publications.waset.org/abstracts/109633/humans-sensitive-reactions-during-different-geomagnetic-activity-an-experimental-study-in-natural-and-simulated-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15284</span> Role of Agriculture Equipment toward Food Security: Case Study of Agriculture Equipment Assistance during President Joko Widodo Era in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raihan%20Zahirah%20Mauludy%20Ridwan">Raihan Zahirah Mauludy Ridwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Frisca%20Devi%20Choirina"> Frisca Devi Choirina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indonesia is an agrarian country endowed by fertile soil, supportive weather, and natural resources which can support agricultural activities. There are commodities which produced by local farmers. Even though Indonesia had commodities, it still imports stocks of staple food. To reduce the dependency on imported staple food, President Joko Widodo wants to generate more locally-produced staple food by giving 69.000 tractors, free seeds, and fertilizers to the local farmers. In Indonesia, the problem revolves around the amount of food production especially rice derived from farmers who cannot afford technologies which can support the agricultural activities. Moreover, they cannot afford seeds and fertilizers which can make the production of commodities more effective and have high quality. Therefore, the paper would like to answer how agriculture equipment assistance during President Joko Widodo era can give significant impact towards food security. The purpose of this paper is to explore the role of agriculture equipment assistance and its impact towards Indonesia’s food security. This paper uses Boserup and Ruthenberg theory of agricultural intensification to link agriculture equipment and intensification of production which in the end will have impact towards food security through case study method. The paper affirms that the role of agricultural equipment assistance toward food security in Indonesia is significant toward Indonesia’s food production and security. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20equipment" title="agricultural equipment">agricultural equipment</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20intensification" title=" agricultural intensification"> agricultural intensification</a>, <a href="https://publications.waset.org/abstracts/search?q=Boserup" title=" Boserup"> Boserup</a>, <a href="https://publications.waset.org/abstracts/search?q=Indonesia" title=" Indonesia"> Indonesia</a>, <a href="https://publications.waset.org/abstracts/search?q=Joko%20Widodo" title=" Joko Widodo"> Joko Widodo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruthenberg" title=" Ruthenberg"> Ruthenberg</a> </p> <a href="https://publications.waset.org/abstracts/93213/role-of-agriculture-equipment-toward-food-security-case-study-of-agriculture-equipment-assistance-during-president-joko-widodo-era-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15283</span> Increasing Soybean (Glycine Max L) Drought Resistance with Osmolit Sorbitol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aminah%20Muchdar">Aminah Muchdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efforts to increase soybean production have been pursued for years in Indonesia through the process of intensification and extensification. Increased production through intensification of increasing grain yield per hectare, among others includes the improvement of cultivation system such as the use of cultivars that have superior resistance to drought. Increased soybean production has been through the expansion of planting areas utilizing available idle dry land. However, one of the constraints faced in dryland agriculture was the limited water supply due to low intensity of rainfall that leads to low crop production. In order to ensure that soybeans are cultivated on dry land remains capable of high production, it is necessary to physiologically engineer the soybean with open stomata. The study was conducted in the greenhouse of Balai Penelitian Tanaman Serealia (BALITSEREAL) Maros, Sulawesi, Indonesia with a completely randomized block design h factorial pattern. The first factor was the water stress stadia while the second was the amount of sorbitol osmolit concentration application. Results indicated that there was an interaction between the plant height growth and number of leaves between the water clamping time and concentration of the osmolit sorbitol. The vegetative stage especially during flowering and pod formation was inhibited when the water was clamped, but by spraying osmolit sorbitol, soybean growth in terms of its height and number of leaves was enhanced. This study implies that the application of osmolit sorbitol may enhance the drought resistance of soybean growth. Future research suggested that more work should be done on the application of osmolit sorbital to other agriculture crops to increase their drought resistance in the drylands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DROUGHT" title="DROUGHT">DROUGHT</a>, <a href="https://publications.waset.org/abstracts/search?q=engineered%20physiology" title=" engineered physiology"> engineered physiology</a>, <a href="https://publications.waset.org/abstracts/search?q=osmolit%20sorbitol" title=" osmolit sorbitol"> osmolit sorbitol</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean" title=" soybean"> soybean</a> </p> <a href="https://publications.waset.org/abstracts/36414/increasing-soybean-glycine-max-l-drought-resistance-with-osmolit-sorbitol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15282</span> Enhanced Imperialist Competitive Algorithm for the Cell Formation Problem Using Sequence Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Borghei">S. H. Borghei</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Teymourian"> E. Teymourian</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mobin"> M. Mobin</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Komaki"> G. M. Komaki</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sheikh"> S. Sheikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Imperialist competitive algorithm (ICA) is a recent meta-heuristic method that is inspired by the social evolutions for solving NP-Hard problems. The ICA is a population based algorithm which has achieved a great performance in comparison to other meta-heuristics. This study is about developing enhanced ICA approach to solve the cell formation problem (CFP) using sequence data. In addition to the conventional ICA, an enhanced version of ICA, namely EICA, applies local search techniques to add more intensification aptitude and embed the features of exploration and intensification more successfully. Suitable performance measures are used to compare the proposed algorithms with some other powerful solution approaches in the literature. In the same way, for checking the proficiency of algorithms, forty test problems are presented. Five benchmark problems have sequence data, and other ones are based on 0-1 matrices modified to sequence based problems. Computational results elucidate the efficiency of the EICA in solving CFP problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20formation%20problem" title="cell formation problem">cell formation problem</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20technology" title=" group technology"> group technology</a>, <a href="https://publications.waset.org/abstracts/search?q=imperialist%20competitive%20algorithm" title=" imperialist competitive algorithm"> imperialist competitive algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence%20data" title=" sequence data"> sequence data</a> </p> <a href="https://publications.waset.org/abstracts/37026/enhanced-imperialist-competitive-algorithm-for-the-cell-formation-problem-using-sequence-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15281</span> Indicators of Sustainable Intensification: Views from British Stakeholders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Mahon">N. Mahon</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Crute"> I. Crute</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Di%20Bonito"> M. Di Bonito</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Simmons"> E. Simmons</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Islam"> M. M. Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Growing interest in the concept of the sustainable intensification (SI) of agriculture has been shown by, national governments, transnational agribusinesses, intergovernmental organizations and research institutes, amongst others. This interest may be because SI is seen as a ‘third way’ for agricultural development, between the seemingly disparate paradigms of ‘intensive’ agriculture and more ‘sustainable’ forms of agriculture. However, there is a lack of consensus as to what SI means in practice and how it should be measured using indicators of change. This has led to growing confusion, disagreement and skepticism regarding the concept, especially amongst civil society organizations, both in the UK and other countries. This has prompted the need for bottom-up, participatory approaches to identify indicators of SI. Our aim is to identify the views of British stakeholders regarding the areas of agreement and disagreement as to what SI is and how it should be measured in the UK using indicators of change. Data for this investigation came from 32 semi-structured interviews, conducted between 2015 and 2016, with stakeholders from throughout the UK food system. In total 110 indicators of SI were identified. These indicators covered a wide variety of subjects including biophysical, social and political considerations. A number of indicators appeared to be widely applicable and were similar to those suggested in the global literature. These include indicators related to the management of the natural resources on which agriculture relies e.g., ‘Soil organic matter’, ‘Number of pollinators per hectare’ and ‘Depth of water table’. As well as those related to agricultural externalities, e.g., ‘Greenhouse gas emissions’ and ‘Concentrations of agro-chemicals in waterways’. However, many of the indicators were much more specific to the context of the UK. These included, ‘Areas of high nature value farmland’, ‘Length of hedgerows per hectare’ and ‘Age of farmers’. Furthermore, tensions could be seen when participants considered the relative importance of agricultural mechanization versus levels of agricultural employment, the pros and cons of intensive, housed livestock systems and value of wild biodiversity versus the desire to increase agricultural yields. These areas of disagreement suggest the need to carefully consider the trade-offs inherent in the concept. Our findings indicate that in order to begin to resolve the confusions surrounding SI it needs to be considered in a context specific manner, rather than as a single uniform concept. Furthermore, both the environmental and the social parameters in which agriculture operates need to be considered in order to operationalize SI in a meaningful way. We suggest that participatory approaches are key to this process, facilitating dialogue and collaborative-learning between all the stakeholders, allowing them to reach a shared vision for the future of agricultural development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=indicators" title=" indicators"> indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=participatory%20approach" title=" participatory approach"> participatory approach</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20intensification" title=" sustainable intensification"> sustainable intensification</a> </p> <a href="https://publications.waset.org/abstracts/70104/indicators-of-sustainable-intensification-views-from-british-stakeholders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15280</span> Sarvathobhadram-Organic Initiative: Cooperative Model for Resilient Agriculture by Adopting System of Rice Intensification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sreeni%20K.%20R.">Sreeni K. R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sarvathobhadram-Organic–Farmers Cooperative was helpful in supporting small and marginal farmers in customizing, adapting, and tailoring the system to their specific requirements. The Farmers Club, which has 50 members, was founded in May 2020 to create additional cash while also encouraging farmers to shift to organic farming. The club's mission is to ensure food security, livelihood, and entrepreneurship in the Anthikad Block Panchayat. The project addressed climate change and resilience, collaborating with government departments and utilizing convergence to maximize the schemes accessible to farmers in panchayath. The transformation was sluggish initially, but it accelerated over time, indicating that farmers have variable levels of satisfaction based on a variety of circumstances. This paper examines the changing trend in the area after adopting organic farming using the SRI method, the increase in production, and the success of the convergence method. It also attempts to find out various constraints faced by farmers during the paradigm shift from conventional methods to organic, and the results have proven that SRI should be considered as a potential cultivation method for all farmer's groups (Padasekharam). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarvathobhadram-Organic" title="Sarvathobhadram-Organic">Sarvathobhadram-Organic</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanniyam%20gram%20Panchayat" title=" Thanniyam gram Panchayat"> Thanniyam gram Panchayat</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20Joythi%20rice" title=" organic Joythi rice"> organic Joythi rice</a>, <a href="https://publications.waset.org/abstracts/search?q=convergence%20method" title=" convergence method"> convergence method</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeevamirtham" title=" Jeevamirtham"> Jeevamirtham</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20methods" title=" natural methods"> natural methods</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20of%20rice%20intensification" title=" system of rice intensification"> system of rice intensification</a> </p> <a href="https://publications.waset.org/abstracts/159970/sarvathobhadram-organic-initiative-cooperative-model-for-resilient-agriculture-by-adopting-system-of-rice-intensification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15279</span> Feasibility of Applying a Hydrodynamic Cavitation Generator as a Method for Intensification of Methane Fermentation Process of Virginia Fanpetals (Sida hermaphrodita) Biomass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Zieli%C5%84ski">Marcin Zieliński</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20D%C4%99bowski"> Marcin Dębowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Miros%C5%82aw%20Krzemieniewski"> Mirosław Krzemieniewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The anaerobic degradation of substrates is limited especially by the rate and effectiveness of the first (hydrolytic) stage of fermentation. This stage may be intensified through pre-treatment of substrate aimed at disintegration of the solid phase and destruction of substrate tissues and cells. The most frequently applied criterion of disintegration outcomes evaluation is the increase in biogas recovery owing to the possibility of its use for energetic purposes and, simultaneously, recovery of input energy consumed for the pre-treatment of substrate before fermentation. Hydrodynamic cavitation is one of the methods for organic substrate disintegration that has a high implementation potential. Cavitation is explained as the phenomenon of the formation of discontinuity cavities filled with vapor or gas in a liquid induced by pressure drop to the critical value. It is induced by a varying field of pressures. A void needs to occur in the flow in which the pressure first drops to the value close to the pressure of saturated vapor and then increases. The process of cavitation conducted under controlled conditions was found to significantly improve the effectiveness of anaerobic conversion of organic substrates having various characteristics. This phenomenon allows effective damage and disintegration of cellular and tissue structures. Disintegration of structures and release of organic compounds to the dissolved phase has a direct effect on the intensification of biogas production in the process of anaerobic fermentation, on reduced dry matter content in the post-fermentation sludge as well as a high degree of its hygienization and its increased susceptibility to dehydration. A device the efficiency of which was confirmed both in laboratory conditions and in systems operating in the technical scale is a hydrodynamic generator of cavitation. Cavitators, agitators and emulsifiers constructed and tested worldwide so far have been characterized by low efficiency and high energy demand. Many of them proved effective under laboratory conditions but failed under industrial ones. The only task successfully realized by these appliances and utilized on a wider scale is the heating of liquids. For this reason, their usability was limited to the function of heating installations. Design of the presented cavitation generator allows achieving satisfactory energy efficiency and enables its use under industrial conditions in depolymerization processes of biomass with various characteristics. Investigations conducted on the laboratory and industrial scale confirmed the effectiveness of applying cavitation in the process of biomass destruction. The use of the cavitation generator in laboratory studies for disintegration of sewage sludge allowed increasing biogas production by ca. 30% and shortening the treatment process by ca. 20 - 25%. The shortening of the technological process and increase of wastewater treatment plant effectiveness may delay investments aimed at increasing system output. The use of a mechanical cavitator and application of repeated cavitation process (4-6 times) enables significant acceleration of the biogassing process. In addition, mechanical cavitation accelerates increases in COD and VFA levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20cavitation" title="hydrodynamic cavitation">hydrodynamic cavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20fermentation" title=" methane fermentation"> methane fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Virginia%20fanpetals" title=" Virginia fanpetals"> Virginia fanpetals</a> </p> <a href="https://publications.waset.org/abstracts/41407/feasibility-of-applying-a-hydrodynamic-cavitation-generator-as-a-method-for-intensification-of-methane-fermentation-process-of-virginia-fanpetals-sida-hermaphrodita-biomass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15278</span> Living at Density: Resident Perceptions in Auckland, New Zealand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Errol%20J.%20Haarhoff">Errol J. Haarhoff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Housing in New Zealand, particularly in Auckland, is dominated by low-density suburbs. Over the past 20 years, housing intensification policies aimed to curb outward low-density sprawl and to concentrate development within an urban boundary have been implemented. This requires the greater deployment of attached housing typologies such apartments, duplexes and terrace housing. There has been strong market response and uptake for higher density development, with the number of building approvals received by the Auckland Council for attached housing units increasing from around 15 percent in 2012/13, to 54 percent in 2017/18. A key question about intensification and strong market uptake in a city where lower density has been the norm, is whether higher density neighborhoods will deliver necessary housing satisfaction? This paper reports on the findings to a questionnaire survey and focus group discussions probing resident perceptions to living at higher density in relation to their dwellings, the neighborhood and their sense of community. The findings reveal strong overall housing satisfaction, including key aspects such as privacy, noise and living in close proximity to neighbors. However, when residents are differentiated in terms of length of tenure, age or whether they are bringing up children, greater variation in satisfaction is detected. For example, residents in the 65-plus age cohort express much higher levels of satisfaction, when compared to the 18-44 year cohorts who more likely to be binging up children. This suggests greater design sensitivity to better accommodate the range of household types. Those who have live in the area longer express greater satisfaction than those with shorter duration, indicating time for adaption to living at higher density. Findings strongly underpin the instrumental role that the public amenities play in overall housing satisfaction and the emergence of a strong sense of community. This underscores the necessity for appropriate investment in the public amenities often lacking in market-led higher density housing development. We conclude with an evaluation of the PPP model, and its part in delivering housing satisfaction. The findings should be of interest to cities, housing developers and built environment professional pursuing housing policies promoting intensification and higher density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medium%20density" title="medium density">medium density</a>, <a href="https://publications.waset.org/abstracts/search?q=housing%20satisfaction" title=" housing satisfaction"> housing satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=neighborhoods" title=" neighborhoods"> neighborhoods</a>, <a href="https://publications.waset.org/abstracts/search?q=sense%20of%20community" title=" sense of community"> sense of community</a> </p> <a href="https://publications.waset.org/abstracts/105149/living-at-density-resident-perceptions-in-auckland-new-zealand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15277</span> Inherent Relation Between Atomic-Level Stresses and Nanoscale Spatial Heterogeneity in a Rejuvenated Bulk Metallic Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Samavatian">Majid Samavatian</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Gholamipour"> Reza Gholamipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Samavatian"> Vahid Samavatian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study addresses the role of rejuvenation on the fluctuation of atomic-level stresses and nanoscale topological heterogeneity in ZrCuNiAl bulk metallic glass (BMG). Based on atomic force microscopy (AFM) results, the rejuvenation process leads to an increase in nanoscale spatial heterogeneity manifested by the intensification of the local viscoelastic response of the BMG nanostructure. It means that the rejuvenation process induces more loose-packing structures which behave towards an external load in a viscoelastic way. Hence, it is suggested that the alteration of such heterogeneity may be attributed to the variation of positional atomic rearrangement during the evolution of structural rejuvenation. On the other side, the synchrotron X-ray diffraction (XRD) results indicate that the rejuvenation intensifies the variation of internal stresses at the atomic level. This conclusion unfolds that the increase of atomic-level stresses during rejuvenation induces structural disordering and nanoscale heterogeneity in the amorphous material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bulk%20metallic%20glass" title="bulk metallic glass">bulk metallic glass</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneity" title=" heterogeneity"> heterogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=rejuvenation" title=" rejuvenation"> rejuvenation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a> </p> <a href="https://publications.waset.org/abstracts/121311/inherent-relation-between-atomic-level-stresses-and-nanoscale-spatial-heterogeneity-in-a-rejuvenated-bulk-metallic-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15276</span> Regenerative Agriculture: A Green Economy Tool for a Sustainable Crop Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meisam%20Zargar">Meisam Zargar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yurii%20Pleskachov"> Yurii Pleskachov</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Abdelkader"> Mostafa Abdelkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Aldaibe%20Ahmed"> Aldaibe Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Bayat"> Maryam Bayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Malek%20H.%20Walli"> Malek H. Walli</a>, <a href="https://publications.waset.org/abstracts/search?q=Shimendi%20Okbagabir"> Shimendi Okbagabir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increased need of humankind for foodstuffs highlights the intensification of agricultural production. It is necessary either to increase the size of the sown area or to look for new approaches to improve agricultural land productivity. Developing new areas for cultivation is possible due to the intensification of soil cultivation. Nevertheless, this will decrease the effectiveness of de-carbonization programs since this approach will inevitably increase greenhouse gas emissions. Therefore, searching for new solutions to conserve natural resources while obtaining stable predicted crop yields is a vital scientific and technical task. For a long time, destructive land use methods have been used in crop production. The present stage of civilization's development and implementation of new techniques and methods of tillage and crops require the solution of technological, economic, and environmental problems simultaneously with the possibility of creating conditions for the regeneration of soil resources. Implementing these approaches became possible due to the development of new technology for the cultivation of crops based on the exact selective impact on the object of processing. This technology of particular effects of TIV combines the positive accumulated experience of traditional farming systems and resource-saving approaches. Particularly high-quality indicators and cost savings with introducing TIV can be achieved when used on row crops, including vegetables and melons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20machinery" title="agricultural machinery">agricultural machinery</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable" title=" vegetable"> vegetable</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=strip%20system" title=" strip system"> strip system</a> </p> <a href="https://publications.waset.org/abstracts/190121/regenerative-agriculture-a-green-economy-tool-for-a-sustainable-crop-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15275</span> Intensification of Ethyl Esters Synthesis Using a Packed-Bed Tubular Reactor at Supercritical Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Camila%20da%20Silva">Camila da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Simone%20Belorte%20de%20Andrade"> Simone Belorte de Andrade</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitor%20Augusto%20dos%20Santos%20Garcia"> Vitor Augusto dos Santos Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Ferreira%20Cabral"> Vladimir Ferreira Cabral</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Vladimir%20Oliveira%20L%C3%BAcio%20Cardozo-Filho"> J. Vladimir Oliveira Lúcio Cardozo-Filho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the non-catalytic transesterification of soybean oil in continuous mode using supercritical ethanol were investigated. Experiments were performed in a packed-bed tubular reactor (PBTR) and variable studied were reaction temperature (523 K to 598 K), pressure (10 MPa to 20 MPa), oil to ethanol molar ratio (1:10 to 1:40) and water concentration (0 wt% to 10 wt% in ethanol). Results showed that ethyl esters yields obtained in the PBTR were higher (&gt; 20 wt%) than those verified in a tubular reactor (TR), due to improved mass transfer conditions attained in the PBTR. Results demonstrated that temperature, pressure, oil to ethanol molar ratio and water concentration had a positive effect on fatty acid ethyl esters (FAEE) production in the experimental range investigated, with appreciable reaction yields (90 wt%) achieved at 598 K, 20 MPa, oil to ethanol molar ratio of 1:40 and 10 wt% of water concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=packed%20bed%20reactor" title="packed bed reactor">packed bed reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=ethyl%20esters" title=" ethyl esters"> ethyl esters</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20process" title=" continuous process"> continuous process</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst-free%20process" title=" catalyst-free process"> catalyst-free process</a> </p> <a href="https://publications.waset.org/abstracts/20326/intensification-of-ethyl-esters-synthesis-using-a-packed-bed-tubular-reactor-at-supercritical-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15274</span> Agroecology Approaches Towards Sustainable Agriculture and Food System: Reviewing and Exploring Selected Policies and Strategic Documents through an Agroecological Lens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dereje%20Regasa">Dereje Regasa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global food system is at a crossroads, which requires prompt action to minimize the effects of the crises. Agroecology is gaining prominence due to its contributions to sustainable food systems. To support efforts in mitigating the crises, the Food and Agriculture Organization (FAO) established alternative approaches for sustainable agri-food systems. Agroecological elements and principles were developed to guide and support measures that countries need to achieve the Sustainable Development Goals (SDGs). The SDGs require the systemic integration of practices for a smart intensification or adaptation of traditional or industrial agriculture. As one of the countries working towards SDGs, the agricultural practices in Ethiopia need to be guided by these agroecological elements and principles. Aiming at the identification of challenging aspects of a sustainable agri-food system and the characterization of an enabling environment for agroecology, as well as exploring to what extent the existing policies and strategies support the agroecological transition process, five policy and strategy documents were reviewed. These documents are the Rural Development Policy and Strategy, the Environment Policy, the Biodiversity Policy, and the Soil Strategy of the Ministry of Agriculture (MoA). Using the Agroecology Criteria Tool (ACT), the contents were reviewed, focusing on agroecological requirements and the inclusion of sustainable practices. ACT is designed to support a self-assessment of elements supporting agroecology. For each element, binary values were assigned based on the inclusion of the minimum requirements index and then validated through discussion with the document owners. The results showed that the documents were well below the requirements for an agroecological transition of the agri-food system. The Rural Development Policy and Strategy only suffice to 83% in Human and Social Value. It does not support the transition concerning the other elements. The Biodiversity Policy and Soil Strategy suffice regarding the inclusion of Co-creation and Sharing of knowledge (100%), while the remaining elements were not considered sufficiently. In contrast, the Environment Policy supports the transition with three elements accounting for 100%. These are Resilience, Recycling, and Human and Social Care. However, when the four documents were combined, elements such as Synergies, Diversity, Efficiency, Human and Social value, Responsible governance, and Co-creation and Sharing of knowledge were identified as fully supportive (100%). This showed that the policies and strategies complemented one another to a certain extent. However, the evaluation results call for improvements concerning elements like Culture and food traditions, Circular and solidarity economy, Resilience, Recycling, and Regulation and balance since the majority of the elements were not sufficiently observed. Consequently, guidance for the smart intensification of local practices is needed, as well as traditional knowledge enriched with advanced technologies. Ethiopian agricultural and environmental policies and strategies should provide sufficient support and guidance for the intensification of sustainable practices and should provide a framework for an agroecological transition towards a sustainable agri-food system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agroecology" title="agroecology">agroecology</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20food%20system" title=" sustainable food system"> sustainable food system</a>, <a href="https://publications.waset.org/abstracts/search?q=transition" title=" transition"> transition</a> </p> <a href="https://publications.waset.org/abstracts/157075/agroecology-approaches-towards-sustainable-agriculture-and-food-system-reviewing-and-exploring-selected-policies-and-strategic-documents-through-an-agroecological-lens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15273</span> Sonication as a Versatile Tool for Photocatalysts’ Synthesis and Intensification of Flow Photocatalytic Processes Within the Lignocellulose Valorization Concept</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Colmenares">J. C. Colmenares</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Paszkiewicz-Gawron"> M. Paszkiewicz-Gawron</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Lomot"> D. Lomot</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Pradhan"> S. R. Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Qayyum"> A. Qayyum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is a report of recent selected experiments of photocatalysis intensification using flow microphotoreactors (fabricated by an ultrasound-based technique) for photocatalytic selective oxidation of benzyl alcohol (BnOH) to benzaldehyde (PhCHO) (in the frame of the concept of lignin valorization), and the proof of concept of intensifying a flow selective photocatalytic oxidation process by acoustic cavitation. The synthesized photocatalysts were characterized by using different techniques such as UV-Vis diffuse reflectance spectroscopy, X-ray diffraction, nitrogen sorption, thermal gravimetric analysis, and transmission electron microscopy. More specifically, the work will be on: a Design and development of metal-containing TiO₂ coated microflow reactor for photocatalytic partial oxidation of benzyl alcohol: The current work introduces an efficient ultrasound-based metal (Fe, Cu, Co)-containing TiO₂ deposition on the inner walls of a perfluoroalkoxy alkanes (PFA) microtube under mild conditions. The experiments were carried out using commercial TiO₂ and sol-gel synthesized TiO₂. The rough surface formed during sonication is the site for the deposition of these nanoparticles in the inner walls of the microtube. The photocatalytic activities of these semiconductor coated fluoropolymer based microreactors were evaluated for the selective oxidation of BnOH to PhCHO in the liquid flow phase. The analysis of the results showed that various features/parameters are crucial, and by tuning them, it is feasible to improve the conversion of benzyl alcohol and benzaldehyde selectivity. Among all the metal-containing TiO₂ samples, the 0.5 at% Fe/TiO₂ (both, iron and titanium, as cheap, safe, and abundant metals) photocatalyst exhibited the highest BnOH conversion under visible light (515 nm) in a microflow system. This could be explained by the higher crystallite size, high porosity, and flake-like morphology. b. Designing/fabricating photocatalysts by a sonochemical approach and testing them in the appropriate flow sonophotoreactor towards sustainable selective oxidation of key organic model compounds of lignin: Ultrasonication (US)-assitedprecipitaion and US-assitedhydrosolvothermal methods were used for the synthesis of metal-oxide-based and metal-free-carbon-based photocatalysts, respectively. Additionally, we report selected experiments of intensification of a flow photocatalytic selective oxidation through the use of ultrasonic waves. The effort of our research is focused on the utilization of flow sonophotocatalysis for the selective transformation of lignin-based model molecules by nanostructured metal oxides (e.g., TiO₂), and metal-free carbocatalysts. A plethora of parameters that affects the acoustic cavitation phenomena, and as a result the potential of sonication were investigated (e.g. ultrasound frequency and power). Various important photocatalytic parameters such as the wavelength and intensity of the irradiated light, photocatalyst loading, type of solvent, mixture of solvents, and solution pH were also optimized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20photo-catalysis" title="heterogeneous photo-catalysis">heterogeneous photo-catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-free%20carbonaceous%20materials" title=" metal-free carbonaceous materials"> metal-free carbonaceous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20redox%20flow%20sonophotocatalysis" title=" selective redox flow sonophotocatalysis"> selective redox flow sonophotocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide"> titanium dioxide</a> </p> <a href="https://publications.waset.org/abstracts/147623/sonication-as-a-versatile-tool-for-photocatalysts-synthesis-and-intensification-of-flow-photocatalytic-processes-within-the-lignocellulose-valorization-concept" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15272</span> The Effect of Hybrid SPD Process on Mechanical Properties, Drawability, and Plastic Anisotropy of DC03 Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karolina%20Kowalczyk-Skoczylas">Karolina Kowalczyk-Skoczylas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hybrid SPD process called DRECE (Dual Rolls Equal Channel Extrusion) combines the concepts of ECAP method and CONFORM extrusion, and is intended for processing sheet-metal workpieces. The material in the fоrm оf a metal strip is subjected tо plastic defоrmation by passing thrоugh the shaping tоol at a given angle α. Importantly, in this process the dimensions of the metal strip dо nоt change after the pass is cоmpleted. Subsequent DRECE passes allоw fоr increasing the effective strain in the tested material. The methоd has a significant effect оn the micrоstructure and mechanical prоperties оf the strip. The experimental tests have been conducted on the unconventional DRECE device in VŠB Ostrava, the Czech Republic. The DC03 steel strips have been processed in several passes - up to six. Then, both Erichsen cupping tests as well as static tensile tests have been performed to evaluate the effect of DRECE process on drawability, plastic anisotropy and mechanical properties of the investigated steel. Both yield strength and ultimate tensile strength increase significantly after consecutive passes. Drawability decreases slightly after the first and second pass. Then it stabilizes on a reasonably high level, which means that the steel is characterized by useful drawability for technological processes. It was investigated in the material is characterized by a normal anisotropy. In the microstructure, an intensification of the development of microshear bands and their mutual intersection is observed, which leads to the fragmentation of the grain into smaller volumes and, consequently, to the formation of an ultrafine grained structure. "The project was co-financed by the European Union within the programme "The European Funds for Śląsk (Silesia) 2021-2027". <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SPD%20process" title="SPD process">SPD process</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20carbon%20steel" title=" low carbon steel"> low carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20deformation" title=" plastic deformation"> plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure%20evolution" title=" microstructure evolution"> microstructure evolution</a> </p> <a href="https://publications.waset.org/abstracts/193428/the-effect-of-hybrid-spd-process-on-mechanical-properties-drawability-and-plastic-anisotropy-of-dc03-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">16</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15271</span> Intensification of Process Kinetics for Conversion of Organic Volatiles into Syngas Using Non-Thermal Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Palash%20Kumar%20Mollick">Palash Kumar Mollick</a>, <a href="https://publications.waset.org/abstracts/search?q=Leire%20Olazar"> Leire Olazar</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Santamaria"> Laura Santamaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Comendador"> Pablo Comendador</a>, <a href="https://publications.waset.org/abstracts/search?q=Manomita%20Mollick"> Manomita Mollick</a>, <a href="https://publications.waset.org/abstracts/search?q=Gartzen%20Lopez"> Gartzen Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Olazar"> Martin Olazar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The entire world is skeptical towards a silver line technology of converting plastic waste into valuable synthetic gas. At this junction, besides an adequately studied conventional catalytic process for steam reforming, a non-thermal plasma is being introduced. Organic volatiles are produced in the first step, pyrolysing the plastic materials. Resultant lightweight olefins and carbon monoxide are the major components that undergo a steam reforming process to achieve syngas. A non-thermal plasma consists of ionized gases and free electrons with an electronic temperature as high as 10³ K. Organic volatiles are, in general, endorganics inactive and thus demand huge bond-breaking energy. Conventional catalyst is incapable of providing the required activation energy, leading to poor thermodynamic equilibrium, whereas a non-thermal plasma can actively collide with reactants to produce a rich mix of reactive species, including vibrationally or electronically excited molecules, radicals, atoms, and ions. In addition, non-thermal plasma provides nonequilibrium conditions leading to electric discharge only in certain degrees of freedom without affecting the intrinsic chemical conditions of the participating reactants and products. In this work, we report thermodynamic and kinetic aspects of the conversion of organic volatiles into syngas using a non-thermal plasma. Detailed characteristics of plasma and its effect on the overall yield of the process will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non%20thermal%20plasma" title="non thermal plasma">non thermal plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20catalysis" title=" plasma catalysis"> plasma catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20reforming" title=" steam reforming"> steam reforming</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20waste" title=" plastic waste"> plastic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20energy" title=" green energy"> green energy</a> </p> <a href="https://publications.waset.org/abstracts/172095/intensification-of-process-kinetics-for-conversion-of-organic-volatiles-into-syngas-using-non-thermal-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15270</span> Small Town Big Urban Issues the Case of Kiryat Ono, Israel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruth%20Shapira">Ruth Shapira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The rapid urbanization of the last century confronts planners, regulatory bodies, developers and most of all – the public with seemingly unsolved conflicts regarding values, capital, and wellbeing of the built and un-built urban space. This is reflected in the quality of the urban form and life which has known no significant progress in the last 2-3 decades despite the on-growing urban population. It is the objective of this paper to analyze some of these fundamental issues through the case study of a relatively small town in the center of Israel (Kiryat-Ono, 100,000 inhabitants), unfold the deep structure of qualities versus disruptors, present some cure that we have developed to bridge over and humbly suggest a practice that may be generic for similar cases. Basic Methodologies: The OBJECT, the town of Kiryat Ono, shall be experimented upon in a series of four action processes: De-composition, Re-composition, the Centering process and, finally, Controlled Structural Disintegration. Each stage will be based on facts, analysis of previous multidisciplinary interventions on various layers – and the inevitable reaction of the OBJECT, leading to the conclusion based on innovative theoretical and practical methods that we have developed and that we believe are proper for the open ended network, setting the rules for the contemporary urban society to cluster by. The Study: Kiryat Ono, was founded 70 years ago as an agricultural settlement and rapidly turned into an urban entity. In spite the massive intensification, the original DNA of the old small town was still deeply embedded, mostly in the quality of the public space and in the sense of clustered communities. In the past 20 years, the recent demand for housing has been addressed to on the national level with recent master plans and urban regeneration policies mostly encouraging individual economic initiatives. Unfortunately, due to the obsolete existing planning platform the present urban renewal is characterized by pressure of developers, a dramatic change in building scale and widespread disintegration of the existing urban and social tissue. Our office was commissioned to conceptualize two master plans for the two contradictory processes of Kiryat Ono’s future: intensification and conservation. Following a comprehensive investigation into the deep structures and qualities of the existing town, we developed a new vocabulary of conservation terms thus redefying the sense of PLACE. The main challenge was to create master plans that should offer a regulatory basis to the accelerated and sporadic development providing for the public good and preserving the characteristics of the PLACE consisting of a tool box of design guidelines that will have the ability to reorganize space along the time axis in a coherent way. In Conclusion: The system of rules that we have developed can generate endless possible patterns making sure that at each implementation fragment an event is created, and a better place is revealed. It takes time and perseverance but it seems to be the way to provide a healthy framework for the accelerated urbanization of our chaotic present. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=housing" title="housing">housing</a>, <a href="https://publications.waset.org/abstracts/search?q=architecture" title=" architecture"> architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20qualities" title=" urban qualities"> urban qualities</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20regeneration" title=" urban regeneration"> urban regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=intensification" title=" intensification"> intensification</a> </p> <a href="https://publications.waset.org/abstracts/26203/small-town-big-urban-issues-the-case-of-kiryat-ono-israel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=process%20intensification&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=process%20intensification&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=process%20intensification&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=process%20intensification&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=process%20intensification&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=process%20intensification&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=process%20intensification&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=process%20intensification&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=process%20intensification&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=process%20intensification&amp;page=509">509</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=process%20intensification&amp;page=510">510</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=process%20intensification&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10