CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 64 results for author: <span class="mathjax">Capelli, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Capelli%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Capelli, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Capelli%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Capelli, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Capelli%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Capelli%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Capelli%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12380">arXiv:2406.12380</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12380">pdf</a>, <a href="https://arxiv.org/format/2406.12380">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Search for fractionally charged particles with CUORE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D+Q">D. Q. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&amp;query=Campani%2C+A">A. Campani</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Celi%2C+E">E. Celi</a> , et al. (95 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12380v1-abstract-short" style="display: inline;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is a detector array comprised by 988 5$\;$cm$\times$5$\;$cm$\times$5$\;$cm TeO$_2$ crystals held below 20 mK, primarily searching for neutrinoless double-beta decay in $^{130}$Te. Unprecedented in size amongst cryogenic calorimetric experiments, CUORE provides a promising setting for the study of exotic through-going particles. Using th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12380v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12380v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12380v1-abstract-full" style="display: none;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is a detector array comprised by 988 5$\;$cm$\times$5$\;$cm$\times$5$\;$cm TeO$_2$ crystals held below 20 mK, primarily searching for neutrinoless double-beta decay in $^{130}$Te. Unprecedented in size amongst cryogenic calorimetric experiments, CUORE provides a promising setting for the study of exotic through-going particles. Using the first tonne-year of CUORE&#39;s exposure, we perform a search for hypothesized fractionally charged particles (FCPs), which are well-motivated by various Standard Model extensions and would have suppressed interactions with matter. No excess of FCP candidate tracks is observed over background, setting leading limits on the underground FCP flux with charges between $e/24-e/5$ at 90\% confidence level. Using the low background environment and segmented geometry of CUORE, we establish the sensitivity of tonne-scale sub-Kelvin detectors to diverse signatures of new physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12380v1-abstract-full').style.display = 'none'; document.getElementById('2406.12380v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17937">arXiv:2405.17937</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.17937">pdf</a>, <a href="https://arxiv.org/format/2405.17937">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.052003">10.1103/PhysRevD.110.052003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Data-driven background model for the CUORE experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D+Q">D. Q. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&amp;query=Campani%2C+A">A. Campani</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Celi%2C+E">E. Celi</a> , et al. (93 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17937v1-abstract-short" style="display: inline;"> We present the model we developed to reconstruct the CUORE radioactive background based on the analysis of an experimental exposure of 1038.4 kg yr. The data reconstruction relies on a simultaneous Bayesian fit applied to energy spectra over a broad energy range. The high granularity of the CUORE detector, together with the large exposure and extended stable operations, allow for an in-depth explo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17937v1-abstract-full').style.display = 'inline'; document.getElementById('2405.17937v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17937v1-abstract-full" style="display: none;"> We present the model we developed to reconstruct the CUORE radioactive background based on the analysis of an experimental exposure of 1038.4 kg yr. The data reconstruction relies on a simultaneous Bayesian fit applied to energy spectra over a broad energy range. The high granularity of the CUORE detector, together with the large exposure and extended stable operations, allow for an in-depth exploration of both spatial and time dependence of backgrounds. We achieve high sensitivity to both bulk and surface activities of the materials of the setup, detecting levels as low as 10 nBq kg$^{-1}$ and 0.1 nBq cm$^{-2}$, respectively. We compare the contamination levels we extract from the background model with prior radio-assay data, which informs future background risk mitigation strategies. The results of this background model play a crucial role in constructing the background budget for the CUPID experiment as it will exploit the same CUORE infrastructure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17937v1-abstract-full').style.display = 'none'; document.getElementById('2405.17937v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.13213">arXiv:2309.13213</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.13213">pdf</a>, <a href="https://arxiv.org/format/2309.13213">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/202429503040">10.1051/epjconf/202429503040 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The LHCb ultra-fast simulation option, Lamarr: design and validation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Anderlini%2C+L">Lucio Anderlini</a>, <a href="/search/physics?searchtype=author&amp;query=Barbetti%2C+M">Matteo Barbetti</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">Simone Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Corti%2C+G">Gloria Corti</a>, <a href="/search/physics?searchtype=author&amp;query=Davis%2C+A">Adam Davis</a>, <a href="/search/physics?searchtype=author&amp;query=Derkach%2C+D">Denis Derkach</a>, <a href="/search/physics?searchtype=author&amp;query=Kazeev%2C+N">Nikita Kazeev</a>, <a href="/search/physics?searchtype=author&amp;query=Maevskiy%2C+A">Artem Maevskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Martinelli%2C+M">Maurizio Martinelli</a>, <a href="/search/physics?searchtype=author&amp;query=Mokonenko%2C+S">Sergei Mokonenko</a>, <a href="/search/physics?searchtype=author&amp;query=Siddi%2C+B+G">Benedetto Gianluca Siddi</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Z">Zehua Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.13213v1-abstract-short" style="display: inline;"> Detailed detector simulation is the major consumer of CPU resources at LHCb, having used more than 90% of the total computing budget during Run 2 of the Large Hadron Collider at CERN. As data is collected by the upgraded LHCb detector during Run 3 of the LHC, larger requests for simulated data samples are necessary, and will far exceed the pledged resources of the experiment, even with existing fa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13213v1-abstract-full').style.display = 'inline'; document.getElementById('2309.13213v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.13213v1-abstract-full" style="display: none;"> Detailed detector simulation is the major consumer of CPU resources at LHCb, having used more than 90% of the total computing budget during Run 2 of the Large Hadron Collider at CERN. As data is collected by the upgraded LHCb detector during Run 3 of the LHC, larger requests for simulated data samples are necessary, and will far exceed the pledged resources of the experiment, even with existing fast simulation options. An evolution of technologies and techniques to produce simulated samples is mandatory to meet the upcoming needs of analysis to interpret signal versus background and measure efficiencies. In this context, we propose Lamarr, a Gaudi-based framework designed to offer the fastest solution for the simulation of the LHCb detector. Lamarr consists of a pipeline of modules parameterizing both the detector response and the reconstruction algorithms of the LHCb experiment. Most of the parameterizations are made of Deep Generative Models and Gradient Boosted Decision Trees trained on simulated samples or alternatively, where possible, on real data. Embedding Lamarr in the general LHCb Gauss Simulation framework allows combining its execution with any of the available generators in a seamless way. Lamarr has been validated by comparing key reconstructed quantities with Detailed Simulation. Good agreement of the simulated distributions is obtained with two-order-of-magnitude speed-up of the simulation phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.13213v1-abstract-full').style.display = 'none'; document.getElementById('2309.13213v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Under review in EPJ Web of Conferences (CHEP 2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.09402">arXiv:2308.09402</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.09402">pdf</a>, <a href="https://arxiv.org/format/2308.09402">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Design and performance of the ENUBET monitored neutrino beam </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Acerbi%2C+F">F. Acerbi</a>, <a href="/search/physics?searchtype=author&amp;query=Angelis%2C+I">I. Angelis</a>, <a href="/search/physics?searchtype=author&amp;query=Bomben%2C+L">L. Bomben</a>, <a href="/search/physics?searchtype=author&amp;query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&amp;query=Bramati%2C+F">F. Bramati</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brizzolari%2C+C">C. Brizzolari</a>, <a href="/search/physics?searchtype=author&amp;query=Brunetti%2C+G">G. Brunetti</a>, <a href="/search/physics?searchtype=author&amp;query=Calviani%2C+M">M. Calviani</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Carturan%2C+S">S. Carturan</a>, <a href="/search/physics?searchtype=author&amp;query=Catanesi%2C+M+G">M. G. Catanesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cecchini%2C+S">S. Cecchini</a>, <a href="/search/physics?searchtype=author&amp;query=Charitonidis%2C+N">N. Charitonidis</a>, <a href="/search/physics?searchtype=author&amp;query=Cindolo%2C+F">F. Cindolo</a>, <a href="/search/physics?searchtype=author&amp;query=Cogo%2C+G">G. Cogo</a>, <a href="/search/physics?searchtype=author&amp;query=Collazuol%2C+G">G. Collazuol</a>, <a href="/search/physics?searchtype=author&amp;query=Corso%2C+F+D">F. Dal Corso</a>, <a href="/search/physics?searchtype=author&amp;query=Delogu%2C+C">C. Delogu</a>, <a href="/search/physics?searchtype=author&amp;query=De+Rosa%2C+G">G. De Rosa</a>, <a href="/search/physics?searchtype=author&amp;query=Falcone%2C+A">A. Falcone</a>, <a href="/search/physics?searchtype=author&amp;query=Goddard%2C+B">B. Goddard</a>, <a href="/search/physics?searchtype=author&amp;query=Gola%2C+A">A. Gola</a>, <a href="/search/physics?searchtype=author&amp;query=Guffanti%2C+D">D. Guffanti</a>, <a href="/search/physics?searchtype=author&amp;query=Hali%C4%87%2C+L">L. Hali膰</a> , et al. (47 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.09402v1-abstract-short" style="display: inline;"> The ENUBET project is aimed at designing and experimentally demonstrating the concept of monitored neutrino beams. These novel beams are enhanced by an instrumented decay tunnel, whose detectors reconstruct large-angle charged leptons produced in the tunnel and give a direct estimate of the neutrino flux at the source. These facilities are thus the ideal tool for high-precision neutrino cross-sect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.09402v1-abstract-full').style.display = 'inline'; document.getElementById('2308.09402v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.09402v1-abstract-full" style="display: none;"> The ENUBET project is aimed at designing and experimentally demonstrating the concept of monitored neutrino beams. These novel beams are enhanced by an instrumented decay tunnel, whose detectors reconstruct large-angle charged leptons produced in the tunnel and give a direct estimate of the neutrino flux at the source. These facilities are thus the ideal tool for high-precision neutrino cross-section measurements at the GeV scale because they offer superior control of beam systematics with respect to existing facilities. In this paper, we present the first end-to-end design of a monitored neutrino beam capable of monitoring lepton production at the single particle level. This goal is achieved by a new focusing system without magnetic horns, a 20 m normal-conducting transfer line for charge and momentum selection, and a 40 m tunnel instrumented with cost-effective particle detectors. Employing such a design, we show that percent precision in cross-section measurements can be achieved at the CERN SPS complex with existing neutrino detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.09402v1-abstract-full').style.display = 'none'; document.getElementById('2308.09402v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 33 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.10515">arXiv:2305.10515</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.10515">pdf</a>, <a href="https://arxiv.org/format/2305.10515">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/05/P05065">10.1088/1748-0221/19/05/P05065 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The LHCb upgrade I </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=LHCb+collaboration"> LHCb collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aaij%2C+R">R. Aaij</a>, <a href="/search/physics?searchtype=author&amp;query=Abdelmotteleb%2C+A+S+W">A. S. W. Abdelmotteleb</a>, <a href="/search/physics?searchtype=author&amp;query=Beteta%2C+C+A">C. Abellan Beteta</a>, <a href="/search/physics?searchtype=author&amp;query=Abudin%C3%A9n%2C+F">F. Abudin茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Achard%2C+C">C. Achard</a>, <a href="/search/physics?searchtype=author&amp;query=Ackernley%2C+T">T. Ackernley</a>, <a href="/search/physics?searchtype=author&amp;query=Adeva%2C+B">B. Adeva</a>, <a href="/search/physics?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&amp;query=Afsharnia%2C+H">H. Afsharnia</a>, <a href="/search/physics?searchtype=author&amp;query=Agapopoulou%2C+C">C. Agapopoulou</a>, <a href="/search/physics?searchtype=author&amp;query=Aidala%2C+C+A">C. A. Aidala</a>, <a href="/search/physics?searchtype=author&amp;query=Ajaltouni%2C+Z">Z. Ajaltouni</a>, <a href="/search/physics?searchtype=author&amp;query=Akar%2C+S">S. Akar</a>, <a href="/search/physics?searchtype=author&amp;query=Akiba%2C+K">K. Akiba</a>, <a href="/search/physics?searchtype=author&amp;query=Albicocco%2C+P">P. Albicocco</a>, <a href="/search/physics?searchtype=author&amp;query=Albrecht%2C+J">J. Albrecht</a>, <a href="/search/physics?searchtype=author&amp;query=Alessio%2C+F">F. Alessio</a>, <a href="/search/physics?searchtype=author&amp;query=Alexander%2C+M">M. Alexander</a>, <a href="/search/physics?searchtype=author&amp;query=Albero%2C+A+A">A. Alfonso Albero</a>, <a href="/search/physics?searchtype=author&amp;query=Aliouche%2C+Z">Z. Aliouche</a>, <a href="/search/physics?searchtype=author&amp;query=Cartelle%2C+P+A">P. Alvarez Cartelle</a>, <a href="/search/physics?searchtype=author&amp;query=Amalric%2C+R">R. Amalric</a>, <a href="/search/physics?searchtype=author&amp;query=Amato%2C+S">S. Amato</a> , et al. (1298 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.10515v2-abstract-short" style="display: inline;"> The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their select&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10515v2-abstract-full').style.display = 'inline'; document.getElementById('2305.10515v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.10515v2-abstract-full" style="display: none;"> The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment&#39;s tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment&#39;s software. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10515v2-abstract-full').style.display = 'none'; document.getElementById('2305.10515v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">All figures and tables, along with any supplementary material and additional information, are available at http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-DP-2022-002.html (LHCb public pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LHCb-DP-2022-002 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 19 (2024) P05065 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.04674">arXiv:2304.04674</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.04674">pdf</a>, <a href="https://arxiv.org/format/2304.04674">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/06/P06033">10.1088/1748-0221/18/06/P06033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A first test of CUPID prototypal light detectors with NTD-Ge sensors in a pulse-tube cryostat </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUPID+collaboration"> CUPID collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Berest%2C+V">V. Berest</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Bettelli%2C+M">M. Bettelli</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&amp;query=Boldrini%2C+V">V. Boldrini</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Campani%2C+A">A. Campani</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a> , et al. (154 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.04674v1-abstract-short" style="display: inline;"> CUPID is a next-generation bolometric experiment aiming at searching for neutrinoless double-beta decay with ~250 kg of isotopic mass of $^{100}$Mo. It will operate at $\sim$10 mK in a cryostat currently hosting a similar-scale bolometric array for the CUORE experiment at the Gran Sasso National Laboratory (Italy). CUPID will be based on large-volume scintillating bolometers consisting of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04674v1-abstract-full').style.display = 'inline'; document.getElementById('2304.04674v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.04674v1-abstract-full" style="display: none;"> CUPID is a next-generation bolometric experiment aiming at searching for neutrinoless double-beta decay with ~250 kg of isotopic mass of $^{100}$Mo. It will operate at $\sim$10 mK in a cryostat currently hosting a similar-scale bolometric array for the CUORE experiment at the Gran Sasso National Laboratory (Italy). CUPID will be based on large-volume scintillating bolometers consisting of $^{100}$Mo-enriched Li$_2$MoO$_4$ crystals, facing thin Ge-wafer-based bolometric light detectors. In the CUPID design, the detector structure is novel and needs to be validated. In particular, the CUORE cryostat presents a high level of mechanical vibrations due to the use of pulse tubes and the effect of vibrations on the detector performance must be investigated. In this paper we report the first test of the CUPID-design bolometric light detectors with NTD-Ge sensors in a dilution refrigerator equipped with a pulse tube in an above-ground lab. Light detectors are characterized in terms of sensitivity, energy resolution, pulse time constants, and noise power spectrum. Despite the challenging noisy environment due to pulse-tube-induced vibrations, we demonstrate that all the four tested light detectors comply with the CUPID goal in terms of intrinsic energy resolution of 100 eV RMS baseline noise. Indeed, we have measured 70--90 eV RMS for the four devices, which show an excellent reproducibility. We have also obtained outstanding energy resolutions at the 356 keV line from a $^{133}$Ba source with one light detector achieving 0.71(5) keV FWHM, which is -- to our knowledge -- the best ever obtained when compared to $纬$ detectors of any technology in this energy range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04674v1-abstract-full').style.display = 'none'; document.getElementById('2304.04674v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Prepared for submission to JINST; 16 pages, 7 figures, and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.04611">arXiv:2304.04611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.04611">pdf</a>, <a href="https://arxiv.org/format/2304.04611">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/06/P06018">10.1088/1748-0221/18/06/P06018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Twelve-crystal prototype of Li$_2$MoO$_4$ scintillating bolometers for CUPID and CROSS experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUPID"> CUPID</a>, <a href="/search/physics?searchtype=author&amp;query=collaborations%2C+C">CROSS collaborations</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&amp;query=Bandac%2C+I+C">I. C. Bandac</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Berest%2C+V">V. Berest</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Bettelli%2C+M">M. Bettelli</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&amp;query=Boldrini%2C+V">V. Boldrini</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a> , et al. (160 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.04611v1-abstract-short" style="display: inline;"> An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers equipped with 16 bolometric Ge light detectors, aiming at optimization of detector structure for CROSS and CUPID double-beta decay experiments, was constructed and tested in a low-background pulse-tube-based cryostat at the Canfranc underground laboratory in Spain. Performance of the scintillating bolometers was studied&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04611v1-abstract-full').style.display = 'inline'; document.getElementById('2304.04611v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.04611v1-abstract-full" style="display: none;"> An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers equipped with 16 bolometric Ge light detectors, aiming at optimization of detector structure for CROSS and CUPID double-beta decay experiments, was constructed and tested in a low-background pulse-tube-based cryostat at the Canfranc underground laboratory in Spain. Performance of the scintillating bolometers was studied depending on the size of phonon NTD-Ge sensors glued to both LMO and Ge absorbers, shape of the Ge light detectors (circular vs. square, from two suppliers), in different light collection conditions (with and without reflector, with aluminum coated LMO crystal surface). The scintillating bolometer array was operated over 8 months in the low-background conditions that allowed to probe a very low, $渭$Bq/kg, level of the LMO crystals radioactive contamination by $^{228}$Th and $^{226}$Ra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04611v1-abstract-full').style.display = 'none'; document.getElementById('2304.04611v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Prepared for submission to JINST; 23 pages, 9 figures, and 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09490">arXiv:2209.09490</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.09490">pdf</a>, <a href="https://arxiv.org/format/2209.09490">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.032006">10.1103/PhysRevD.107.032006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Majoron-like particles with CUPID-0 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+C">CUPID-0 Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Caracciolo%2C+V">V. Caracciolo</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Celi%2C+E">E. Celi</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Domp%C3%A8%2C+V">V. Domp猫</a>, <a href="/search/physics?searchtype=author&amp;query=Fantini%2C+G">G. Fantini</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09490v1-abstract-short" style="display: inline;"> We present the first search for the Majoron-emitting modes of the neutrinoless double $尾$ decay ($0谓尾尾蠂_0$) using scintillating cryogenic calorimeters. We analysed the CUPID-0 Phase I data using a Bayesian approach to reconstruct the background sources activities, and evaluate the potential contribution of the $^{82}$Se $0谓尾尾蠂_0$. We considered several possible theoretical models which predict the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09490v1-abstract-full').style.display = 'inline'; document.getElementById('2209.09490v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09490v1-abstract-full" style="display: none;"> We present the first search for the Majoron-emitting modes of the neutrinoless double $尾$ decay ($0谓尾尾蠂_0$) using scintillating cryogenic calorimeters. We analysed the CUPID-0 Phase I data using a Bayesian approach to reconstruct the background sources activities, and evaluate the potential contribution of the $^{82}$Se $0谓尾尾蠂_0$. We considered several possible theoretical models which predict the existence of a Majoron-like boson coupling to the neutrino. The energy spectra arising from the emission of such bosons in the neutrinoless double $尾$ decay have spectral indices $n=$ 1, 2, 3 or 7. We found no evidence of any of these decay modes, setting a lower limit (90% of credibility interval) on the half-life of 1.2 $\times$ 10$^{23}$ yr in the case of $n=$ 1, 3.8 $\times$ 10$^{22}$ yr for $n=$ 2, 1.4 $\times$ 10$^{22}$ yr for $n=$ 3 and 2.2 $\times$ 10$^{21}$ yr for $n=$ 7. These are the best limits on the $0谓尾尾蠂_0$ half-life of the $^{82}$Se, and demonstrate the potentiality of the CUPID-0 technology in this field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09490v1-abstract-full').style.display = 'none'; document.getElementById('2209.09490v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.05130">arXiv:2206.05130</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.05130">pdf</a>, <a href="https://arxiv.org/format/2206.05130">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.111801">10.1103/PhysRevLett.129.111801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Final Result on the Neutrinoless Double Beta Decay of $^{82}$Se with CUPID-0 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Caracciolo%2C+V">V. Caracciolo</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=De+Dominics%2C+F">F. De Dominics</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">P. Gorla</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.05130v1-abstract-short" style="display: inline;"> CUPID-0, an array of Zn$^{82}$Se cryogenic calorimeters, was the first medium-scale demonstrator of the scintillating bolometers technology. The first project phase (March 2017 - December 2018) allowed the most stringent limit on the neutrinoless double beta decay half-life of the isotope of interest, $^{82}$Se, to be set. After a six months long detector upgrade, CUPID-0 began its second and last&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05130v1-abstract-full').style.display = 'inline'; document.getElementById('2206.05130v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.05130v1-abstract-full" style="display: none;"> CUPID-0, an array of Zn$^{82}$Se cryogenic calorimeters, was the first medium-scale demonstrator of the scintillating bolometers technology. The first project phase (March 2017 - December 2018) allowed the most stringent limit on the neutrinoless double beta decay half-life of the isotope of interest, $^{82}$Se, to be set. After a six months long detector upgrade, CUPID-0 began its second and last phase (June 2019 - February 2020). In this letter, we describe the search for neutrinoless double beta decay of $^{82}$Se with a total exposure (phase I + II) of 8.82 kg$\times$yr of isotope. We set a limit on the half-life of $^{82}$Se to the ground state of $^{82}$Kr of T$^{0谓}_{1/2}$($^{82}$Se)$&gt;$ 4.6$\times \mathrm{10}^{24}$ yr (90\% credible interval), corresponding to an effective Majorana neutrino mass m$_{尾尾} &lt;$ (263 -- 545) meV. We also set the most stringent lower limits on the neutrinoless decays of $^{82}$Se to the 0$_1^+$, 2$_1^+$ and 2$_2^+$ excited states of $^{82}$Kr, finding 1.8$\times$10$^{23}$ yr, 3.0$\times$10$^{23}$ yr, 3.2$\times$10$^{23}$ yr (90$\%$ credible interval) respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05130v1-abstract-full').style.display = 'none'; document.getElementById('2206.05130v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.04549">arXiv:2205.04549</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.04549">pdf</a>, <a href="https://arxiv.org/format/2205.04549">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> An Energy-dependent Electro-thermal Response Model of CUORE Cryogenic Calorimeter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D+Q">D. Q. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&amp;query=Campani%2C+A">A. Campani</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+X+G">X. G. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a> , et al. (96 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.04549v2-abstract-short" style="display: inline;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is the most sensitive experiment searching for neutrinoless double-beta decay ($0谓尾尾$) in $^{130}\text{Te}$. CUORE uses a cryogenic array of 988 TeO$_2$ calorimeters operated at $\sim$10 mK with a total mass of 741 kg. To further increase the sensitivity, the detector response must be well understood. Here, we present a non-linear therm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04549v2-abstract-full').style.display = 'inline'; document.getElementById('2205.04549v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.04549v2-abstract-full" style="display: none;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is the most sensitive experiment searching for neutrinoless double-beta decay ($0谓尾尾$) in $^{130}\text{Te}$. CUORE uses a cryogenic array of 988 TeO$_2$ calorimeters operated at $\sim$10 mK with a total mass of 741 kg. To further increase the sensitivity, the detector response must be well understood. Here, we present a non-linear thermal model for the CUORE experiment on a detector-by-detector basis. We have examined both equilibrium and dynamic electro-thermal models of detectors by numerically fitting non-linear differential equations to the detector data of a subset of CUORE channels which are well characterized and representative of all channels. We demonstrate that the hot-electron effect and electric-field dependence of resistance in NTD-Ge thermistors alone are inadequate to describe our detectors&#39; energy dependent pulse shapes. We introduce an empirical second-order correction factor in the exponential temperature dependence of the thermistor, which produces excellent agreement with energy-dependent pulse shape data up to 6 MeV. We also present a noise analysis using the fitted thermal parameters and show that the intrinsic thermal noise is negligible compared to the observed noise for our detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04549v2-abstract-full').style.display = 'none'; document.getElementById('2205.04549v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 14 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.06279">arXiv:2202.06279</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.06279">pdf</a>, <a href="https://arxiv.org/format/2202.06279">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Optimization of the first CUPID detector module </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUPID+collaboration"> CUPID collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&amp;query=Ballen%2C+K">K. Ballen</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Bettelli%2C+M">M. Bettelli</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&amp;query=Boldrini%2C+V">V. Boldrini</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a> , et al. (153 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.06279v1-abstract-short" style="display: inline;"> CUPID will be a next generation experiment searching for the neutrinoless double $尾$ decay, whose discovery would establish the Majorana nature of the neutrino. Based on the experience achieved with the CUORE experiment, presently taking data at LNGS, CUPID aims to reach a background free environment by means of scintillating Li$_{2}$$^{100}$MoO$_4$ crystals coupled to light detectors. Indeed, the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.06279v1-abstract-full').style.display = 'inline'; document.getElementById('2202.06279v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.06279v1-abstract-full" style="display: none;"> CUPID will be a next generation experiment searching for the neutrinoless double $尾$ decay, whose discovery would establish the Majorana nature of the neutrino. Based on the experience achieved with the CUORE experiment, presently taking data at LNGS, CUPID aims to reach a background free environment by means of scintillating Li$_{2}$$^{100}$MoO$_4$ crystals coupled to light detectors. Indeed, the simultaneous heat and light detection allows us to reject the dominant background of $伪$ particles, as proven by the CUPID-0 and CUPID-Mo demonstrators. In this work we present the results of the first test of the CUPID baseline module. In particular, we propose a new optimized detector structure and light sensors design to enhance the engineering and the light collection, respectively. We characterized the heat detectors, achieving an energy resolution of (5.9 $\pm$ 0.2) keV FWHM at the $Q$-value of $^{100}$Mo (about 3034 keV). We studied the light collection of the baseline CUPID design with respect to an alternative configuration which features gravity-assisted light detectors&#39; mounting. In both cases we obtained an improvement in the light collection with respect to past measures and we validated the particle identification capability of the detector, which ensures an $伪$ particle rejection higher than 99.9%, fully satisfying the requirements for CUPID. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.06279v1-abstract-full').style.display = 'none'; document.getElementById('2202.06279v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.10151">arXiv:2111.10151</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.10151">pdf</a>, <a href="https://arxiv.org/format/2111.10151">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/12/P12008">10.1088/1748-0221/16/12/P12008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Portable Cosmic Ray Detector for School Education </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bomben%2C+L">Luca Bomben</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">Stefano Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Fanzini%2C+C">Chiara Fanzini</a>, <a href="/search/physics?searchtype=author&amp;query=Lutsenko%2C+E">Evgenii Lutsenko</a>, <a href="/search/physics?searchtype=author&amp;query=Mascagna%2C+V">Valerio Mascagna</a>, <a href="/search/physics?searchtype=author&amp;query=Petroselli%2C+C">Christian Petroselli</a>, <a href="/search/physics?searchtype=author&amp;query=Prest%2C+M">Michela Prest</a>, <a href="/search/physics?searchtype=author&amp;query=Ronchetti%2C+F">Federico Ronchetti</a>, <a href="/search/physics?searchtype=author&amp;query=Selmi%2C+A">Alessia Selmi</a>, <a href="/search/physics?searchtype=author&amp;query=Vallazza%2C+E">Erik Vallazza</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.10151v1-abstract-short" style="display: inline;"> This article describes the design, assembly and characterization of a portable cosmic ray detector, developed by the INSULAB group and suitable for teaching activities aimed at high school students. It consists of a compact aluminum suitcase containing three plastic scintillator modules coupled to photomultipliers, readout by a custom compact electronics chain and powered by a power bank. The modu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.10151v1-abstract-full').style.display = 'inline'; document.getElementById('2111.10151v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.10151v1-abstract-full" style="display: none;"> This article describes the design, assembly and characterization of a portable cosmic ray detector, developed by the INSULAB group and suitable for teaching activities aimed at high school students. It consists of a compact aluminum suitcase containing three plastic scintillator modules coupled to photomultipliers, readout by a custom compact electronics chain and powered by a power bank. The modules operate in coincidence and the system records the arrival time of each particle and the time over threshold of the signal of each scintillator module. The data are acquired and processed by a Raspberry PI connected to a touch screen display for online monitoring. The procedure implemented for the determination of the detector efficiency is reported, along with the results of the measurements of the cosmic ray rate as a function of the altitude and the zenith angle, performed in the laboratory and in different locations outdoors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.10151v1-abstract-full').style.display = 'none'; document.getElementById('2111.10151v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.00831">arXiv:2110.00831</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.00831">pdf</a>, <a href="https://arxiv.org/format/2110.00831">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/11/P11030">10.1088/1748-0221/16/11/P11030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterisation of signal-induced noise in Hamamatsu R11265 Multianode Photomultiplier Tubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Andreotti%2C+M">M. Andreotti</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cavallero%2C+G">G. Cavallero</a>, <a href="/search/physics?searchtype=author&amp;query=Chiozzi%2C+S">S. Chiozzi</a>, <a href="/search/physics?searchtype=author&amp;query=Ramusino%2C+A+C">A. Cotta Ramusino</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Ambrosio%2C+C">C. D&#39;Ambrosio</a>, <a href="/search/physics?searchtype=author&amp;query=Fiorini%2C+M">M. Fiorini</a>, <a href="/search/physics?searchtype=author&amp;query=Franzoso%2C+E">E. Franzoso</a>, <a href="/search/physics?searchtype=author&amp;query=Frei%2C+C">C. Frei</a>, <a href="/search/physics?searchtype=author&amp;query=Gallorini%2C+S">S. Gallorini</a>, <a href="/search/physics?searchtype=author&amp;query=Gambetta%2C+S">S. Gambetta</a>, <a href="/search/physics?searchtype=author&amp;query=Giugliano%2C+C">C. Giugliano</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&amp;query=Gys%2C+T">T. Gys</a>, <a href="/search/physics?searchtype=author&amp;query=Keizer%2C+F">F. Keizer</a>, <a href="/search/physics?searchtype=author&amp;query=Maino%2C+M">M. Maino</a>, <a href="/search/physics?searchtype=author&amp;query=Malecki%2C+B">B. Malecki</a>, <a href="/search/physics?searchtype=author&amp;query=Minzoni%2C+L">L. Minzoni</a>, <a href="/search/physics?searchtype=author&amp;query=Mitchell%2C+S">S. Mitchell</a>, <a href="/search/physics?searchtype=author&amp;query=Neri%2C+I">I. Neri</a>, <a href="/search/physics?searchtype=author&amp;query=Petrolini%2C+A">A. Petrolini</a>, <a href="/search/physics?searchtype=author&amp;query=Piedigrossi%2C+D">D. Piedigrossi</a>, <a href="/search/physics?searchtype=author&amp;query=Robertson%2C+G">G. Robertson</a>, <a href="/search/physics?searchtype=author&amp;query=Sergi%2C+A">A. Sergi</a>, <a href="/search/physics?searchtype=author&amp;query=Simi%2C+G">G. Simi</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.00831v3-abstract-short" style="display: inline;"> Signal-induced noise is observed in Hamamatsu R11265 Multianode Photomultiplier Tubes, manifesting up to several microseconds after the single photoelectron response signal and localised in specific anodes. The mean number of noise pulses varies between devices, and shows significant dependence on the applied high-voltage. The characterisation of this noise and the mitigation strategies to perform&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00831v3-abstract-full').style.display = 'inline'; document.getElementById('2110.00831v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.00831v3-abstract-full" style="display: none;"> Signal-induced noise is observed in Hamamatsu R11265 Multianode Photomultiplier Tubes, manifesting up to several microseconds after the single photoelectron response signal and localised in specific anodes. The mean number of noise pulses varies between devices, and shows significant dependence on the applied high-voltage. The characterisation of this noise and the mitigation strategies to perform optimal single-photon counting at 40 MHz, as required by the LHCb Ring-Imaging Cherenkov detectors, are reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00831v3-abstract-full').style.display = 'none'; document.getElementById('2110.00831v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-LHCb-DP-2021-005 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 16 (2021) P11030 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.07883">arXiv:2108.07883</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.07883">pdf</a>, <a href="https://arxiv.org/format/2108.07883">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ppnp.2021.103902">10.1016/j.ppnp.2021.103902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CUORE Opens the Door to Tonne-scale Cryogenics Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D+Q">D. Q. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&amp;query=Alessandria%2C+F">F. Alessandria</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Andreotti%2C+E">E. Andreotti</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&amp;query=Bandac%2C+I">I. Bandac</a>, <a href="/search/physics?searchtype=author&amp;query=Banks%2C+T+I">T. I. Banks</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Barucci%2C+M">M. Barucci</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Bersani%2C+A">A. Bersani</a>, <a href="/search/physics?searchtype=author&amp;query=Biare%2C+D">D. Biare</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bragazzi%2C+F">F. Bragazzi</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bryant%2C+A">A. Bryant</a>, <a href="/search/physics?searchtype=author&amp;query=Buccheri%2C+A">A. Buccheri</a> , et al. (184 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.07883v2-abstract-short" style="display: inline;"> The past few decades have seen major developments in the design and operation of cryogenic particle detectors. This technology offers an extremely good energy resolution - comparable to semiconductor detectors - and a wide choice of target materials, making low temperature calorimetric detectors ideal for a variety of particle physics applications. Rare event searches have continued to require eve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.07883v2-abstract-full').style.display = 'inline'; document.getElementById('2108.07883v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.07883v2-abstract-full" style="display: none;"> The past few decades have seen major developments in the design and operation of cryogenic particle detectors. This technology offers an extremely good energy resolution - comparable to semiconductor detectors - and a wide choice of target materials, making low temperature calorimetric detectors ideal for a variety of particle physics applications. Rare event searches have continued to require ever greater exposures, which has driven them to ever larger cryogenic detectors, with the CUORE experiment being the first to reach a tonne-scale, mK-cooled, experimental mass. CUORE, designed to search for neutrinoless double beta decay, has been operational since 2017 at a temperature of about 10 mK. This result has been attained by the use of an unprecedentedly large cryogenic infrastructure called the CUORE cryostat: conceived, designed and commissioned for this purpose. In this article the main characteristics and features of the cryogenic facility developed for the CUORE experiment are highlighted. A brief introduction of the evolution of the field and of the past cryogenic facilities are given. The motivation behind the design and development of the CUORE cryogenic facility is detailed as are the steps taken toward realization, commissioning, and operation of the CUORE cryostat. The major challenges overcome by the collaboration and the solutions implemented throughout the building of the cryogenic facility will be discussed along with the potential improvements for future facilities. The success of CUORE has opened the door to a new generation of large-scale cryogenic facilities in numerous fields of science. Broader implications of the incredible feat achieved by the CUORE collaboration on the future cryogenic facilities in various fields ranging from neutrino and dark matter experiments to quantum computing will be examined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.07883v2-abstract-full').style.display = 'none'; document.getElementById('2108.07883v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Prog. Part. Nucl. Phys., 122 (2021), Article 103902 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.04409">arXiv:2105.04409</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.04409">pdf</a>, <a href="https://arxiv.org/format/2105.04409">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09476-z">10.1140/epjc/s10052-021-09476-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Background identification in cryogenic calorimeters through $伪-伪$ delayed coincidences </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">P. Gorla</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&amp;query=Keppel%2C+G">G. Keppel</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+M">M. Martinez</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.04409v2-abstract-short" style="display: inline;"> Localization and modeling of radioactive contaminations is a challenge that ultra-low background experiments are constantly facing. These are fundamental steps both to extract scientific results and to further reduce the background of the detectors. Here we present an innovative technique based on the analysis of $伪-伪$ delayed coincidences in $^{232}$Th and $^{238}$U decay chains, developed to inv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04409v2-abstract-full').style.display = 'inline'; document.getElementById('2105.04409v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.04409v2-abstract-full" style="display: none;"> Localization and modeling of radioactive contaminations is a challenge that ultra-low background experiments are constantly facing. These are fundamental steps both to extract scientific results and to further reduce the background of the detectors. Here we present an innovative technique based on the analysis of $伪-伪$ delayed coincidences in $^{232}$Th and $^{238}$U decay chains, developed to investigate the contaminations of the ZnSe crystals in the CUPID-0 experiment. This method allows to disentangle surface and bulk contaminations of the detectors relying on the different probability to tag delayed coincidences as function of the $伪$ decay position. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04409v2-abstract-full').style.display = 'none'; document.getElementById('2105.04409v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 81, 722 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.03329">arXiv:2105.03329</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.03329">pdf</a>, <a href="https://arxiv.org/format/2105.03329">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2021.136642">10.1016/j.physletb.2021.136642 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of $^{216}$Po half-life with the CUPID-0 experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Caracciolo%2C+V">V. Caracciolo</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">P. Gorla</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a> , et al. (22 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.03329v2-abstract-short" style="display: inline;"> Rare event physics demands very detailed background control, high-performance detectors, and custom analysis strategies. Cryogenic calorimeters combine all these ingredients very effectively, representing a promising tool for next-generation experiments. CUPID-0 is one of the most advanced examples of such a technique, having demonstrated its potential with several results obtained with limited ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03329v2-abstract-full').style.display = 'inline'; document.getElementById('2105.03329v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.03329v2-abstract-full" style="display: none;"> Rare event physics demands very detailed background control, high-performance detectors, and custom analysis strategies. Cryogenic calorimeters combine all these ingredients very effectively, representing a promising tool for next-generation experiments. CUPID-0 is one of the most advanced examples of such a technique, having demonstrated its potential with several results obtained with limited exposure. In this paper, we present a further application. Exploiting the analysis of delayed coincidence, we can identify the signals caused by the $^{220}$Rn-$^{216}$Po decay sequence on an event-by-event basis. The analysis of these events allows us to extract the time differences between the two decays, leading to a new evaluation of $^{216}$ half-life, estimated as (143.3 $\pm$ 2.8) ms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03329v2-abstract-full').style.display = 'none'; document.getElementById('2105.03329v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.06147">arXiv:2102.06147</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.06147">pdf</a>, <a href="https://arxiv.org/format/2102.06147">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/abfc13">10.1088/1361-648X/abfc13 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal neutron cross sections of amino acids from average contributions of functional groups </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Romanelli%2C+G">G. Romanelli</a>, <a href="/search/physics?searchtype=author&amp;query=Onorati%2C+D">D. Onorati</a>, <a href="/search/physics?searchtype=author&amp;query=Ulpiani%2C+P">P. Ulpiani</a>, <a href="/search/physics?searchtype=author&amp;query=Cancelli%2C+S">S. Cancelli</a>, <a href="/search/physics?searchtype=author&amp;query=Perelli-Cippo%2C+E">E. Perelli-Cippo</a>, <a href="/search/physics?searchtype=author&amp;query=Dami%C3%A1n%2C+J+I+M">J. I. M谩rquez Dami谩n</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S+C">S. C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Croci%2C+G">G. Croci</a>, <a href="/search/physics?searchtype=author&amp;query=Muraro%2C+A">A. Muraro</a>, <a href="/search/physics?searchtype=author&amp;query=Tardocchi%2C+M">M. Tardocchi</a>, <a href="/search/physics?searchtype=author&amp;query=Gorini%2C+G">G. Gorini</a>, <a href="/search/physics?searchtype=author&amp;query=Andreani%2C+C">C. Andreani</a>, <a href="/search/physics?searchtype=author&amp;query=Senesi%2C+R">R. Senesi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.06147v1-abstract-short" style="display: inline;"> The experimental thermal neutron cross sections of the twenty proteinogenic amino acids have been measured over the incident-neutron energy range spanning from 1 meV to 10 keV and data have been interpreted using the multi-phonon expansion based on first-principles calculations. The scattering cross section, dominated by the incoherent inelastic contribution from the hydrogen atoms, can be rationa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06147v1-abstract-full').style.display = 'inline'; document.getElementById('2102.06147v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.06147v1-abstract-full" style="display: none;"> The experimental thermal neutron cross sections of the twenty proteinogenic amino acids have been measured over the incident-neutron energy range spanning from 1 meV to 10 keV and data have been interpreted using the multi-phonon expansion based on first-principles calculations. The scattering cross section, dominated by the incoherent inelastic contribution from the hydrogen atoms, can be rationalised in terms of the average contributions of different functional groups, thus neglecting their correlation. These results can be used for modelling the total neutron cross sections of complex organic systems like proteins, muscles, or human tissues from a limited number of starting input functions. This simplification is of crucial importance for fine-tuning of transport simulations used in medical applications, including boron neutron capture therapy as well as secondary neutrons-emission induced during proton therapy. Moreover, the parametrized neutron cross sections allow a better treatment of neutron scattering experiments, providing detailed sample self-attenuation corrections for a variety of biological and soft-matter systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06147v1-abstract-full').style.display = 'none'; document.getElementById('2102.06147v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.13806">arXiv:2011.13806</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.13806">pdf</a>, <a href="https://arxiv.org/format/2011.13806">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/02/P02037">10.1088/1748-0221/16/02/P02037 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A CUPID Li$_{2}$$^{100}$MoO$_4$ scintillating bolometer tested in the CROSS underground facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+CUPID+Interest+Group"> The CUPID Interest Group</a>, <a href="/search/physics?searchtype=author&amp;query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&amp;query=Armengaud%2C+E">E. Armengaud</a>, <a href="/search/physics?searchtype=author&amp;query=Armstrong%2C+W">W. Armstrong</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Bandac%2C+I+C">I. C. Bandac</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&amp;query=Bourgeois%2C+C">Ch. Bourgeois</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&amp;query=Boldrini%2C+V">V. Boldrini</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Calvo-Mozota%2C+J+M">J. M. Calvo-Mozota</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+J">J. Camilleri</a> , et al. (156 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.13806v1-abstract-short" style="display: inline;"> A scintillating bolometer based on a large cubic Li$_{2}$$^{100}$MoO$_4$ crystal (45 mm side) and a Ge wafer (scintillation detector) has been operated in the CROSS cryogenic facility at the Canfranc underground laboratory in Spain. The dual-readout detector is a prototype of the technology that will be used in the next-generation $0\nu2尾$ experiment CUPID. The measurements were performed at 18 an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13806v1-abstract-full').style.display = 'inline'; document.getElementById('2011.13806v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.13806v1-abstract-full" style="display: none;"> A scintillating bolometer based on a large cubic Li$_{2}$$^{100}$MoO$_4$ crystal (45 mm side) and a Ge wafer (scintillation detector) has been operated in the CROSS cryogenic facility at the Canfranc underground laboratory in Spain. The dual-readout detector is a prototype of the technology that will be used in the next-generation $0\nu2尾$ experiment CUPID. The measurements were performed at 18 and 12 mK temperature in a pulse tube dilution refrigerator. This setup utilizes the same technology as the CUORE cryostat that will host CUPID and so represents an accurate estimation of the expected performance. The Li$_{2}$$^{100}$MoO$_4$ bolometer shows a high energy resolution of 6 keV FWHM at the 2615 keV $纬$ line. The detection of scintillation light for each event triggered by the Li$_{2}$$^{100}$MoO$_4$ bolometer allowed for a full separation ($\sim$8$蟽$) between $纬$($尾$) and $伪$ events above 2 MeV. The Li$_{2}$$^{100}$MoO$_4$ crystal also shows a high internal radiopurity with $^{228}$Th and $^{226}$Ra activities of less than 3 and 8 $渭$Bq/kg, respectively. Taking also into account the advantage of a more compact and massive detector array, which can be made of cubic-shaped crystals (compared to the cylindrical ones), this test demonstrates the great potential of cubic Li$_{2}$$^{100}$MoO$_4$ scintillating bolometers for high-sensitivity searches for the $^{100}$Mo $0\nu2尾$ decay in CROSS and CUPID projects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13806v1-abstract-full').style.display = 'none'; document.getElementById('2011.13806v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.13656">arXiv:2011.13656</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.13656">pdf</a>, <a href="https://arxiv.org/format/2011.13656">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Characterization of cubic Li$_{2}$$^{100}$MoO$_4$ crystals for the CUPID experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&amp;query=Armengaud%2C+E">E. Armengaud</a>, <a href="/search/physics?searchtype=author&amp;query=Armstrong%2C+W">W. Armstrong</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A">A. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%C3%A8%2C+L">L. Berg猫</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&amp;query=Boldrini%2C+V">V. Boldrini</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a> , et al. (147 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.13656v1-abstract-short" style="display: inline;"> The CUPID Collaboration is designing a tonne-scale, background-free detector to search for double beta decay with sufficient sensitivity to fully explore the parameter space corresponding to the inverted neutrino mass hierarchy scenario. One of the CUPID demonstrators, CUPID-Mo, has proved the potential of enriched Li$_{2}$$^{100}$MoO$_4$ crystals as suitable detectors for neutrinoless double beta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13656v1-abstract-full').style.display = 'inline'; document.getElementById('2011.13656v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.13656v1-abstract-full" style="display: none;"> The CUPID Collaboration is designing a tonne-scale, background-free detector to search for double beta decay with sufficient sensitivity to fully explore the parameter space corresponding to the inverted neutrino mass hierarchy scenario. One of the CUPID demonstrators, CUPID-Mo, has proved the potential of enriched Li$_{2}$$^{100}$MoO$_4$ crystals as suitable detectors for neutrinoless double beta decay search. In this work, we characterised cubic crystals that, compared to the cylindrical crystals used by CUPID-Mo, are more appealing for the construction of tightly packed arrays. We measured an average energy resolution of (6.7$\pm$0.6) keV FWHM in the region of interest, approaching the CUPID target of 5 keV FWHM. We assessed the identification of $伪$ particles with and without a reflecting foil that enhances the scintillation light collection efficiency, proving that the baseline design of CUPID already ensures a complete suppression of this $伪$-induced background contribution. We also used the collected data to validate a Monte Carlo simulation modelling the light collection efficiency, which will enable further optimisations of the detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13656v1-abstract-full').style.display = 'none'; document.getElementById('2011.13656v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.11726">arXiv:2011.11726</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.11726">pdf</a>, <a href="https://arxiv.org/format/2011.11726">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.104.015501">10.1103/PhysRevC.104.015501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Novel technique for the study of pile-up events in cryogenic bolometers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&amp;query=Armengaud%2C+E">E. Armengaud</a>, <a href="/search/physics?searchtype=author&amp;query=Armstrong%2C+W">W. Armstrong</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A">A. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&amp;query=Boldrini%2C+V">V. Boldrini</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a> , et al. (144 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.11726v2-abstract-short" style="display: inline;"> Precise characterization of detector time resolution is of crucial importance for next-generation cryogenic-bolometer experiments searching for neutrinoless double-beta decay, such as CUPID, in order to reject background due to pile-up of two-neutrino double-beta decay events. In this paper, we describe a technique developed to study the pile-up rejection capability of cryogenic bolometers. Our ap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.11726v2-abstract-full').style.display = 'inline'; document.getElementById('2011.11726v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.11726v2-abstract-full" style="display: none;"> Precise characterization of detector time resolution is of crucial importance for next-generation cryogenic-bolometer experiments searching for neutrinoless double-beta decay, such as CUPID, in order to reject background due to pile-up of two-neutrino double-beta decay events. In this paper, we describe a technique developed to study the pile-up rejection capability of cryogenic bolometers. Our approach, which consists of producing controlled pile-up events with a programmable waveform generator, has the benefit that we can reliably and reproducibly control the time separation and relative energy of the individual components of the generated pile-up events. The resulting data allow us to optimize and benchmark analysis strategies to discriminate between individual and pile-up pulses. We describe a test of this technique performed with a small array of detectors at the Laboratori Nazionali del Gran Sasso, in Italy; we obtain a 90% rejection efficiency against pulser-generated pile-up events with rise time of ~15ms down to time separation between the individual events of about 2ms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.11726v2-abstract-full').style.display = 'none'; document.getElementById('2011.11726v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 104, 015501 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.09295">arXiv:2011.09295</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.09295">pdf</a>, <a href="https://arxiv.org/format/2011.09295">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> New results from the CUORE experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Giachero%2C+A">A. Giachero</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D+Q">D. Q. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&amp;query=Campani%2C+A">A. Campani</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+X+G">X. G. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Celi%2C+E">E. Celi</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a> , et al. (88 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.09295v2-abstract-short" style="display: inline;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for neutrinoless double-beta ($0谓尾尾$) decay that has been able to reach the one-ton scale. The detector, located at the Laboratori Nazionali del Gran Sasso in Italy, consists of an array of 988 TeO$_2$ crystals arranged in a compact cylindrical structure of 19 towers. Following the completion&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09295v2-abstract-full').style.display = 'inline'; document.getElementById('2011.09295v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.09295v2-abstract-full" style="display: none;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for neutrinoless double-beta ($0谓尾尾$) decay that has been able to reach the one-ton scale. The detector, located at the Laboratori Nazionali del Gran Sasso in Italy, consists of an array of 988 TeO$_2$ crystals arranged in a compact cylindrical structure of 19 towers. Following the completion of the detector construction in August 2016, CUORE began its first physics data run in 2017 at a base temperature of about 10 mK. Following multiple optimization campaigns in 2018, CUORE is currently in stable operating mode. In 2019, CUORE released its 2\textsuperscript{nd} result of the search for $0谓尾尾$ with a TeO$_2$ exposure of 372.5 kg$\cdot$yr and a median exclusion sensitivity to a $^{130}$Te $0谓尾尾$ decay half-life of $1.7\cdot 10^{25}$ yr. We find no evidence for $0谓尾尾$ decay and set a 90\% C.I. (credibility interval) Bayesian lower limit of $3.2\cdot 10^{25}$ yr on the $^{130}$Te $0谓尾尾$ decay half-life. In this work, we present the current status of CUORE&#39;s search for $0谓尾尾$, as well as review the detector performance. Finally, we give an update of the CUORE background model and the measurement of the $^{130}$Te two neutrino double-beta ($2谓尾尾$) decay half-life. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09295v2-abstract-full').style.display = 'none'; document.getElementById('2011.09295v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceeding of 40th International Conference on High Energy physics (ICHEP2020), July 28 - August 6, 2020, Prague, Czech Republic (virtual meeting). arXiv admin note: text overlap with arXiv:1905.07667</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.08937">arXiv:2007.08937</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.08937">pdf</a>, <a href="https://arxiv.org/format/2007.08937">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/10/P10031">10.1088/1748-0221/15/10/P10031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single photon time resolution of photodetectors at high rate: Hamamatsu R13742 MaPMT and R10754 MCP-PMT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Calvi%2C+M">M. Calvi</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&amp;query=Pessina%2C+G">G. Pessina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.08937v2-abstract-short" style="display: inline;"> This paper reports on the time resolution of two photodetectors operated as single photon counters at high rate: a Hamamatsu R13742-103-M64 &#34;conventional&#34; (based on metal dynodes) multi-anode photomultiplier tube (MaPMT) and a Hamamatsu R10754-07-M16 microchannel plate photomultiplier tube (MCP-PMT). The MCP-PMT shows a time resolution (transit time spread, or jitter) of ~70 ps FWHM (~30 ps RMS) a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08937v2-abstract-full').style.display = 'inline'; document.getElementById('2007.08937v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.08937v2-abstract-full" style="display: none;"> This paper reports on the time resolution of two photodetectors operated as single photon counters at high rate: a Hamamatsu R13742-103-M64 &#34;conventional&#34; (based on metal dynodes) multi-anode photomultiplier tube (MaPMT) and a Hamamatsu R10754-07-M16 microchannel plate photomultiplier tube (MCP-PMT). The MCP-PMT shows a time resolution (transit time spread, or jitter) of ~70 ps FWHM (~30 ps RMS) at low photon rates, but saturates above ~100 kHz/mm^2. The MaPMT can handle photon counting rates up to the highest tested, 10 MHz/mm^2. Its time resolution is ~250 ps FWHM (~110 ps RMS) when only the pixel center is illuminated, but pixel edge effects degrade the resolution to ~400 ps FWHM (~170 ps RMS) when the entire pixel area is illuminated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08937v2-abstract-full').style.display = 'none'; document.getElementById('2007.08937v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.07269">arXiv:2006.07269</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.07269">pdf</a>, <a href="https://arxiv.org/format/2006.07269">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/08/P08001">10.1088/1748-0221/15/08/P08001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The ENUBET positron tagger prototype: construction and testbeam performance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Acerbi%2C+F">F. Acerbi</a>, <a href="/search/physics?searchtype=author&amp;query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&amp;query=Bramati%2C+F">F. Bramati</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brizzolari%2C+C">C. Brizzolari</a>, <a href="/search/physics?searchtype=author&amp;query=Brunetti%2C+G">G. Brunetti</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Carturan%2C+S">S. Carturan</a>, <a href="/search/physics?searchtype=author&amp;query=Catanesi%2C+M+G">M. G. Catanesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cecchini%2C+S">S. Cecchini</a>, <a href="/search/physics?searchtype=author&amp;query=Cindolo%2C+F">F. Cindolo</a>, <a href="/search/physics?searchtype=author&amp;query=Collazuol%2C+G">G. Collazuol</a>, <a href="/search/physics?searchtype=author&amp;query=Conti%2C+E">E. Conti</a>, <a href="/search/physics?searchtype=author&amp;query=Corso%2C+F+D">F. Dal Corso</a>, <a href="/search/physics?searchtype=author&amp;query=Delogu%2C+C">C. Delogu</a>, <a href="/search/physics?searchtype=author&amp;query=De+Rosa%2C+G">G. De Rosa</a>, <a href="/search/physics?searchtype=author&amp;query=Falcone%2C+A">A. Falcone</a>, <a href="/search/physics?searchtype=author&amp;query=Gola%2C+A">A. Gola</a>, <a href="/search/physics?searchtype=author&amp;query=Jollet%2C+C">C. Jollet</a>, <a href="/search/physics?searchtype=author&amp;query=Klicek%2C+B">B. Klicek</a>, <a href="/search/physics?searchtype=author&amp;query=Kudenko%2C+Y">Y. Kudenko</a>, <a href="/search/physics?searchtype=author&amp;query=Laveder%2C+M">M. Laveder</a>, <a href="/search/physics?searchtype=author&amp;query=Longhin%2C+A">A. Longhin</a>, <a href="/search/physics?searchtype=author&amp;query=Ludovici%2C+L">L. Ludovici</a>, <a href="/search/physics?searchtype=author&amp;query=Lutsenko%2C+E">E. Lutsenko</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.07269v1-abstract-short" style="display: inline;"> A prototype for the instrumented decay tunnel of ENUBET was tested in 2018 at the CERN East Area facility with charged particles up to 5 GeV. This detector is a longitudinal sampling calorimeter with lateral scintillation light readout. The calorimeter was equipped by an additional &#34;$t_0$-layer&#34; for timing and photon discrimination. The performance of this detector in terms of electron energy reso&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.07269v1-abstract-full').style.display = 'inline'; document.getElementById('2006.07269v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.07269v1-abstract-full" style="display: none;"> A prototype for the instrumented decay tunnel of ENUBET was tested in 2018 at the CERN East Area facility with charged particles up to 5 GeV. This detector is a longitudinal sampling calorimeter with lateral scintillation light readout. The calorimeter was equipped by an additional &#34;$t_0$-layer&#34; for timing and photon discrimination. The performance of this detector in terms of electron energy resolution, linearity, response to muons and hadron showers are presented in this paper and compared with simulation. The $t_0$-layer was studied both in standalone mode using pion charge exchange and in combined mode with the calorimeter to assess the light yield and the 1 mip/2 mip separation capability. We demonstrate that this system fulfills the requirements for neutrino physics applications and discuss performance and additional improvements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.07269v1-abstract-full').style.display = 'none'; document.getElementById('2006.07269v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 20 figures, to appear in JINST</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.03196">arXiv:2004.03196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.03196">pdf</a>, <a href="https://arxiv.org/format/2004.03196">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The hadronic beamline of the ENUBET neutrino beam </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=ENUBET+collaboration"> ENUBET collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Delogu%2C+C">C. Delogu</a>, <a href="/search/physics?searchtype=author&amp;query=Acerbi%2C+F">F. Acerbi</a>, <a href="/search/physics?searchtype=author&amp;query=Berra%2C+A">A. Berra</a>, <a href="/search/physics?searchtype=author&amp;query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brizzolari%2C+C">C. Brizzolari</a>, <a href="/search/physics?searchtype=author&amp;query=Brunetti%2C+G">G. Brunetti</a>, <a href="/search/physics?searchtype=author&amp;query=Calviani%2C+M">M. Calviani</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Carturan%2C+S">S. Carturan</a>, <a href="/search/physics?searchtype=author&amp;query=Catanesi%2C+M+G">M. G. Catanesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cecchini%2C+S">S. Cecchini</a>, <a href="/search/physics?searchtype=author&amp;query=Charitonidis%2C+N">N. Charitonidis</a>, <a href="/search/physics?searchtype=author&amp;query=Cindolo%2C+F">F. Cindolo</a>, <a href="/search/physics?searchtype=author&amp;query=Collazuol%2C+G">G. Collazuol</a>, <a href="/search/physics?searchtype=author&amp;query=Conti%2C+E">E. Conti</a>, <a href="/search/physics?searchtype=author&amp;query=Corso%2C+F+D">F. Dal Corso</a>, <a href="/search/physics?searchtype=author&amp;query=De+Rosa%2C+G">G. De Rosa</a>, <a href="/search/physics?searchtype=author&amp;query=Falcone%2C+A">A. Falcone</a>, <a href="/search/physics?searchtype=author&amp;query=Gola%2C+A">A. Gola</a>, <a href="/search/physics?searchtype=author&amp;query=Jollet%2C+C">C. Jollet</a>, <a href="/search/physics?searchtype=author&amp;query=Kain%2C+V">V. Kain</a>, <a href="/search/physics?searchtype=author&amp;query=Klicek%2C+B">B. Klicek</a>, <a href="/search/physics?searchtype=author&amp;query=Kudenko%2C+Y">Y. Kudenko</a> , et al. (35 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.03196v2-abstract-short" style="display: inline;"> The ENUBET ERC project (2016-2021) is studying a facility based on a narrow band beam capable of constraining the neutrino fluxes normalization through the monitoring of the associated charged leptons in an instrumented decay tunnel. A key element of the project is the design and optimization of the hadronic beamline. In this proceeding we present progress on the studies of the proton extraction s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.03196v2-abstract-full').style.display = 'inline'; document.getElementById('2004.03196v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.03196v2-abstract-full" style="display: none;"> The ENUBET ERC project (2016-2021) is studying a facility based on a narrow band beam capable of constraining the neutrino fluxes normalization through the monitoring of the associated charged leptons in an instrumented decay tunnel. A key element of the project is the design and optimization of the hadronic beamline. In this proceeding we present progress on the studies of the proton extraction schemes. We also show a realistic implementation and simulation of the beamline. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.03196v2-abstract-full').style.display = 'none'; document.getElementById('2004.03196v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Poster presented at NuPhys2019 (London, 16-18 December 2019). 4 pages, 4 figures. Typo in author list corrected</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.02532">arXiv:2004.02532</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.02532">pdf</a>, <a href="https://arxiv.org/format/2004.02532">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/05/C05059">10.1088/1748-0221/15/05/C05059 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Decay tunnel instrumentation for the ENUBET neutrino beam </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Acerbi%2C+F">F. Acerbi</a>, <a href="/search/physics?searchtype=author&amp;query=Berra%2C+A">A. Berra</a>, <a href="/search/physics?searchtype=author&amp;query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brizzolari%2C+C">C. Brizzolari</a>, <a href="/search/physics?searchtype=author&amp;query=Brunetti%2C+G">G. Brunetti</a>, <a href="/search/physics?searchtype=author&amp;query=Calviani%2C+M">M. Calviani</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Carturan%2C+S">S. Carturan</a>, <a href="/search/physics?searchtype=author&amp;query=Catanesi%2C+M+G">M. G. Catanesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cecchini%2C+S">S. Cecchini</a>, <a href="/search/physics?searchtype=author&amp;query=Charitonidis%2C+N">N. Charitonidis</a>, <a href="/search/physics?searchtype=author&amp;query=Cindolo%2C+F">F. Cindolo</a>, <a href="/search/physics?searchtype=author&amp;query=Collazuol%2C+G">G. Collazuol</a>, <a href="/search/physics?searchtype=author&amp;query=Conti%2C+E">E. Conti</a>, <a href="/search/physics?searchtype=author&amp;query=Corso%2C+F+D">F. Dal Corso</a>, <a href="/search/physics?searchtype=author&amp;query=Delogu%2C+C">C. Delogu</a>, <a href="/search/physics?searchtype=author&amp;query=De+Rosa%2C+G">G. De Rosa</a>, <a href="/search/physics?searchtype=author&amp;query=Falcone%2C+A">A. Falcone</a>, <a href="/search/physics?searchtype=author&amp;query=Gola%2C+A">A. Gola</a>, <a href="/search/physics?searchtype=author&amp;query=Jollet%2C+C">C. Jollet</a>, <a href="/search/physics?searchtype=author&amp;query=Kain%2C+V">V. Kain</a>, <a href="/search/physics?searchtype=author&amp;query=Klicek%2C+B">B. Klicek</a>, <a href="/search/physics?searchtype=author&amp;query=Kudenko%2C+Y">Y. Kudenko</a>, <a href="/search/physics?searchtype=author&amp;query=Laveder%2C+M">M. Laveder</a> , et al. (34 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.02532v1-abstract-short" style="display: inline;"> The uncertainty in the initial neutrino flux is the main limitation for a precise determination of the absolute neutrino cross section. The ERC funded ENUBET project (2016-2021) is studying a facility based on a narrow band beam to produce an intense source of electron neutrinos with a ten-fold improvement in accuracy. Since March 2019 ENUBET is also a Neutrino Platform experiment at CERN: NP06/EN&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02532v1-abstract-full').style.display = 'inline'; document.getElementById('2004.02532v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.02532v1-abstract-full" style="display: none;"> The uncertainty in the initial neutrino flux is the main limitation for a precise determination of the absolute neutrino cross section. The ERC funded ENUBET project (2016-2021) is studying a facility based on a narrow band beam to produce an intense source of electron neutrinos with a ten-fold improvement in accuracy. Since March 2019 ENUBET is also a Neutrino Platform experiment at CERN: NP06/ENUBET. A key element of the project is the instrumentation of the decay tunnel to monitor large angle positrons produced together with $谓_e$ in the three body decays of kaons ($K_{e3}$) and to discriminate them from neutral and charged pions. The need for an efficient and high purity e/$蟺$ separation over a length of several meters, and the requirements for fast response and radiation hardness imposed by the harsh beam environment, suggested the implementation of a longitudinally segmented Fe/scintillator calorimeter with a readout based on WLS fibers and SiPM detectors. An extensive experimental program through several test beam campaigns at the CERN-PS T9 beam line has been pursued on calorimeter prototypes, both with a shashlik and a lateral readout configuration. The latter, in which fibers collect the light from the side of the scintillator tiles, allows to place the light sensors away from the core of the calorimeter, thus reducing possible irradiation damages with respect to the shashlik design. This contribution will present the achievements of the prototyping activities carried out, together with irradiation tests made on the Silicon Photo-Multipliers. The results achieved so far pin down the technology of choice for the construction of the 3 m long demonstrator that will take data in 2021. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.02532v1-abstract-full').style.display = 'none'; document.getElementById('2004.02532v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk presented at the &#34;15th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD19)&#34;, 14-17 October 2019. Siena, Italy. 9 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.11026">arXiv:2003.11026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.11026">pdf</a>, <a href="https://arxiv.org/format/2003.11026">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Electron spectrometry with SDDs: a GEANT4 based method for detector response reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">Matteo Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Gugiatti%2C+M">Matteo Gugiatti</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">Silvia Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Carminati%2C+M">Marco Carminati</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">Oliviero Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Fiorini%2C+C">Carlo Fiorini</a>, <a href="/search/physics?searchtype=author&amp;query=Lechner%2C+P">Peter Lechner</a>, <a href="/search/physics?searchtype=author&amp;query=Mertens%2C+S">Susanne Mertens</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">Lorenzo Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Pavan%2C+M">Maura Pavan</a>, <a href="/search/physics?searchtype=author&amp;query=Pozzi%2C+S">Stefano Pozzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.11026v1-abstract-short" style="display: inline;"> Electron spectrometry is traditionally challenging due to the difficulty of correctly reconstructing the original energy of the detected electrons. Silicon Drift Detectors, extensively used for X-ray spectrometry, are a promising technology for the precise measurement of electrons energy. The ability to correctly model the detector entrance window response to the energy deposited by electrons is a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.11026v1-abstract-full').style.display = 'inline'; document.getElementById('2003.11026v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.11026v1-abstract-full" style="display: none;"> Electron spectrometry is traditionally challenging due to the difficulty of correctly reconstructing the original energy of the detected electrons. Silicon Drift Detectors, extensively used for X-ray spectrometry, are a promising technology for the precise measurement of electrons energy. The ability to correctly model the detector entrance window response to the energy deposited by electrons is a critical aspect of this application. We hereby describe a MonteCarlo-based approach to this problem, together with characterization and validation measurements performed with electron beams from a Scanning Electron Microscope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.11026v1-abstract-full').style.display = 'none'; document.getElementById('2003.11026v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.10840">arXiv:2003.10840</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.10840">pdf</a>, <a href="https://arxiv.org/format/2003.10840">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-8280-4">10.1140/epjc/s10052-020-8280-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Neutrino-less Double Beta Decay of $^{64}$Zn and $^{70}$Zn with CUPID-0 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Celi%2C+E">E. Celi</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Cremomesi%2C+O">O. Cremomesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">P. Gorla</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&amp;query=Keppel%2C+G">G. Keppel</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.10840v2-abstract-short" style="display: inline;"> CUPID-0 is the first pilot experiment of CUPID, a next-generation project searching for neutrino-less double beta decay. In its first scientific run, CUPID-0 operated 26 ZnSe cryogenic calorimeters coupled to light detectors in the underground Laboratori Nazionali del Gran Sasso. In this work, we analyzed a ZnSe exposure of 11.34 kg$\times$yr to search for the neutrino-less double beta decay of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.10840v2-abstract-full').style.display = 'inline'; document.getElementById('2003.10840v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.10840v2-abstract-full" style="display: none;"> CUPID-0 is the first pilot experiment of CUPID, a next-generation project searching for neutrino-less double beta decay. In its first scientific run, CUPID-0 operated 26 ZnSe cryogenic calorimeters coupled to light detectors in the underground Laboratori Nazionali del Gran Sasso. In this work, we analyzed a ZnSe exposure of 11.34 kg$\times$yr to search for the neutrino-less double beta decay of $^{70}$Zn and for the neutrino-less positron-emitting electron capture of $^{64}$Zn. We found no evidence for these decays and set 90$\%$ credible interval limits of ${\rm T}_{1/2}^{0谓尾尾}(^{70}{\rm Zn}) &gt; 1.6 \times 10^{21}$ yr and ${\rm T}_{1/2}^{0谓EC 尾+}(^{64}{\rm Zn}) &gt; 1.2 \times 10^{22}$ yr, surpassing by almost two orders of magnitude the previous experimental results <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.10840v2-abstract-full').style.display = 'none'; document.getElementById('2003.10840v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.02446">arXiv:1911.02446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.02446">pdf</a>, <a href="https://arxiv.org/format/1911.02446">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.092002">10.1103/PhysRevD.100.092002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First search for Lorentz violation in double beta decay with scintillating calorimeters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">P. Gorla</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&amp;query=Keppel%2C+G">G. Keppel</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+M">M. Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Nagorny%2C+S">S. Nagorny</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.02446v1-abstract-short" style="display: inline;"> We present the search for Lorentz violation in the double beta decay of ^{82}Se~with CUPID-0, using an exposure of 9.95 kg x y. We found no evidence for the searched signal and set a limit on the isotropic components of the Lorentz violating coefficient of $\mathring{a}_{\text{of}}^{(3)} &lt; 4.1\cdot10^{-6}$ GeV (90\% Credible Interval). This results is obtained with a Bayesian analysis of the exper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.02446v1-abstract-full').style.display = 'inline'; document.getElementById('1911.02446v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.02446v1-abstract-full" style="display: none;"> We present the search for Lorentz violation in the double beta decay of ^{82}Se~with CUPID-0, using an exposure of 9.95 kg x y. We found no evidence for the searched signal and set a limit on the isotropic components of the Lorentz violating coefficient of $\mathring{a}_{\text{of}}^{(3)} &lt; 4.1\cdot10^{-6}$ GeV (90\% Credible Interval). This results is obtained with a Bayesian analysis of the experimental data and fully includes the systematic uncertainties of the model. This is the first limit on $\mathring{a}_{\text{of}}^{(3)}$ obtained with a scintillating bolometer, showing the potentiality of this technique. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.02446v1-abstract-full').style.display = 'none'; document.getElementById('1911.02446v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> O. Azzolini et al., Phys. Rev. D 100, 092002 - Published 6 November 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.05001">arXiv:1906.05001</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.05001">pdf</a>, <a href="https://arxiv.org/format/1906.05001">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.032501">10.1103/PhysRevLett.123.032501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Final result of CUPID-0 phase-I in the search for the $^{82}$Se Neutrinoless Double Beta Decay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">P. Gorla</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&amp;query=Keppel%2C+G">G. Keppel</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+M">M. Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Nagorny%2C+S">S. Nagorny</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.05001v1-abstract-short" style="display: inline;"> CUPID-0 is the first pilot experiment of CUPID, a next-generation project for the measurement of neutrinoless double beta decay (0$谓$DBD) with scintillating bolometers. The detector, consisting of 24 enriched and 2 natural ZnSe crystals, has been taking data at Laboratori Nazionali del Gran Sasso from June 2017 to December 2018, collecting a $^{82}$Se exposure of 5.29 kg$\times$yr. In this paper w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05001v1-abstract-full').style.display = 'inline'; document.getElementById('1906.05001v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.05001v1-abstract-full" style="display: none;"> CUPID-0 is the first pilot experiment of CUPID, a next-generation project for the measurement of neutrinoless double beta decay (0$谓$DBD) with scintillating bolometers. The detector, consisting of 24 enriched and 2 natural ZnSe crystals, has been taking data at Laboratori Nazionali del Gran Sasso from June 2017 to December 2018, collecting a $^{82}$Se exposure of 5.29 kg$\times$yr. In this paper we present the phase-I results in the search for 0$谓$DBD. We demonstrate that the technology implemented by CUPID-0 allows us to reach the lowest background for calorimetric experiments: $(3.5^{+1.0}_{-0.9})\times10^{-3}$ counts/(keV kg yr). Monitoring 3.88$\times$10$^{25}$ $^{82}$Se nuclei$\times$yr we reach a 90% credible interval median sensitivity of $\rm{T}^{0谓}_{1/2}&gt;5.0\times10^{24} \rm{yr}$ and set the most stringent limit on the half-life of $^{82}$Se 0$谓$DBD : $\rm{T}^{0谓}_{1/2}&gt;3.5\times10^{24} \rm{yr}$ (90% credible interval), corresponding to m$_{尾尾} &lt;$ (311-638) meV depending on the nuclear matrix element calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05001v1-abstract-full').style.display = 'none'; document.getElementById('1906.05001v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 032501 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.10397">arXiv:1904.10397</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.10397">pdf</a>, <a href="https://arxiv.org/format/1904.10397">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-019-7078-8">10.1140/epjc/s10052-019-7078-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Background Model of the CUPID-0 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">P. Gorla</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&amp;query=Keppel%2C+G">G. Keppel</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+M">M. Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Nagorny%2C+S">S. Nagorny</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.10397v2-abstract-short" style="display: inline;"> CUPID-0 is the first large mass array of enriched Zn$^{82}$Se scintillating low temperature calorimeters, operated at LNGS since 2017. During its first scientific runs, CUPID-0 collected an exposure of 9.95 kg yr. Thanks to the excellent rejection of $伪$ particles, we attained the lowest background ever measured with thermal detectors in the energy region where we search for the signature of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.10397v2-abstract-full').style.display = 'inline'; document.getElementById('1904.10397v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.10397v2-abstract-full" style="display: none;"> CUPID-0 is the first large mass array of enriched Zn$^{82}$Se scintillating low temperature calorimeters, operated at LNGS since 2017. During its first scientific runs, CUPID-0 collected an exposure of 9.95 kg yr. Thanks to the excellent rejection of $伪$ particles, we attained the lowest background ever measured with thermal detectors in the energy region where we search for the signature of $^{82}$Se neutrinoless double beta decay. In this work we develop a model to reconstruct the CUPID-0 background over the whole energy range of experimental data. We identify the background sources exploiting their distinctive signatures and we assess their extremely low contribution (down to $\sim10^{-4}$ counts/(keV kg yr)) in the region of interest for $^{82}$Se neutrinoless double beta decay search. This result represents a crucial step towards the comprehension of the background in experiments based on scintillating calorimeters and in next generation projects such as CUPID. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.10397v2-abstract-full').style.display = 'none'; document.getElementById('1904.10397v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is a post-peer-review, pre-copyedit version of an article published in Eur. Phys. J. C. The final authenticated version is available online at: https://doi.org/10.1140/epjc/s10052-019-7078-8</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> O. Azzolini et al., Eur. Phys. J. C (2019) 79: 583 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.10434">arXiv:1901.10434</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.10434">pdf</a>, <a href="https://arxiv.org/format/1901.10434">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/08/P08017">10.1088/1748-0221/14/08/P08017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resolution enhancement with light/heat decorrelation in CUPID-0 bolometric detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">L. Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Pattavina%2C+L">L. Pattavina</a>, <a href="/search/physics?searchtype=author&amp;query=Pavan%2C+M">M. Pavan</a>, <a href="/search/physics?searchtype=author&amp;query=Pirro%2C+S">S. Pirro</a>, <a href="/search/physics?searchtype=author&amp;query=Pozzi%2C+S">S. Pozzi</a>, <a href="/search/physics?searchtype=author&amp;query=Previtali%2C+E">E. Previtali</a>, <a href="/search/physics?searchtype=author&amp;query=Rusconi%2C+C">C. Rusconi</a>, <a href="/search/physics?searchtype=author&amp;query=Tomei%2C+C">C. Tomei</a>, <a href="/search/physics?searchtype=author&amp;query=Vignati%2C+M">M. Vignati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.10434v3-abstract-short" style="display: inline;"> The CUPID-0 experiment searches for neutrinoless double beta decay ($0谓尾尾$) using the first array of enriched Zn$^{82}$Se scintillating bolometers with double (heat and light) read-out. To further enhance the CUPID-0 detector performances, the heat-light correlation has been exploited to improve the energy resolution. Different decorrelation algorithms have been studied and the best result is the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.10434v3-abstract-full').style.display = 'inline'; document.getElementById('1901.10434v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.10434v3-abstract-full" style="display: none;"> The CUPID-0 experiment searches for neutrinoless double beta decay ($0谓尾尾$) using the first array of enriched Zn$^{82}$Se scintillating bolometers with double (heat and light) read-out. To further enhance the CUPID-0 detector performances, the heat-light correlation has been exploited to improve the energy resolution. Different decorrelation algorithms have been studied and the best result is the average reduction of the full width at half maximum (FWHM) energy resolution to $(90.5\pm0.6)~\%$ of its original value , corresponding to a change from $\text{FWHM}=(20.7\pm0.5)~\text{keV}$ to $\text{FWHM}=(18.7\pm0.5)~\text{keV}$ at the 2615 keV $纬$ line. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.10434v3-abstract-full').style.display = 'none'; document.getElementById('1901.10434v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.10363">arXiv:1811.10363</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.10363">pdf</a>, <a href="https://arxiv.org/format/1811.10363">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-019-7275-5">10.1140/epjc/s10052-019-7275-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Double-beta decay of ${}^{130}$Te to the first $0^+$ excited state of ${}^{130}$Xe with CUORE-0 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Artusa%2C+D+R">D. R. Artusa</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Banks%2C+T+I">T. I. Banks</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Bersani%2C+A">A. Bersani</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+X+G">X. G. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&amp;query=Carbone%2C+L">L. Carbone</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Cassina%2C+L">L. Cassina</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a> , et al. (96 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.10363v3-abstract-short" style="display: inline;"> We report on a search for double beta decay of $^{130}$Te to the first $0^{+}$ excited state of $^{130}$Xe using a 9.8 kg$\cdot$yr exposure of $^{130}$Te collected with the CUORE-0 experiment. In this work we exploit different topologies of coincident events to search for both the neutrinoless and two-neutrino double-decay modes. We find no evidence for either mode and place lower bounds on the ha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.10363v3-abstract-full').style.display = 'inline'; document.getElementById('1811.10363v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.10363v3-abstract-full" style="display: none;"> We report on a search for double beta decay of $^{130}$Te to the first $0^{+}$ excited state of $^{130}$Xe using a 9.8 kg$\cdot$yr exposure of $^{130}$Te collected with the CUORE-0 experiment. In this work we exploit different topologies of coincident events to search for both the neutrinoless and two-neutrino double-decay modes. We find no evidence for either mode and place lower bounds on the half-lives: $蟿^{0谓}_{0^+}&gt;7.9\cdot 10^{23}$ yr and $蟿^{2谓}_{0^+}&gt;2.4\cdot 10^{23}$ yr. Combining our results with those obtained by the CUORICINO experiment, we achieve the most stringent constraints available for these processes: $蟿^{0谓}_{0^+}&gt;1.4\cdot 10^{24}$ yr and $蟿^{2谓}_{0^+}&gt;2.5\cdot 10^{23}$ yr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.10363v3-abstract-full').style.display = 'none'; document.getElementById('1811.10363v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, 5 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 79, 795 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.10342">arXiv:1808.10342</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.10342">pdf</a>, <a href="https://arxiv.org/format/1808.10342">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Update on the recent progress of the CUORE experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D+Q">D. Q. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Bersani%2C+A">A. Bersani</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&amp;query=Campani%2C+A">A. Campani</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+X+G">X. G. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Cassina%2C+L">L. Cassina</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a> , et al. (96 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.10342v1-abstract-short" style="display: inline;"> CUORE is a 741 kg array of 988 TeO$_2$ bolometeric crystals designed to search for the neutrinoless double beta decay of $^{130}$Te and other rare processes. CUORE has been taking data since summer 2017, and as of summer 2018 collected a total of 86.3 kg$\cdot$yr of TeO$_2$ exposure. Based on this exposure, we were able to set a limit on the $0谓尾尾$ half-life of $^{130}$Te of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10342v1-abstract-full').style.display = 'inline'; document.getElementById('1808.10342v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.10342v1-abstract-full" style="display: none;"> CUORE is a 741 kg array of 988 TeO$_2$ bolometeric crystals designed to search for the neutrinoless double beta decay of $^{130}$Te and other rare processes. CUORE has been taking data since summer 2017, and as of summer 2018 collected a total of 86.3 kg$\cdot$yr of TeO$_2$ exposure. Based on this exposure, we were able to set a limit on the $0谓尾尾$ half-life of $^{130}$Te of $T^{0谓}_{1/2}&gt;1.5\times10^{25}$ yr at 90% C.L. At this conference, we showed the decomposition of the CUORE background and were able to extract a $^{130}$Te $2谓尾尾$ half-life of $T_{1/2}^{2谓}=[7.9\pm0.1 \mathrm{(stat.)}\pm0.2 \mathrm{(syst.)}]\times10^{20}$ yr. This is the most precise measurement of this half-life and is consistent with previous measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.10342v1-abstract-full').style.display = 'none'; document.getElementById('1808.10342v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the Neutrino 2018 Conference. 8 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.00665">arXiv:1807.00665</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.00665">pdf</a>, <a href="https://arxiv.org/format/1807.00665">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-018-6340-9">10.1140/epjc/s10052-018-6340-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search of the neutrino-less double beta decay of $^{82}$Se into the excited states of $^{82}$Kr with CUPID-0 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Barrera%2C+M+T">M. T. Barrera</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bossio%2C+E">E. Bossio</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Cassina%2C+L">L. Cassina</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">P. Gorla</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.00665v3-abstract-short" style="display: inline;"> The CUPID0 experiment searches for double beta decay using cryogenic calorimeters with double (heat and light) read-out. The detector, consisting of 24 ZnSe crystals 95$\%$ enriched in $^{82}$Se and 2 natural ZnSe crystals, started data-taking in 2017 at Laboratori Nazionali del Gran Sasso. We present the search for the neutrino-less double beta decay of $^{82}$Se into the 0$_1^+$, 2$_1^+$ and 2&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.00665v3-abstract-full').style.display = 'inline'; document.getElementById('1807.00665v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.00665v3-abstract-full" style="display: none;"> The CUPID0 experiment searches for double beta decay using cryogenic calorimeters with double (heat and light) read-out. The detector, consisting of 24 ZnSe crystals 95$\%$ enriched in $^{82}$Se and 2 natural ZnSe crystals, started data-taking in 2017 at Laboratori Nazionali del Gran Sasso. We present the search for the neutrino-less double beta decay of $^{82}$Se into the 0$_1^+$, 2$_1^+$ and 2$_2^+$ excited states of $^{82}$Kr with an exposure of 5.74 kg$\cdot$yr (2.24$\times$10$^{25}$ emitters$\cdot$yr). We found no evidence of the decays and set the most stringent limits on the widths of these processes: $螕$($^{82}$Se $\rightarrow ^{82}$Kr$_{0_1^+}$)$&lt;$8.55$\times$10$^{-24}$ yr$^{-1}$, $螕$($^{82}$Se $\rightarrow ^{82}$Kr$_{2_1^+}$)$&lt;6.25 \times10^{-24}$ yr$^{-1}$, $螕$($^{82}$Se $\rightarrow ^{82}$Kr$_{2_2^+}$)$&lt;$8.25$\times$10$^{-24}$ yr$^{-1}$ (90$\%$ credible interval <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.00665v3-abstract-full').style.display = 'none'; document.getElementById('1807.00665v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.02826">arXiv:1806.02826</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.02826">pdf</a>, <a href="https://arxiv.org/format/1806.02826">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-018-6202-5">10.1140/epjc/s10052-018-6202-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analysis of cryogenic calorimeters with light and heat read-out for double beta decay searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Barrera%2C+M+T">M. T. Barrera</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bossio%2C+E">E. Bossio</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casalia%2C+N">N. Casalia</a>, <a href="/search/physics?searchtype=author&amp;query=Cassina%2C+L">L. Cassina</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">P. Gorla</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.02826v2-abstract-short" style="display: inline;"> The suppression of spurious events in the region of interest for neutrinoless double beta decay will play a major role in next generation experiments. The background of detectors based on the technology of cryogenic calorimeters is expected to be dominated by 伪 particles, that could be disentangled from double beta decay signals by exploiting the difference in the emission of the scintillation lig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02826v2-abstract-full').style.display = 'inline'; document.getElementById('1806.02826v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.02826v2-abstract-full" style="display: none;"> The suppression of spurious events in the region of interest for neutrinoless double beta decay will play a major role in next generation experiments. The background of detectors based on the technology of cryogenic calorimeters is expected to be dominated by 伪 particles, that could be disentangled from double beta decay signals by exploiting the difference in the emission of the scintillation light. CUPID-0, an array of enriched Zn$^{82}$Se scintillating calorimeters, is the first large mass demonstrator of this technology. The detector started data-taking in 2017 at the Laboratori Nazionali del Gran Sasso with the aim of proving that dual read-out of light and heat allows for an efficient suppression of the 伪 background. In this paper we describe the software tools we developed for the analysis of scintillating calorimeters and we demonstrate that this technology allows to reach an unprecedented background for cryogenic calorimeters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02826v2-abstract-full').style.display = 'none'; document.getElementById('1806.02826v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.07791">arXiv:1802.07791</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.07791">pdf</a>, <a href="https://arxiv.org/format/1802.07791">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.232502">10.1103/PhysRevLett.120.232502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Result on the Neutrinoless Double Beta Decay of $^{82}$Se with CUPID-0 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=collaboration%2C+C">CUPID-0 collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Barrera%2C+M+T">M. T. Barrera</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Cassina%2C+L">L. Cassina</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.07791v3-abstract-short" style="display: inline;"> We report the result of the search for neutrinoless double beta decay of $^{82}$Se obtained with CUPID-0, the first large array of scintillating Zn$^{82}$Se cryogenic calorimeters implementing particle identification. We observe no signal in a 1.83 kg yr $^{82}$Se exposure and we set the most stringent lower limit on the \onu $^{82}$Se half-life T$^{0谓}_{1/2}&gt;$ 2.4$\times \mathrm{10}^{24}$ yr (90\&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.07791v3-abstract-full').style.display = 'inline'; document.getElementById('1802.07791v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.07791v3-abstract-full" style="display: none;"> We report the result of the search for neutrinoless double beta decay of $^{82}$Se obtained with CUPID-0, the first large array of scintillating Zn$^{82}$Se cryogenic calorimeters implementing particle identification. We observe no signal in a 1.83 kg yr $^{82}$Se exposure and we set the most stringent lower limit on the \onu $^{82}$Se half-life T$^{0谓}_{1/2}&gt;$ 2.4$\times \mathrm{10}^{24}$ yr (90\% credible interval), which corresponds to an effective Majorana neutrino mass m$_{尾尾} &lt;$ (376-770) meV depending on the nuclear matrix element calculations. The heat-light readout provides a powerful tool for the rejection of \al\ particles and allows to suppress the background in the region of interest down to (3.6$^{+1.9}_{-1.4}$)$\times$10$^{-3}$\ckky, an unprecedented level for this technique. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.07791v3-abstract-full').style.display = 'none'; document.getElementById('1802.07791v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 232502 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.06562">arXiv:1802.06562</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.06562">pdf</a>, <a href="https://arxiv.org/format/1802.06562">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-018-5896-8">10.1140/epjc/s10052-018-5896-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CUPID-0: the first array of enriched scintillating bolometers for 0谓尾尾decay investigations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Barrera%2C+M+T">M. T. Barrera</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Cassina%2C+L">L. Cassina</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">P. Gorla</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.06562v3-abstract-short" style="display: inline;"> The CUPID-0 detector hosted at the Laboratori Nazionali del Gran Sasso, Italy, is the first large array of enriched scintillating cryogenic detectors for the investigation of $^{82}$Se neutrinoless double-beta decay (0$谓尾尾$). CUPID-0 aims at measuring a background index in the region of interest (RoI) for 0$谓尾尾$ at the level of 10$^{-3}$ c/keV/kg/y, the lowest value ever measured using cryogenic d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.06562v3-abstract-full').style.display = 'inline'; document.getElementById('1802.06562v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.06562v3-abstract-full" style="display: none;"> The CUPID-0 detector hosted at the Laboratori Nazionali del Gran Sasso, Italy, is the first large array of enriched scintillating cryogenic detectors for the investigation of $^{82}$Se neutrinoless double-beta decay (0$谓尾尾$). CUPID-0 aims at measuring a background index in the region of interest (RoI) for 0$谓尾尾$ at the level of 10$^{-3}$ c/keV/kg/y, the lowest value ever measured using cryogenic detectors. This result can be achieved by a state of the art technology for background suppression and thorough protocols and procedures for detector preparation and construction. In this paper, the different phases of the detector design and construction will be presented, from the material selection (for the absorber production) to the new and innovative detector structure. The successful construction of the detector lead to promising detector performance which are here preliminarily discussed <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.06562v3-abstract-full').style.display = 'none'; document.getElementById('1802.06562v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2018) 78:428 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.05403">arXiv:1801.05403</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.05403">pdf</a>, <a href="https://arxiv.org/format/1801.05403">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Study of Rare Nuclear Processes with CUORE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Bersani%2C+A">A. Bersani</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&amp;query=Campani%2C+A">A. Campani</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+X+G">X. G. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Cassina%2C+L">L. Cassina</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Chott%2C+N">N. Chott</a> , et al. (94 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.05403v2-abstract-short" style="display: inline;"> TeO2 bolometers have been used for many years to search for neutrinoless double beta decay in 130-Te. CUORE, a tonne-scale TeO2 detector array, recently published the most sensitive limit on the half-life, $T_{1/2}^{0谓} &gt; 1.5 \times 10^{25}\,$yr, which corresponds to an upper bound of $140-400$~meV on the effective Majorana mass of the neutrino. While it makes CUORE a world-leading experiment look&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.05403v2-abstract-full').style.display = 'inline'; document.getElementById('1801.05403v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.05403v2-abstract-full" style="display: none;"> TeO2 bolometers have been used for many years to search for neutrinoless double beta decay in 130-Te. CUORE, a tonne-scale TeO2 detector array, recently published the most sensitive limit on the half-life, $T_{1/2}^{0谓} &gt; 1.5 \times 10^{25}\,$yr, which corresponds to an upper bound of $140-400$~meV on the effective Majorana mass of the neutrino. While it makes CUORE a world-leading experiment looking for neutrinoless double beta decay, it is not the only study that CUORE will contribute to in the field of nuclear and particle physics. As already done over the years with many small-scale experiments, CUORE will investigate both rare decays (such as the two-neutrino double beta decay of 130-Te and the hypothesized electron capture in 123-Te), and rare processes (e.g., dark matter and axion interactions). This paper describes some of the achievements of past experiments that used TeO2 bolometers, and perspectives for CUORE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.05403v2-abstract-full').style.display = 'none'; document.getElementById('1801.05403v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 13 figures, sumbitted to IJMPA Special Issue &#34;Results and Developments in the investigation of rare nuclear decays and processes&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.07988">arXiv:1710.07988</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.07988">pdf</a>, <a href="https://arxiv.org/format/1710.07988">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.132501">10.1103/PhysRevLett.120.132501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Results from CUORE: A Search for Lepton Number Violation via $0谓尾尾$ Decay of $^{130}$Te </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Andreotti%2C+E">E. Andreotti</a>, <a href="/search/physics?searchtype=author&amp;query=Arnaboldi%2C+C">C. Arnaboldi</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Bandac%2C+I">I. Bandac</a>, <a href="/search/physics?searchtype=author&amp;query=Banks%2C+T+I">T. I. Banks</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Barucci%2C+M">M. Barucci</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Bersani%2C+A">A. Bersani</a>, <a href="/search/physics?searchtype=author&amp;query=Biare%2C+D">D. Biare</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bryant%2C+A">A. Bryant</a>, <a href="/search/physics?searchtype=author&amp;query=Buccheri%2C+A">A. Buccheri</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Bulfon%2C+C">C. Bulfon</a>, <a href="/search/physics?searchtype=author&amp;query=Camacho%2C+A">A. Camacho</a>, <a href="/search/physics?searchtype=author&amp;query=Caminata%2C+A">A. Caminata</a> , et al. (140 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.07988v3-abstract-short" style="display: inline;"> The CUORE experiment, a ton-scale cryogenic bolometer array, recently began operation at the Laboratori Nazionali del Gran Sasso in Italy. The array represents a significant advancement in this technology, and in this work we apply it for the first time to a high-sensitivity search for a lepton-number--violating process: $^{130}$Te neutrinoless double-beta decay. Examining a total TeO$_2$ exposure&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.07988v3-abstract-full').style.display = 'inline'; document.getElementById('1710.07988v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.07988v3-abstract-full" style="display: none;"> The CUORE experiment, a ton-scale cryogenic bolometer array, recently began operation at the Laboratori Nazionali del Gran Sasso in Italy. The array represents a significant advancement in this technology, and in this work we apply it for the first time to a high-sensitivity search for a lepton-number--violating process: $^{130}$Te neutrinoless double-beta decay. Examining a total TeO$_2$ exposure of 86.3 kg$\cdot$yr, characterized by an effective energy resolution of (7.7 $\pm$ 0.5) keV FWHM and a background in the region of interest of (0.014 $\pm$ 0.002) counts/(keV$\cdot$kg$\cdot$yr), we find no evidence for neutrinoless double-beta decay. The median statistical sensitivity of this search is $7.0\times10^{24}$ yr. Including systematic uncertainties, we place a lower limit on the decay half-life of $T^{0谓}_{1/2}$($^{130}$Te) &gt; $1.3\times 10^{25}$ yr (90% C.L.). Combining this result with those of two earlier experiments, Cuoricino and CUORE-0, we find $T^{0谓}_{1/2}$($^{130}$Te) &gt; $1.5\times 10^{25}$ yr (90% C.L.), which is the most stringent limit to date on this decay. Interpreting this result as a limit on the effective Majorana neutrino mass, we find $m_{尾尾}&lt;(110 - 520)$ meV, where the range reflects the nuclear matrix element estimates employed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.07988v3-abstract-full').style.display = 'none'; document.getElementById('1710.07988v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in PRL, reference and DOI added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 132501 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.07809">arXiv:1708.07809</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.07809">pdf</a>, <a href="https://arxiv.org/format/1708.07809">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Low Energy Analysis Techniques for CUORE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Artusa%2C+D+R">D. R. Artusa</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Bersani%2C+A">A. Bersani</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Camacho%2C+A">A. Camacho</a>, <a href="/search/physics?searchtype=author&amp;query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+X+G">X. G. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Cassina%2C+L">L. Cassina</a> , et al. (99 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.07809v2-abstract-short" style="display: inline;"> CUORE is a tonne-scale cryogenic detector operating at the Laboratori Nazionali del Gran Sasso (LNGS) that uses tellurium dioxide bolometers to search for neutrinoless double-beta decay of $^{130}$Te. CUORE is also suitable to search for low energy rare events such as solar axions or WIMP scattering, thanks to its ultra-low background and large target mass. However, to conduct such sensitive searc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.07809v2-abstract-full').style.display = 'inline'; document.getElementById('1708.07809v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.07809v2-abstract-full" style="display: none;"> CUORE is a tonne-scale cryogenic detector operating at the Laboratori Nazionali del Gran Sasso (LNGS) that uses tellurium dioxide bolometers to search for neutrinoless double-beta decay of $^{130}$Te. CUORE is also suitable to search for low energy rare events such as solar axions or WIMP scattering, thanks to its ultra-low background and large target mass. However, to conduct such sensitive searches requires improving the energy threshold to 10 keV. In this paper, we describe the analysis techniques developed for the low energy analysis of CUORE-like detectors, using the data acquired from November 2013 to March 2015 by CUORE-0, a single-tower prototype designed to validate the assembly procedure and new cleaning techniques of CUORE. We explain the energy threshold optimization, continuous monitoring of the trigger efficiency, data and event selection, and energy calibration at low energies in detail. We also present the low energy background spectrum of CUORE-0 below 60keV. Finally, we report the sensitivity of CUORE to WIMP annual modulation using the CUORE-0 energy threshold and background, as well as an estimate of the uncertainty on the nuclear quenching factor from nuclear recoils in CUORE-0. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.07809v2-abstract-full').style.display = 'none'; document.getElementById('1708.07809v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2017) 77: 857 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.10816">arXiv:1705.10816</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1705.10816">pdf</a>, <a href="https://arxiv.org/format/1705.10816">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-017-5098-9">10.1140/epjc/s10052-017-5098-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CUORE Sensitivity to $0谓尾尾$ Decay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Artusa%2C+D+R">D. R. Artusa</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Banks%2C+T+I">T. I. Banks</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Bersani%2C+A">A. Bersani</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Camacho%2C+A">A. Camacho</a>, <a href="/search/physics?searchtype=author&amp;query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+X+G">X. G. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&amp;query=Carbone%2C+L">L. Carbone</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a> , et al. (106 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.10816v2-abstract-short" style="display: inline;"> We report a study of the CUORE sensitivity to neutrinoless double beta ($0谓尾尾$) decay. We used a Bayesian analysis based on a toy Monte Carlo (MC) approach to extract the exclusion sensitivity to the $0谓尾尾$ decay half-life ($T_{1/2}^{0谓}$) at $90\%$ credibility interval (CI) -- i.e. the interval containing the true value of $T_{1/2}^{0谓}$ with $90\%$ probability -- and the $3 蟽$ discovery sensitiv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10816v2-abstract-full').style.display = 'inline'; document.getElementById('1705.10816v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.10816v2-abstract-full" style="display: none;"> We report a study of the CUORE sensitivity to neutrinoless double beta ($0谓尾尾$) decay. We used a Bayesian analysis based on a toy Monte Carlo (MC) approach to extract the exclusion sensitivity to the $0谓尾尾$ decay half-life ($T_{1/2}^{0谓}$) at $90\%$ credibility interval (CI) -- i.e. the interval containing the true value of $T_{1/2}^{0谓}$ with $90\%$ probability -- and the $3 蟽$ discovery sensitivity. We consider various background levels and energy resolutions, and describe the influence of the data division in subsets with different background levels. If the background level and the energy resolution meet the expectation, CUORE will reach a $90\%$ CI exclusion sensitivity of $2\cdot10^{25}$ yr with $3$ months, and $9\cdot10^{25}$ yr with $5$ years of live time. Under the same conditions, the discovery sensitivity after $3$ months and $5$ years will be $7\cdot10^{24}$ yr and $4\cdot10^{25}$ yr, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10816v2-abstract-full').style.display = 'none'; document.getElementById('1705.10816v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2017) 77:532 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.08970">arXiv:1704.08970</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.08970">pdf</a>, <a href="https://arxiv.org/format/1704.08970">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-017-5080-6">10.1140/epjc/s10052-017-5080-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The projected background for the CUORE experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Artusa%2C+D+R">D. R. Artusa</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Banks%2C+T+I">T. I. Banks</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Bersani%2C+A">A. Bersani</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Camacho%2C+A">A. Camacho</a>, <a href="/search/physics?searchtype=author&amp;query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+X+G">X. G. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&amp;query=Carbone%2C+L">L. Carbone</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a> , et al. (107 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.08970v2-abstract-short" style="display: inline;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is designed to search for neutrinoless double beta decay of 130Te with an array of 988 TeO2 bolometers operating at temperatures around 10 mK. The experiment is currently being commissioned in Hall A of Laboratori Nazionali del Gran Sasso, Italy. The goal of CUORE is to reach a 90\% C.L. exclusion sensitivity on the \tect decay half-lif&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.08970v2-abstract-full').style.display = 'inline'; document.getElementById('1704.08970v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.08970v2-abstract-full" style="display: none;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is designed to search for neutrinoless double beta decay of 130Te with an array of 988 TeO2 bolometers operating at temperatures around 10 mK. The experiment is currently being commissioned in Hall A of Laboratori Nazionali del Gran Sasso, Italy. The goal of CUORE is to reach a 90\% C.L. exclusion sensitivity on the \tect decay half-life of 9$\times$10$^{25}$ years after 5\,years of data taking. The main issue to be addressed to accomplish this aim is the rate of background events in the region of interest, which must not be higher than 10$^{-2}$\,counts/keV/kg/y. We developed a detailed Monte Carlo simulation, based on results from a campaign of material screening, radioassays, and bolometric measurements, to evaluate the expected background. This was used over the years to guide the construction strategies of the experiment and we use it here to project a background model for CUORE. In this paper we report the results of our study and our expectations for the background rate in the energy region where the peak signature of neutrinoless double beta decay of 130Te is expected. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.08970v2-abstract-full').style.display = 'none'; document.getElementById('1704.08970v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures, matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2017) 77:543 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.01758">arXiv:1704.01758</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.01758">pdf</a>, <a href="https://arxiv.org/ps/1704.01758">ps</a>, <a href="https://arxiv.org/format/1704.01758">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-017-5343-2">10.1140/epjc/s10052-017-5343-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of $^{100}$Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Armengaud%2C+E">E. Armengaud</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bekker%2C+T+B">T. B. Bekker</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beno%C3%AEt%2C+A">A. Beno卯t</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&amp;query=Bergmann%2C+T">T. Bergmann</a>, <a href="/search/physics?searchtype=author&amp;query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&amp;query=Boiko%2C+R+S">R. S. Boiko</a>, <a href="/search/physics?searchtype=author&amp;query=Broniatowski%2C+A">A. Broniatowski</a>, <a href="/search/physics?searchtype=author&amp;query=Brudanin%2C+V">V. Brudanin</a>, <a href="/search/physics?searchtype=author&amp;query=Camus%2C+P">P. Camus</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Cazes%2C+A">A. Cazes</a>, <a href="/search/physics?searchtype=author&amp;query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&amp;query=Charlieux%2C+F">F. Charlieux</a>, <a href="/search/physics?searchtype=author&amp;query=Chernyak%2C+D+M">D. M. Chernyak</a>, <a href="/search/physics?searchtype=author&amp;query=de+Combarieu%2C+M">M. de Combarieu</a>, <a href="/search/physics?searchtype=author&amp;query=Coron%2C+N">N. Coron</a>, <a href="/search/physics?searchtype=author&amp;query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a> , et al. (77 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.01758v2-abstract-short" style="display: inline;"> This paper reports on the development of a technology involving $^{100}$Mo-enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass ($\sim$1~kg), high optical quality, radiopure $^{100}$Mo-containing zinc and lithium molybdate crystals have been produced and used to develop high&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.01758v2-abstract-full').style.display = 'inline'; document.getElementById('1704.01758v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.01758v2-abstract-full" style="display: none;"> This paper reports on the development of a technology involving $^{100}$Mo-enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass ($\sim$1~kg), high optical quality, radiopure $^{100}$Mo-containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2--0.4~kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the $Q$-value of the double-beta transition of $^{100}$Mo (3034~keV) is 4--6~keV FWHM. The rejection of the $伪$-induced dominant background above 2.6~MeV is better than 8$蟽$. Less than 10~$渭$Bq/kg activity of $^{232}$Th ($^{228}$Th) and $^{226}$Ra in the crystals is ensured by boule recrystallization. The potential of $^{100}$Mo-enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only 10~kg$\times$d exposure: the two neutrino double-beta decay half-life of $^{100}$Mo has been measured with the up-to-date highest accuracy as $T_{1/2}$ = [6.90 $\pm$ 0.15(stat.) $\pm$ 0.37(syst.)] $\times$ 10$^{18}$~yr. Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of $^{100}$Mo. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.01758v2-abstract-full').style.display = 'none'; document.getElementById('1704.01758v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 12 figures, 8 tables; submitted to EPJC</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 77 (2017) 785 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.07614">arXiv:1702.07614</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.07614">pdf</a>, <a href="https://arxiv.org/format/1702.07614">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/12/04/P04007">10.1088/1748-0221/12/04/P04007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non proportionality dependence on shaping time </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Previtali%2C+E">E. Previtali</a>, <a href="/search/physics?searchtype=author&amp;query=Sisti%2C+M">M. Sisti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.07614v2-abstract-short" style="display: inline;"> In recent years the scintillation mechanism of inorganic crystals has been extensively investigated in different studies. The main issues are the non-proportionality mechanism of the light response versus energy and its connection with the shaping time used for the scintillation signals. In this study the Compton coincidence technique has been used to measure the relative non-proportionality of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.07614v2-abstract-full').style.display = 'inline'; document.getElementById('1702.07614v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.07614v2-abstract-full" style="display: none;"> In recent years the scintillation mechanism of inorganic crystals has been extensively investigated in different studies. The main issues are the non-proportionality mechanism of the light response versus energy and its connection with the shaping time used for the scintillation signals. In this study the Compton coincidence technique has been used to measure the relative non-proportionality of three crystals: CdWO$_{4}$, BGO, and NaI(Tl). To test the non-proportionality dependence on shaping time, the preamplified scintillator pulses have been digitized and shaped with a digital trapezoidal filter. Since no analogic shaping occurs the majority of the scintillation components are digitized, thus avoiding major information losses. The obtained results suggest the existence of a correlation between the time constant of the scintillation emission and light yield. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.07614v2-abstract-full').style.display = 'none'; document.getElementById('1702.07614v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.04276">arXiv:1612.04276</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.04276">pdf</a>, <a href="https://arxiv.org/format/1612.04276">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/epjconf/201716407047">10.1051/epjconf/201716407047 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The CUORE and CUORE-0 experiments at LNGS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Artusa%2C+D+R">D. R. Artusa</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Banks%2C+T+I">T. I. Banks</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Bersani%2C+A">A. Bersani</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Camacho%2C+A">A. Camacho</a>, <a href="/search/physics?searchtype=author&amp;query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+X+G">X. G. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&amp;query=Carbone%2C+L">L. Carbone</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a> , et al. (100 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.04276v1-abstract-short" style="display: inline;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is a 1-ton scale bolometric experiment devoted to the search of the neutrinoless double-beta decay (0谓\b{eta}\b{eta}) in 130Te. The CUORE detector consists of an array of 988 TeO2 crystals operated at 10 mK. CUORE-0 is the CUORE demonstrator: it has been built to test the performance of the upcoming CUORE experiment and represents the l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.04276v1-abstract-full').style.display = 'inline'; document.getElementById('1612.04276v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.04276v1-abstract-full" style="display: none;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is a 1-ton scale bolometric experiment devoted to the search of the neutrinoless double-beta decay (0谓\b{eta}\b{eta}) in 130Te. The CUORE detector consists of an array of 988 TeO2 crystals operated at 10 mK. CUORE-0 is the CUORE demonstrator: it has been built to test the performance of the upcoming CUORE experiment and represents the largest 130Te bolometric setup ever operated. CUORE-0 has been running at Laboratori Nazionali del Gran Sasso (Italy) from 2013 to 2015. The final CUORE-0 analysis on 0谓\b{eta}\b{eta} and the corresponding detector performance are presented. The present status of the CUORE experiment, now in its final construction and commissioning phase, are discussed. The results from assembly of the detector and the commissioning of the cryostat are reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.04276v1-abstract-full').style.display = 'none'; document.getElementById('1612.04276v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures, ICNFP2016 Proceeding</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1605.05934">arXiv:1605.05934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1605.05934">pdf</a>, <a href="https://arxiv.org/format/1605.05934">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-016-4223-5">10.1140/epjc/s10052-016-4223-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First array of enriched Zn$^{82}$Se bolometers to search for double beta decay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Artusa%2C+D+R">D. R. Artusa</a>, <a href="/search/physics?searchtype=author&amp;query=Balzoni%2C+A">A. Balzoni</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Camacho%2C+A">A. Camacho</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Cassina%2C+L">L. Cassina</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=di+Vacri%2C+M+L">M. L. di Vacri</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&amp;query=Keppel%2C+G">G. Keppel</a>, <a href="/search/physics?searchtype=author&amp;query=Maino%2C+M">M. Maino</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1605.05934v2-abstract-short" style="display: inline;"> The R&amp;D activity performed during the last years proved the potential of ZnSe scintillating bolometers to the search for neutrino-less double beta decay, motivating the realization of the first large-mass experiment based on this technology: CUPID-0. The isotopic enrichment in $^{82}$Se, the Zn$^{82}$Se crystals growth, as well as the light detectors production have been accomplished, and the expe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.05934v2-abstract-full').style.display = 'inline'; document.getElementById('1605.05934v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1605.05934v2-abstract-full" style="display: none;"> The R&amp;D activity performed during the last years proved the potential of ZnSe scintillating bolometers to the search for neutrino-less double beta decay, motivating the realization of the first large-mass experiment based on this technology: CUPID-0. The isotopic enrichment in $^{82}$Se, the Zn$^{82}$Se crystals growth, as well as the light detectors production have been accomplished, and the experiment is now in construction at Laboratori Nazionali del Gran Sasso (Italy). In this paper we present the results obtained testing the first three Zn$^{82}$Se crystals operated as scintillating bolometers, and we prove that their performance in terms of energy resolution, background rejection capability and intrinsic radio-purity complies with the requirements of CUPID-0. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1605.05934v2-abstract-full').style.display = 'none'; document.getElementById('1605.05934v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.05465">arXiv:1604.05465</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.05465">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/11/07/P07009">10.1088/1748-0221/11/07/P07009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CUORE-0 detector: design, construction and operation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Artusa%2C+D+R">D. R. Artusa</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&amp;query=Banks%2C+T+I">T. I. Banks</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Bersani%2C+A">A. Bersani</a>, <a href="/search/physics?searchtype=author&amp;query=Biare%2C+D">D. Biare</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bragazzi%2C+F">F. Bragazzi</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Buccheri%2C+A">A. Buccheri</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Bulfon%2C+C">C. Bulfon</a>, <a href="/search/physics?searchtype=author&amp;query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+X+G">X. G. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Capodiferro%2C+M">M. Capodiferro</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a> , et al. (129 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.05465v2-abstract-short" style="display: inline;"> The CUORE experiment will search for neutrinoless double-beta decay of $^{130}$Te with an array of 988 TeO$_2$ bolometers arranged in 19 towers. CUORE-0, the first tower assembled according to the CUORE procedures, was built and commissioned at Laboratori Nazionali del Gran Sasso, and took data from March 2013 to March 2015. In this paper we describe the design, construction and operation of the C&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.05465v2-abstract-full').style.display = 'inline'; document.getElementById('1604.05465v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.05465v2-abstract-full" style="display: none;"> The CUORE experiment will search for neutrinoless double-beta decay of $^{130}$Te with an array of 988 TeO$_2$ bolometers arranged in 19 towers. CUORE-0, the first tower assembled according to the CUORE procedures, was built and commissioned at Laboratori Nazionali del Gran Sasso, and took data from March 2013 to March 2015. In this paper we describe the design, construction and operation of the CUORE-0 experiment, with an emphasis on the improvements made over a predecessor experiment, Cuoricino. In particular, we demonstrate with CUORE-0 data that the design goals of CUORE are within reach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.05465v2-abstract-full').style.display = 'none'; document.getElementById('1604.05465v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 26 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> J.2 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 11 P07009 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.08049">arXiv:1603.08049</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.08049">pdf</a>, <a href="https://arxiv.org/format/1603.08049">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.94.054608">10.1103/PhysRevC.94.054608 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cerenkov light identification with Si low-temperature detectors with Neganov-Luke effect-enhanced sensitivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Cassina%2C+L">L. Cassina</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Faverzani%2C+M">M. Faverzani</a>, <a href="/search/physics?searchtype=author&amp;query=Ferri%2C+E">E. Ferri</a>, <a href="/search/physics?searchtype=author&amp;query=Fossati%2C+E">E. Fossati</a>, <a href="/search/physics?searchtype=author&amp;query=Giachero%2C+A">A. Giachero</a>, <a href="/search/physics?searchtype=author&amp;query=Giordano%2C+C">C. Giordano</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&amp;query=Maino%2C+M">M. Maino</a>, <a href="/search/physics?searchtype=author&amp;query=Margesin%2C+B">B. Margesin</a>, <a href="/search/physics?searchtype=author&amp;query=Moretti%2C+F">F. Moretti</a>, <a href="/search/physics?searchtype=author&amp;query=Nucciotti%2C+A">A. Nucciotti</a>, <a href="/search/physics?searchtype=author&amp;query=Pavan%2C+M">M. Pavan</a>, <a href="/search/physics?searchtype=author&amp;query=Pessina%2C+G">G. Pessina</a>, <a href="/search/physics?searchtype=author&amp;query=Pozzi%2C+S">S. Pozzi</a>, <a href="/search/physics?searchtype=author&amp;query=Previtali%2C+E">E. Previtali</a>, <a href="/search/physics?searchtype=author&amp;query=Puiu%2C+A">A. Puiu</a>, <a href="/search/physics?searchtype=author&amp;query=Sisti%2C+M">M. Sisti</a>, <a href="/search/physics?searchtype=author&amp;query=Terranova%2C+F">F. Terranova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.08049v3-abstract-short" style="display: inline;"> A new generation of cryogenic light detectors exploiting Neganov-Luke effect to enhance the thermal signal has been used to detect the Cherenkov light emitted by the electrons interacting in TeO$_{2}$ crystals. With this mechanism a high significance event-by-event discrimination between alpha and beta/gamma interactions at the $^{130}$Te neutrino-less double beta decay Q-value - (2527.515 $\pm$ 0&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.08049v3-abstract-full').style.display = 'inline'; document.getElementById('1603.08049v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.08049v3-abstract-full" style="display: none;"> A new generation of cryogenic light detectors exploiting Neganov-Luke effect to enhance the thermal signal has been used to detect the Cherenkov light emitted by the electrons interacting in TeO$_{2}$ crystals. With this mechanism a high significance event-by-event discrimination between alpha and beta/gamma interactions at the $^{130}$Te neutrino-less double beta decay Q-value - (2527.515 $\pm$ 0.013) keV - has been demonstrated. This measurement opens the possibility of drastically reducing the background in cryogenic experiments based on TeO$_{2}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.08049v3-abstract-full').style.display = 'none'; document.getElementById('1603.08049v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 94, 054608 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1601.01334">arXiv:1601.01334</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1601.01334">pdf</a>, <a href="https://arxiv.org/format/1601.01334">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.93.045503">10.1103/PhysRevC.93.045503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analysis Techniques for the Evaluation of the Neutrinoless Double-Beta Decay Lifetime in $^{130}$Te with CUORE-0 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Artusa%2C+D+R">D. R. Artusa</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Banks%2C+T+I">T. I. Banks</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Bersani%2C+A">A. Bersani</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+X+G">X. G. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&amp;query=Carbone%2C+L">L. Carbone</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Cassina%2C+L">L. Cassina</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a> , et al. (96 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1601.01334v3-abstract-short" style="display: inline;"> We describe in detail the methods used to obtain the lower bound on the lifetime of neutrinoless double-beta ($0谓尾尾$) decay in $^{130}$Te and the associated limit on the effective Majorana mass of the neutrino using the CUORE-0 detector. CUORE-0 is a bolometric detector array located at the Laboratori Nazionali del Gran Sasso that was designed to validate the background reduction techniques develo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.01334v3-abstract-full').style.display = 'inline'; document.getElementById('1601.01334v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1601.01334v3-abstract-full" style="display: none;"> We describe in detail the methods used to obtain the lower bound on the lifetime of neutrinoless double-beta ($0谓尾尾$) decay in $^{130}$Te and the associated limit on the effective Majorana mass of the neutrino using the CUORE-0 detector. CUORE-0 is a bolometric detector array located at the Laboratori Nazionali del Gran Sasso that was designed to validate the background reduction techniques developed for CUORE, a next-generation experiment scheduled to come online in 2016. CUORE-0 is also a competitive $0谓尾尾$ decay search in its own right and functions as a platform to further develop the analysis tools and procedures to be used in CUORE. These include data collection, event selection and processing, as well as an evaluation of signal efficiency. In particular, we describe the amplitude evaluation, thermal gain stabilization, energy calibration methods, and the analysis event selection used to create our final $0谓尾尾$ decay search spectrum. We define our high level analysis procedures, with emphasis on the new insights gained and challenges encountered. We outline in detail our fitting methods near the hypothesized $0谓尾尾$ decay peak and catalog the main sources of systematic uncertainty. Finally, we derive the $0谓尾尾$ decay half-life limits previously reported for CUORE-0, $T^{0谓}_{1/2}&gt;2.7\times10^{24}$ yr, and in combination with the Cuoricino limit, $T^{0谓}_{1/2}&gt;4.0\times10^{24}$ yr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1601.01334v3-abstract-full').style.display = 'none'; document.getElementById('1601.01334v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 January, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 18 figures. (Version 3 reflects only minor changes to the text. Few additional details, no major content changes.)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 93, 045503 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.08787">arXiv:1507.08787</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.08787">pdf</a>, <a href="https://arxiv.org/format/1507.08787">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Large area Si low-temperature light detectors with Neganov-Luke effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cassina%2C+L">L. Cassina</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Faverzani%2C+M">M. Faverzani</a>, <a href="/search/physics?searchtype=author&amp;query=Ferri%2C+E">E. Ferri</a>, <a href="/search/physics?searchtype=author&amp;query=Giachero%2C+A">A. Giachero</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giordano%2C+C">C. Giordano</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&amp;query=Maino%2C+M">M. Maino</a>, <a href="/search/physics?searchtype=author&amp;query=Margesin%2C+B">B. Margesin</a>, <a href="/search/physics?searchtype=author&amp;query=Nucciotti%2C+A">A. Nucciotti</a>, <a href="/search/physics?searchtype=author&amp;query=Pavan%2C+M">M. Pavan</a>, <a href="/search/physics?searchtype=author&amp;query=Pessina%2C+G">G. Pessina</a>, <a href="/search/physics?searchtype=author&amp;query=Previtali%2C+E">E. Previtali</a>, <a href="/search/physics?searchtype=author&amp;query=Puiu%2C+A">A. Puiu</a>, <a href="/search/physics?searchtype=author&amp;query=Sisti%2C+M">M. Sisti</a>, <a href="/search/physics?searchtype=author&amp;query=Terranova%2C+F">F. Terranova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.08787v1-abstract-short" style="display: inline;"> Next generation calorimetric experiments for the search of rare events rely on the detection of tiny amounts of light (of the order of 20 optical photons) to discriminate and reduce background sources and improve sensitivity. Calorimetric detectors are the simplest solution for photon detection at cryogenic (mK) temperatures. The development of silicon based light detectors with enhanced performan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.08787v1-abstract-full').style.display = 'inline'; document.getElementById('1507.08787v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.08787v1-abstract-full" style="display: none;"> Next generation calorimetric experiments for the search of rare events rely on the detection of tiny amounts of light (of the order of 20 optical photons) to discriminate and reduce background sources and improve sensitivity. Calorimetric detectors are the simplest solution for photon detection at cryogenic (mK) temperatures. The development of silicon based light detectors with enhanced performance thanks to the use of the Neganov-Luke effect is described. The aim of this research line is the production of high performance detectors with industrial-grade reproducibility and reliability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.08787v1-abstract-full').style.display = 'none'; document.getElementById('1507.08787v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Capelli%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Capelli%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Capelli%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10