CINXE.COM

Search results for: magnetic stimulation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: magnetic stimulation</title> <meta name="description" content="Search results for: magnetic stimulation"> <meta name="keywords" content="magnetic stimulation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="magnetic stimulation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="magnetic stimulation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1784</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: magnetic stimulation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1784</span> Isolated Contraction of Deep Lumbar Paraspinal Muscle with Magnetic Nerve Root Stimulation: A Pilot Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shi-Uk%20Lee">Shi-Uk Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chae%20Young%20Lim"> Chae Young Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The aim of this study was to evaluate the changes of lumbar deep muscle thickness and cross-sectional area using ultrasonography with magnetic stimulation. Methods: To evaluate the changes of lumbar deep muscle by using magnetic stimulation, 12 healthy volunteers (39.6±10.0 yrs) without low back pain during 3 months participated in this study. All the participants were checked with X-ray and electrophysiologic study to confirm that they had no problems with their back. Magnetic stimulation was done on the L5 and S1 root with figure-eight coil as previous study. To confirm the proper motor root stimulation, the surface electrode was put on the tibialis anterior (L5) and abductor hallucis muscles (S1) and the hot spots of magnetic stimulation were found with 50% of maximal magnetic stimulation and determined the stimulation threshold lowering the magnetic intensity by 5%. Ultrasonography was used to assess the changes of L5 and S1 lumbar multifidus (superficial and deep) cross-sectional area and thickness with maximal magnetic stimulation. Cross-sectional area (CSA) and thickness was evaluated with image acquisition program, ImageJ software (National Institute of Healthy, USA). Wilcoxon signed-rank was used to compare outcomes between before and after stimulations. Results: The mean minimal threshold was 29.6±3.8% of maximal stimulation intensity. With minimal magnetic stimulation, thickness of L5 and S1 deep multifidus (DM) were increased from 1.25±0.20, 1.42±0.23 cm to 1.40±0.27, 1.56±0.34 cm, respectively (P=0.005, P=0.003). CSA of L5 and S1 DM were also increased from 2.26±0.18, 1.40±0.26 cm2 to 2.37±0.18, 1.56±0.34 cm2, respectively (P=0.002, P=0.002). However, thickness of L5 and S1 superficial multifidus (SM) were not changed from 1.92±0.21, 2.04±0.20 cm to 1.91±0.33, 1.96±0.33 cm (P=0.211, P=0.199) and CSA of L5 and S1 were also not changed from 4.29±0.53, 5.48±0.32 cm2 to 4.42±0.42, 5.64±0.38 cm2. With maximal magnetic stimulation, thickness of L5, S1 of DM and SM were increased (L5 DM, 1.29±0.26, 1.46±0.27 cm, P=0.028; L5 SM, 2.01±0.42, 2.24±0.39 cm, P=0.005; S1 DM, 1.29±0.19, 1.67±0.29 P=0.002; S1 SM, 1.90±0.36, 2.30±0.36, P=0.002). CSA of L5, S1 of DM and SM were also increased (all P values were 0.002). Conclusions: Deep lumbar muscles could be stimulated with lumbar motor root magnetic stimulation. With minimal stimulation, thickness and CSA of lumbosacral deep multifidus were increased in this study. Further studies are needed to confirm whether the similar results in chronic low back pain patients are represented. Lumbar magnetic stimulation might have strengthening effect of deep lumbar muscles with no discomfort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20stimulation" title="magnetic stimulation">magnetic stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=lumbar%20multifidus" title=" lumbar multifidus"> lumbar multifidus</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonography" title=" ultrasonography"> ultrasonography</a> </p> <a href="https://publications.waset.org/abstracts/37453/isolated-contraction-of-deep-lumbar-paraspinal-muscle-with-magnetic-nerve-root-stimulation-a-pilot-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1783</span> Transcranial and Sacral Magnetic Stimulation as a Therapeutic Resource for Urinary Incontinence – A Brief Bibliographic Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Lucia%20Molina">Ana Lucia Molina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique for the investigation and modulation of cortical excitability in humans. The modulation of the processing of different cortical areas can result in several areas for rehabilitation, showing great potential in the treatment of motor disorders. In the human brain, the supplementary motor area (SMA) is involved in the control of the pelvic floor muscles (MAP), where dysfunctions of these muscles can lead to urinary incontinence. Peripheral magnetic stimulation, specifically sacral magnetic stimulation, has been used as a safe and effective treatment option for patients with lower urinary tract dysfunction. A systematic literature review was carried out (Pubmed, Medline and Google academic database) without a time limit using the keywords: "transcranial magnetic stimulation", "sacral neuromodulation", and "urinary incontinence", where 11 articles attended to the inclusion criteria. Results: Thirteen articles were selected. Magnetic stimulation is a non-invasive neuromodulation technique widely used in the evaluation of cortical areas and their respective peripheral areas, as well as in the treatment of lesions of brain origin. With regard to pelvic-perineal disorders, repetitive transcranial stimulation showed significant effects in controlling urinary incontinence, as well as sacral peripheral magnetic stimulation, in addition to exerting the potential to restore bladder sphincter function. Conclusion: Data from the literature suggest that both transcranial stimulation and peripheral stimulation are non-invasive references that can be promising and effective means of treatment in pelvic and perineal disorders. More prospective and randomized studies on a larger scale are needed, adapting the most appropriate and resolving parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urinary%20incontinence" title="urinary incontinence">urinary incontinence</a>, <a href="https://publications.waset.org/abstracts/search?q=non-invasive%20neuromodulation" title=" non-invasive neuromodulation"> non-invasive neuromodulation</a>, <a href="https://publications.waset.org/abstracts/search?q=sacral%20neuromodulation" title=" sacral neuromodulation"> sacral neuromodulation</a>, <a href="https://publications.waset.org/abstracts/search?q=transcranial%20magnetic%20stimulation." title=" transcranial magnetic stimulation."> transcranial magnetic stimulation.</a> </p> <a href="https://publications.waset.org/abstracts/164197/transcranial-and-sacral-magnetic-stimulation-as-a-therapeutic-resource-for-urinary-incontinence-a-brief-bibliographic-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1782</span> Electromagnetic-Mechanical Stimulation on PC12 for Enhancement of Nerve Axonal Extension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Nakamachi">E. Nakamachi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Matsumoto"> K. Matsumoto</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Yamamoto"> K. Yamamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Morita"> Y. Morita</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Sakamoto"> H. Sakamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recently, electromagnetic and mechanical stimulations have been recognized as the effective extracellular environment stimulation technique to enhance the defected peripheral nerve tissue regeneration. In this study, we developed a new hybrid bioreactor by adopting 50 Hz uniform alternative current (AC) magnetic stimulation and 4% strain mechanical stimulation. The guide tube for nerve regeneration is mesh structured tube made of biodegradable polymer, such as polylatic acid (PLA). However, when neural damage is large, there is a possibility that peripheral nerve undergoes necrosis. So it is quite important to accelerate the nerve tissue regeneration by achieving enhancement of nerve axonal extension rate. Therefore, we try to design and fabricate the system that can simultaneously load the uniform AC magnetic field stimulation and the stretch stimulation to cells for enhancement of nerve axonal extension. Next, we evaluated systems performance and the effectiveness of each stimulation for rat adrenal pheochromocytoma cells (PC12). First, we designed and fabricated the uniform AC magnetic field system and the stretch stimulation system. For the AC magnetic stimulation system, we focused on the use of pole piece structure to carry out in-situ microscopic observation. We designed an optimum pole piece structure using the magnetic field finite element analyses and the response surface methodology. We fabricated the uniform AC magnetic field stimulation system as a bio-reactor by adopting analytically determined design specifications. We measured magnetic flux density that is generated by the uniform AC magnetic field stimulation system. We confirmed that measurement values show good agreement with analytical results, where the uniform magnetic field was observed. Second, we fabricated the cyclic stretch stimulation device under the conditions of particular strains, where the chamber was made of polyoxymethylene (POM). We measured strains in the PC12 cell culture region to confirm the uniform strain. We found slightly different values from the target strain. Finally, we concluded that these differences were allowable in this mechanical stimulation system. We evaluated the effectiveness of each stimulation to enhance the nerve axonal extension using PC12. We confirmed that the average axonal extension length of PC12 under the uniform AC magnetic stimulation was increased by 16 % at 96 h in our bio-reactor. We could not confirm that the axonal extension enhancement under the stretch stimulation condition, where we found the exfoliating of cells. Further, the hybrid stimulation enhanced the axonal extension. Because the magnetic stimulation inhibits the exfoliating of cells. Finally, we concluded that the enhancement of PC12 axonal extension is due to the magnetic stimulation rather than the mechanical stimulation. Finally, we confirmed that the effectiveness of the uniform AC magnetic field stimulation for the nerve axonal extension using PC12 cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nerve%20cell%20PC12" title="nerve cell PC12">nerve cell PC12</a>, <a href="https://publications.waset.org/abstracts/search?q=axonal%20extension" title=" axonal extension"> axonal extension</a>, <a href="https://publications.waset.org/abstracts/search?q=nerve%20regeneration" title=" nerve regeneration"> nerve regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic-mechanical%20stimulation" title=" electromagnetic-mechanical stimulation"> electromagnetic-mechanical stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactor" title=" bioreactor"> bioreactor</a> </p> <a href="https://publications.waset.org/abstracts/73506/electromagnetic-mechanical-stimulation-on-pc12-for-enhancement-of-nerve-axonal-extension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1781</span> Effect of Non-Invasive Electrical Stimulation on Partial Hearing Loss: Pilot Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geetanjali%20Saggar">Geetanjali Saggar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Partial hearing loss is the inability to hear effectively as a normal hearing individual whose hearing threshold is 20 dB or better in both ears. Individuals with partial hearing loss may benefit from non-invasive electrical stimulation as a method of therapy and possible intervention. Objective: The project aims to assess and relate the efficacy of electrical stimulation on individuals with partial hearing loss. The study's goal was to evaluate the different sorts of non-invasive electrical stimulation in tinnitus and hearing loss in order to build the framework for future research. Method: In this pilot study, a total of five patients of age group above 50 years were selected with partial hearing loss. The electrical modality of Repetitive Transcranial Magnetic Stimulation (RTMS) was used among the patients and was evaluated using gold questionnaires- HHIA and APHAB for hearing at intervals of 0-7-14 days. The statistical data was analyzed by SPSS software-16. Results: There were not much significant changes in the hearing of the patients when non-invasive electrical modality was applied as an intervention in the partial hearing loss condition. However, there was minimal change in the daily functioning of the patient with the application of intervention. Conclusion: This study concluded that non-invasive electrical stimulation had minimal to no effect on the partial hearing of the patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-invasive" title="non-invasive">non-invasive</a>, <a href="https://publications.waset.org/abstracts/search?q=hearing%20loss" title=" hearing loss"> hearing loss</a>, <a href="https://publications.waset.org/abstracts/search?q=transcranial%20magnetic%20stimulation" title=" transcranial magnetic stimulation"> transcranial magnetic stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20deafness" title=" partial deafness"> partial deafness</a>, <a href="https://publications.waset.org/abstracts/search?q=transcranial%20direct%20current%20stimulation" title=" transcranial direct current stimulation"> transcranial direct current stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=tinnitus" title=" tinnitus"> tinnitus</a> </p> <a href="https://publications.waset.org/abstracts/193497/effect-of-non-invasive-electrical-stimulation-on-partial-hearing-loss-pilot-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1780</span> Influence of Magnetic Bio-Stimulation Effects on Pre-Sown Hybrid Sunflower Seeds Germination, Growth, and on the Percentage of Antioxidant Activities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nighat%20Zia-ud-Den">Nighat Zia-ud-Den</a>, <a href="https://publications.waset.org/abstracts/search?q=Shazia%20Anwer%20Bukhari"> Shazia Anwer Bukhari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, sunflower seeds were exposed to magnetic bio-stimulation at different milli Tesla, and their effects were studied. The present study addressed to establish the effectiveness of magnetic bio-stimulation on seed germination, growth, and other dynamics of crop growth. The changes in physiological characters, i.e. the growth parameters of seedlings (biomass, root and shoot length, fresh and dry weight of root shoot leaf and fruit, leaf area, the height of plants, number of leaves, and number of fruits per plant) and antioxidant activities were measured. The parameters related to germination and growth were measured under controlled conditions while they changed significantly compared with that of the control. These changes suggested that magnetic seed stimulator enhanced the inner energy of seeds, which contributed to the acceleration of the growth and development of seedlings. Moreover, pretreatment with a magnetic field was found to be a positive impact on sunflower seeds germination, growth, and other biochemical parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sunflower%20seeds" title="sunflower seeds">sunflower seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20priming%20method" title=" physical priming method"> physical priming method</a>, <a href="https://publications.waset.org/abstracts/search?q=biochemical%20parameters" title=" biochemical parameters"> biochemical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activities" title=" antioxidant activities"> antioxidant activities</a> </p> <a href="https://publications.waset.org/abstracts/131972/influence-of-magnetic-bio-stimulation-effects-on-pre-sown-hybrid-sunflower-seeds-germination-growth-and-on-the-percentage-of-antioxidant-activities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1779</span> Development of Three-Dimensional Bio-Reactor Using Magnetic Field Stimulation to Enhance PC12 Cell Axonal Extension </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eiji%20Nakamachi">Eiji Nakamachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryota%20Sakiyama"> Ryota Sakiyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Koji%20Yamamoto"> Koji Yamamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuke%20Morita"> Yusuke Morita</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidetoshi%20Sakamoto"> Hidetoshi Sakamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The regeneration of injured central nerve network caused by the cerebrovascular accidents is difficult, because of poor regeneration capability of central nerve system composed of the brain and the spinal cord. Recently, new regeneration methods such as transplant of nerve cells and supply of nerve nutritional factor were proposed and examined. However, there still remain many problems with the canceration of engrafted cells and so on and it is strongly required to establish an efficacious treating method of a central nerve system. Blackman proposed the electromagnetic stimulation method to enhance the axonal nerve extension. In this study, we try to design and fabricate a new three-dimensional (3D) bio-reactor, which can load a uniform AC magnetic field stimulation on PC12 cells in the extracellular environment for enhancement of an axonal nerve extension and 3D nerve network generation. Simultaneously, we measure the morphology of PC12 cell bodies, axons, and dendrites by the multiphoton excitation fluorescence microscope (MPM) and evaluate the effectiveness of the uniform AC magnetic stimulation to enhance the axonal nerve extension. Firstly, we designed and fabricated the uniform AC magnetic field stimulation bio-reactor. For the AC magnetic stimulation system, we used the laminated silicon steel sheets for a yoke structure of 3D chamber, which had a high magnetic permeability. Next, we adopted the pole piece structure and installed similar specification coils on both sides of the yoke. We searched an optimum pole piece structure using the magnetic field finite element (FE) analyses and the response surface methodology. We confirmed that the optimum 3D chamber structure showed a uniform magnetic flux density in the PC12 cell culture area by using FE analysis. Then, we fabricated the uniform AC magnetic field stimulation bio-reactor by adopting analytically determined specifications, such as the size of chamber and electromagnetic conditions. We confirmed that measurement results of magnetic field in the chamber showed a good agreement with FE results. Secondly, we fabricated a dish, which set inside the uniform AC magnetic field stimulation of bio-reactor. PC12 cells were disseminated with collagen gel and could be 3D cultured in the dish. The collagen gel were poured in the dish. The collagen gel, which had a disk shape of 6 mm diameter and 3mm height, was set on the membrane filter, which was located at 4 mm height from the bottom of dish. The disk was full filled with the culture medium inside the dish. Finally, we evaluated the effectiveness of the uniform AC magnetic field stimulation to enhance the nurve axonal extension. We confirmed that a 6.8 increase in the average axonal extension length of PC12 under the uniform AC magnetic field stimulation at 7 days culture in our bio-reactor, and a 24.7 increase in the maximum axonal extension length. Further, we confirmed that a 60 increase in the number of dendrites of PC12 under the uniform AC magnetic field stimulation. Finally, we confirm the availability of our uniform AC magnetic stimulation bio-reactor for the nerve axonal extension and the nerve network generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nerve%20regeneration" title="nerve regeneration">nerve regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=axonal%20extension" title=" axonal extension "> axonal extension </a>, <a href="https://publications.waset.org/abstracts/search?q=PC12%20cell" title=" PC12 cell"> PC12 cell</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20bio-reactor" title=" three-dimensional bio-reactor"> three-dimensional bio-reactor</a> </p> <a href="https://publications.waset.org/abstracts/80976/development-of-three-dimensional-bio-reactor-using-magnetic-field-stimulation-to-enhance-pc12-cell-axonal-extension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1778</span> Patent on Brian: Brain Waves Stimulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jalil%20Qoulizadeh">Jalil Qoulizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Sadeghi"> Hasan Sadeghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brain waves are electrical wave patterns that are produced in the human brain. Knowing these waves and activating them can have a positive effect on brain function and ultimately create an ideal life. The brain has the ability to produce waves from 0.1 to above 65 Hz. (The Beta One device produces exactly these waves) This is because it is said that the waves produced by the Beta One device exactly match the waves produced by the brain. The function and method of this device is based on the magnetic stimulation of the brain. The technology used in the design and producƟon of this device works in a way to strengthen and improve the frequencies of brain waves with a pre-defined algorithm according to the type of requested function, so that the person can access the expected functions in life activities. to perform better. The effect of this field on neurons and their stimulation: In order to evaluate the effect of this field created by the device, on the neurons, the main tests are by conducting electroencephalography before and after stimulation and comparing these two baselines by qEEG or quantitative electroencephalography method using paired t-test in 39 subjects. It confirms the significant effect of this field on the change of electrical activity recorded after 30 minutes of stimulation in all subjects. The Beta One device is able to induce the appropriate pattern of the expected functions in a soft and effective way to the brain in a healthy and effective way (exactly in accordance with the harmony of brain waves), the process of brain activities first to a normal state and then to a powerful one. Production of inexpensive neuroscience equipment (compared to existing rTMS equipment) Magnetic brain stimulation for clinics - homes - factories and companies - professional sports clubs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stimulation" title="stimulation">stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=brain" title=" brain"> brain</a>, <a href="https://publications.waset.org/abstracts/search?q=waves" title=" waves"> waves</a>, <a href="https://publications.waset.org/abstracts/search?q=betaOne" title=" betaOne"> betaOne</a> </p> <a href="https://publications.waset.org/abstracts/160354/patent-on-brian-brain-waves-stimulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1777</span> Investigation of Different Stimulation Patterns to Reduce Muscle Fatigue during Functional Electrical Stimulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ruslee">R. Ruslee</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Gollee"> H. Gollee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Functional electrical stimulation (FES) is a commonly used technique in rehabilitation and often associated with rapid muscle fatigue which becomes the limiting factor in its applications. The objective of this study is to investigate the effects on the onset of fatigue of conventional synchronous stimulation, as well as asynchronous stimulation that mimic voluntary muscle activation targeting different motor units which are activated sequentially or randomly via multiple pairs of stimulation electrodes. We investigate three different approaches with various electrode configurations, as well as different patterns of stimulation applied to the gastrocnemius muscle: Conventional Synchronous Stimulation (CSS), Asynchronous Sequential Stimulation (ASS) and Asynchronous Random Stimulation (ARS). Stimulation was applied repeatedly for 300 ms followed by 700 ms of no-stimulation with 40 Hz effective frequency for all protocols. Ten able-bodied volunteers (28&plusmn;3 years old) participated in this study. As fatigue indicators, we focused on the analysis of Normalized Fatigue Index (NFI), Fatigue Time Interval (FTI) and pre-post Twitch-Tetanus Ratio (&Delta;TTR). The results demonstrated that ASS and ARS give higher NFI and longer FTI confirming less fatigue for asynchronous stimulation. In addition, ASS and ARS resulted in higher &Delta;TTR than conventional CSS. In this study, we proposed a randomly distributed stimulation method for the application of FES and investigated its suitability for reducing muscle fatigue compared to previously applied methods. The results validated that asynchronous stimulation reduces fatigue, and indicates that random stimulation may improve fatigue resistance in some conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asynchronous%20stimulation" title="asynchronous stimulation">asynchronous stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode%20configuration" title=" electrode configuration"> electrode configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20electrical%20stimulation%20%28FES%29" title=" functional electrical stimulation (FES)"> functional electrical stimulation (FES)</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20fatigue" title=" muscle fatigue"> muscle fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20stimulation" title=" pattern stimulation"> pattern stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20stimulation" title=" random stimulation"> random stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20stimulation" title=" sequential stimulation"> sequential stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20stimulation" title=" synchronous stimulation"> synchronous stimulation</a> </p> <a href="https://publications.waset.org/abstracts/50118/investigation-of-different-stimulation-patterns-to-reduce-muscle-fatigue-during-functional-electrical-stimulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1776</span> Corticomotor Excitability after Two Different Repetitive Transcranial Magnetic Stimulation Protocols in Ischemic Stroke Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asrarul%20Fikri%20Abu%20Hassan">Asrarul Fikri Abu Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hafiz%20bin%20Hanafi"> Muhammad Hafiz bin Hanafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jafri%20Malin%20Abdullah"> Jafri Malin Abdullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is to compare the motor evoked potential (MEP) changes using different settings of repetitive transcranial magnetic stimulation (rTMS) in the post-haemorrhagic stroke patient which treated conservatively. The goal of the study is to determine changes in corticomotor excitability and functional outcome after repetitive transcranial magnetic stimulation (rTMS) therapy regime. 20 post-stroke patients with upper limb hemiparesis were studied due to haemorrhagic stroke. One of the three settings; (I) Inhibitory setting, or (II) facilitatory setting, or (III) control group, no excitatory or inhibitory setting have been applied randomly during the first meeting. The motor evoked potential (MEP) were recorded before and after application of the rTMS setting. Functional outcomes were evaluated using the Barthel index score. We found pre-treatment MEP values of the lesional side were lower compared to post-treatment values in both settings. In contrast, we found that the pre-treatment MEP values of the non-lesional side were higher compared to post-treatment values in both settings. Interestingly, patients with treatment, either facilitatory setting and inhibitory setting have faster motor recovery compared to the control group. Our data showed both settings might improve the MEP of the upper extremity and functional outcomes in the haemorrhagic stroke patient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barthel%20index" title="Barthel index">Barthel index</a>, <a href="https://publications.waset.org/abstracts/search?q=corticomotor%20excitability" title=" corticomotor excitability"> corticomotor excitability</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20evoked%20potential" title=" motor evoked potential"> motor evoked potential</a>, <a href="https://publications.waset.org/abstracts/search?q=repetitive%20transcranial%20magnetic%20stimulation" title=" repetitive transcranial magnetic stimulation"> repetitive transcranial magnetic stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=stroke" title=" stroke"> stroke</a> </p> <a href="https://publications.waset.org/abstracts/98326/corticomotor-excitability-after-two-different-repetitive-transcranial-magnetic-stimulation-protocols-in-ischemic-stroke-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1775</span> Effect of Naphtha on the Composition of a Heavy Crude, in Addition to a Cycle Steam Stimulation Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Guerrero">A. Guerrero</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Leon"> A. Leon</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Munoz"> S. Munoz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sandoval"> M. Sandoval</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The addition of solvent to cyclic steam stimulation is done in order to reduce the solvent-vapor ratio at late stages of the process, the moment in which this relationship increases significantly. The study of the use of naphtha in addition to the cyclic steam stimulation has been mainly oriented to the effect it achieves on the incremental recovery compared to the application of steam only. However, the effect of naphtha on the reactivity of crude oil components under conditions of cyclic steam stimulation or if its effect is the only dilution has not yet been considered, to author’s best knowledge. The present study aims to evaluate and understand the effect of naphtha and the conditions of cyclic steam stimulation, on the remaining composition of the improved oil, as well as the main mechanisms present in the heavy crude - naphtha interaction. Tests were carried out with the system solvent (naphtha)-oil (12.5° API, 4216 cP @ 40° C)- steam, in a batch micro-reactor, under conditions of cyclic steam stimulation (250-300 °C, 400 psi). The characterization of the samples obtained was carried out by MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) and NMR (Nuclear Magnetic Resonance) techniques. The results indicate that there is a rearrangement of the microstructure of asphaltenes, resulting in a decrease in these and an increase in lighter components such as resins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composition%20change" title="composition change">composition change</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20steam%20stimulation" title=" cyclic steam stimulation"> cyclic steam stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20mechanism" title=" interaction mechanism"> interaction mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=naphtha" title=" naphtha"> naphtha</a> </p> <a href="https://publications.waset.org/abstracts/111468/effect-of-naphtha-on-the-composition-of-a-heavy-crude-in-addition-to-a-cycle-steam-stimulation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1774</span> Computational Fluid Dynamic Modeling of Mixing Enhancement by Stimulation of Ferrofluid under Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neda%20Azimi">Neda Azimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Rahimi"> Masoud Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Faezeh%20Mohammadi"> Faezeh Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computational fluid dynamics (CFD) simulation was performed to investigate the effect of ferrofluid stimulation on hydrodynamic and mass transfer characteristics of two immiscible liquid phases in a Y-micromixer. The main purpose of this work was to develop a numerical model that is able to simulate hydrodynamic of the ferrofluid flow under magnetic field and determine its effect on mass transfer characteristics. A uniform external magnetic field was applied perpendicular to the flow direction. The volume of fluid (VOF) approach was used for simulating the multiphase flow of ferrofluid and two-immiscible liquid flows. The geometric reconstruction scheme (Geo-Reconstruct) based on piecewise linear interpolation (PLIC) was used for reconstruction of the interface in the VOF approach. The mass transfer rate was defined via an equation as a function of mass concentration gradient of the transported species and added into the phase interaction panel using the user-defined function (UDF). The magnetic field was solved numerically by Fluent MHD module based on solving the magnetic induction equation method. CFD results were validated by experimental data and good agreements have been achieved, which maximum relative error for extraction efficiency was about 7.52 %. It was showed that ferrofluid actuation by a magnetic field can be considered as an efficient mixing agent for liquid-liquid two-phase mass transfer in microdevices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20modeling" title="CFD modeling">CFD modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic" title=" hydrodynamic"> hydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=micromixer" title=" micromixer"> micromixer</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrofluid" title=" ferrofluid"> ferrofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing" title=" mixing"> mixing</a> </p> <a href="https://publications.waset.org/abstracts/102582/computational-fluid-dynamic-modeling-of-mixing-enhancement-by-stimulation-of-ferrofluid-under-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1773</span> Cognitive Effects of Repetitive Transcranial Magnetic Stimulation in Patients with Parkinson&#039;s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Munguia">Ana Munguia</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerardo%20Ortiz"> Gerardo Ortiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Guadalupe%20Gonzalez"> Guadalupe Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=Fiacro%20Jimenez"> Fiacro Jimenez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parkinson's disease (PD) is a neurodegenerative disorder that causes motor and cognitive symptoms. The first-choice treatment for these patients is pharmacological, but this generates several side effects. Because of that new treatments were introduced such as Repetitive Transcranial Magnetic Stimulation (rTMS) in order to improve the life quality of the patients. Several studies suggest significant changes in motor symptoms. However, there is a great diversity in the number of pulses, amplitude, frequency and stimulation targets, which results in inconsistent data. In addition, these studies do not have an analysis of the neuropsychological effects of the treatment. The main purpose of this study is to evaluate the impact of rTMS on the cognitive performance of 6 patients with H&Y III and IV (45-65 years, 3 men and 3 women). An initial neuropsychological and neurological evaluation was performed. Patients were randomized into two groups; in the first phase one received rTMS in the supplementary motor area, the other group in the dorsolateral prefrontal cortex contralateral to the most affected hemibody. In the second phase, each group received the stimulation in the area that he had not been stimulated previously. Reassessments were carried out at the beginning, at the end of each phase and a follow-up was carried out 6 months after the conclusion of the stimulation. In these preliminary results, it is reported that there's no statistically significant difference before and after receiving rTMS in the neuropsychological test scores of the patients, which suggests that the cognitive performance of patients is not detrimental. There are even tendencies towards an improvement in executive functioning after the treatment. What added to motor improvement, showed positive effects in the activities of the patients' daily life. In a later and more detailed analysis, will be evaluated the effects in each of the patients separately in relation to the functionality of the patients in their daily lives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parkinson%27s%20disease" title="Parkinson&#039;s disease">Parkinson&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=rTMS" title=" rTMS"> rTMS</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive" title=" cognitive"> cognitive</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/84791/cognitive-effects-of-repetitive-transcranial-magnetic-stimulation-in-patients-with-parkinsons-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1772</span> Magnetic Nanoparticles for Cancer Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sachinkumar%20Patil">Sachinkumar Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonali%20Patil"> Sonali Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Shitalkumar%20Patil"> Shitalkumar Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoparticles played important role in the biomedicine. New advanced methods having great potential apllication in the diagnosis and therapy of cancer. Now a day’s magnetic nanoparticles used in cancer therapy. Cancer is the major disease causes death. Magnetic nanoparticles show response to the magnetic field on the basis of this property they are used in cancer therapy. Cancer treated with hyperthermia by using magnetic nanoparticles it is unconventional but more safe and effective method. Magnetic nanoparticles prepared by using different innovative techniques that makes particles in uniform size and desired effect. Magnetic nanoparticles already used as contrast media in magnetic resonance imaging. A magnetic nanoparticle has been great potential application in cancer diagnosis and treatment as well as in gene therapy. In this review we will discuss the progress in cancer therapy based on magnetic nanoparticles, mainly including magnetic hyperthermia, synthesis and characterization of magnetic nanoparticles, mechanism of magnetic nanoparticles and application of magnetic nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title="magnetic nanoparticles">magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20therapy" title=" cancer therapy"> cancer therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermia" title=" hyperthermia"> hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a> </p> <a href="https://publications.waset.org/abstracts/31421/magnetic-nanoparticles-for-cancer-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">639</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1771</span> Transcranial Magnetic Stimulation as a Potentiator in the Rehabilitation of Fine Motor Skills: A Literature Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Lucia%20Molina">Ana Lucia Molina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Fine motor skills refer to the use of the hands and coordination of the small muscles that control the fingers. A deficiency in fine motor skills is as important as a change in global movements, as fine motor skills directly affect activities of daily living. Fine movements are involved in some functions, such as motor control of the extremities, sensitivity, strength and tonus of the hands. A growing interest in the effects of non-invasive neuromodulation, such as transcranial stimulation technologies, through transcranial magnetic stimulation (TMS), has been observed in the scientific literature, with promising results in fine motor rehabilitation, as it provides modulation of the corresponding cortical activity in the area primary motor skills of the hands in both hemispheres (according to the International System 10-20, corresponding to C3 and C4). Objectives: to carry out a literature review about the effects of TMS on the cortical motor area corresponding to hand motricity. Methodology: This is a bibliographic survey carried out between October 2022 and March 2023 at Pubmed, Google Scholar, Lillacs and Virtual Health Library (BVS), with a national and international database. Some books on neuromodulation were included. Results: 28 articles and 5 books were initially found, and after reading the abstracts, only 14 articles and 3 books were selected, with publication dates between 2008 and 2022, to compose the literature review since it suited the purpose of this study. Conclusion: TMS has shown promising results in the treatment of fine motor rehabilitation, such as improving coordination, muscle strength and range of motion of the hands, being a complementary technique to existing treatments and thus providing more potent results for manual skills in activities of daily living. It is important to emphasize the need for more specific studies on the application of TMS for the treatment of manual disorders, which describe the uniqueness of each movement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transcranial%20magnetic%20stimulation" title="transcranial magnetic stimulation">transcranial magnetic stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20motor%20skills" title=" fine motor skills"> fine motor skills</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20rehabilitation" title=" motor rehabilitation"> motor rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-invasive%20neuromodulation" title=" non-invasive neuromodulation"> non-invasive neuromodulation</a> </p> <a href="https://publications.waset.org/abstracts/170643/transcranial-magnetic-stimulation-as-a-potentiator-in-the-rehabilitation-of-fine-motor-skills-a-literature-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1770</span> Bio-Heat Transfer in Various Transcutaneous Stimulation Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trevor%20E.%20Davis">Trevor E. Davis</a>, <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Cassar"> Isaac Cassar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Kai%20Lo"> Yi-Kai Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=Wentai%20Liu"> Wentai Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study models the use of transcutaneous electrical nerve stimulation on skin with a disk electrode in order to simulate tissue damage. The current density distribution above a disk electrode is known to be a dynamic and non-uniform quantity that is intensified at the edges of the disk. The non-uniformity is subject to change through using various electrode geometries or stimulation methods. One of these methods known as edge-retarded stimulation has shown to reduce this edge enhancement. Though progress has been made in modeling the behavior of a disk electrode, little has been done to test the validity of these models in simulating the actual heat transfer from the electrode. This simulation uses finite element software to couple the injection of current from a disk electrode to heat transfer described by the Pennesbioheat transfer equation. An example application of this model is studying an experimental form of stimulation, known as edge-retarded stimulation. The edge-retarded stimulation method will reduce the current density at the edges of the electrode. It is hypothesized that reducing the current density edge enhancement effect will, in turn, reduce temperature change and tissue damage at the edges of these electrodes. This study tests this hypothesis as a demonstration of the capabilities of this model. The edge-retarded stimulation proved to be safer after this simulation. It is shown that temperature change and the fraction of tissue necrosis is much greater in the square wave stimulation. These results bring implications for changes of procedures in transcutaneous electrical nerve stimulation and transcutaneous spinal cord stimulation as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioheat%20transfer" title="bioheat transfer">bioheat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode" title=" electrode"> electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroprosthetics" title=" neuroprosthetics"> neuroprosthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=TENS" title=" TENS"> TENS</a>, <a href="https://publications.waset.org/abstracts/search?q=transcutaneous%20stimulation" title=" transcutaneous stimulation"> transcutaneous stimulation</a> </p> <a href="https://publications.waset.org/abstracts/14551/bio-heat-transfer-in-various-transcutaneous-stimulation-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1769</span> The Influence of Reaction Parameters on Magnetic Properties of Synthesized Strontium Ferrite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bahgat">M. Bahgat</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20Awan"> F. M. Awan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Hanafy"> H. A. Hanafy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The conventional ceramic route was utilized to prepare a hard magnetic powder (M-type strontium ferrite, SrFe12O19). The stoichiometric mixture of iron oxide and strontium carbonate were calcined at 1000°C and then fired at various temperatures. The influence of various reaction parameters such as mixing ratio, calcination temperature, firing temperature and firing time on the magnetic behaviors of the synthesized magnetic powder were investigated.The magnetic properties including Coercivity (Hc), Magnetic saturation (Ms), and Magnetic remnance (Mr) were measured by vibrating sample magnetometer. Morphologically the produced magnetic powder has a dense hexagonal grain shape structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20magnetic%20materials" title="hard magnetic materials">hard magnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20route" title=" ceramic route"> ceramic route</a>, <a href="https://publications.waset.org/abstracts/search?q=strontium%20ferrite" title=" strontium ferrite"> strontium ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a> </p> <a href="https://publications.waset.org/abstracts/21878/the-influence-of-reaction-parameters-on-magnetic-properties-of-synthesized-strontium-ferrite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">693</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1768</span> On the Volume of Ganglion Cell Stimulation in Visual Prostheses by Finite Element Discretization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diego%20Luj%C3%A1n%20Villarreal">Diego Luján Villarreal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visual prostheses are designed to repair some eyesight in patients blinded by photoreceptor diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Electrode-to-cell proximity has drawn attention due to its implications on secure single-localized stimulation. Yet, few techniques are available for understanding the relationship between the number of cells activated and the current injection. We propose an answering technique by solving the governing equation for time-dependent electrical currents using finite element discretization to obtain the volume of stimulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visual%20prosthetic%20devices" title="visual prosthetic devices">visual prosthetic devices</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20for%20stimulation" title=" volume for stimulation"> volume for stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20discretization" title=" FEM discretization"> FEM discretization</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20simulation" title=" 3D simulation"> 3D simulation</a> </p> <a href="https://publications.waset.org/abstracts/162034/on-the-volume-of-ganglion-cell-stimulation-in-visual-prostheses-by-finite-element-discretization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1767</span> A Self-Adaptive Stimulus Artifacts Removal Approach for Electrical Stimulation Based Muscle Rehabilitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yinjun%20Tu">Yinjun Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Fang"> Qiang Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Glenn%20I.%20Matthews"> Glenn I. Matthews</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuenn-Yuh%20Lee"> Shuenn-Yuh Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports an efficient and rigorous self-adaptive stimulus artifacts removal approach for a mixed surface EMG (Electromyography) and stimulus signal during muscle stimulation. The recording of EMG and the stimulation of muscles were performing simultaneously. It is difficult to generate muscle fatigue feature from the mixed signal, which can be further used in closed loop system. A self-adaptive method is proposed in this paper, the stimulation frequency was calculated and verified firstly. Then, a mask was created based on this stimulation frequency to remove the undesired stimulus. 20 EMG signal recordings were analyzed, and the ANOVA (analysis of variance) approach illustrated that the decreasing trend of median power frequencies was successfully generated from the 'cleaned' EMG signal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMG" title="EMG">EMG</a>, <a href="https://publications.waset.org/abstracts/search?q=FES" title=" FES"> FES</a>, <a href="https://publications.waset.org/abstracts/search?q=stimulus%20artefacts" title=" stimulus artefacts"> stimulus artefacts</a>, <a href="https://publications.waset.org/abstracts/search?q=self-adaptive" title=" self-adaptive"> self-adaptive</a> </p> <a href="https://publications.waset.org/abstracts/78969/a-self-adaptive-stimulus-artifacts-removal-approach-for-electrical-stimulation-based-muscle-rehabilitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1766</span> Analytical Model for Vacuum Cathode Arcs in an Oblique Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20W.%20Chen">P. W. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20T.%20Chang"> C. T. Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Peng"> Y. Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Y.%20Wu"> J. Y. Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20J.%20Jan"> D. J. Jan</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Manirul%20Ali"> Md. Manirul Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decade, the nature of cathode spot splitting and the current per spot depended on an oblique magnetic field was investigated. This model for cathode current splitting is developed that we have investigated with relationship the magnetic pressures produced by kinetic pressure, self-magnetic pressure, and changed with an external magnetic field. We propose a theoretical model that has been established to an external magnetic field with components normal and tangential to the cathode surface influenced on magnetic pressure strength. We mainly focus on developed to understand the current per spot influenced with the tangential magnetic field strength and normal magnetic field strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cathode%20spot" title="cathode spot">cathode spot</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20arc%20discharge" title=" vacuum arc discharge"> vacuum arc discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20magnetic%20field" title=" oblique magnetic field"> oblique magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=tangential%20magnetic%20field" title=" tangential magnetic field"> tangential magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/52606/analytical-model-for-vacuum-cathode-arcs-in-an-oblique-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1765</span> Consideration of Magnetic Lines of Force as Magnets Produced by Percussion Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angel%20P%C3%A9rez%20S%C3%A1nchez">Angel Pérez Sánchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Consider magnetic lines of force as a vector magnetic current was introduced by convention around 1830. But this leads to a dead end in traditional physics, and quantum explanations must be referred to explain the magnetic phenomenon. However, a study of magnetic lines as percussive waves leads to other paths capable of interpreting magnetism through traditional physics. Methodology: Brick used in the experiment: two parallel electric current cables attract each other if current goes in the same direction and its application at a microscopic level inside magnets. Significance: Consideration of magnetic lines as magnets themselves would mean a paradigm shift in the study of magnetism and open the way to provide solutions to mysteries of magnetism until now only revealed by quantum mechanics. Major findings: discover how a magnetic field is created, as well as reason how magnetic attraction and repulsion work, understand how magnets behave when splitting them, and reveal the impossibility of a Magnetic Monopole. All of this is presented as if it were a symphony in which all the notes fit together perfectly to create a beautiful, smart, and simple work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force" title="magnetic lines of force">magnetic lines of force</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20and%20repulsion" title=" magnetic attraction and repulsion"> magnetic attraction and repulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=magnet%20split" title=" magnet split"> magnet split</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20monopole" title=" magnetic monopole"> magnetic monopole</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force%20as%20magnets" title=" magnetic lines of force as magnets"> magnetic lines of force as magnets</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force%20as%20waves" title=" magnetic lines of force as waves"> magnetic lines of force as waves</a> </p> <a href="https://publications.waset.org/abstracts/172916/consideration-of-magnetic-lines-of-force-as-magnets-produced-by-percussion-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1764</span> Hydrogen Peroxide: A Future for Well Stimulation and Heavy Oil Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meet%20Bhatia">Meet Bhatia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Well stimulation and heavy oil recovery continue to be a hot topic in our industry, particularly with formation damage and viscous oil respectively. Cyclic steam injection has been recognised for most of the operations related to heavy oil recovery. However, the cost of implementation is high and operation is time-consuming, moreover most of the viscous oil reservoirs such as oil sands, Bitumen deposits and oil shales require additional treatment of well stimulation. The use of hydrogen peroxide can efficiently replace the cyclic steam injection process as it can be used for both well stimulation and heavy oil recovery simultaneously. The decomposition of Hydrogen peroxide produces oxygen, superheated steam and heat. The increase in temperature causes clays to shrink, destroy carbonates and remove emulsion thus it can efficiently remove the near wellbore damage. The paper includes mechanisms, parameters to be considered and the challenges during the treatment for the effective hydrogen peroxide injection for both conventional and heavy oil reservoirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title="hydrogen peroxide">hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20stimulation" title=" well stimulation"> well stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20oil%20recovery" title=" heavy oil recovery"> heavy oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20injection" title=" steam injection"> steam injection</a> </p> <a href="https://publications.waset.org/abstracts/67125/hydrogen-peroxide-a-future-for-well-stimulation-and-heavy-oil-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1763</span> The Effects of High-frequency rTMS Targeting the Mirror Neurons on Improving Social Awareness in ASD, the Preliminary Analysis of a Pilot Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mitra%20Assadi">Mitra Assadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Faan"> Md. Faan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Autism Spectrum Disorder (ASD) in a common neurodevelopmental disorder with limited pharmacological interventions. Transcranial Magnetic Stimulation (rTMS) has produced promising results in ASD, although there is no consensus regarding optimal targets or stimulation paradigms. A prevailing theory in ASD attributes the core deficits to dysfunction of the mirror neurons located in the inferior parietal lobule (IPL) and inferior frontal gyrus (IFG). Methods: Thus far, 11 subjects with ASD, 10 boys and 1 girl with the mean age of 13.36 years have completed the study by receiving 10 session of high frequency rTMS to the IPL. The subjects were randomized to receive stimulation on the left or right IPL and sham stimulation to the opposite side. The outcome measures included the Social Responsiveness Scale – Second Edition (SRS-2) and Delis-Kaplan Executive Function System (D-KEFS) Verbal Fluency task. Results: None of the 11 subjects experienced any adverse effects. The rTMS did not produce any improvement in verbal fluency, nor there was any statistically significant difference between the right versus left sided stimulation. Analysis of social awareness on SRS-2 (SRS-AWR) indicated a close to significant effect of the treatment with a small to medium effect size. After removing a single subject with Level 3 ASD, we demonstrated a close to significant improvement on SRS-AWR with a large effect size. The analysis of the data 3-month post TMS demonstrated return of the SRS-AWR values to baseline. Conclusion: This preliminary analysis of the 11 subjects who have completed our study thus far shows a favorable response to high frequency rTMS stimulation of the mirror neurons/IPL on social awareness. While the decay of the response noted during the 3-month follow-up may be considered a limitation of rTMS, the presence of the improvement, especially the effect size despite the small sample size, is indicative of the efficacy of this technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rTMS" title="rTMS">rTMS</a>, <a href="https://publications.waset.org/abstracts/search?q=autism" title=" autism"> autism</a>, <a href="https://publications.waset.org/abstracts/search?q=scoial%20cognition" title=" scoial cognition"> scoial cognition</a>, <a href="https://publications.waset.org/abstracts/search?q=mirror%20neurons" title=" mirror neurons"> mirror neurons</a> </p> <a href="https://publications.waset.org/abstracts/166141/the-effects-of-high-frequency-rtms-targeting-the-mirror-neurons-on-improving-social-awareness-in-asd-the-preliminary-analysis-of-a-pilot-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1762</span> Magnetic and Optical Properties of GaFeMnN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.Abbad">A.Abbad</a>, <a href="https://publications.waset.org/abstracts/search?q=H.A.Bentounes"> H.A.Bentounes</a>, <a href="https://publications.waset.org/abstracts/search?q=W.Benstaali"> W.Benstaali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The full-potential linearized augmented plane wave method (FP-LAPW) within the Generalized Gradient Approximation (GGA) is used to calculate the magnetic and optical properties of quaternary GaFeMnN. The results show that the compound becomes magnetic and half metallic and there is an apparition of peaks at low frequencies for the optical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FP-LAPW" title="FP-LAPW">FP-LAPW</a>, <a href="https://publications.waset.org/abstracts/search?q=LSDA" title=" LSDA"> LSDA</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20moment" title=" magnetic moment"> magnetic moment</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectivity" title=" reflectivity "> reflectivity </a> </p> <a href="https://publications.waset.org/abstracts/26313/magnetic-and-optical-properties-of-gafemnn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1761</span> First Principle Calculation of The Magnetic Properties of Mn-doped 6H-SiC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Al%20Azri">M. Al Azri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Elzain"> M. Elzain</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bouziane"> K. Bouziane</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Ch%C3%A9rif"> S. M. Chérif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electronic and magnetic properties of 6H-SiC with Mn impurities have been calculated using ab-initio calculations. Various configurations of Mn sites and Si and C vacancies were considered. The magnetic coupling between the two Mn atoms at substitutional and interstitials sites with and without vacancies is studied as a function of Mn atoms interatomic distance. It was found that the magnetic interaction energy decreases with increasing distance between the magnetic atoms. The energy levels appearing in the band gap due to vacancies and due to Mn impurities are determined. The calculated DOS’s are used to analyze the nature of the exchange interaction between the impurities. The band coupling model based on the p-d and d-d level repulsions between Mn and SiC has been used to describe the magnetism observed in each configuration. Furthermore, the impacts of applying U to Mn-d orbital on the magnetic moment have also been investigated. The results are used to understand the experimental data obtained on Mn- 6H-SiC (as-implanted and as –annealed) for various Mn concentration (CMn = 0.7%, 1.6%, 7%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ab-initio%20calculations" title="ab-initio calculations">ab-initio calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=diluted%20magnetic%20semiconductors" title=" diluted magnetic semiconductors"> diluted magnetic semiconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a> </p> <a href="https://publications.waset.org/abstracts/34017/first-principle-calculation-of-the-magnetic-properties-of-mn-doped-6h-sic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1760</span> The Effectiveness of High-Frequency Repetitive Transcranial Magnetic Stimulation in Persistent Somatic Symptoms Disorder: A Case Report Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Khamis%20Albalushi">Mohammed Khamis Albalushi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Somatic symptoms disorders are usually comorbid with depressive disorders despite the fact that there is little evidence for effective treatment for it. Repetitive transcranial magnetic stimulation (rTMS) has been approved by the FDA for mildly resistant depression. From this point, we hypothesized that rTMS delivered over the prefrontal cortex (PFC) may be useful in somatic symptoms disorder. Therefore, in our case report, we want to shed light on the potential effectiveness of rTMS in somatic symptoms disorder. Case Report: A 65-year-old Omani female with multiple medical comorbidities on multiple medications. She presented complaining of multiple somatic complaints in the last 2 years after visiting multiple clinics and underwent several specialists’ examinations, investigations and procedures for somatic treatments; all of them were normal. Then patient was seen by a different psychiatric clinic; multiple anti-depressant and adjuvant anti-psychotic medications were tried, patient still did not improve. The patient was admitted to the hospital for observation and management. Initially, she was preoccupied with her somatic complaint and kept on Fluoxetine and Olanzapine along with that, topiramate was added, but still with minimal improvement. Then rTMS was added to her management plan following Intermittent theta burst (iTBS) rTMS protocol. After completing all sessions of rTMS, the patient was recovering from all her symptoms, and no complaints were reported from her. Conclusion: Our case highlights the importance of investigating more thoroughly in rTMS as a treatment option for Persistent Somatic symptoms Disorder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rTMS" title="rTMS">rTMS</a>, <a href="https://publications.waset.org/abstracts/search?q=somatic%20symptoms%20disorder" title=" somatic symptoms disorder"> somatic symptoms disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=resistive%20cases" title=" resistive cases"> resistive cases</a>, <a href="https://publications.waset.org/abstracts/search?q=TMS" title=" TMS"> TMS</a> </p> <a href="https://publications.waset.org/abstracts/170499/the-effectiveness-of-high-frequency-repetitive-transcranial-magnetic-stimulation-in-persistent-somatic-symptoms-disorder-a-case-report-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1759</span> Comparison between Simulation and Experimentally Observed Interactions between Two Different Sized Magnetic Beads in a Fluidic System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olayinka%20Oduwole">Olayinka Oduwole</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Sheard"> Steve Sheard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnetic separation of biological cells using super-magnetic beads has been used widely for various bioassays. These bioassays can further be integrated with other laboratory components to form a biosensor which can be used for cell sorting, mixing, purification, transport, manipulation etc. These bio-sensing applications have also been facilitated by the wide availability of magnetic beads which range in size and magnetic properties produced by different manufacturers. In order to improve the efficiency and separation capabilities of these biosensors, it is important to determine the magnetic force induced velocities and interaction of beads within the magnetic field; this will help biosensor users choose the desired magnetic bead for their specific application. This study presents for the first time the interaction between a pair of different sized super-paramagnetic beads suspended in a static fluid moving within a uniform magnetic field using a modified finite-time-finite-difference scheme. A captured video was used to record the trajectory pattern and a good agreement was obtained between the simulated trajectories and the video data. The model is, therefore, a good approximation for predicting the velocities as well as the interaction between various magnetic particles which differ in size and magnetic properties for bio-sensing applications requiring a low concentration of magnetic beads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20separation" title=" magnetic separation"> magnetic separation</a>, <a href="https://publications.waset.org/abstracts/search?q=super-paramagnetic%20bead" title=" super-paramagnetic bead"> super-paramagnetic bead</a> </p> <a href="https://publications.waset.org/abstracts/40063/comparison-between-simulation-and-experimentally-observed-interactions-between-two-different-sized-magnetic-beads-in-a-fluidic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1758</span> Magnetic Field Induced Tribological Properties of Magnetic Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kinjal%20Trivedi">Kinjal Trivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20V.%20Upadhyay"> Ramesh V. Upadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic fluid as a nanolubricant is a most recent field of study due to its unusual properties that can be tuned by applying a magnetic field. In present work, four ball tester has been used to investigate the tribological properties of the magnetic fluid having a 4 wt% of nanoparticles. The structural characterization of fluid shows crystallite size of particle is 11.7 nm and particles are nearly spherical in nature. The magnetic characterization shows the fluid saturation magnetization is 2.2 kA/m. The magnetic field applied using permanent strip magnet (0 to 1.6 mT) on the faces of the lock nut and fixing a solenoid (0 to 50 mT) around a shaft, such that shaft rotates freely. The magnetic flux line for both the systems analyzed using finite elemental analysis. The coefficient of friction increases with the application of magnetic field using permanent strip magnet compared to zero field value. While for the solenoid, it decreases at 20 mT. The wear scar diameter is lower for 1.1 mT and 20 mT when the magnetic field applied using permanent strip magnet and solenoid, respectively. The coefficient of friction and wear scar reduced by 29 % and 7 % at 20 mT using solenoid. The worn surface analysis carried out using Scanning Electron Microscope and Atomic Force Microscope to understand the wear mechanism. The results are explained on the basis of structure formation in a magnetic fluid upon application of magnetic field. It is concluded that the tribological properties of magnetic fluid depend on magnetic field and its applied direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=four%20ball%20tester" title="four ball tester">four ball tester</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20fluid" title=" magnetic fluid"> magnetic fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=nanolubricant" title=" nanolubricant"> nanolubricant</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a> </p> <a href="https://publications.waset.org/abstracts/88005/magnetic-field-induced-tribological-properties-of-magnetic-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1757</span> Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Chen">Xiao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoying%20Kong"> Xiaoying Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Xu"> Min Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vehicle%20classification" title="vehicle classification">vehicle classification</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20traffic%20model" title=" road traffic model"> road traffic model</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20sensing" title=" magnetic sensing"> magnetic sensing</a> </p> <a href="https://publications.waset.org/abstracts/86644/road-vehicle-recognition-using-magnetic-sensing-feature-extraction-and-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1756</span> Mass Transfer in Reactor with Magnetic Field Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Borowski">Tomasz Borowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20So%C5%82oducha"> Dawid Sołoducha</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Rakoczy"> Rafał Rakoczy</a>, <a href="https://publications.waset.org/abstracts/search?q=Marian%20Kordas"> Marian Kordas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing interest in magnetic fields applications is visible due to the increased number of articles on this topic published in the last few years. In this study, the influence of various magnetic fields (MF) on the mass transfer process was examined. To carry out the prototype set-up equipped with an MF generator that is able to generate a pulsed magnetic field (PMF), oscillating magnetic field (OMF), rotating magnetic field (RMF) and static magnetic field (SMF) was used. To demonstrate the effect of MF’s on mass transfer, the calcium carbonate precipitation process was selected. To the vessel with attached conductometric probes and placed inside the generator, specific doses of calcium chloride and sodium carbonate were added. Electrical conductivity changes of the mixture inside the vessel were measured over time until equilibrium was established. Measurements were conducted for various MF strengths and concentrations of added chemical compounds. Obtained results were analyzed, which allowed to creation of mathematical correlation models showing the influence of MF’s on the studied process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title="mass transfer">mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillating%20magnetic%20field" title=" oscillating magnetic field"> oscillating magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20magnetic%20field" title=" rotating magnetic field"> rotating magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20magnetic%20field" title=" static magnetic field"> static magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/140936/mass-transfer-in-reactor-with-magnetic-field-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1755</span> Artificial Intelligence Based Analysis of Magnetic Resonance Signals for the Diagnosis of Tissue Abnormalities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kapila%20Warnakulasuriya">Kapila Warnakulasuriya</a>, <a href="https://publications.waset.org/abstracts/search?q=Walimuni%20Janaka%20Mendis"> Walimuni Janaka Mendis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an artificial intelligence-based approach is developed to diagnose abnormal tissues in human or animal bodies by analyzing magnetic resonance signals. As opposed to the conventional method of generating an image from the magnetic resonance signals, which are then evaluated by a radiologist for the diagnosis of abnormalities, in the discussed approach, the magnetic resonance signals are analyzed by an artificial intelligence algorithm without having to generate or analyze an image. The AI-based program compares magnetic resonance signals with millions of possible magnetic resonance waveforms which can be generated from various types of normal tissues. Waveforms generated by abnormal tissues are then identified, and images of the abnormal tissues are generated with the possible location of them in the body for further diagnostic tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance" title="magnetic resonance">magnetic resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20waveform%20analysis" title=" magnetic waveform analysis"> magnetic waveform analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=abnormal%20tissues" title=" abnormal tissues"> abnormal tissues</a> </p> <a href="https://publications.waset.org/abstracts/164140/artificial-intelligence-based-analysis-of-magnetic-resonance-signals-for-the-diagnosis-of-tissue-abnormalities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20stimulation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20stimulation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20stimulation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20stimulation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20stimulation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20stimulation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20stimulation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20stimulation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20stimulation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20stimulation&amp;page=59">59</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20stimulation&amp;page=60">60</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20stimulation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10