CINXE.COM

Lie derivative - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Lie derivative - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"1425904f-f7ca-4a1f-b1c3-a4a9071c73cc","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Lie_derivative","wgTitle":"Lie derivative","wgCurRevisionId":1282730053,"wgRevisionId":1282730053,"wgArticleId":294437,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: multiple names: authors list","Articles with short description","Short description is different from Wikidata","Use dmy dates from November 2024","Differential geometry","Differential topology","Differential operators","Generalizations of the derivative"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Lie_derivative","wgRelevantArticleId":294437,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q579267","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGELevelingUpEnabledForUser":false}; RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.22"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Lie derivative - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Lie_derivative"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Lie_derivative&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Lie_derivative"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="auth.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Lie_derivative rootpage-Lie_derivative skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Lie+derivative" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Lie+derivative" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Lie+derivative" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Lie+derivative" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Motivation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Motivation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Motivation</span> </div> </a> <ul id="toc-Motivation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Definition</span> </div> </a> <button aria-controls="toc-Definition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definition subsection</span> </button> <ul id="toc-Definition-sublist" class="vector-toc-list"> <li id="toc-The_(Lie)_derivative_of_a_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_(Lie)_derivative_of_a_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>The (Lie) derivative of a function</span> </div> </a> <ul id="toc-The_(Lie)_derivative_of_a_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_Lie_derivative_of_a_vector_field" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_Lie_derivative_of_a_vector_field"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>The Lie derivative of a vector field</span> </div> </a> <ul id="toc-The_Lie_derivative_of_a_vector_field-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_Lie_derivative_of_a_tensor_field" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_Lie_derivative_of_a_tensor_field"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>The Lie derivative of a tensor field</span> </div> </a> <ul id="toc-The_Lie_derivative_of_a_tensor_field-sublist" class="vector-toc-list"> <li id="toc-Definition_in_terms_of_flows" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Definition_in_terms_of_flows"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3.1</span> <span>Definition in terms of flows</span> </div> </a> <ul id="toc-Definition_in_terms_of_flows-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Algebraic_definition" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Algebraic_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3.2</span> <span>Algebraic definition</span> </div> </a> <ul id="toc-Algebraic_definition-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-The_Lie_derivative_of_a_differential_form" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_Lie_derivative_of_a_differential_form"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>The Lie derivative of a differential form</span> </div> </a> <ul id="toc-The_Lie_derivative_of_a_differential_form-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Coordinate_expressions" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Coordinate_expressions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Coordinate expressions</span> </div> </a> <button aria-controls="toc-Coordinate_expressions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Coordinate expressions subsection</span> </button> <ul id="toc-Coordinate_expressions-sublist" class="vector-toc-list"> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Properties</span> </div> </a> <ul id="toc-Properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalizations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Generalizations</span> </div> </a> <button aria-controls="toc-Generalizations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Generalizations subsection</span> </button> <ul id="toc-Generalizations-sublist" class="vector-toc-list"> <li id="toc-The_Lie_derivative_of_a_spinor_field" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_Lie_derivative_of_a_spinor_field"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>The Lie derivative of a spinor field</span> </div> </a> <ul id="toc-The_Lie_derivative_of_a_spinor_field-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Covariant_Lie_derivative" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Covariant_Lie_derivative"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Covariant Lie derivative</span> </div> </a> <ul id="toc-Covariant_Lie_derivative-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Nijenhuis–Lie_derivative" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Nijenhuis–Lie_derivative"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Nijenhuis–Lie derivative</span> </div> </a> <ul id="toc-Nijenhuis–Lie_derivative-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Lie derivative</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 15 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-15" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">15 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A7%D8%B4%D8%AA%D9%82%D8%A7%D9%82_%D9%84%D9%8A" title="اشتقاق لي – Arabic" lang="ar" hreflang="ar" data-title="اشتقاق لي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Derivada_de_Lie" title="Derivada de Lie – Catalan" lang="ca" hreflang="ca" data-title="Derivada de Lie" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Lie-Ableitung" title="Lie-Ableitung – German" lang="de" hreflang="de" data-title="Lie-Ableitung" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Derivada_de_Lie" title="Derivada de Lie – Spanish" lang="es" hreflang="es" data-title="Derivada de Lie" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%B4%D8%AA%D9%82_%D9%84%DB%8C" title="مشتق لی – Persian" lang="fa" hreflang="fa" data-title="مشتق لی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/D%C3%A9riv%C3%A9e_de_Lie" title="Dérivée de Lie – French" lang="fr" hreflang="fr" data-title="Dérivée de Lie" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A6%AC_%EB%AF%B8%EB%B6%84" title="리 미분 – Korean" lang="ko" hreflang="ko" data-title="리 미분" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Derivata_di_Lie" title="Derivata di Lie – Italian" lang="it" hreflang="it" data-title="Derivata di Lie" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Lie-afgeleide" title="Lie-afgeleide – Dutch" lang="nl" hreflang="nl" data-title="Lie-afgeleide" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%AA%E3%83%BC%E5%BE%AE%E5%88%86" title="リー微分 – Japanese" lang="ja" hreflang="ja" data-title="リー微分" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Lie-derivasjon" title="Lie-derivasjon – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Lie-derivasjon" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Derivada_de_Lie" title="Derivada de Lie – Portuguese" lang="pt" hreflang="pt" data-title="Derivada de Lie" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%BE%D0%B4%D0%BD%D0%B0%D1%8F_%D0%9B%D0%B8" title="Производная Ли – Russian" lang="ru" hreflang="ru" data-title="Производная Ли" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D0%BE%D1%85%D1%96%D0%B4%D0%BD%D0%B0_%D0%9B%D1%96" title="Похідна Лі – Ukrainian" lang="uk" hreflang="uk" data-title="Похідна Лі" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%9D%8E%E5%AF%BC%E6%95%B0" title="李导数 – Chinese" lang="zh" hreflang="zh" data-title="李导数" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q579267#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Lie_derivative" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Lie_derivative" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Lie_derivative"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Lie_derivative&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Lie_derivative&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Lie_derivative"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Lie_derivative&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Lie_derivative&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Lie_derivative" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Lie_derivative" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Lie_derivative&amp;oldid=1282730053" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Lie_derivative&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Lie_derivative&amp;id=1282730053&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLie_derivative"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLie_derivative"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Lie_derivative&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Lie_derivative&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q579267" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">A derivative in Differential Geometry</div> <p> In <a href="/wiki/Differential_geometry" title="Differential geometry">differential geometry</a>, the <b>Lie derivative</b> (<span class="rt-commentedText nowrap"><span class="IPA nopopups noexcerpt" lang="en-fonipa"><a href="/wiki/Help:IPA/English" title="Help:IPA/English">/<span style="border-bottom:1px dotted"><span title="&#39;l&#39; in &#39;lie&#39;">l</span><span title="/iː/: &#39;ee&#39; in &#39;fleece&#39;">iː</span></span>/</a></span></span> <a href="/wiki/Help:Pronunciation_respelling_key" title="Help:Pronunciation respelling key"><i title="English pronunciation respelling"><span style="font-size:90%">LEE</span></i></a>), named after <a href="/wiki/Sophus_Lie" title="Sophus Lie">Sophus Lie</a> by <a href="/wiki/W%C5%82adys%C5%82aw_%C5%9Alebodzi%C5%84ski" title="Władysław Ślebodziński">Władysław Ślebodziński</a>,<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> evaluates the change of a <a href="/wiki/Tensor_field" title="Tensor field">tensor field</a> (including scalar functions, <a href="/wiki/Vector_field" title="Vector field">vector fields</a> and <a href="/wiki/One-form" class="mw-redirect" title="One-form">one-forms</a>), along the <a href="/wiki/Flow_(mathematics)" title="Flow (mathematics)">flow</a> defined by another vector field. This change is coordinate invariant and therefore the Lie derivative is defined on any <a href="/wiki/Differentiable_manifold" title="Differentiable manifold">differentiable manifold</a>. </p><p>Functions, tensor fields and forms can be differentiated with respect to a vector field. If <i>T</i> is a tensor field and <i>X</i> is a vector field, then the Lie derivative of <i>T</i> with respect to <i>X</i> is denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbac865bc1c7bdc0902303329669c353fb752611" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.872ex; height:2.509ex;" alt="{\displaystyle {\mathcal {L}}_{X}T}" /></span>. The <a href="/wiki/Differential_operator" title="Differential operator">differential operator</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T\mapsto {\mathcal {L}}_{X}T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo stretchy="false">&#x21a6;<!-- ↦ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T\mapsto {\mathcal {L}}_{X}T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85f582f11cb716c938d4e2bf7aa87c68373628f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.123ex; height:2.509ex;" alt="{\displaystyle T\mapsto {\mathcal {L}}_{X}T}" /></span> is a <a href="/wiki/Derivation_(differential_algebra)" title="Derivation (differential algebra)">derivation</a> of the algebra of <a href="/wiki/Tensor_fields" class="mw-redirect" title="Tensor fields">tensor fields</a> of the underlying manifold. </p><p>The Lie derivative commutes with <a href="/wiki/Tensor_contraction" title="Tensor contraction">contraction</a> and the <a href="/wiki/Exterior_derivative" title="Exterior derivative">exterior derivative</a> on <a href="/wiki/Differential_forms" class="mw-redirect" title="Differential forms">differential forms</a>. </p><p>Although there are many concepts of taking a derivative in differential geometry, they all agree when the expression being differentiated is a function or <a href="/wiki/Scalar_field" title="Scalar field">scalar field</a>. Thus in this case the word "Lie" is dropped, and one simply speaks of the derivative of a function. </p><p>The Lie derivative of a vector field <i>Y</i> with respect to another vector field <i>X</i> is known as the "<a href="/wiki/Lie_bracket_of_vector_fields" title="Lie bracket of vector fields">Lie bracket</a>" of <i>X</i> and <i>Y</i>, and is often denoted [<i>X</i>,<i>Y</i>] instead of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd1e6c305b263c2c55fdac7e57f69fbc6a505c4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.009ex; height:2.509ex;" alt="{\displaystyle {\mathcal {L}}_{X}Y}" /></span>. The space of vector fields forms a <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a> with respect to this Lie bracket. The Lie derivative constitutes an infinite-dimensional <a href="/wiki/Lie_algebra_representation" title="Lie algebra representation">Lie algebra representation</a> of this Lie algebra, due to the identity </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{[X,Y]}T={\mathcal {L}}_{X}{\mathcal {L}}_{Y}T-{\mathcal {L}}_{Y}{\mathcal {L}}_{X}T,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> </mrow> </msub> <mi>T</mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mi>T</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>T</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{[X,Y]}T={\mathcal {L}}_{X}{\mathcal {L}}_{Y}T-{\mathcal {L}}_{Y}{\mathcal {L}}_{X}T,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb7fbc05f582444cbb60942562fc44e80e68bc38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:30.009ex; height:3.009ex;" alt="{\displaystyle {\mathcal {L}}_{[X,Y]}T={\mathcal {L}}_{X}{\mathcal {L}}_{Y}T-{\mathcal {L}}_{Y}{\mathcal {L}}_{X}T,}" /></span></dd></dl> <table role="presentation" class="wikitable mw-collapsible mw-collapsed"> <tbody><tr> <td><strong>Proof of the identity</strong> </td></tr> <tr> <td>:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{[X,Y]}T=[[X,Y],T]=[X,Y]T-T[X,Y]=([X,YT]-Y[X,T])-([X,TY]-[X,T]Y)=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> </mrow> </msub> <mi>T</mi> <mo>=</mo> <mo stretchy="false">[</mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mi>T</mi> <mo>&#x2212;<!-- − --></mo> <mi>T</mi> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mi>T</mi> <mo stretchy="false">]</mo> <mo>&#x2212;<!-- − --></mo> <mi>Y</mi> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>T</mi> <mi>Y</mi> <mo stretchy="false">]</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{[X,Y]}T=[[X,Y],T]=[X,Y]T-T[X,Y]=([X,YT]-Y[X,T])-([X,TY]-[X,T]Y)=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93f15f63ff9a6ae4b3329dabf17c3bca5a39def2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:90.575ex; height:3.176ex;" alt="{\displaystyle {\mathcal {L}}_{[X,Y]}T=[[X,Y],T]=[X,Y]T-T[X,Y]=([X,YT]-Y[X,T])-([X,TY]-[X,T]Y)=}" /></span> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =XYT-YTX-Y[X,T]-XTY+TYX+[X,T]Y=(XYT-YTX)+(TYX-XTY)-(Y[X,T]-[X,T]Y)=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mi>X</mi> <mi>Y</mi> <mi>T</mi> <mo>&#x2212;<!-- − --></mo> <mi>Y</mi> <mi>T</mi> <mi>X</mi> <mo>&#x2212;<!-- − --></mo> <mi>Y</mi> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> <mo>&#x2212;<!-- − --></mo> <mi>X</mi> <mi>T</mi> <mi>Y</mi> <mo>+</mo> <mi>T</mi> <mi>Y</mi> <mi>X</mi> <mo>+</mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> <mi>Y</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mi>Y</mi> <mi>T</mi> <mo>&#x2212;<!-- − --></mo> <mi>Y</mi> <mi>T</mi> <mi>X</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>T</mi> <mi>Y</mi> <mi>X</mi> <mo>&#x2212;<!-- − --></mo> <mi>X</mi> <mi>T</mi> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =XYT-YTX-Y[X,T]-XTY+TYX+[X,T]Y=(XYT-YTX)+(TYX-XTY)-(Y[X,T]-[X,T]Y)=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b4a7e4f8cc4a5e74d4fdc3f04530b4066c554b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:115.822ex; height:2.843ex;" alt="{\displaystyle =XYT-YTX-Y[X,T]-XTY+TYX+[X,T]Y=(XYT-YTX)+(TYX-XTY)-(Y[X,T]-[X,T]Y)=}" /></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =(X[Y,T]+[T,Y]X)-(Y[X,T]-[X,T]Y)=(X[Y,T]-[Y,T]X)-(Y[X,T]-[X,T]Y)=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">[</mo> <mi>Y</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> <mo>+</mo> <mo stretchy="false">[</mo> <mi>T</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">[</mo> <mi>Y</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">[</mo> <mi>Y</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =(X[Y,T]+[T,Y]X)-(Y[X,T]-[X,T]Y)=(X[Y,T]-[Y,T]X)-(Y[X,T]-[X,T]Y)=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70a7840fec24ba81f29cd7f6b88c24801d77566a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:94.022ex; height:2.843ex;" alt="{\displaystyle =(X[Y,T]+[T,Y]X)-(Y[X,T]-[X,T]Y)=(X[Y,T]-[Y,T]X)-(Y[X,T]-[X,T]Y)=}" /></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =[X,[Y,T]]-[Y,[X,T]]={\mathcal {L}}_{X}{\mathcal {L}}_{Y}T-{\mathcal {L}}_{Y}{\mathcal {L}}_{X}T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mo stretchy="false">[</mo> <mi>Y</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> <mo stretchy="false">]</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">[</mo> <mi>Y</mi> <mo>,</mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>T</mi> <mo stretchy="false">]</mo> <mo stretchy="false">]</mo> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mi>T</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =[X,[Y,T]]-[Y,[X,T]]={\mathcal {L}}_{X}{\mathcal {L}}_{Y}T-{\mathcal {L}}_{Y}{\mathcal {L}}_{X}T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6e2db07a3e9cdee283ee0988c76d67311fd4ebe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.247ex; height:2.843ex;" alt="{\displaystyle =[X,[Y,T]]-[Y,[X,T]]={\mathcal {L}}_{X}{\mathcal {L}}_{Y}T-{\mathcal {L}}_{Y}{\mathcal {L}}_{X}T}" /></span></dd></dl> </td></tr></tbody></table> <p>valid for any vector fields <i>X</i> and <i>Y</i> and any tensor field <i>T</i>. </p><p>Considering vector fields as <a href="/wiki/Lie_algebra" title="Lie algebra">infinitesimal generators</a> of <a href="/wiki/Flow_(mathematics)" title="Flow (mathematics)">flows</a> (i.e. one-dimensional <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">groups</a> of <a href="/wiki/Diffeomorphism" title="Diffeomorphism">diffeomorphisms</a>) on <i>M</i>, the Lie derivative is the <a href="/wiki/Lie_algebra_representation#Infinitesimal_Lie_group_representations" title="Lie algebra representation">differential</a> of the representation of the <a href="/wiki/Diffeomorphism#Diffeomorphism_group" title="Diffeomorphism">diffeomorphism group</a> on tensor fields, analogous to Lie algebra representations as <a href="/wiki/Lie_algebra_representation#Infinitesimal_Lie_group_representations" title="Lie algebra representation">infinitesimal representations</a> associated to <a href="/wiki/Group_representation" title="Group representation">group representation</a> in <a href="/wiki/Lie_group" title="Lie group">Lie group</a> theory. </p><p>Generalisations exist for <a href="/wiki/Spinor" title="Spinor">spinor</a> fields, <a href="/wiki/Fibre_bundle" class="mw-redirect" title="Fibre bundle">fibre bundles</a> with a <a href="/wiki/Connection_(mathematics)" title="Connection (mathematics)">connection</a> and <a href="/wiki/Vector-valued_differential_forms" class="mw-redirect" title="Vector-valued differential forms">vector-valued differential forms</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Motivation">Motivation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lie_derivative&amp;action=edit&amp;section=1" title="Edit section: Motivation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A 'naïve' attempt to define the derivative of a <a href="/wiki/Tensor_field" title="Tensor field">tensor field</a> with respect to a <a href="/wiki/Vector_field" title="Vector field">vector field</a> would be to take the <a href="/wiki/Tensor#As_multidimensional_arrays" title="Tensor">components</a> of the tensor field and take the <a href="/wiki/Directional_derivative" title="Directional derivative">directional derivative</a> of each component with respect to the vector field. However, this definition is undesirable because it is not invariant under <a href="/wiki/Manifold#Transition_map" title="Manifold">changes of coordinate system</a>, e.g. the naive derivative expressed in <a href="/wiki/Polar_coordinate_system" title="Polar coordinate system">polar</a> or <a href="/wiki/Spherical_coordinate_system" title="Spherical coordinate system">spherical coordinates</a> differs from the naive derivative of the components in <a href="/wiki/Cartesian_coordinate_system" title="Cartesian coordinate system">Cartesian coordinates</a>. On an abstract <a href="/wiki/Manifold" title="Manifold">manifold</a> such a definition is meaningless and ill defined. </p><p>In <a href="/wiki/Differential_geometry" title="Differential geometry">differential geometry</a>, there are three main coordinate independent notions of differentiation of tensor fields: </p> <ol><li>Lie derivatives,</li> <li>derivatives with respect to <a href="/wiki/Connection_(differential_geometry)" class="mw-redirect" title="Connection (differential geometry)">connections</a>,</li> <li>the <a href="/wiki/Exterior_derivative" title="Exterior derivative">exterior derivative</a> of totally antisymmetric covariant tensors, i.e. <a href="/wiki/Differential_forms" class="mw-redirect" title="Differential forms">differential forms</a>.</li></ol> <p>The main difference between the Lie derivative and a derivative with respect to a connection is that the latter derivative of a tensor field with respect to a <a href="/wiki/Tangent_space" title="Tangent space">tangent vector</a> is well-defined even if it is not specified how to extend that tangent vector to a vector field. However, a connection requires the choice of an additional geometric structure (e.g. a <a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian metric</a> in the case of <a href="/wiki/Levi-Civita_connection" title="Levi-Civita connection">Levi-Civita connection</a>, or just an abstract <a href="/wiki/Connection_(differential_geometry)" class="mw-redirect" title="Connection (differential geometry)">connection</a>) on the manifold. In contrast, when taking a Lie derivative, no additional structure on the manifold is needed, but it is impossible to talk about the Lie derivative of a tensor field with respect to a single tangent vector, since the value of the Lie derivative of a tensor field with respect to a vector field <i>X</i> at a point <i>p</i> depends on the value of <i>X</i> in a neighborhood of <i>p</i>, not just at <i>p</i> itself. Finally, the exterior derivative of differential forms does not require any additional choices, but is only a well defined derivative of differential forms (including functions), thus excluding vectors and other tensors that are not purely differential forms. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Lie_transport.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Lie_transport.jpg/220px-Lie_transport.jpg" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Lie_transport.jpg/330px-Lie_transport.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/52/Lie_transport.jpg/440px-Lie_transport.jpg 2x" data-file-width="960" data-file-height="720" /></a><figcaption>Lie transport of a vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{y}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{y}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/922aa64dad09633a401e14be9b4389795835cd8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.177ex; height:2.343ex;" alt="{\displaystyle v_{y}}" /></span> from point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}" /></span> to point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}" /></span> along the vector flow field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle u}" /></span>.</figcaption></figure> <p>The idea of Lie derivatives is to use a vector field to define a notion of transport (Lie transport). A smooth vector field defines a smooth flow on the manifold, which allows vectors to be transported between two points on the same line of flow (This contrasts with connections, which allows transport between arbitrary points). Intuitively, a vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y(p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y(p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c40d2314e0aeef14f5a515b6c52967e21c2ccea4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.752ex; height:2.843ex;" alt="{\displaystyle Y(p)}" /></span> based at point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}" /></span> is transported by flowing its base point to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40e623e3163571a220ed60ecb31aa78c24104b85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.944ex; height:2.843ex;" alt="{\displaystyle p&#39;}" /></span>, while flowing its tip point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p+Y(p)\delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>+</mo> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mi>&#x3b4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p+Y(p)\delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d12d8129e9afe458a8d73c3f5d94173b5d94c0e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:9.9ex; height:2.843ex;" alt="{\displaystyle p+Y(p)\delta }" /></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p'+\delta p'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>p</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>&#x3b4;<!-- δ --></mi> <msup> <mi>p</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p'+\delta p'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fda7feada562f37db37efa71ba9fd363e6a91db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:7.687ex; height:2.843ex;" alt="{\displaystyle p&#39;+\delta p&#39;}" /></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lie_derivative&amp;action=edit&amp;section=2" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Lie derivative may be defined in several equivalent ways. To keep things simple, we begin by defining the Lie derivative acting on scalar functions and vector fields, before moving on to the definition for general tensors. </p> <div class="mw-heading mw-heading3"><h3 id="The_(Lie)_derivative_of_a_function"><span id="The_.28Lie.29_derivative_of_a_function"></span>The (Lie) derivative of a function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lie_derivative&amp;action=edit&amp;section=3" title="Edit section: The (Lie) derivative of a function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Defining the derivative of a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon M\to {\mathbb {R} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x3a;<!-- : --></mo> <mi>M</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon M\to {\mathbb {R} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cbb0d8546a7cd6363690801f86802e7950200d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.047ex; height:2.509ex;" alt="{\displaystyle f\colon M\to {\mathbb {R} }}" /></span> on a manifold is problematic because the <a href="/wiki/Difference_quotient" title="Difference quotient">difference quotient</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle (f(x+h)-f(x))/h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>h</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle (f(x+h)-f(x))/h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0458d45ffc8c1815ffe27f3956904f21080063d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.166ex; height:2.843ex;" alt="{\displaystyle \textstyle (f(x+h)-f(x))/h}" /></span> cannot be determined while the displacement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fada64bf0345b4e3b386457f437d96ee3560e6ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.509ex; height:2.343ex;" alt="{\displaystyle x+h}" /></span> is undefined. </p><p>The Lie derivative of a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon M\to {\mathbb {R} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x3a;<!-- : --></mo> <mi>M</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon M\to {\mathbb {R} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cbb0d8546a7cd6363690801f86802e7950200d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.047ex; height:2.509ex;" alt="{\displaystyle f\colon M\to {\mathbb {R} }}" /></span> with respect to a <a href="/wiki/Vector_field" title="Vector field">vector field</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}" /></span> at a point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\in M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\in M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35ad2c18a15749505c928763cd4fdb56f4982816" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:6.542ex; height:2.509ex;" alt="{\displaystyle p\in M}" /></span> is the function </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\mathcal {L}}_{X}f)(p)={d \over dt}{\biggr |}_{t=0}{\bigl (}f\circ \Phi _{X}^{t}{\bigr )}(p)=\lim _{t\to 0}{\frac {f{\bigl (}\Phi _{X}^{t}(p){\bigr )}-f{\bigl (}p{\bigr )}}{t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>f</mi> <mo>&#x2218;<!-- ∘ --></mo> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> <mi>t</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\mathcal {L}}_{X}f)(p)={d \over dt}{\biggr |}_{t=0}{\bigl (}f\circ \Phi _{X}^{t}{\bigr )}(p)=\lim _{t\to 0}{\frac {f{\bigl (}\Phi _{X}^{t}(p){\bigr )}-f{\bigl (}p{\bigr )}}{t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6775c5769c8ebb0cfabe410219464f45b3b1712e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:55.425ex; height:6.343ex;" alt="{\displaystyle ({\mathcal {L}}_{X}f)(p)={d \over dt}{\biggr |}_{t=0}{\bigl (}f\circ \Phi _{X}^{t}{\bigr )}(p)=\lim _{t\to 0}{\frac {f{\bigl (}\Phi _{X}^{t}(p){\bigr )}-f{\bigl (}p{\bigr )}}{t}}}" /></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi _{X}^{t}(p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi _{X}^{t}(p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8c0c60a0c03cda09bc41a69fb39c97736d1cbc1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.289ex; height:3.176ex;" alt="{\displaystyle \Phi _{X}^{t}(p)}" /></span> is the point to which the <a href="/wiki/Flow_(mathematics)" title="Flow (mathematics)">flow</a> defined by the vector field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}" /></span> maps the point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}" /></span> at time instant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3e6cc375ac6123d2342be53eba87b92fbbacf07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.486ex; height:2.009ex;" alt="{\displaystyle t.}" /></span> In the vicinity of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55ff4c2b109c38fe7038da6238ae875f4d37e643" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.747ex; height:2.509ex;" alt="{\displaystyle t=0,}" /></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi _{X}^{t}(p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi _{X}^{t}(p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8c0c60a0c03cda09bc41a69fb39c97736d1cbc1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.289ex; height:3.176ex;" alt="{\displaystyle \Phi _{X}^{t}(p)}" /></span> is the unique solution of the system </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dt}}{\biggr |}_{t}\Phi _{X}^{t}(p)=X{\bigl (}\Phi _{X}^{t}(p){\bigr )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d}{dt}}{\biggr |}_{t}\Phi _{X}^{t}(p)=X{\bigl (}\Phi _{X}^{t}(p){\bigr )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69b465d1eeed4af898c63fcc3e92fe3aceb65a39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:24.151ex; height:5.676ex;" alt="{\displaystyle {\frac {d}{dt}}{\biggr |}_{t}\Phi _{X}^{t}(p)=X{\bigl (}\Phi _{X}^{t}(p){\bigr )}}" /></span></dd></dl> <p>of first-order autonomous (i.e. time-independent) differential equations, with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi _{X}^{0}(p)=p.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>p</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi _{X}^{0}(p)=p.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abe65d58daaa6329f12d745119f3a3a5629f6eda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.204ex; height:3.176ex;" alt="{\displaystyle \Phi _{X}^{0}(p)=p.}" /></span> </p><p>Setting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}f=\nabla _{X}f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>f</mi> <mo>=</mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}f=\nabla _{X}f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c40287b88f88e3f4f06525ede5d3f644a07af617" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.46ex; height:2.509ex;" alt="{\displaystyle {\mathcal {L}}_{X}f=\nabla _{X}f}" /></span> identifies the Lie derivative of a function with the <a href="/wiki/Directional_derivative" title="Directional derivative">directional derivative</a>, which is also denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(f):={\mathcal {L}}_{X}f=\nabla _{X}f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>f</mi> <mo>=</mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(f):={\mathcal {L}}_{X}f=\nabla _{X}f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f3dca618247027f34561379d89d9f9b3a258783" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.273ex; height:2.843ex;" alt="{\displaystyle X(f):={\mathcal {L}}_{X}f=\nabla _{X}f}" /></span>. </p> <div class="mw-heading mw-heading3"><h3 id="The_Lie_derivative_of_a_vector_field">The Lie derivative of a vector field</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lie_derivative&amp;action=edit&amp;section=4" title="Edit section: The Lie derivative of a vector field"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <i>X</i> and <i>Y</i> are both vector fields, then the Lie derivative of <i>Y</i> with respect to <i>X</i> is also known as the <a href="/wiki/Lie_bracket_of_vector_fields" title="Lie bracket of vector fields">Lie bracket</a> of <i>X</i> and <i>Y</i>, and is sometimes denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [X,Y]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [X,Y]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94470b44d283fde62130212956058ca6b727da37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.081ex; height:2.843ex;" alt="{\displaystyle [X,Y]}" /></span>. There are several approaches to defining the Lie bracket, all of which are equivalent. We list two definitions here, corresponding to the two definitions of a vector field given above: </p> <div><ul><li>The Lie bracket of <i>X</i> and <i>Y</i> at <i>p</i> is given in local coordinates by the formula <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}Y(p)=[X,Y](p)=\partial _{X}Y(p)-\partial _{Y}X(p),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mi>X</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}Y(p)=[X,Y](p)=\partial _{X}Y(p)-\partial _{Y}X(p),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/140e7809c526b766503b93f26bd606c2344facd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.03ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}_{X}Y(p)=[X,Y](p)=\partial _{X}Y(p)-\partial _{Y}X(p),}" /></span></dd></dl> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bcceacf0fe653ba62ef9521ea1f81c744e137c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.867ex; height:2.509ex;" alt="{\displaystyle \partial _{X}}" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{Y}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{Y}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23846c6b9b36088e2b7c9d882673976986955c4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.721ex; height:2.509ex;" alt="{\displaystyle \partial _{Y}}" /></span> denote the operations of taking the <a href="/wiki/Directional_derivative" title="Directional derivative">directional derivatives</a> with respect to <i>X</i> and <i>Y</i>, respectively. Here we are treating a vector in <i>n</i>-dimensional space as an <i>n</i>-<a href="/wiki/Tuple" title="Tuple">tuple</a>, so that its directional derivative is simply the tuple consisting of the directional derivatives of its coordinates. Although the final expression <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{X}Y(p)-\partial _{Y}X(p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mi>X</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{X}Y(p)-\partial _{Y}X(p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/470a269e9270df00f9690b883b6ac1b5cc464d55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.139ex; height:2.843ex;" alt="{\displaystyle \partial _{X}Y(p)-\partial _{Y}X(p)}" /></span> appearing in this definition does not depend on the choice of local coordinates, the individual terms <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{X}Y(p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{X}Y(p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e709f18bce1614720e980a5f4b0d33b140b4fc2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.619ex; height:2.843ex;" alt="{\displaystyle \partial _{X}Y(p)}" /></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{Y}X(p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mi>X</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{Y}X(p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9505e2dd59f32d7f772116cbd626133132de3702" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.679ex; height:2.843ex;" alt="{\displaystyle \partial _{Y}X(p)}" /></span> do depend on the choice of coordinates.</li><li>If <i>X</i> and <i>Y</i> are vector fields on a manifold <i>M</i> according to the second definition, then the operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}Y=[X,Y]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>Y</mi> <mo>=</mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}Y=[X,Y]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af17ef64b6fa6093e1fb097a39df26d067c2cb5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.189ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}_{X}Y=[X,Y]}" /></span> defined by the formula <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [X,Y]:C^{\infty }(M)\rightarrow C^{\infty }(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mo>:</mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221e;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221e;<!-- ∞ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [X,Y]:C^{\infty }(M)\rightarrow C^{\infty }(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8e333bf7431d9a011606442491be04cbf178f55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.482ex; height:2.843ex;" alt="{\displaystyle [X,Y]:C^{\infty }(M)\rightarrow C^{\infty }(M)}" /></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [X,Y](f)=X(Y(f))-Y(X(f))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [X,Y](f)=X(Y(f))-Y(X(f))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50a880c76221522bb6235aad777a134b52e8d10e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.409ex; height:2.843ex;" alt="{\displaystyle [X,Y](f)=X(Y(f))-Y(X(f))}" /></span></dd></dl> is a derivation of order zero of the algebra of smooth functions of <i>M</i>, i.e. this operator is a vector field according to the second definition.</li></ul></div> <div class="mw-heading mw-heading3"><h3 id="The_Lie_derivative_of_a_tensor_field">The Lie derivative of a tensor field</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lie_derivative&amp;action=edit&amp;section=5" title="Edit section: The Lie derivative of a tensor field"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Definition_in_terms_of_flows">Definition in terms of flows</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lie_derivative&amp;action=edit&amp;section=6" title="Edit section: Definition in terms of flows"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Lie derivative is the speed with which the tensor field changes under the space deformation caused by the flow. </p><p>Formally, given a differentiable (time-independent) vector field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}" /></span> on a smooth manifold <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b466e90209f39c0c2caad1b11445824b82c2f536" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.089ex; height:2.509ex;" alt="{\displaystyle M,}" /></span> let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi _{X}^{t}:M\to M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mo>:</mo> <mi>M</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi _{X}^{t}:M\to M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36d079da77148faa638ea5253f6146e3c1ef0a46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.746ex; height:3.176ex;" alt="{\displaystyle \Phi _{X}^{t}:M\to M}" /></span> be the corresponding local flow. Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi _{X}^{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi _{X}^{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ba297624f3d66f0f9793b55090635eedbdf2447" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.31ex; height:3.176ex;" alt="{\displaystyle \Phi _{X}^{t}}" /></span> is a local diffeomorphism for each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}" /></span>, it gives rise to a <a href="/wiki/Pullback_(differential_geometry)#Pullback_by_diffeomorphisms" title="Pullback (differential geometry)">pullback of tensor fields</a>. For covariant tensors, this is just the multi-linear extension of the <a href="/wiki/Pullback_(differential_geometry)" title="Pullback (differential geometry)">pullback map</a> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\Phi _{X}^{t}\right)_{p}^{*}:T_{\Phi _{X}^{t}(p)}^{*}M\to T_{p}^{*}M,\qquad \left(\left(\Phi _{X}^{t}\right)_{p}^{*}\alpha \right)(Y)=\alpha {\bigl (}T_{p}\Phi _{X}^{t}(Y){\bigr )},\quad \alpha \in T_{\Phi _{X}^{t}(p)}^{*}M,Y\in T_{p}M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo>(</mo> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>:</mo> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>M</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>M</mi> <mo>,</mo> <mspace width="2em"></mspace> <mrow> <mo>(</mo> <mrow> <msubsup> <mrow> <mo>(</mo> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>&#x3b1;<!-- α --></mi> </mrow> <mo>)</mo> </mrow> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x3b1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mo>,</mo> <mspace width="1em"></mspace> <mi>&#x3b1;<!-- α --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msubsup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>M</mi> <mo>,</mo> <mi>Y</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(\Phi _{X}^{t}\right)_{p}^{*}:T_{\Phi _{X}^{t}(p)}^{*}M\to T_{p}^{*}M,\qquad \left(\left(\Phi _{X}^{t}\right)_{p}^{*}\alpha \right)(Y)=\alpha {\bigl (}T_{p}\Phi _{X}^{t}(Y){\bigr )},\quad \alpha \in T_{\Phi _{X}^{t}(p)}^{*}M,Y\in T_{p}M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/741467428b7cabed33ab27fdd0c4cf32da1b5a38" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:89.147ex; height:5.009ex;" alt="{\displaystyle \left(\Phi _{X}^{t}\right)_{p}^{*}:T_{\Phi _{X}^{t}(p)}^{*}M\to T_{p}^{*}M,\qquad \left(\left(\Phi _{X}^{t}\right)_{p}^{*}\alpha \right)(Y)=\alpha {\bigl (}T_{p}\Phi _{X}^{t}(Y){\bigr )},\quad \alpha \in T_{\Phi _{X}^{t}(p)}^{*}M,Y\in T_{p}M}" /></span> For contravariant tensors, one extends the inverse </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(T_{p}\Phi _{X}^{t}\right)^{-1}:T_{\Phi _{X}^{t}(p)}M\to T_{p}M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>:</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mi>M</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(T_{p}\Phi _{X}^{t}\right)^{-1}:T_{\Phi _{X}^{t}(p)}M\to T_{p}M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83426ec1e6c72c713e392ba88e4317ef07c31c5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:29.226ex; height:4.176ex;" alt="{\displaystyle \left(T_{p}\Phi _{X}^{t}\right)^{-1}:T_{\Phi _{X}^{t}(p)}M\to T_{p}M}" /></span></dd></dl> <p>of the <a href="/wiki/Pushforward_(differential)" title="Pushforward (differential)">differential</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{p}\Phi _{X}^{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{p}\Phi _{X}^{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1307f3523a2c0afdda7b3d7158a099eb586d6362" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.727ex; height:3.176ex;" alt="{\displaystyle T_{p}\Phi _{X}^{t}}" /></span>. For every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ea3ad87830a1055c7b85c04cf940cfd3b847ae6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.486ex; height:2.343ex;" alt="{\displaystyle t,}" /></span> there is, consequently, a tensor field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Phi _{X}^{t})^{*}T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Phi _{X}^{t})^{*}T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d7e4fd826290bb629e5eb1d2f77179288b0b292" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.81ex; height:3.176ex;" alt="{\displaystyle (\Phi _{X}^{t})^{*}T}" /></span> of the same type as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}" /></span>'s. </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}" /></span> is an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (r,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>r</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (r,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16d4f36025a8da43ffa1482669e94412ce4f54c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.054ex; height:2.843ex;" alt="{\displaystyle (r,0)}" /></span>- or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a03050a690de6dbf79a1be670dfad6f74a2aa92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.096ex; height:2.843ex;" alt="{\displaystyle (0,s)}" /></span>-type tensor field, then the Lie derivative <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cal {L}}_{X}T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cal {L}}_{X}T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29a2685b5cf51623fa65dbd52926ab8d1cb691b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.872ex; height:2.509ex;" alt="{\displaystyle {\cal {L}}_{X}T}" /></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}" /></span> along a vector field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}" /></span> is defined at point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\in M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\in M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35ad2c18a15749505c928763cd4fdb56f4982816" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:6.542ex; height:2.509ex;" alt="{\displaystyle p\in M}" /></span> to be </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cal {L}}_{X}T(p)={\frac {d}{dt}}{\biggl |}_{t=0}\left({\bigl (}\Phi _{X}^{t}{\bigr )}^{*}T\right)_{p}={\frac {d}{dt}}{\biggl |}_{t=0}{\bigl (}\Phi _{X}^{t}{\bigr )}_{p}^{*}T_{\Phi _{X}^{t}(p)}=\lim _{t\to 0}{\frac {{\bigl (}\Phi _{X}^{t}{\bigr )}^{*}T_{\Phi _{X}^{t}(p)}-T_{p}}{t}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>T</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> <msub> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>T</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mrow> <mi>t</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cal {L}}_{X}T(p)={\frac {d}{dt}}{\biggl |}_{t=0}\left({\bigl (}\Phi _{X}^{t}{\bigr )}^{*}T\right)_{p}={\frac {d}{dt}}{\biggl |}_{t=0}{\bigl (}\Phi _{X}^{t}{\bigr )}_{p}^{*}T_{\Phi _{X}^{t}(p)}=\lim _{t\to 0}{\frac {{\bigl (}\Phi _{X}^{t}{\bigr )}^{*}T_{\Phi _{X}^{t}(p)}-T_{p}}{t}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3df0b43f0fa793ccc8610142809fa245c39e4c34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:77.114ex; height:7.009ex;" alt="{\displaystyle {\cal {L}}_{X}T(p)={\frac {d}{dt}}{\biggl |}_{t=0}\left({\bigl (}\Phi _{X}^{t}{\bigr )}^{*}T\right)_{p}={\frac {d}{dt}}{\biggl |}_{t=0}{\bigl (}\Phi _{X}^{t}{\bigr )}_{p}^{*}T_{\Phi _{X}^{t}(p)}=\lim _{t\to 0}{\frac {{\bigl (}\Phi _{X}^{t}{\bigr )}^{*}T_{\Phi _{X}^{t}(p)}-T_{p}}{t}}.}" /></span></dd></dl> <p>The resulting tensor field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cal {L}}_{X}T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cal {L}}_{X}T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29a2685b5cf51623fa65dbd52926ab8d1cb691b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.872ex; height:2.509ex;" alt="{\displaystyle {\cal {L}}_{X}T}" /></span> is of the same type as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}" /></span>'s. </p><p><br /> </p><p>More generally, for every smooth 1-parameter family <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi _{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi _{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6573886a4aa9f86bb43953426774b27682cf3e12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.504ex; height:2.509ex;" alt="{\displaystyle \Phi _{t}}" /></span> of diffeomorphisms that integrate a vector field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}" /></span> in the sense that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {d \over dt}{\biggr |}_{t=0}\Phi _{t}=X\circ \Phi _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> <msub> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mi>X</mi> <mo>&#x2218;<!-- ∘ --></mo> <msub> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {d \over dt}{\biggr |}_{t=0}\Phi _{t}=X\circ \Phi _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1956413782a365ae116295615abbb2e0274dc3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:18.974ex; height:5.676ex;" alt="{\displaystyle {d \over dt}{\biggr |}_{t=0}\Phi _{t}=X\circ \Phi _{0}}" /></span>, one has<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}T={\bigl (}\Phi _{0}^{-1}{\bigr )}^{*}{d \over dt}{\biggr |}_{t=0}\Phi _{t}^{*}T=-{d \over dt}{\biggr |}_{t=0}{\bigl (}\Phi _{t}^{-1}{\bigr )}^{*}\Phi _{0}^{*}T\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>T</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>T</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <msubsup> <mi mathvariant="normal">&#x3a6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>T</mi> <mspace width="thinmathspace"></mspace> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}T={\bigl (}\Phi _{0}^{-1}{\bigr )}^{*}{d \over dt}{\biggr |}_{t=0}\Phi _{t}^{*}T=-{d \over dt}{\biggr |}_{t=0}{\bigl (}\Phi _{t}^{-1}{\bigr )}^{*}\Phi _{0}^{*}T\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4f4199ab5d11bcc91c4044181f8ade426537f3e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:49.968ex; height:5.676ex;" alt="{\displaystyle {\mathcal {L}}_{X}T={\bigl (}\Phi _{0}^{-1}{\bigr )}^{*}{d \over dt}{\biggr |}_{t=0}\Phi _{t}^{*}T=-{d \over dt}{\biggr |}_{t=0}{\bigl (}\Phi _{t}^{-1}{\bigr )}^{*}\Phi _{0}^{*}T\,.}" /></span> </p> <div class="mw-heading mw-heading4"><h4 id="Algebraic_definition">Algebraic definition</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lie_derivative&amp;action=edit&amp;section=7" title="Edit section: Algebraic definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>We now give an algebraic definition. The algebraic definition for the Lie derivative of a tensor field follows from the following four axioms: </p> <dl><dd><b>Axiom 1.</b> The Lie derivative of a function is equal to the directional derivative of the function. This fact is often expressed by the formula <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{Y}f=Y(f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mi>f</mi> <mo>=</mo> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{Y}f=Y(f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d18d6c35c449f57742b092388415c5d3a88eda70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.328ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}_{Y}f=Y(f)}" /></span></dd></dl></dd></dl> <dl><dd><b>Axiom 2.</b> The Lie derivative obeys the following version of Leibniz's rule: For any tensor fields <i>S</i> and <i>T</i>, we have <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{Y}(S\otimes T)=({\mathcal {L}}_{Y}S)\otimes T+S\otimes ({\mathcal {L}}_{Y}T).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>S</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>T</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mi>S</mi> <mo stretchy="false">)</mo> <mo>&#x2297;<!-- ⊗ --></mo> <mi>T</mi> <mo>+</mo> <mi>S</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mi>T</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{Y}(S\otimes T)=({\mathcal {L}}_{Y}S)\otimes T+S\otimes ({\mathcal {L}}_{Y}T).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4e6a2f674521d5ec25c1a92edbb037e97f85aae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.211ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}_{Y}(S\otimes T)=({\mathcal {L}}_{Y}S)\otimes T+S\otimes ({\mathcal {L}}_{Y}T).}" /></span></dd></dl></dd></dl> <dl><dd><b>Axiom 3.</b> The Lie derivative obeys the Leibniz rule with respect to <a href="/wiki/Tensor_contraction" title="Tensor contraction">contraction</a>: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}(T(Y_{1},\ldots ,Y_{n}))=({\mathcal {L}}_{X}T)(Y_{1},\ldots ,Y_{n})+T(({\mathcal {L}}_{X}Y_{1}),\ldots ,Y_{n})+\cdots +T(Y_{1},\ldots ,({\mathcal {L}}_{X}Y_{n}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">(</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>T</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mi>T</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mo>&#x22ef;<!-- ⋯ --></mo> <mo>+</mo> <mi>T</mi> <mo stretchy="false">(</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}(T(Y_{1},\ldots ,Y_{n}))=({\mathcal {L}}_{X}T)(Y_{1},\ldots ,Y_{n})+T(({\mathcal {L}}_{X}Y_{1}),\ldots ,Y_{n})+\cdots +T(Y_{1},\ldots ,({\mathcal {L}}_{X}Y_{n}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3999d4565a3142e3ab51307c096b357ea8faca61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:88.915ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}_{X}(T(Y_{1},\ldots ,Y_{n}))=({\mathcal {L}}_{X}T)(Y_{1},\ldots ,Y_{n})+T(({\mathcal {L}}_{X}Y_{1}),\ldots ,Y_{n})+\cdots +T(Y_{1},\ldots ,({\mathcal {L}}_{X}Y_{n}))}" /></span></dd></dl></dd></dl> <dl><dd><b>Axiom 4.</b> The Lie derivative commutes with exterior derivative on functions: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [{\mathcal {L}}_{X},d]=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>,</mo> <mi>d</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [{\mathcal {L}}_{X},d]=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f679d41dd5abe3834ff93d87e8dbe5f43baae41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.04ex; height:2.843ex;" alt="{\displaystyle [{\mathcal {L}}_{X},d]=0}" /></span></dd></dl></dd></dl> <p>If these axioms hold, then applying the Lie derivative <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce4db2d17b365a7321dbfdb8f8bc512dd911ea54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.236ex; height:2.509ex;" alt="{\displaystyle {\mathcal {L}}_{X}}" /></span> to the relation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle df(Y)=Y(f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle df(Y)=Y(f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c163235806ae6d6f924bbf31544b9f9d6a902b7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.037ex; height:2.843ex;" alt="{\displaystyle df(Y)=Y(f)}" /></span> shows that </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}Y(f)=X(Y(f))-Y(X(f)),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}Y(f)=X(Y(f))-Y(X(f)),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c756d58c4261aeffda22fc61d6534c1baf5578da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.984ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}_{X}Y(f)=X(Y(f))-Y(X(f)),}" /></span></dd></dl></dd></dl> <p>which is one of the standard definitions for the <a href="/wiki/Lie_bracket_of_vector_fields" title="Lie bracket of vector fields">Lie bracket</a>. </p><p>The Lie derivative acting on a differential form is the <a href="/wiki/Commutator#Ring_theory" title="Commutator">anticommutator</a> of the <a href="/wiki/Interior_product" title="Interior product">interior product</a> with the exterior derivative. So if α is a differential form, </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{Y}\alpha =i_{Y}d\alpha +di_{Y}\alpha .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mi>&#x3b1;<!-- α --></mi> <mo>=</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mi>d</mi> <mi>&#x3b1;<!-- α --></mi> <mo>+</mo> <mi>d</mi> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mi>&#x3b1;<!-- α --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{Y}\alpha =i_{Y}d\alpha +di_{Y}\alpha .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03bdb96a77ffdce3bc8a382bab4dda6bc57f7f94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.147ex; height:2.509ex;" alt="{\displaystyle {\mathcal {L}}_{Y}\alpha =i_{Y}d\alpha +di_{Y}\alpha .}" /></span></dd></dl></dd></dl> <p>This follows easily by checking that the expression commutes with exterior derivative, is a derivation (being an anticommutator of graded derivations) and does the right thing on functions. This is <b>Cartan's magic formula</b>. See <a href="/wiki/Interior_product" title="Interior product">interior product</a> for details. </p><p>Explicitly, let <i>T</i> be a tensor field of type <span class="nowrap">(<i>p</i>, <i>q</i>)</span>. Consider <i>T</i> to be a differentiable <a href="/wiki/Multilinear_map" title="Multilinear map">multilinear map</a> of <a href="/wiki/Smooth_function" class="mw-redirect" title="Smooth function">smooth</a> <a href="/wiki/Section_(fiber_bundle)" title="Section (fiber bundle)">sections</a> <i>α</i><sup>1</sup>, <i>α</i><sup>2</sup>, ..., <i>α</i><sup><i>p</i></sup> of the cotangent bundle <i>T</i><sup>∗</sup><i>M</i> and of sections <i>X</i><sub>1</sub>, <i>X</i><sub>2</sub>, ..., <i>X</i><sub>q</sub> of the <a href="/wiki/Tangent_bundle" title="Tangent bundle">tangent bundle</a> <i>TM</i>, written <i>T</i>(<i>α</i><sup>1</sup>, <i>α</i><sup>2</sup>, ..., <i>X</i><sub>1</sub>, <i>X</i><sub>2</sub>, ...) into <b>R</b>. Define the Lie derivative of <i>T</i> along <i>Y</i> by the formula </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\mathcal {L}}_{Y}T)(\alpha _{1},\alpha _{2},\ldots ,X_{1},X_{2},\ldots )=Y(T(\alpha _{1},\alpha _{2},\ldots ,X_{1},X_{2},\ldots ))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mi>T</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>&#x3b1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x3b1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>Y</mi> <mo stretchy="false">(</mo> <mi>T</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x3b1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x3b1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\mathcal {L}}_{Y}T)(\alpha _{1},\alpha _{2},\ldots ,X_{1},X_{2},\ldots )=Y(T(\alpha _{1},\alpha _{2},\ldots ,X_{1},X_{2},\ldots ))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/434146a8e14770567a1cb3d0f54d3029506120ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:62.559ex; height:2.843ex;" alt="{\displaystyle ({\mathcal {L}}_{Y}T)(\alpha _{1},\alpha _{2},\ldots ,X_{1},X_{2},\ldots )=Y(T(\alpha _{1},\alpha _{2},\ldots ,X_{1},X_{2},\ldots ))}" /></span> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -T({\mathcal {L}}_{Y}\alpha _{1},\alpha _{2},\ldots ,X_{1},X_{2},\ldots )-T(\alpha _{1},{\mathcal {L}}_{Y}\alpha _{2},\ldots ,X_{1},X_{2},\ldots )-\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>T</mi> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <msub> <mi>&#x3b1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x3b1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>T</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x3b1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <msub> <mi>&#x3b1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -T({\mathcal {L}}_{Y}\alpha _{1},\alpha _{2},\ldots ,X_{1},X_{2},\ldots )-T(\alpha _{1},{\mathcal {L}}_{Y}\alpha _{2},\ldots ,X_{1},X_{2},\ldots )-\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e698d9675d0d7c36c7c029edb23e11048e14d35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:67.371ex; height:2.843ex;" alt="{\displaystyle -T({\mathcal {L}}_{Y}\alpha _{1},\alpha _{2},\ldots ,X_{1},X_{2},\ldots )-T(\alpha _{1},{\mathcal {L}}_{Y}\alpha _{2},\ldots ,X_{1},X_{2},\ldots )-\ldots }" /></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -T(\alpha _{1},\alpha _{2},\ldots ,{\mathcal {L}}_{Y}X_{1},X_{2},\ldots )-T(\alpha _{1},\alpha _{2},\ldots ,X_{1},{\mathcal {L}}_{Y}X_{2},\ldots )-\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>T</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x3b1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x3b1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>T</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x3b1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x3b1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -T(\alpha _{1},\alpha _{2},\ldots ,{\mathcal {L}}_{Y}X_{1},X_{2},\ldots )-T(\alpha _{1},\alpha _{2},\ldots ,X_{1},{\mathcal {L}}_{Y}X_{2},\ldots )-\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffe3f51b82ccd09f44aaf1e7c330869255632f9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:67.371ex; height:2.843ex;" alt="{\displaystyle -T(\alpha _{1},\alpha _{2},\ldots ,{\mathcal {L}}_{Y}X_{1},X_{2},\ldots )-T(\alpha _{1},\alpha _{2},\ldots ,X_{1},{\mathcal {L}}_{Y}X_{2},\ldots )-\ldots }" /></span></dd></dl></dd></dl> <p>The analytic and algebraic definitions can be proven to be equivalent using the properties of the pushforward and the <a href="/wiki/General_Leibniz_rule" title="General Leibniz rule">Leibniz rule</a> for differentiation. The Lie derivative commutes with the contraction. </p> <div class="mw-heading mw-heading3"><h3 id="The_Lie_derivative_of_a_differential_form">The Lie derivative of a differential form</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lie_derivative&amp;action=edit&amp;section=8" title="Edit section: The Lie derivative of a differential form"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Interior_product" title="Interior product">Interior product</a></div> <p>A particularly important class of tensor fields is the class of <a href="/wiki/Differential_forms" class="mw-redirect" title="Differential forms">differential forms</a>. The restriction of the Lie derivative to the space of differential forms is closely related to the <a href="/wiki/Exterior_derivative" title="Exterior derivative">exterior derivative</a>. Both the Lie derivative and the exterior derivative attempt to capture the idea of a derivative in different ways. These differences can be bridged by introducing the idea of an <a href="/wiki/Interior_product" title="Interior product">interior product</a>, after which the relationships falls out as an identity known as <b>Cartan's formula</b>. Cartan's formula can also be used as a definition of the Lie derivative on the space of differential forms. </p><p>Let <i>M</i> be a manifold and <i>X</i> a vector field on <i>M</i>. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega \in \Lambda ^{k}(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3c9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi mathvariant="normal">&#x39b;<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega \in \Lambda ^{k}(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfbe34d4b68ff2ad319be0f8344abbb880f25831" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.24ex; height:3.176ex;" alt="{\displaystyle \omega \in \Lambda ^{k}(M)}" /></span> be a <i>k</i>-<a href="/wiki/Differential_form" title="Differential form">form</a>, i.e., for each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\in M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\in M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35ad2c18a15749505c928763cd4fdb56f4982816" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:6.542ex; height:2.509ex;" alt="{\displaystyle p\in M}" /></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega (p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega (p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02c9e903e57a81e8964561485fe7ed2e14be3443" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.425ex; height:2.843ex;" alt="{\displaystyle \omega (p)}" /></span> is an <a href="/wiki/Alternating_form" class="mw-redirect" title="Alternating form">alternating</a> <a href="/wiki/Multilinear_map" title="Multilinear map">multilinear map</a> from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (T_{p}M)^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mi>M</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (T_{p}M)^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45dd64c1029d838f75f5e70e54035f10f214843c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.757ex; height:3.343ex;" alt="{\displaystyle (T_{p}M)^{k}}" /></span> to the real numbers. The <a href="/wiki/Interior_product" title="Interior product">interior product</a> of <i>X</i> and <i>ω</i> is the <span class="nowrap">(<i>k</i> &#8722; 1)</span>-form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i_{X}\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x3c9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i_{X}\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6f22c7619db13f7850c478e3d2b268bd0257863" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.881ex; height:2.509ex;" alt="{\displaystyle i_{X}\omega }" /></span> defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (i_{X}\omega )(X_{1},\ldots ,X_{k-1})=\omega (X,X_{1},\ldots ,X_{k-1})\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (i_{X}\omega )(X_{1},\ldots ,X_{k-1})=\omega (X,X_{1},\ldots ,X_{k-1})\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/142390ecdb5d65a43a7efbd82fdcd82ac8029bd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.794ex; height:2.843ex;" alt="{\displaystyle (i_{X}\omega )(X_{1},\ldots ,X_{k-1})=\omega (X,X_{1},\ldots ,X_{k-1})\,}" /></span></dd></dl> <p>The differential form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i_{X}\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x3c9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i_{X}\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6f22c7619db13f7850c478e3d2b268bd0257863" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.881ex; height:2.509ex;" alt="{\displaystyle i_{X}\omega }" /></span> is also called the <b>contraction</b> of <i>ω</i> with <i>X</i>, and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i_{X}:\Lambda ^{k}(M)\rightarrow \Lambda ^{k-1}(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>:</mo> <msup> <mi mathvariant="normal">&#x39b;<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi mathvariant="normal">&#x39b;<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i_{X}:\Lambda ^{k}(M)\rightarrow \Lambda ^{k-1}(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61a0b8a2e5b27fdc0b498eabd3b343d3fe809d05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.993ex; height:3.176ex;" alt="{\displaystyle i_{X}:\Lambda ^{k}(M)\rightarrow \Lambda ^{k-1}(M)}" /></span></dd></dl> <p>is a <a href="/wiki/Exterior_algebra" title="Exterior algebra"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \wedge }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2227;<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \wedge }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1caa4004cb216ef2930bb12fe805a76870caed94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \wedge }" /></span></a>-<a href="/wiki/Derivation_(abstract_algebra)" class="mw-redirect" title="Derivation (abstract algebra)">antiderivation</a> where <a href="/wiki/Exterior_algebra" title="Exterior algebra"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \wedge }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2227;<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \wedge }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1caa4004cb216ef2930bb12fe805a76870caed94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \wedge }" /></span></a> is the <a href="/wiki/Exterior_algebra" title="Exterior algebra">wedge product on differential forms</a>. That is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i_{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i_{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb2f1b6a552361bf8b27aaa44d209c55fa807585" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.435ex; height:2.509ex;" alt="{\displaystyle i_{X}}" /></span> is <b>R</b>-linear, and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i_{X}(\omega \wedge \eta )=(i_{X}\omega )\wedge \eta +(-1)^{k}\omega \wedge (i_{X}\eta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x3c9;<!-- ω --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>&#x3b7;<!-- η --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>&#x3b7;<!-- η --></mi> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mi>&#x3c9;<!-- ω --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x3b7;<!-- η --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i_{X}(\omega \wedge \eta )=(i_{X}\omega )\wedge \eta +(-1)^{k}\omega \wedge (i_{X}\eta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce5eeaaaf15cb5a42fb29d8ecc5abbed28cd5a37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.133ex; height:3.176ex;" alt="{\displaystyle i_{X}(\omega \wedge \eta )=(i_{X}\omega )\wedge \eta +(-1)^{k}\omega \wedge (i_{X}\eta )}" /></span></dd></dl> <p>for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega \in \Lambda ^{k}(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3c9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi mathvariant="normal">&#x39b;<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega \in \Lambda ^{k}(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfbe34d4b68ff2ad319be0f8344abbb880f25831" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.24ex; height:3.176ex;" alt="{\displaystyle \omega \in \Lambda ^{k}(M)}" /></span> and η another differential form. Also, for a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in \Lambda ^{0}(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi mathvariant="normal">&#x39b;<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in \Lambda ^{0}(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddaa86bb47a89962f320c194c81df024f236e572" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.038ex; height:3.176ex;" alt="{\displaystyle f\in \Lambda ^{0}(M)}" /></span>, that is, a real- or complex-valued function on <i>M</i>, one has </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i_{fX}\omega =f\,i_{X}\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <mi>X</mi> </mrow> </msub> <mi>&#x3c9;<!-- ω --></mi> <mo>=</mo> <mi>f</mi> <mspace width="thinmathspace"></mspace> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x3c9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i_{fX}\omega =f\,i_{X}\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d866e72b70688b206f624873e10491b261e8e0df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.429ex; height:2.843ex;" alt="{\displaystyle i_{fX}\omega =f\,i_{X}\omega }" /></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle fX}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle fX}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de626df67ebb41c1d53204dd862872aafd0aed20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.259ex; height:2.509ex;" alt="{\displaystyle fX}" /></span> denotes the product of <i>f</i> and <i>X</i>. The relationship between <a href="/wiki/Exterior_derivative" title="Exterior derivative">exterior derivatives</a> and Lie derivatives can then be summarized as follows. First, since the Lie derivative of a function <i>f</i> with respect to a vector field <i>X</i> is the same as the directional derivative <i>X</i>(<i>f</i>), it is also the same as the <a href="/wiki/Differential_form#Operations_on_forms" title="Differential form">contraction</a> of the exterior derivative of <i>f</i> with <i>X</i>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}f=i_{X}\,df}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>f</mi> <mo>=</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mi>d</mi> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}f=i_{X}\,df}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d80effa315e9da32b081a2db7029a16b3c1e2e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.929ex; height:2.509ex;" alt="{\displaystyle {\mathcal {L}}_{X}f=i_{X}\,df}" /></span></dd></dl> <p>For a general differential form, the Lie derivative is likewise a contraction, taking into account the variation in <i>X</i>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}\omega =i_{X}d\omega +d(i_{X}\omega ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x3c9;<!-- ω --></mi> <mo>=</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>d</mi> <mi>&#x3c9;<!-- ω --></mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}\omega =i_{X}d\omega +d(i_{X}\omega ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b02d952c6ef85f37f1121ea1463a33282cc7078c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.27ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}_{X}\omega =i_{X}d\omega +d(i_{X}\omega ).}" /></span></dd></dl> <p>This identity is known variously as <b>Cartan formula</b>, <b>Cartan homotopy formula</b> or <b>Cartan's magic formula</b>. See <a href="/wiki/Interior_product" title="Interior product">interior product</a> for details. The Cartan formula can be used as a definition of the Lie derivative of a differential form. Cartan's formula shows in particular that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d{\mathcal {L}}_{X}\omega ={\mathcal {L}}_{X}(d\omega ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x3c9;<!-- ω --></mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>d</mi> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d{\mathcal {L}}_{X}\omega ={\mathcal {L}}_{X}(d\omega ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94384b5595f260fe948266b8f45ad4aa579b4ebd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.35ex; height:2.843ex;" alt="{\displaystyle d{\mathcal {L}}_{X}\omega ={\mathcal {L}}_{X}(d\omega ).}" /></span></dd></dl> <p>The Lie derivative also satisfies the relation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{fX}\omega =f{\mathcal {L}}_{X}\omega +df\wedge i_{X}\omega .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <mi>X</mi> </mrow> </msub> <mi>&#x3c9;<!-- ω --></mi> <mo>=</mo> <mi>f</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x3c9;<!-- ω --></mi> <mo>+</mo> <mi>d</mi> <mi>f</mi> <mo>&#x2227;<!-- ∧ --></mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x3c9;<!-- ω --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{fX}\omega =f{\mathcal {L}}_{X}\omega +df\wedge i_{X}\omega .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b78c0f84bcc6a3d128e87e8a60d1994ee602455e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.09ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}_{fX}\omega =f{\mathcal {L}}_{X}\omega +df\wedge i_{X}\omega .}" /></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Coordinate_expressions">Coordinate expressions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lie_derivative&amp;action=edit&amp;section=9" title="Edit section: Coordinate expressions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951" /><div role="note" class="hatnote navigation-not-searchable">Note: the <a href="/wiki/Einstein_summation_convention" class="mw-redirect" title="Einstein summation convention">Einstein summation convention</a> of summing on repeated indices is used below.</div> <p>In local <a href="/wiki/Coordinate" class="mw-redirect" title="Coordinate">coordinate</a> notation, for a type <span class="nowrap">(<i>r</i>, <i>s</i>)</span> tensor field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}" /></span>, the Lie derivative along <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}" /></span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}({\mathcal {L}}_{X}T)^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s}}={}&amp;X^{c}(\partial _{c}T^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s}})\\&amp;{}-{}(\partial _{c}X^{a_{1}})T^{ca_{2}\ldots a_{r}}{}_{b_{1}\ldots b_{s}}-\ldots -(\partial _{c}X^{a_{r}})T^{a_{1}\ldots a_{r-1}c}{}_{b_{1}\ldots b_{s}}\\&amp;+(\partial _{b_{1}}X^{c})T^{a_{1}\ldots a_{r}}{}_{cb_{2}\ldots b_{s}}+\ldots +(\partial _{b_{s}}X^{c})T^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s-1}c}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>T</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo stretchy="false">)</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <mo stretchy="false">)</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mi>c</mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo stretchy="false">)</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <mo>+</mo> <mo>&#x2026;<!-- … --></mo> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo stretchy="false">)</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mi>c</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}({\mathcal {L}}_{X}T)^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s}}={}&amp;X^{c}(\partial _{c}T^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s}})\\&amp;{}-{}(\partial _{c}X^{a_{1}})T^{ca_{2}\ldots a_{r}}{}_{b_{1}\ldots b_{s}}-\ldots -(\partial _{c}X^{a_{r}})T^{a_{1}\ldots a_{r-1}c}{}_{b_{1}\ldots b_{s}}\\&amp;+(\partial _{b_{1}}X^{c})T^{a_{1}\ldots a_{r}}{}_{cb_{2}\ldots b_{s}}+\ldots +(\partial _{b_{s}}X^{c})T^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s-1}c}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aff5c795f64ec652febd7e1f5b54f536a2b7a122" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:76.172ex; height:9.509ex;" alt="{\displaystyle {\begin{aligned}({\mathcal {L}}_{X}T)^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s}}={}&amp;X^{c}(\partial _{c}T^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s}})\\&amp;{}-{}(\partial _{c}X^{a_{1}})T^{ca_{2}\ldots a_{r}}{}_{b_{1}\ldots b_{s}}-\ldots -(\partial _{c}X^{a_{r}})T^{a_{1}\ldots a_{r-1}c}{}_{b_{1}\ldots b_{s}}\\&amp;+(\partial _{b_{1}}X^{c})T^{a_{1}\ldots a_{r}}{}_{cb_{2}\ldots b_{s}}+\ldots +(\partial _{b_{s}}X^{c})T^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s-1}c}\end{aligned}}}" /></span></dd></dl> <p>here, the notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{a}={\frac {\partial }{\partial x^{a}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{a}={\frac {\partial }{\partial x^{a}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d5df909f767214003f57f3a030a93d6eaaace29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:10.021ex; height:5.509ex;" alt="{\displaystyle \partial _{a}={\frac {\partial }{\partial x^{a}}}}" /></span> means taking the partial derivative with respect to the coordinate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39e0aeaa9f539d95a769634b9e33974b45675111" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.432ex; height:2.343ex;" alt="{\displaystyle x^{a}}" /></span>. Alternatively, if we are using a <a href="/wiki/Torsion_(differential_geometry)" class="mw-redirect" title="Torsion (differential geometry)">torsion-free</a> <a href="/wiki/Connection_(mathematics)" title="Connection (mathematics)">connection</a> (e.g., the <a href="/wiki/Levi_Civita_connection" class="mw-redirect" title="Levi Civita connection">Levi Civita connection</a>), then the partial derivative <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e1dee03765cd28d10505ff33a424976cad41469" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.336ex; height:2.509ex;" alt="{\displaystyle \partial _{a}}" /></span> can be replaced with the <a href="/wiki/Covariant_derivative" title="Covariant derivative">covariant derivative</a> which means replacing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{a}X^{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{a}X^{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bce2a1e3a93d3de108a6b6ee75935fbe3f4f61cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.271ex; height:3.009ex;" alt="{\displaystyle \partial _{a}X^{b}}" /></span> with (by abuse of notation) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla _{a}X^{b}=X_{;a}^{b}:=(\nabla X)_{a}^{\ b}=\partial _{a}X^{b}+\Gamma _{ac}^{b}X^{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo>=</mo> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>;</mo> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mo>:=</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mi>X</mi> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xa0;</mtext> <mi>b</mi> </mrow> </msubsup> <mo>=</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo>+</mo> <msubsup> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla _{a}X^{b}=X_{;a}^{b}:=(\nabla X)_{a}^{\ b}=\partial _{a}X^{b}+\Gamma _{ac}^{b}X^{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ac1a96fe155970484a3f6653e727e4e39348f88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.96ex; height:3.176ex;" alt="{\displaystyle \nabla _{a}X^{b}=X_{;a}^{b}:=(\nabla X)_{a}^{\ b}=\partial _{a}X^{b}+\Gamma _{ac}^{b}X^{c}}" /></span> where the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma _{bc}^{a}=\Gamma _{cb}^{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma _{bc}^{a}=\Gamma _{cb}^{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bc57da7a87bc7a1cba877e15bfb5e0de9bdd085" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.303ex; height:2.843ex;" alt="{\displaystyle \Gamma _{bc}^{a}=\Gamma _{cb}^{a}}" /></span> are the <a href="/wiki/Christoffel_coefficients" class="mw-redirect" title="Christoffel coefficients">Christoffel coefficients</a>. </p><p>The Lie derivative of a tensor is another tensor of the same type, i.e., even though the individual terms in the expression depend on the choice of coordinate system, the expression as a whole results in a tensor </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\mathcal {L}}_{X}T)^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s}}\partial _{a_{1}}\otimes \cdots \otimes \partial _{a_{r}}\otimes dx^{b_{1}}\otimes \cdots \otimes dx^{b_{s}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>T</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <mo>&#x22ef;<!-- ⋯ --></mo> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo>&#x2297;<!-- ⊗ --></mo> <mo>&#x22ef;<!-- ⋯ --></mo> <mo>&#x2297;<!-- ⊗ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\mathcal {L}}_{X}T)^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s}}\partial _{a_{1}}\otimes \cdots \otimes \partial _{a_{r}}\otimes dx^{b_{1}}\otimes \cdots \otimes dx^{b_{s}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/201d1a09a71a27096e8b8efc74d7a91c210190fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:51.874ex; height:3.343ex;" alt="{\displaystyle ({\mathcal {L}}_{X}T)^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s}}\partial _{a_{1}}\otimes \cdots \otimes \partial _{a_{r}}\otimes dx^{b_{1}}\otimes \cdots \otimes dx^{b_{s}}}" /></span></dd></dl> <p>which is independent of any coordinate system and of the same type as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7200acd984a1d3a3d7dc455e262fbe54f7f6e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.636ex; height:2.176ex;" alt="{\displaystyle T}" /></span>. </p><p>The definition can be extended further to <a href="/wiki/Tensor_densities" class="mw-redirect" title="Tensor densities">tensor densities</a>. If <i>T</i> is a tensor density of some real number valued weight <i>w</i> (e.g. the volume density of weight 1), then its Lie derivative is a tensor density of the same type and weight. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}({\mathcal {L}}_{X}T)^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s}}={}&amp;X^{c}(\partial _{c}T^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s}})-(\partial _{c}X^{a_{1}})T^{ca_{2}\ldots a_{r}}{}_{b_{1}\ldots b_{s}}-\ldots -(\partial _{c}X^{a_{r}})T^{a_{1}\ldots a_{r-1}c}{}_{b_{1}\ldots b_{s}}+\\&amp;+(\partial _{b_{1}}X^{c})T^{a_{1}\ldots a_{r}}{}_{cb_{2}\ldots b_{s}}+\ldots +(\partial _{b_{s}}X^{c})T^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s-1}c}+w(\partial _{c}X^{c})T^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>T</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo stretchy="false">)</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mo>&#x2026;<!-- … --></mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <mo stretchy="false">)</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mi>c</mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <mo>+</mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo stretchy="false">)</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <mo>+</mo> <mo>&#x2026;<!-- … --></mo> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo stretchy="false">)</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mi>c</mi> </mrow> </msub> <mo>+</mo> <mi>w</mi> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo stretchy="false">)</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}({\mathcal {L}}_{X}T)^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s}}={}&amp;X^{c}(\partial _{c}T^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s}})-(\partial _{c}X^{a_{1}})T^{ca_{2}\ldots a_{r}}{}_{b_{1}\ldots b_{s}}-\ldots -(\partial _{c}X^{a_{r}})T^{a_{1}\ldots a_{r-1}c}{}_{b_{1}\ldots b_{s}}+\\&amp;+(\partial _{b_{1}}X^{c})T^{a_{1}\ldots a_{r}}{}_{cb_{2}\ldots b_{s}}+\ldots +(\partial _{b_{s}}X^{c})T^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s-1}c}+w(\partial _{c}X^{c})T^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5b8830bae7c41dfdcdc43a3c062be6002e76193" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.354ex; margin-bottom: -0.317ex; width:99.707ex; height:6.509ex;" alt="{\displaystyle {\begin{aligned}({\mathcal {L}}_{X}T)^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s}}={}&amp;X^{c}(\partial _{c}T^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s}})-(\partial _{c}X^{a_{1}})T^{ca_{2}\ldots a_{r}}{}_{b_{1}\ldots b_{s}}-\ldots -(\partial _{c}X^{a_{r}})T^{a_{1}\ldots a_{r-1}c}{}_{b_{1}\ldots b_{s}}+\\&amp;+(\partial _{b_{1}}X^{c})T^{a_{1}\ldots a_{r}}{}_{cb_{2}\ldots b_{s}}+\ldots +(\partial _{b_{s}}X^{c})T^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s-1}c}+w(\partial _{c}X^{c})T^{a_{1}\ldots a_{r}}{}_{b_{1}\ldots b_{s}}\end{aligned}}}" /></span></dd></dl> <p>Notice the new term at the end of the expression. </p><p>For a <a href="/wiki/Affine_connection" title="Affine connection">linear connection</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma =(\Gamma _{bc}^{a})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mo>=</mo> <mo stretchy="false">(</mo> <msubsup> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma =(\Gamma _{bc}^{a})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e472fdf6f27bcd76ace12273943a615ff290d78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.463ex; height:3.009ex;" alt="{\displaystyle \Gamma =(\Gamma _{bc}^{a})}" /></span>, the Lie derivative along <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}" /></span> is<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\mathcal {L}}_{X}\Gamma )_{bc}^{a}=X^{d}\partial _{d}\Gamma _{bc}^{a}+\partial _{b}\partial _{c}X^{a}-\Gamma _{bc}^{d}\partial _{d}X^{a}+\Gamma _{dc}^{a}\partial _{b}X^{d}+\Gamma _{bd}^{a}\partial _{c}X^{d}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <msubsup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msubsup> <mo>=</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msup> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <msubsup> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msubsup> <mo>+</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msubsup> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>+</mo> <msubsup> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msubsup> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msup> <mo>+</mo> <msubsup> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msubsup> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>d</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\mathcal {L}}_{X}\Gamma )_{bc}^{a}=X^{d}\partial _{d}\Gamma _{bc}^{a}+\partial _{b}\partial _{c}X^{a}-\Gamma _{bc}^{d}\partial _{d}X^{a}+\Gamma _{dc}^{a}\partial _{b}X^{d}+\Gamma _{bd}^{a}\partial _{c}X^{d}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/412995497f6757682cbf6c6f48dee42458432703" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:64.138ex; height:3.343ex;" alt="{\displaystyle ({\mathcal {L}}_{X}\Gamma )_{bc}^{a}=X^{d}\partial _{d}\Gamma _{bc}^{a}+\partial _{b}\partial _{c}X^{a}-\Gamma _{bc}^{d}\partial _{d}X^{a}+\Gamma _{dc}^{a}\partial _{b}X^{d}+\Gamma _{bd}^{a}\partial _{c}X^{d}}" /></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Examples">Examples</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lie_derivative&amp;action=edit&amp;section=10" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For clarity we now show the following examples in local <a href="/wiki/Coordinate" class="mw-redirect" title="Coordinate">coordinate</a> notation. </p><p>For a <a href="/wiki/Scalar_field" title="Scalar field">scalar field</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (x^{c})\in {\mathcal {F}}(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3d5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (x^{c})\in {\mathcal {F}}(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b662fd020c4cf4473211308eac9f0e4152d9be4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.487ex; height:2.843ex;" alt="{\displaystyle \phi (x^{c})\in {\mathcal {F}}(M)}" /></span> we have: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\mathcal {L}}_{X}\phi )=X(\phi )=X^{a}\partial _{a}\phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x3d5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>X</mi> <mo stretchy="false">(</mo> <mi>&#x3d5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mi>&#x3d5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\mathcal {L}}_{X}\phi )=X(\phi )=X^{a}\partial _{a}\phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/701cfd96b903459326221cc8ad52f0d3c8231eab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.623ex; height:2.843ex;" alt="{\displaystyle ({\mathcal {L}}_{X}\phi )=X(\phi )=X^{a}\partial _{a}\phi }" /></span>.</dd></dl> <p>Hence for the scalar field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi (x,y)=x^{2}-\sin(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3d5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi (x,y)=x^{2}-\sin(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8a11a4b97a126f20d28136877ce0d9b8b1aa72c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.857ex; height:3.176ex;" alt="{\displaystyle \phi (x,y)=x^{2}-\sin(y)}" /></span> and the vector field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{a}\partial _{a}=\sin(x)\partial _{y}-y^{2}\partial _{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{a}\partial _{a}=\sin(x)\partial _{y}-y^{2}\partial _{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66ae45c76ae72b3cc32f5a5c9dc7772d6ce0de28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.274ex; height:3.343ex;" alt="{\displaystyle X^{a}\partial _{a}=\sin(x)\partial _{y}-y^{2}\partial _{x}}" /></span> the corresponding Lie derivative becomes <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{3}{\mathcal {L}}_{X}\phi &amp;=(\sin(x)\partial _{y}-y^{2}\partial _{x})(x^{2}-\sin(y))\\&amp;=\sin(x)\partial _{y}(x^{2}-\sin(y))-y^{2}\partial _{x}(x^{2}-\sin(y))\\&amp;=-\sin(x)\cos(y)-2xy^{2}\\\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x3d5;<!-- ϕ --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>x</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{3}{\mathcal {L}}_{X}\phi &amp;=(\sin(x)\partial _{y}-y^{2}\partial _{x})(x^{2}-\sin(y))\\&amp;=\sin(x)\partial _{y}(x^{2}-\sin(y))-y^{2}\partial _{x}(x^{2}-\sin(y))\\&amp;=-\sin(x)\cos(y)-2xy^{2}\\\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f78bf4e8ab41a6e0f6d25e1297821b3f8f1db4f9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.176ex; margin-bottom: -0.329ex; width:49.92ex; height:10.176ex;" alt="{\displaystyle {\begin{alignedat}{3}{\mathcal {L}}_{X}\phi &amp;=(\sin(x)\partial _{y}-y^{2}\partial _{x})(x^{2}-\sin(y))\\&amp;=\sin(x)\partial _{y}(x^{2}-\sin(y))-y^{2}\partial _{x}(x^{2}-\sin(y))\\&amp;=-\sin(x)\cos(y)-2xy^{2}\\\end{alignedat}}}" /></span> </p><p>For an example of higher rank differential form, consider the 2-form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega =(x^{2}+y^{2})dx\wedge dz}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3c9;<!-- ω --></mi> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega =(x^{2}+y^{2})dx\wedge dz}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02366714e4cf5cbdec5b9a7921d8cec81602504d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.225ex; height:3.176ex;" alt="{\displaystyle \omega =(x^{2}+y^{2})dx\wedge dz}" /></span> and the vector field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}" /></span> from the previous example. Then, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\mathcal {L}}_{X}\omega &amp;=d(i_{\sin(x)\partial _{y}-y^{2}\partial _{x}}((x^{2}+y^{2})dx\wedge dz))+i_{\sin(x)\partial _{y}-y^{2}\partial _{x}}(d((x^{2}+y^{2})dx\wedge dz))\\&amp;=d(-y^{2}(x^{2}+y^{2})dz)+i_{\sin(x)\partial _{y}-y^{2}\partial _{x}}(2ydy\wedge dx\wedge dz)\\&amp;=\left(-2xy^{2}dx+(-2yx^{2}-4y^{3})dy\right)\wedge dz+(2y\sin(x)dx\wedge dz+2y^{3}dy\wedge dz)\\&amp;=\left(-2xy^{2}+2y\sin(x)\right)dx\wedge dz+(-2yx^{2}-2y^{3})dy\wedge dz\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x3c9;<!-- ω --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>d</mi> <mo stretchy="false">(</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mi>d</mi> <mi>z</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <mi>y</mi> <mi>d</mi> <mi>y</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <mi>x</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <mi>z</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>x</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>d</mi> <mi>x</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>y</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mi>d</mi> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <mi>z</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>y</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <mi>z</mi> <mo>+</mo> <mn>2</mn> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mi>d</mi> <mi>y</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <mi>z</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>x</mi> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>y</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mi>d</mi> <mi>x</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <mi>z</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>y</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mi>d</mi> <mi>y</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>d</mi> <mi>z</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\mathcal {L}}_{X}\omega &amp;=d(i_{\sin(x)\partial _{y}-y^{2}\partial _{x}}((x^{2}+y^{2})dx\wedge dz))+i_{\sin(x)\partial _{y}-y^{2}\partial _{x}}(d((x^{2}+y^{2})dx\wedge dz))\\&amp;=d(-y^{2}(x^{2}+y^{2})dz)+i_{\sin(x)\partial _{y}-y^{2}\partial _{x}}(2ydy\wedge dx\wedge dz)\\&amp;=\left(-2xy^{2}dx+(-2yx^{2}-4y^{3})dy\right)\wedge dz+(2y\sin(x)dx\wedge dz+2y^{3}dy\wedge dz)\\&amp;=\left(-2xy^{2}+2y\sin(x)\right)dx\wedge dz+(-2yx^{2}-2y^{3})dy\wedge dz\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c23a298fe172757e6c88e64d1d5b952c29dd4990" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:78.614ex; height:14.509ex;" alt="{\displaystyle {\begin{aligned}{\mathcal {L}}_{X}\omega &amp;=d(i_{\sin(x)\partial _{y}-y^{2}\partial _{x}}((x^{2}+y^{2})dx\wedge dz))+i_{\sin(x)\partial _{y}-y^{2}\partial _{x}}(d((x^{2}+y^{2})dx\wedge dz))\\&amp;=d(-y^{2}(x^{2}+y^{2})dz)+i_{\sin(x)\partial _{y}-y^{2}\partial _{x}}(2ydy\wedge dx\wedge dz)\\&amp;=\left(-2xy^{2}dx+(-2yx^{2}-4y^{3})dy\right)\wedge dz+(2y\sin(x)dx\wedge dz+2y^{3}dy\wedge dz)\\&amp;=\left(-2xy^{2}+2y\sin(x)\right)dx\wedge dz+(-2yx^{2}-2y^{3})dy\wedge dz\end{aligned}}}" /></span> </p><p>Some more abstract examples. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}(dx^{b})=di_{X}(dx^{b})=dX^{b}=\partial _{a}X^{b}dx^{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo>=</mo> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}(dx^{b})=di_{X}(dx^{b})=dX^{b}=\partial _{a}X^{b}dx^{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a697a36448d69739a71c206d56ce6ad9c0a4a609" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.836ex; height:3.176ex;" alt="{\displaystyle {\mathcal {L}}_{X}(dx^{b})=di_{X}(dx^{b})=dX^{b}=\partial _{a}X^{b}dx^{a}}" /></span>.</dd></dl> <p>Hence for a <a href="/wiki/One-form" class="mw-redirect" title="One-form">covector field</a>, i.e., a <a href="/wiki/Differential_form" title="Differential form">differential form</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=A_{a}(x^{b})dx^{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=A_{a}(x^{b})dx^{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fa3d8424fc588eb70b99e51552ed2959918b2b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.411ex; height:3.176ex;" alt="{\displaystyle A=A_{a}(x^{b})dx^{a}}" /></span> we have: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}A=X(A_{a})dx^{a}+A_{b}{\mathcal {L}}_{X}(dx^{b})=(X^{b}\partial _{b}A_{a}+A_{b}\partial _{a}(X^{b}))dx^{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>A</mi> <mo>=</mo> <mi>X</mi> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}A=X(A_{a})dx^{a}+A_{b}{\mathcal {L}}_{X}(dx^{b})=(X^{b}\partial _{b}A_{a}+A_{b}\partial _{a}(X^{b}))dx^{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/effd9f02e8f82c2f81789302e70fcdfe06eef0d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:61.517ex; height:3.176ex;" alt="{\displaystyle {\mathcal {L}}_{X}A=X(A_{a})dx^{a}+A_{b}{\mathcal {L}}_{X}(dx^{b})=(X^{b}\partial _{b}A_{a}+A_{b}\partial _{a}(X^{b}))dx^{a}}" /></span></dd></dl> <p>The coefficient of the last expression is the local coordinate expression of the Lie derivative. </p><p>For a covariant rank 2 tensor field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=T_{ab}(x^{c})dx^{a}\otimes dx^{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>&#x2297;<!-- ⊗ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=T_{ab}(x^{c})dx^{a}\otimes dx^{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1503463aadf5e4cf539f4ace120d3fdb9fb9abe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.954ex; height:3.176ex;" alt="{\displaystyle T=T_{ab}(x^{c})dx^{a}\otimes dx^{b}}" /></span> we have: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}({\mathcal {L}}_{X}T)&amp;=({\mathcal {L}}_{X}T)_{ab}dx^{a}\otimes dx^{b}\\&amp;=X(T_{ab})dx^{a}\otimes dx^{b}+T_{cb}{\mathcal {L}}_{X}(dx^{c})\otimes dx^{b}+T_{ac}dx^{a}\otimes {\mathcal {L}}_{X}(dx^{c})\\&amp;=(X^{c}\partial _{c}T_{ab}+T_{cb}\partial _{a}X^{c}+T_{ac}\partial _{b}X^{c})dx^{a}\otimes dx^{b}\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>T</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>T</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>&#x2297;<!-- ⊗ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mi>X</mi> <mo stretchy="false">(</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>&#x2297;<!-- ⊗ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>b</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x2297;<!-- ⊗ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>c</mi> </mrow> </msub> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>b</mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>c</mi> </mrow> </msub> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>&#x2297;<!-- ⊗ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}({\mathcal {L}}_{X}T)&amp;=({\mathcal {L}}_{X}T)_{ab}dx^{a}\otimes dx^{b}\\&amp;=X(T_{ab})dx^{a}\otimes dx^{b}+T_{cb}{\mathcal {L}}_{X}(dx^{c})\otimes dx^{b}+T_{ac}dx^{a}\otimes {\mathcal {L}}_{X}(dx^{c})\\&amp;=(X^{c}\partial _{c}T_{ab}+T_{cb}\partial _{a}X^{c}+T_{ac}\partial _{b}X^{c})dx^{a}\otimes dx^{b}\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/deed05437e62aa8ce6291adf503f8c54ba764168" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:69.198ex; height:9.843ex;" alt="{\displaystyle {\begin{aligned}({\mathcal {L}}_{X}T)&amp;=({\mathcal {L}}_{X}T)_{ab}dx^{a}\otimes dx^{b}\\&amp;=X(T_{ab})dx^{a}\otimes dx^{b}+T_{cb}{\mathcal {L}}_{X}(dx^{c})\otimes dx^{b}+T_{ac}dx^{a}\otimes {\mathcal {L}}_{X}(dx^{c})\\&amp;=(X^{c}\partial _{c}T_{ab}+T_{cb}\partial _{a}X^{c}+T_{ac}\partial _{b}X^{c})dx^{a}\otimes dx^{b}\\\end{aligned}}}" /></span> </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T=g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1e68d03be3720b6f95c10caa66d3e542f3a94c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.851ex; height:2.509ex;" alt="{\displaystyle T=g}" /></span> is the symmetric metric tensor, it is parallel with respect to the <a href="/wiki/Levi-Civita_connection" title="Levi-Civita connection">Levi-Civita connection</a> (aka <a href="/wiki/Covariant_derivative" title="Covariant derivative">covariant derivative</a>), and it becomes fruitful to use the connection. This has the effect of replacing all derivatives with covariant derivatives, giving </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\mathcal {L}}_{X}g)=(X^{c}g_{ab;c}+g_{cb}X_{;a}^{c}+g_{ac}X_{;b}^{c})dx^{a}\otimes dx^{b}=(X_{b;a}+X_{a;b})dx^{a}\otimes dx^{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>b</mi> <mo>;</mo> <mi>c</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mi>b</mi> </mrow> </msub> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>;</mo> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msubsup> <mo>+</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>c</mi> </mrow> </msub> <msubsup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>;</mo> <mi>b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>&#x2297;<!-- ⊗ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mo>;</mo> <mi>a</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo>;</mo> <mi>b</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>&#x2297;<!-- ⊗ --></mo> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\mathcal {L}}_{X}g)=(X^{c}g_{ab;c}+g_{cb}X_{;a}^{c}+g_{ac}X_{;b}^{c})dx^{a}\otimes dx^{b}=(X_{b;a}+X_{a;b})dx^{a}\otimes dx^{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d90982e6857e6259ab638efb9ccaf70623c82386" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:72.329ex; height:3.676ex;" alt="{\displaystyle ({\mathcal {L}}_{X}g)=(X^{c}g_{ab;c}+g_{cb}X_{;a}^{c}+g_{ac}X_{;b}^{c})dx^{a}\otimes dx^{b}=(X_{b;a}+X_{a;b})dx^{a}\otimes dx^{b}}" /></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lie_derivative&amp;action=edit&amp;section=11" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Lie derivative has a number of properties. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8804faaf32a656c7f174ff2da9fc88a20d1d6ec1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.178ex; height:2.843ex;" alt="{\displaystyle {\mathcal {F}}(M)}" /></span> be the <a href="/wiki/Algebra_over_a_field" title="Algebra over a field">algebra</a> of functions defined on the <a href="/wiki/Manifold" title="Manifold">manifold</a> <i>M</i>. Then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}:{\mathcal {F}}(M)\rightarrow {\mathcal {F}}(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}:{\mathcal {F}}(M)\rightarrow {\mathcal {F}}(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be33b9f3aaf58c7b89f2a5ef979fc552eff0e2d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.144ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}_{X}:{\mathcal {F}}(M)\rightarrow {\mathcal {F}}(M)}" /></span></dd></dl> <p>is a <a href="/wiki/Derivation_(abstract_algebra)" class="mw-redirect" title="Derivation (abstract algebra)">derivation</a> on the algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8804faaf32a656c7f174ff2da9fc88a20d1d6ec1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.178ex; height:2.843ex;" alt="{\displaystyle {\mathcal {F}}(M)}" /></span>. That is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce4db2d17b365a7321dbfdb8f8bc512dd911ea54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.236ex; height:2.509ex;" alt="{\displaystyle {\mathcal {L}}_{X}}" /></span> is <b>R</b>-linear and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}(fg)=({\mathcal {L}}_{X}f)g+f{\mathcal {L}}_{X}g.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo>+</mo> <mi>f</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>g</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}(fg)=({\mathcal {L}}_{X}f)g+f{\mathcal {L}}_{X}g.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/939abbfd4b70d3802bf65cafbd58ce8af5ef7158" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.096ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}_{X}(fg)=({\mathcal {L}}_{X}f)g+f{\mathcal {L}}_{X}g.}" /></span></dd></dl> <p>Similarly, it is a derivation on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}(M)\times {\mathcal {X}}(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mo>&#xd7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">X</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}(M)\times {\mathcal {X}}(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6613fc3177565b54504f8409c3e46476beed17e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.145ex; height:2.843ex;" alt="{\displaystyle {\mathcal {F}}(M)\times {\mathcal {X}}(M)}" /></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {X}}(M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">X</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {X}}(M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7825afa749a3316e9ae61baee20f11da2ea4edd5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.127ex; height:2.843ex;" alt="{\displaystyle {\mathcal {X}}(M)}" /></span> is the set of vector fields on <i>M</i>:<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}(fY)=({\mathcal {L}}_{X}f)Y+f{\mathcal {L}}_{X}Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">)</mo> <mi>Y</mi> <mo>+</mo> <mi>f</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}(fY)=({\mathcal {L}}_{X}f)Y+f{\mathcal {L}}_{X}Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1fadf9d64cfd40ec4b4a4874c8c4e9bee2fb0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.421ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}_{X}(fY)=({\mathcal {L}}_{X}f)Y+f{\mathcal {L}}_{X}Y}" /></span></dd></dl> <p>which may also be written in the equivalent notation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}(f\otimes Y)=({\mathcal {L}}_{X}f)\otimes Y+f\otimes {\mathcal {L}}_{X}Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">)</mo> <mo>&#x2297;<!-- ⊗ --></mo> <mi>Y</mi> <mo>+</mo> <mi>f</mi> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}(f\otimes Y)=({\mathcal {L}}_{X}f)\otimes Y+f\otimes {\mathcal {L}}_{X}Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11355c8ee7c3080f6c1946ccc949ed8aec34a608" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.943ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}_{X}(f\otimes Y)=({\mathcal {L}}_{X}f)\otimes Y+f\otimes {\mathcal {L}}_{X}Y}" /></span></dd></dl> <p>where the <a href="/wiki/Tensor_product" title="Tensor product">tensor product</a> symbol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \otimes }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2297;<!-- ⊗ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \otimes }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de29098f5a34ee296a505681a0d5e875070f2aea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \otimes }" /></span> is used to emphasize the fact that the product of a function times a vector field is being taken over the entire manifold. </p><p>Additional properties are consistent with that of the <a href="/wiki/Lie_bracket_of_vector_fields" title="Lie bracket of vector fields">Lie bracket</a>. Thus, for example, considered as a derivation on a vector field, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}[Y,Z]=[{\mathcal {L}}_{X}Y,Z]+[Y,{\mathcal {L}}_{X}Z]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">[</mo> <mi>Y</mi> <mo>,</mo> <mi>Z</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mo stretchy="false">[</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>Y</mi> <mo>,</mo> <mi>Z</mi> <mo stretchy="false">]</mo> <mo>+</mo> <mo stretchy="false">[</mo> <mi>Y</mi> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>Z</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}[Y,Z]=[{\mathcal {L}}_{X}Y,Z]+[Y,{\mathcal {L}}_{X}Z]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ce151ef322e8727038ae45f7707ab407ba60b01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.991ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}_{X}[Y,Z]=[{\mathcal {L}}_{X}Y,Z]+[Y,{\mathcal {L}}_{X}Z]}" /></span></dd></dl> <p>one finds the above to be just the <a href="/wiki/Jacobi_identity" title="Jacobi identity">Jacobi identity</a>. Thus, one has the important result that the space of vector fields over <i>M</i>, equipped with the Lie bracket, forms a <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a>. </p><p>The Lie derivative also has important properties when acting on differential forms. Let <i>α</i> and <i>β</i> be two differential forms on <i>M</i>, and let <i>X</i> and <i>Y</i> be two vector fields. Then </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}(\alpha \wedge \beta )=({\mathcal {L}}_{X}\alpha )\wedge \beta +\alpha \wedge ({\mathcal {L}}_{X}\beta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x3b1;<!-- α --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>&#x3b2;<!-- β --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x3b1;<!-- α --></mi> <mo stretchy="false">)</mo> <mo>&#x2227;<!-- ∧ --></mo> <mi>&#x3b2;<!-- β --></mi> <mo>+</mo> <mi>&#x3b1;<!-- α --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x3b2;<!-- β --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}(\alpha \wedge \beta )=({\mathcal {L}}_{X}\alpha )\wedge \beta +\alpha \wedge ({\mathcal {L}}_{X}\beta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d53bf16e98b4884717bd224683244775cf75de10" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.282ex; height:2.843ex;" alt="{\displaystyle {\mathcal {L}}_{X}(\alpha \wedge \beta )=({\mathcal {L}}_{X}\alpha )\wedge \beta +\alpha \wedge ({\mathcal {L}}_{X}\beta )}" /></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [{\mathcal {L}}_{X},{\mathcal {L}}_{Y}]\alpha :={\mathcal {L}}_{X}{\mathcal {L}}_{Y}\alpha -{\mathcal {L}}_{Y}{\mathcal {L}}_{X}\alpha ={\mathcal {L}}_{[X,Y]}\alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mi>&#x3b1;<!-- α --></mi> <mo>:=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mi>&#x3b1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x3b1;<!-- α --></mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> </mrow> </msub> <mi>&#x3b1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [{\mathcal {L}}_{X},{\mathcal {L}}_{Y}]\alpha :={\mathcal {L}}_{X}{\mathcal {L}}_{Y}\alpha -{\mathcal {L}}_{Y}{\mathcal {L}}_{X}\alpha ={\mathcal {L}}_{[X,Y]}\alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65dc5117a4e5efcb8122cc7ccf43221086ae68db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:42.802ex; height:3.176ex;" alt="{\displaystyle [{\mathcal {L}}_{X},{\mathcal {L}}_{Y}]\alpha :={\mathcal {L}}_{X}{\mathcal {L}}_{Y}\alpha -{\mathcal {L}}_{Y}{\mathcal {L}}_{X}\alpha ={\mathcal {L}}_{[X,Y]}\alpha }" /></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [{\mathcal {L}}_{X},i_{Y}]\alpha =[i_{X},{\mathcal {L}}_{Y}]\alpha =i_{[X,Y]}\alpha ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mi>&#x3b1;<!-- α --></mi> <mo>=</mo> <mo stretchy="false">[</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mi>&#x3b1;<!-- α --></mi> <mo>=</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> </mrow> </msub> <mi>&#x3b1;<!-- α --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [{\mathcal {L}}_{X},i_{Y}]\alpha =[i_{X},{\mathcal {L}}_{Y}]\alpha =i_{[X,Y]}\alpha ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44d0aef7084c558756d94bd3c09b2855d41fb842" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:32.072ex; height:3.176ex;" alt="{\displaystyle [{\mathcal {L}}_{X},i_{Y}]\alpha =[i_{X},{\mathcal {L}}_{Y}]\alpha =i_{[X,Y]}\alpha ,}" /></span> where <i>i</i> denotes interior product defined above and it is clear whether [·,·] denotes the <a href="/wiki/Commutator" title="Commutator">commutator</a> or the <a href="/wiki/Lie_bracket_of_vector_fields" title="Lie bracket of vector fields">Lie bracket of vector fields</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Generalizations">Generalizations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lie_derivative&amp;action=edit&amp;section=12" title="Edit section: Generalizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Various generalizations of the Lie derivative play an important role in differential geometry. </p> <div class="mw-heading mw-heading3"><h3 id="The_Lie_derivative_of_a_spinor_field">The Lie derivative of a spinor field</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lie_derivative&amp;action=edit&amp;section=13" title="Edit section: The Lie derivative of a spinor field"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A definition for Lie derivatives of <a href="/wiki/Spinors" class="mw-redirect" title="Spinors">spinors</a> along generic spacetime vector fields, not necessarily <a href="/wiki/Killing_vector_field" title="Killing vector field">Killing</a> ones, on a general (pseudo) <a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifold</a> was already proposed in 1971 by <a href="/wiki/Yvette_Kosmann-Schwarzbach" title="Yvette Kosmann-Schwarzbach">Yvette Kosmann</a>.<sup id="cite_ref-autogenerated317_5-0" class="reference"><a href="#cite_note-autogenerated317-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> Later, it was provided a geometric framework which justifies her <i>ad hoc</i> prescription within the general framework of Lie derivatives on <a href="/wiki/Fiber_bundles" class="mw-redirect" title="Fiber bundles">fiber bundles</a><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> in the explicit context of gauge natural bundles which turn out to be the most appropriate arena for (gauge-covariant) field theories.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p>In a given <a href="/wiki/Spin_manifold" class="mw-redirect" title="Spin manifold">spin manifold</a>, that is in a Riemannian manifold <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (M,g)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mi>g</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (M,g)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68e27d2e539fd0c3a9a7efab6257abd17de7fc57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.401ex; height:2.843ex;" alt="{\displaystyle (M,g)}" /></span> admitting a <a href="/wiki/Spin_structure" title="Spin structure">spin structure</a>, the Lie derivative of a <a href="/wiki/Spinor" title="Spinor">spinor</a> <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3c8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }" /></span> can be defined by first defining it with respect to infinitesimal isometries (Killing vector fields) via the <a href="/wiki/Andr%C3%A9_Lichnerowicz" title="André Lichnerowicz">André Lichnerowicz</a>'s local expression given in 1963:<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}\psi :=X^{a}\nabla _{a}\psi -{\frac {1}{4}}\nabla _{a}X_{b}\gamma ^{a}\gamma ^{b}\psi \,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x3c8;<!-- ψ --></mi> <mo>:=</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mi>&#x3c8;<!-- ψ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mi>&#x3c8;<!-- ψ --></mi> <mspace width="thinmathspace"></mspace> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}\psi :=X^{a}\nabla _{a}\psi -{\frac {1}{4}}\nabla _{a}X_{b}\gamma ^{a}\gamma ^{b}\psi \,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e171ac624a895bd1218186025b67f297ba043697" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:34.029ex; height:5.176ex;" alt="{\displaystyle {\mathcal {L}}_{X}\psi :=X^{a}\nabla _{a}\psi -{\frac {1}{4}}\nabla _{a}X_{b}\gamma ^{a}\gamma ^{b}\psi \,,}" /></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla _{a}X_{b}=\nabla _{[a}X_{b]}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>=</mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>a</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mo stretchy="false">]</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla _{a}X_{b}=\nabla _{[a}X_{b]}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103db546d1db84978f6cf6e16b155bef765207e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:15.813ex; height:3.009ex;" alt="{\displaystyle \nabla _{a}X_{b}=\nabla _{[a}X_{b]}}" /></span>, as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X=X^{a}\partial _{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <msub> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X=X^{a}\partial _{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/980fb9397e084965e46330280d9fbe0f085c365a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.514ex; height:2.676ex;" alt="{\displaystyle X=X^{a}\partial _{a}}" /></span> is assumed to be a <a href="/wiki/Killing_vector_field" title="Killing vector field">Killing vector field</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma ^{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma ^{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4524b5eb99a73b9ffff968e4a01631affa196021" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.382ex; height:2.843ex;" alt="{\displaystyle \gamma ^{a}}" /></span> are <a href="/wiki/Dirac_matrices" class="mw-redirect" title="Dirac matrices">Dirac matrices</a>. </p><p>It is then possible to extend Lichnerowicz's definition to all vector fields (generic infinitesimal transformations) by retaining Lichnerowicz's local expression for a <i>generic</i> vector field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}" /></span>, but explicitly taking the antisymmetric part of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla _{a}X_{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla _{a}X_{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a92add088560a62aed37458f3341c29698f496f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.9ex; height:2.509ex;" alt="{\displaystyle \nabla _{a}X_{b}}" /></span> only.<sup id="cite_ref-autogenerated317_5-1" class="reference"><a href="#cite_note-autogenerated317-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> More explicitly, Kosmann's local expression given in 1972 is:<sup id="cite_ref-autogenerated317_5-2" class="reference"><a href="#cite_note-autogenerated317-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{X}\psi :=X^{a}\nabla _{a}\psi -{\frac {1}{8}}\nabla _{[a}X_{b]}[\gamma ^{a},\gamma ^{b}]\psi \,=\nabla _{X}\psi -{\frac {1}{4}}(dX^{\flat })\cdot \psi \,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x3c8;<!-- ψ --></mi> <mo>:=</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mi>&#x3c8;<!-- ψ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>8</mn> </mfrac> </mrow> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>a</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mo stretchy="false">]</mo> </mrow> </msub> <mo stretchy="false">[</mo> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>,</mo> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mi>&#x3c8;<!-- ψ --></mi> <mspace width="thinmathspace"></mspace> <mo>=</mo> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>&#x3c8;<!-- ψ --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>d</mi> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x266d;<!-- ♭ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x22c5;<!-- ⋅ --></mo> <mi>&#x3c8;<!-- ψ --></mi> <mspace width="thinmathspace"></mspace> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{X}\psi :=X^{a}\nabla _{a}\psi -{\frac {1}{8}}\nabla _{[a}X_{b]}[\gamma ^{a},\gamma ^{b}]\psi \,=\nabla _{X}\psi -{\frac {1}{4}}(dX^{\flat })\cdot \psi \,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/996010d923d1c8077881028f756c5f90400733bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:59.764ex; height:5.176ex;" alt="{\displaystyle {\mathcal {L}}_{X}\psi :=X^{a}\nabla _{a}\psi -{\frac {1}{8}}\nabla _{[a}X_{b]}[\gamma ^{a},\gamma ^{b}]\psi \,=\nabla _{X}\psi -{\frac {1}{4}}(dX^{\flat })\cdot \psi \,,}" /></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\gamma ^{a},\gamma ^{b}]=\gamma ^{a}\gamma ^{b}-\gamma ^{b}\gamma ^{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>,</mo> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\gamma ^{a},\gamma ^{b}]=\gamma ^{a}\gamma ^{b}-\gamma ^{b}\gamma ^{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d68ce243b0c43c962a40b9fc13aec71bdabb2916" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.064ex; height:3.176ex;" alt="{\displaystyle [\gamma ^{a},\gamma ^{b}]=\gamma ^{a}\gamma ^{b}-\gamma ^{b}\gamma ^{a}}" /></span> is the commutator, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}" /></span> is <a href="/wiki/Exterior_derivative" title="Exterior derivative">exterior derivative</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{\flat }=g(X,-)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x266d;<!-- ♭ --></mi> </mrow> </msup> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{\flat }=g(X,-)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d838f11f7dcd41152db9facc40275b382e4f48b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.715ex; height:3.343ex;" alt="{\displaystyle X^{\flat }=g(X,-)}" /></span> is the dual 1 form corresponding to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}" /></span> under the metric (i.e. with lowered indices) and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x22c5;<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba2c023bad1bd39ed49080f729cbf26bc448c9ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.439ex; margin-bottom: -0.61ex; width:0.647ex; height:1.176ex;" alt="{\displaystyle \cdot }" /></span> is Clifford multiplication. </p><p>It is worth noting that the spinor Lie derivative is independent of the metric, and hence also of the <a href="/wiki/Connection_(differential_geometry)" class="mw-redirect" title="Connection (differential geometry)">connection</a>. This is not obvious from the right-hand side of Kosmann's local expression, as the right-hand side seems to depend on the metric through the spin connection (covariant derivative), the dualisation of vector fields (lowering of the indices) and the Clifford multiplication on the <a href="/wiki/Spinor_bundle" title="Spinor bundle">spinor bundle</a>. Such is not the case: the quantities on the right-hand side of Kosmann's local expression combine so as to make all metric and connection dependent terms cancel. </p><p>To gain a better understanding of the long-debated concept of Lie derivative of spinor fields one may refer to the original article,<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> where the definition of a Lie derivative of spinor fields is placed in the more general framework of the theory of Lie derivatives of sections of fiber bundles and the direct approach by Y. Kosmann to the spinor case is generalized to gauge natural bundles in the form of a new geometric concept called the <a href="/wiki/Kosmann_lift" title="Kosmann lift">Kosmann lift</a>. </p><p>As for the tensor counterpart, also for spinors the vanishing of the Lie derivative along a Killing vector implements on the spinor the symmetries encoded by that Killing vector. However, differently from tensors, from spinors it is possible to build bi-linear quantities (such as the velocity vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\psi }}\gamma ^{a}\psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c8;<!-- ψ --></mi> <mo accent="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mi>&#x3c8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\psi }}\gamma ^{a}\psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f16d12e9c609bd8edd2d08959593ae06ff85da91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.523ex; height:3.509ex;" alt="{\displaystyle {\overline {\psi }}\gamma ^{a}\psi }" /></span> or the spin axial-vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\psi }}\gamma ^{a}\gamma ^{5}\psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c8;<!-- ψ --></mi> <mo accent="false">&#xaf;<!-- ¯ --></mo> </mover> </mrow> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <msup> <mi>&#x3b3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mi>&#x3c8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\psi }}\gamma ^{a}\gamma ^{5}\psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3408b222a7bacd9ad1e180f10970abf8d17e502c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.857ex; height:3.509ex;" alt="{\displaystyle {\overline {\psi }}\gamma ^{a}\gamma ^{5}\psi }" /></span>) which are tensors. A natural question that now arises is whether the vanishing of the Lie derivative along a Killing vector of a spinor is equivalent to the vanishing of the Lie derivative along the same Killing vector of all the spinor bi-linear quantities. While a spinor that is Lie-invariant implies that all its bi-linear quantities are also Lie invariant, the converse is in general not true.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Covariant_Lie_derivative">Covariant Lie derivative</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lie_derivative&amp;action=edit&amp;section=14" title="Edit section: Covariant Lie derivative"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If we have a principal bundle over the manifold M with G as the structure group, and we pick X to be a covariant vector field as section of the tangent space of the principal bundle (i.e. it has horizontal and vertical components), then the covariant Lie derivative is just the Lie derivative with respect to X over the principal bundle. </p><p>Now, if we're given a vector field <i>Y</i> over <i>M</i> (but not the principal bundle) but we also have a <a href="/wiki/Connection_(mathematics)" title="Connection (mathematics)">connection</a> over the principal bundle, we can define a vector field X over the principal bundle such that its horizontal component matches <i>Y</i> and its vertical component agrees with the connection. This is the covariant Lie derivative. </p><p>See <a href="/wiki/Connection_form" title="Connection form">connection form</a> for more details. </p> <div class="mw-heading mw-heading3"><h3 id="Nijenhuis–Lie_derivative"><span id="Nijenhuis.E2.80.93Lie_derivative"></span>Nijenhuis–Lie derivative</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lie_derivative&amp;action=edit&amp;section=15" title="Edit section: Nijenhuis–Lie derivative"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Another generalization, due to <a href="/wiki/Albert_Nijenhuis" title="Albert Nijenhuis">Albert Nijenhuis</a>, allows one to define the Lie derivative of a differential form along any section of the bundle Ω<sup><i>k</i></sup>(<i>M</i>, T<i>M</i>) of differential forms with values in the tangent bundle. If <i>K</i>&#160;∈&#160;Ω<sup><i>k</i></sup>(<i>M</i>, T<i>M</i>) and α is a differential <i>p</i>-form, then it is possible to define the interior product <i>i</i><sub><i>K</i></sub>α of <i>K</i> and α. The Nijenhuis–Lie derivative is then the anticommutator of the interior product and the exterior derivative: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}_{K}\alpha =[d,i_{K}]\alpha =di_{K}\alpha -(-1)^{k-1}i_{K}\,d\alpha .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </msub> <mi>&#x3b1;<!-- α --></mi> <mo>=</mo> <mo stretchy="false">[</mo> <mi>d</mi> <mo>,</mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mi>&#x3b1;<!-- α --></mi> <mo>=</mo> <mi>d</mi> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </msub> <mi>&#x3b1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mi>d</mi> <mi>&#x3b1;<!-- α --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}_{K}\alpha =[d,i_{K}]\alpha =di_{K}\alpha -(-1)^{k-1}i_{K}\,d\alpha .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6625780b9736c9c558385a08737aac20d7f80bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.75ex; height:3.176ex;" alt="{\displaystyle {\mathcal {L}}_{K}\alpha =[d,i_{K}]\alpha =di_{K}\alpha -(-1)^{k-1}i_{K}\,d\alpha .}" /></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lie_derivative&amp;action=edit&amp;section=16" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1931, <a href="/wiki/W%C5%82adys%C5%82aw_%C5%9Alebodzi%C5%84ski" title="Władysław Ślebodziński">Władysław Ślebodziński</a> introduced a new differential operator, later called by <a href="/wiki/David_van_Dantzig" title="David van Dantzig">David van Dantzig</a> that of Lie derivation, which can be applied to scalars, vectors, tensors and affine connections and which proved to be a powerful instrument in the study of groups of automorphisms. </p><p>The Lie derivatives of general geometric objects (i.e., sections of <a href="/wiki/Natural_bundle" title="Natural bundle">natural fiber bundles</a>) were studied by <a href="/wiki/Albert_Nijenhuis" title="Albert Nijenhuis">A. Nijenhuis</a>, Y. Tashiro and <a href="/wiki/Kentaro_Yano_(mathematician)" title="Kentaro Yano (mathematician)">K. Yano</a>. </p><p>For a quite long time, physicists had been using Lie derivatives, without reference to the work of mathematicians. In 1940, <a href="/wiki/L%C3%A9on_Rosenfeld" title="Léon Rosenfeld">Léon Rosenfeld</a><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup>—and before him (in 1921) <a href="/wiki/Wolfgang_Pauli" title="Wolfgang Pauli">Wolfgang Pauli</a><sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup>—introduced what he called a ‘local variation’ <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta ^{\ast }A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x3b4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta ^{\ast }A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07a7e71a15b138d8f0396910fcf01d9547dadf58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.851ex; height:2.343ex;" alt="{\displaystyle \delta ^{\ast }A}" /></span> of a geometric object <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6aaf5ce10d6add44b973e28fb3d95f37abf3721" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.13ex; height:2.176ex;" alt="{\displaystyle A\,}" /></span> induced by an infinitesimal transformation of coordinates generated by a vector field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7028e89b7722d12ec0ea8780f26a9912456b63f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.367ex; height:2.176ex;" alt="{\displaystyle X\,}" /></span>. One can easily prove that his <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta ^{\ast }A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x3b4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta ^{\ast }A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07a7e71a15b138d8f0396910fcf01d9547dadf58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.851ex; height:2.343ex;" alt="{\displaystyle \delta ^{\ast }A}" /></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\mathcal {L}}_{X}(A)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\mathcal {L}}_{X}(A)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56323cd08b7f4e212d6959aa9a470a621c3c7e7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.984ex; height:2.843ex;" alt="{\displaystyle -{\mathcal {L}}_{X}(A)\,}" /></span>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lie_derivative&amp;action=edit&amp;section=17" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Covariant_derivative" title="Covariant derivative">Covariant derivative</a></li> <li><a href="/wiki/Connection_(mathematics)" title="Connection (mathematics)">Connection (mathematics)</a></li> <li><a href="/wiki/Fr%C3%B6licher%E2%80%93Nijenhuis_bracket" title="Frölicher–Nijenhuis bracket">Frölicher–Nijenhuis bracket</a></li> <li><a href="/wiki/Geodesic" title="Geodesic">Geodesic</a></li> <li><a href="/wiki/Killing_vector_field" title="Killing vector field">Killing field</a></li> <li><a href="/wiki/Derivative_of_the_exponential_map" title="Derivative of the exponential map">Derivative of the exponential map</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lie_derivative&amp;action=edit&amp;section=18" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFTrautman2008" class="citation book cs1"><a href="/wiki/Andrzej_Trautman" title="Andrzej Trautman">Trautman, A.</a> (2008). "Remarks on the history of the notion of Lie differentiation". In Krupková, O.; Saunders, D. J. (eds.). <i>Variations, Geometry and Physics: In honour of Demeter Krupka's sixty-fifth birthday</i>. New York: Nova Science. pp.&#160;<span class="nowrap">297–</span>302. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-60456-920-9" title="Special:BookSources/978-1-60456-920-9"><bdi>978-1-60456-920-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Remarks+on+the+history+of+the+notion+of+Lie+differentiation&amp;rft.btitle=Variations%2C+Geometry+and+Physics%3A+In+honour+of+Demeter+Krupka%27s+sixty-fifth+birthday&amp;rft.place=New+York&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E297-%3C%2Fspan%3E302&amp;rft.pub=Nova+Science&amp;rft.date=2008&amp;rft.isbn=978-1-60456-920-9&amp;rft.aulast=Trautman&amp;rft.aufirst=A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALie+derivative" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFŚlebodziński1931" class="citation journal cs1">Ślebodziński, W. (1931). "Sur les équations de Hamilton". <i>Bull. Acad. Roy. D. Belg</i>. <b>17</b> (5): <span class="nowrap">864–</span>870.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bull.+Acad.+Roy.+D.+Belg.&amp;rft.atitle=Sur+les+%C3%A9quations+de+Hamilton&amp;rft.volume=17&amp;rft.issue=5&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E864-%3C%2Fspan%3E870&amp;rft.date=1931&amp;rft.aulast=%C5%9Alebodzi%C5%84ski&amp;rft.aufirst=W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALie+derivative" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFYano1957" class="citation book cs1"><a href="/wiki/Kentaro_Yano_(mathematician)" title="Kentaro Yano (mathematician)">Yano, K.</a> (1957). <a rel="nofollow" class="external text" href="https://archive.org/details/theoryofliederiv029601mbp"><i>The Theory of Lie Derivatives and its Applications</i></a>. North-Holland. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/theoryofliederiv029601mbp/page/n25">8</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7204-2104-0" title="Special:BookSources/978-0-7204-2104-0"><bdi>978-0-7204-2104-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Theory+of+Lie+Derivatives+and+its+Applications&amp;rft.pages=8&amp;rft.pub=North-Holland&amp;rft.date=1957&amp;rft.isbn=978-0-7204-2104-0&amp;rft.aulast=Yano&amp;rft.aufirst=K.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ftheoryofliederiv029601mbp&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALie+derivative" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFNichita2019" class="citation journal cs1">Nichita, Florin F. (2019). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Faxioms8020060">"Unification Theories: New Results and Examples"</a>. <i>Axioms</i>. <b>8</b> (2). p.60, Theorem 6. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Faxioms8020060">10.3390/axioms8020060</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2075-1680">2075-1680</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Axioms&amp;rft.atitle=Unification+Theories%3A+New+Results+and+Examples&amp;rft.volume=8&amp;rft.issue=2&amp;rft.pages=p.60%2C+Theorem+6&amp;rft.date=2019&amp;rft_id=info%3Adoi%2F10.3390%2Faxioms8020060&amp;rft.issn=2075-1680&amp;rft.aulast=Nichita&amp;rft.aufirst=Florin+F.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Faxioms8020060&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALie+derivative" class="Z3988"></span></span> </li> <li id="cite_note-autogenerated317-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-autogenerated317_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-autogenerated317_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-autogenerated317_5-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFKosmann1971" class="citation journal cs1"><a href="/wiki/Yvette_Kosmann-Schwarzbach" title="Yvette Kosmann-Schwarzbach">Kosmann, Y.</a> (1971). "Dérivées de Lie des spineurs". <i><a href="/wiki/Annali_di_Matematica_Pura_ed_Applicata" title="Annali di Matematica Pura ed Applicata">Ann. Mat. Pura Appl.</a></i> <b>91</b> (4): <span class="nowrap">317–</span>395. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02428822">10.1007/BF02428822</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121026516">121026516</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Ann.+Mat.+Pura+Appl.&amp;rft.atitle=D%C3%A9riv%C3%A9es+de+Lie+des+spineurs&amp;rft.volume=91&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E317-%3C%2Fspan%3E395&amp;rft.date=1971&amp;rft_id=info%3Adoi%2F10.1007%2FBF02428822&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121026516%23id-name%3DS2CID&amp;rft.aulast=Kosmann&amp;rft.aufirst=Y.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALie+derivative" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFTrautman1972" class="citation book cs1">Trautman, A. (1972). "Invariance of Lagrangian Systems". In <a href="/wiki/Lochlainn_O%27Raifeartaigh" title="Lochlainn O&#39;Raifeartaigh">O'Raifeartaigh, L.</a> (ed.). <i>General Relativity: Papers in honour of J. L. Synge</i>. Oxford: Clarenden Press. p.&#160;85. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-19-851126-4" title="Special:BookSources/0-19-851126-4"><bdi>0-19-851126-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Invariance+of+Lagrangian+Systems&amp;rft.btitle=General+Relativity%3A+Papers+in+honour+of+J.+L.+Synge&amp;rft.place=Oxford&amp;rft.pages=85&amp;rft.pub=Clarenden+Press&amp;rft.date=1972&amp;rft.isbn=0-19-851126-4&amp;rft.aulast=Trautman&amp;rft.aufirst=A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALie+derivative" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFFatibeneFrancaviglia2003" class="citation book cs1">Fatibene, L.; <a href="/wiki/Mauro_Francaviglia" title="Mauro Francaviglia">Francaviglia, M.</a> (2003). <i>Natural and Gauge Natural Formalism for Classical Field Theories</i>. Dordrecht: Kluwer Academic.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Natural+and+Gauge+Natural+Formalism+for+Classical+Field+Theories&amp;rft.place=Dordrecht&amp;rft.pub=Kluwer+Academic&amp;rft.date=2003&amp;rft.aulast=Fatibene&amp;rft.aufirst=L.&amp;rft.au=Francaviglia%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALie+derivative" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFLichnerowicz1963" class="citation journal cs1">Lichnerowicz, A. (1963). "Spineurs harmoniques". <i>C. R. Acad. Sci. Paris</i>. <b>257</b>: <span class="nowrap">7–</span>9.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=C.+R.+Acad.+Sci.+Paris&amp;rft.atitle=Spineurs+harmoniques&amp;rft.volume=257&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E7-%3C%2Fspan%3E9&amp;rft.date=1963&amp;rft.aulast=Lichnerowicz&amp;rft.aufirst=A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALie+derivative" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFFatibeneFerrarisFrancavigliaGodina1996" class="citation book cs1">Fatibene, L.; Ferraris, M.; Francaviglia, M.; Godina, M. (1996). "A geometric definition of Lie derivative for Spinor Fields". In Janyska, J.; Kolář, I.; Slovák, J. (eds.). <i>Proceedings of the 6th International Conference on Differential Geometry and Applications, August 28th–September 1st 1995 (Brno, Czech Republic)</i>. Brno: Masaryk University. pp.&#160;<span class="nowrap">549–</span>558. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/gr-qc/9608003v1">gr-qc/9608003v1</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1996gr.qc.....8003F">1996gr.qc.....8003F</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/80-210-1369-9" title="Special:BookSources/80-210-1369-9"><bdi>80-210-1369-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=A+geometric+definition+of+Lie+derivative+for+Spinor+Fields&amp;rft.btitle=Proceedings+of+the+6th+International+Conference+on+Differential+Geometry+and+Applications%2C+August+28th%E2%80%93September+1st+1995+%28Brno%2C+Czech+Republic%29&amp;rft.place=Brno&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E549-%3C%2Fspan%3E558&amp;rft.pub=Masaryk+University&amp;rft.date=1996&amp;rft_id=info%3Aarxiv%2Fgr-qc%2F9608003v1&amp;rft_id=info%3Abibcode%2F1996gr.qc.....8003F&amp;rft.isbn=80-210-1369-9&amp;rft.aulast=Fatibene&amp;rft.aufirst=L.&amp;rft.au=Ferraris%2C+M.&amp;rft.au=Francaviglia%2C+M.&amp;rft.au=Godina%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALie+derivative" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFGodinaMatteucci2003" class="citation journal cs1">Godina, M.; Matteucci, P. (2003). "Reductive G-structures and Lie derivatives". <i><a href="/wiki/Journal_of_Geometry_and_Physics" title="Journal of Geometry and Physics">Journal of Geometry and Physics</a></i>. <b>47</b> (1): <span class="nowrap">66–</span>86. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0201235">math/0201235</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003JGP....47...66G">2003JGP....47...66G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0393-0440%2802%2900174-2">10.1016/S0393-0440(02)00174-2</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16408289">16408289</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Geometry+and+Physics&amp;rft.atitle=Reductive+G-structures+and+Lie+derivatives&amp;rft.volume=47&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E66-%3C%2Fspan%3E86&amp;rft.date=2003&amp;rft_id=info%3Aarxiv%2Fmath%2F0201235&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16408289%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2FS0393-0440%2802%2900174-2&amp;rft_id=info%3Abibcode%2F2003JGP....47...66G&amp;rft.aulast=Godina&amp;rft.aufirst=M.&amp;rft.au=Matteucci%2C+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALie+derivative" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFLuca_Fabbri,_Stefano_Vignolo,_Roberto_Cianci2024" class="citation journal cs1">Luca Fabbri, Stefano Vignolo, Roberto Cianci (2024). "Polar form of Dirac fields: implementing symmetries via Lie derivative". <i>Lett. Math. Phys</i>. <b>114</b>: 21. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2310.10678">2310.10678</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11005-024-01770-7">10.1007/s11005-024-01770-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Lett.+Math.+Phys.&amp;rft.atitle=Polar+form+of+Dirac+fields%3A+implementing+symmetries+via+Lie+derivative&amp;rft.volume=114&amp;rft.pages=21&amp;rft.date=2024&amp;rft_id=info%3Aarxiv%2F2310.10678&amp;rft_id=info%3Adoi%2F10.1007%2Fs11005-024-01770-7&amp;rft.au=Luca+Fabbri%2C+Stefano+Vignolo%2C+Roberto+Cianci&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALie+derivative" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFRosenfeld1940" class="citation journal cs1">Rosenfeld, L. (1940). "Sur le tenseur d'impulsion-énergie". <i>Mémoires Acad. Roy. D. Belg</i>. <b>18</b> (6): <span class="nowrap">1–</span>30.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=M%C3%A9moires+Acad.+Roy.+D.+Belg.&amp;rft.atitle=Sur+le+tenseur+d%27impulsion-%C3%A9nergie&amp;rft.volume=18&amp;rft.issue=6&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E30&amp;rft.date=1940&amp;rft.aulast=Rosenfeld&amp;rft.aufirst=L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALie+derivative" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFPauli1981" class="citation book cs1">Pauli, W. (1 July 1981) [1921]. <i>Theory of Relativity</i>. New York: Dover. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-64152-2" title="Special:BookSources/978-0-486-64152-2"><bdi>978-0-486-64152-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+of+Relativity&amp;rft.place=New+York&amp;rft.pub=Dover&amp;rft.date=1981-07-01&amp;rft.isbn=978-0-486-64152-2&amp;rft.aulast=Pauli&amp;rft.aufirst=W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALie+derivative" class="Z3988"></span> <i>See section 23</i></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lie_derivative&amp;action=edit&amp;section=19" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFAbrahamMarsden1978" class="citation book cs1"><a href="/wiki/Ralph_Abraham_(mathematician)" title="Ralph Abraham (mathematician)">Abraham, Ralph</a>; <a href="/wiki/Jerrold_E._Marsden" title="Jerrold E. Marsden">Marsden, Jerrold E.</a> (1978). <i>Foundations of Mechanics</i>. London: Benjamin-Cummings. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8053-0102-X" title="Special:BookSources/0-8053-0102-X"><bdi>0-8053-0102-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+Mechanics&amp;rft.place=London&amp;rft.pub=Benjamin-Cummings&amp;rft.date=1978&amp;rft.isbn=0-8053-0102-X&amp;rft.aulast=Abraham&amp;rft.aufirst=Ralph&amp;rft.au=Marsden%2C+Jerrold+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALie+derivative" class="Z3988"></span> <i>See section 2.2</i>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFBleecker1981" class="citation book cs1">Bleecker, David (1981). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/gaugetheoryvaria00blee_0"><i>Gauge Theory and Variational Principles</i></a></span>. Addison-Wesley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-201-10096-7" title="Special:BookSources/0-201-10096-7"><bdi>0-201-10096-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gauge+Theory+and+Variational+Principles&amp;rft.pub=Addison-Wesley&amp;rft.date=1981&amp;rft.isbn=0-201-10096-7&amp;rft.aulast=Bleecker&amp;rft.aufirst=David&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgaugetheoryvaria00blee_0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALie+derivative" class="Z3988"></span> <i>See Chapter 0</i>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFJost2002" class="citation book cs1"><a href="/wiki/J%C3%BCrgen_Jost" title="Jürgen Jost">Jost, Jürgen</a> (2002). <i>Riemannian Geometry and Geometric Analysis</i>. Berlin: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/3-540-42627-2" title="Special:BookSources/3-540-42627-2"><bdi>3-540-42627-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Riemannian+Geometry+and+Geometric+Analysis&amp;rft.place=Berlin&amp;rft.pub=Springer&amp;rft.date=2002&amp;rft.isbn=3-540-42627-2&amp;rft.aulast=Jost&amp;rft.aufirst=J%C3%BCrgen&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALie+derivative" class="Z3988"></span> <i>See section 1.6</i>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFKolářMichorSlovák1993" class="citation book cs1">Kolář, I.; Michor, P.; Slovák, J. (1993). <a rel="nofollow" class="external text" href="http://www.emis.de/monographs/KSM/index.html"><i>Natural operations in differential geometry</i></a>. Springer-Verlag. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9783662029503" title="Special:BookSources/9783662029503"><bdi>9783662029503</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Natural+operations+in+differential+geometry&amp;rft.pub=Springer-Verlag&amp;rft.date=1993&amp;rft.isbn=9783662029503&amp;rft.aulast=Kol%C3%A1%C5%99&amp;rft.aufirst=I.&amp;rft.au=Michor%2C+P.&amp;rft.au=Slov%C3%A1k%2C+J.&amp;rft_id=http%3A%2F%2Fwww.emis.de%2Fmonographs%2FKSM%2Findex.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALie+derivative" class="Z3988"></span> Extensive discussion of Lie brackets, and the general theory of Lie derivatives.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFLang1995" class="citation book cs1"><a href="/wiki/Serge_Lang" title="Serge Lang">Lang, S.</a> (1995). <i>Differential and Riemannian manifolds</i>. Springer-Verlag. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-94338-1" title="Special:BookSources/978-0-387-94338-1"><bdi>978-0-387-94338-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Differential+and+Riemannian+manifolds&amp;rft.pub=Springer-Verlag&amp;rft.date=1995&amp;rft.isbn=978-0-387-94338-1&amp;rft.aulast=Lang&amp;rft.aufirst=S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALie+derivative" class="Z3988"></span> For generalizations to infinite dimensions.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFLang1999" class="citation book cs1"><a href="/wiki/Serge_Lang" title="Serge Lang">Lang, S.</a> (1999). <i>Fundamentals of Differential Geometry</i>. Springer-Verlag. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-98593-0" title="Special:BookSources/978-0-387-98593-0"><bdi>978-0-387-98593-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fundamentals+of+Differential+Geometry&amp;rft.pub=Springer-Verlag&amp;rft.date=1999&amp;rft.isbn=978-0-387-98593-0&amp;rft.aulast=Lang&amp;rft.aufirst=S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALie+derivative" class="Z3988"></span> For generalizations to infinite dimensions.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite id="CITEREFYano1957" class="citation book cs1"><a href="/wiki/Kentaro_Yano_(mathematician)" title="Kentaro Yano (mathematician)">Yano, K.</a> (1957). <a rel="nofollow" class="external text" href="https://archive.org/details/theoryofliederiv029601mbp"><i>The Theory of Lie Derivatives and its Applications</i></a>. North-Holland. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7204-2104-0" title="Special:BookSources/978-0-7204-2104-0"><bdi>978-0-7204-2104-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Theory+of+Lie+Derivatives+and+its+Applications&amp;rft.pub=North-Holland&amp;rft.date=1957&amp;rft.isbn=978-0-7204-2104-0&amp;rft.aulast=Yano&amp;rft.aufirst=K.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ftheoryofliederiv029601mbp&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALie+derivative" class="Z3988"></span> Classical approach using coordinates.</li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lie_derivative&amp;action=edit&amp;section=20" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222" /><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Lie_derivative">"Lie derivative"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Lie+derivative&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DLie_derivative&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALie+derivative" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Manifolds_(Glossary,_List,_Category)274" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Manifolds" title="Template:Manifolds"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Manifolds" title="Template talk:Manifolds"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Manifolds" title="Special:EditPage/Template:Manifolds"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Manifolds_(Glossary,_List,_Category)274" style="font-size:114%;margin:0 4em"><a href="/wiki/Manifold" title="Manifold">Manifolds</a> (<a href="/wiki/Glossary_of_differential_geometry_and_topology" title="Glossary of differential geometry and topology">Glossary</a>, <a href="/wiki/List_of_manifolds" title="List of manifolds">List</a>, <a href="/wiki/Category:Manifolds" title="Category:Manifolds">Category</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Topological_manifold" title="Topological manifold">Topological manifold</a> <ul><li><a href="/wiki/Atlas_(topology)" title="Atlas (topology)">Atlas</a></li></ul></li> <li><a href="/wiki/Differentiable_manifold" title="Differentiable manifold">Differentiable/Smooth manifold</a> <ul><li><a href="/wiki/Differential_structure" title="Differential structure">Differential structure</a></li> <li><a href="/wiki/Smooth_structure" title="Smooth structure">Smooth atlas</a></li></ul></li> <li><a href="/wiki/Submanifold" title="Submanifold">Submanifold</a></li> <li><a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian manifold</a></li> <li><a href="/wiki/Smoothness" title="Smoothness">Smooth map</a></li> <li><a href="/wiki/Submersion_(mathematics)" title="Submersion (mathematics)">Submersion</a></li> <li><a href="/wiki/Pushforward_(differential)" title="Pushforward (differential)">Pushforward</a></li> <li><a href="/wiki/Tangent_space" title="Tangent space">Tangent space</a></li> <li><a href="/wiki/Differential_form" title="Differential form">Differential form</a></li> <li><a href="/wiki/Vector_field" title="Vector field">Vector field</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Main results <span style="font-size: 85%;"><a href="/wiki/Category:Theorems_in_differential_geometry" title="Category:Theorems in differential geometry">(list)</a></span></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Atiyah%E2%80%93Singer_index_theorem" title="Atiyah–Singer index theorem">Atiyah–Singer index</a></li> <li><a href="/wiki/Darboux%27s_theorem" title="Darboux&#39;s theorem">Darboux's</a></li> <li><a href="/wiki/De_Rham_cohomology#De_Rham&#39;s_theorem" title="De Rham cohomology">De Rham's</a></li> <li><a href="/wiki/Frobenius_theorem_(differential_topology)" title="Frobenius theorem (differential topology)">Frobenius</a></li> <li><a href="/wiki/Generalized_Stokes_theorem" title="Generalized Stokes theorem">Generalized Stokes</a></li> <li><a href="/wiki/Hopf%E2%80%93Rinow_theorem" title="Hopf–Rinow theorem">Hopf–Rinow</a></li> <li><a href="/wiki/Noether%27s_theorem" title="Noether&#39;s theorem">Noether's</a></li> <li><a href="/wiki/Sard%27s_theorem" title="Sard&#39;s theorem">Sard's</a></li> <li><a href="/wiki/Whitney_embedding_theorem" title="Whitney embedding theorem">Whitney embedding</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Smoothness" title="Smoothness">Maps</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Differentiable_curve" title="Differentiable curve">Curve</a></li> <li><a href="/wiki/Diffeomorphism" title="Diffeomorphism">Diffeomorphism</a> <ul><li><a href="/wiki/Local_diffeomorphism" title="Local diffeomorphism">Local</a></li></ul></li> <li><a href="/wiki/Geodesic" title="Geodesic">Geodesic</a></li> <li><a href="/wiki/Exponential_map_(Riemannian_geometry)" title="Exponential map (Riemannian geometry)">Exponential map</a> <ul><li><a href="/wiki/Exponential_map_(Lie_theory)" title="Exponential map (Lie theory)">in Lie theory</a></li></ul></li> <li><a href="/wiki/Foliation" title="Foliation">Foliation</a></li> <li><a href="/wiki/Immersion_(mathematics)" title="Immersion (mathematics)">Immersion</a></li> <li><a href="/wiki/Integral_curve" title="Integral curve">Integral curve</a></li> <li><a class="mw-selflink selflink">Lie derivative</a></li> <li><a href="/wiki/Section_(fiber_bundle)" title="Section (fiber bundle)">Section</a></li> <li><a href="/wiki/Submersion_(mathematics)" title="Submersion (mathematics)">Submersion</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of<br />manifolds</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Closed_manifold" title="Closed manifold">Closed</a></li> <li><a href="/wiki/Collapsing_manifold" title="Collapsing manifold">Collapsing</a></li> <li><a href="/wiki/Complete_manifold" title="Complete manifold">Complete</a></li> <li>(<a href="/wiki/Almost_complex_manifold" title="Almost complex manifold">Almost</a>)&#160;<a href="/wiki/Complex_manifold" title="Complex manifold">Complex</a></li> <li>(<a href="/wiki/Almost-contact_manifold" title="Almost-contact manifold">Almost</a>)&#160;<a href="/wiki/Contact_manifold" class="mw-redirect" title="Contact manifold">Contact</a></li> <li><a href="/wiki/Fibered_manifold" title="Fibered manifold">Fibered</a></li> <li><a href="/wiki/Finsler_manifold" title="Finsler manifold">Finsler</a></li> <li>(<a href="/wiki/Almost_flat_manifold" title="Almost flat manifold">Almost</a>)&#160;<a href="/wiki/Flat_manifold" title="Flat manifold">Flat</a></li> <li><a href="/wiki/G-structure_on_a_manifold" title="G-structure on a manifold">G-structure</a></li> <li><a href="/wiki/Hadamard_manifold" title="Hadamard manifold">Hadamard</a></li> <li><a href="/wiki/Hermitian_manifold" title="Hermitian manifold">Hermitian</a></li> <li><a href="/wiki/Hyperbolic_manifold" title="Hyperbolic manifold">Hyperbolic</a></li> <li><a href="/wiki/K%C3%A4hler_manifold" title="Kähler manifold">Kähler</a></li> <li><a href="/wiki/Kenmotsu_manifold" title="Kenmotsu manifold">Kenmotsu</a></li> <li><a href="/wiki/Lie_group" title="Lie group">Lie group</a> <ul><li><a href="/wiki/Lie_group%E2%80%93Lie_algebra_correspondence" title="Lie group–Lie algebra correspondence">Lie algebra</a></li></ul></li> <li><a href="/wiki/Manifold_with_boundary" class="mw-redirect" title="Manifold with boundary">Manifold with boundary</a></li> <li><a href="/wiki/Nilmanifold" title="Nilmanifold">Nilmanifold</a></li> <li><a href="/wiki/Orientability" title="Orientability">Oriented</a></li> <li><a href="/wiki/Parallelizable_manifold" title="Parallelizable manifold">Parallelizable</a></li> <li><a href="/wiki/Poisson_manifold" title="Poisson manifold">Poisson</a></li> <li><a href="/wiki/Prime_manifold" title="Prime manifold">Prime</a></li> <li><a href="/wiki/Quaternionic_manifold" title="Quaternionic manifold">Quaternionic</a></li> <li><a href="/wiki/Hypercomplex_manifold" title="Hypercomplex manifold">Hypercomplex</a></li> <li>(<a href="/wiki/Pseudo-Riemannian_manifold" title="Pseudo-Riemannian manifold">Pseudo−</a>,&#160;<a href="/wiki/Sub-Riemannian_manifold" title="Sub-Riemannian manifold">Sub−</a>)&#160;<a href="/wiki/Riemannian_manifold" title="Riemannian manifold">Riemannian</a></li> <li><a href="/wiki/Rizza_manifold" title="Rizza manifold">Rizza</a></li> <li>(<a href="/wiki/Almost_symplectic_manifold" title="Almost symplectic manifold">Almost</a>)&#160;<a href="/wiki/Symplectic_manifold" title="Symplectic manifold">Symplectic</a></li> <li><a href="/wiki/Tame_manifold" title="Tame manifold">Tame</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Tensor" title="Tensor">Tensors</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Vectors</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Distribution_(differential_geometry)" title="Distribution (differential geometry)">Distribution</a></li> <li><a href="/wiki/Lie_bracket_of_vector_fields" title="Lie bracket of vector fields">Lie bracket</a></li> <li><a href="/wiki/Pushforward_(differential)" title="Pushforward (differential)">Pushforward</a></li> <li><a href="/wiki/Tangent_space" title="Tangent space">Tangent space</a> <ul><li><a href="/wiki/Tangent_bundle" title="Tangent bundle">bundle</a></li></ul></li> <li><a href="/wiki/Torsion_tensor" title="Torsion tensor">Torsion</a></li> <li><a href="/wiki/Vector_field" title="Vector field">Vector field</a></li> <li><a href="/wiki/Vector_flow" title="Vector flow">Vector flow</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Covectors</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Closed_and_exact_differential_forms" title="Closed and exact differential forms">Closed/Exact</a></li> <li><a href="/wiki/Covariant_derivative" title="Covariant derivative">Covariant derivative</a></li> <li><a href="/wiki/Cotangent_space" title="Cotangent space">Cotangent space</a> <ul><li><a href="/wiki/Cotangent_bundle" title="Cotangent bundle">bundle</a></li></ul></li> <li><a href="/wiki/De_Rham_cohomology" title="De Rham cohomology">De Rham cohomology</a></li> <li><a href="/wiki/Differential_form" title="Differential form">Differential form</a> <ul><li><a href="/wiki/Vector-valued_differential_form" title="Vector-valued differential form">Vector-valued</a></li></ul></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior derivative</a></li> <li><a href="/wiki/Interior_product" title="Interior product">Interior product</a></li> <li><a href="/wiki/Pullback_(differential_geometry)" title="Pullback (differential geometry)">Pullback</a></li> <li><a href="/wiki/Ricci_curvature" title="Ricci curvature">Ricci curvature</a> <ul><li><a href="/wiki/Ricci_flow" title="Ricci flow">flow</a></li></ul></li> <li><a href="/wiki/Riemann_curvature_tensor" title="Riemann curvature tensor">Riemann curvature tensor</a></li> <li><a href="/wiki/Tensor_field" title="Tensor field">Tensor field</a> <ul><li><a href="/wiki/Tensor_density" title="Tensor density">density</a></li></ul></li> <li><a href="/wiki/Volume_form" title="Volume form">Volume form</a></li> <li><a href="/wiki/Wedge_product" class="mw-redirect" title="Wedge product">Wedge product</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Fiber_bundle" title="Fiber bundle">Bundles</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adjoint_bundle" title="Adjoint bundle">Adjoint</a></li> <li><a href="/wiki/Affine_bundle" title="Affine bundle">Affine</a></li> <li><a href="/wiki/Associated_bundle" title="Associated bundle">Associated</a></li> <li><a href="/wiki/Cotangent_bundle" title="Cotangent bundle">Cotangent</a></li> <li><a href="/wiki/Dual_bundle" title="Dual bundle">Dual</a></li> <li><a href="/wiki/Fiber_bundle" title="Fiber bundle">Fiber</a></li> <li>(<a href="/wiki/Cofibration" title="Cofibration">Co</a>)&#160;<a href="/wiki/Fibration" title="Fibration">Fibration</a></li> <li><a href="/wiki/Jet_bundle" title="Jet bundle">Jet</a></li> <li><a href="/wiki/Lie_algebra_bundle" title="Lie algebra bundle">Lie algebra</a></li> <li>(<a href="/wiki/Stable_normal_bundle" title="Stable normal bundle">Stable</a>)&#160;<a href="/wiki/Normal_bundle" title="Normal bundle">Normal</a></li> <li><a href="/wiki/Principal_bundle" title="Principal bundle">Principal</a></li> <li><a href="/wiki/Spinor_bundle" title="Spinor bundle">Spinor</a></li> <li><a href="/wiki/Subbundle" title="Subbundle">Subbundle</a></li> <li><a href="/wiki/Tangent_bundle" title="Tangent bundle">Tangent</a></li> <li><a href="/wiki/Tensor_bundle" title="Tensor bundle">Tensor</a></li> <li><a href="/wiki/Vector_bundle" title="Vector bundle">Vector</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Connection_(mathematics)" title="Connection (mathematics)">Connections</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Affine_connection" title="Affine connection">Affine</a></li> <li><a href="/wiki/Cartan_connection" title="Cartan connection">Cartan</a></li> <li><a href="/wiki/Ehresmann_connection" title="Ehresmann connection">Ehresmann</a></li> <li><a href="/wiki/Connection_form" title="Connection form">Form</a></li> <li><a href="/wiki/Connection_(fibred_manifold)" title="Connection (fibred manifold)">Generalized</a></li> <li><a href="/wiki/Koszul_connection" class="mw-redirect" title="Koszul connection">Koszul</a></li> <li><a href="/wiki/Levi-Civita_connection" title="Levi-Civita connection">Levi-Civita</a></li> <li><a href="/wiki/Connection_(principal_bundle)" title="Connection (principal bundle)">Principal</a></li> <li><a href="/wiki/Connection_(vector_bundle)" title="Connection (vector bundle)">Vector</a></li> <li><a href="/wiki/Parallel_transport" title="Parallel transport">Parallel transport</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Classification_of_manifolds" title="Classification of manifolds">Classification of manifolds</a></li> <li><a href="/wiki/Gauge_theory_(mathematics)" title="Gauge theory (mathematics)">Gauge theory</a></li> <li><a href="/wiki/History_of_manifolds_and_varieties" title="History of manifolds and varieties">History</a></li> <li><a href="/wiki/Morse_theory" title="Morse theory">Morse theory</a></li> <li><a href="/wiki/Moving_frame" title="Moving frame">Moving frame</a></li> <li><a href="/wiki/Singularity_theory" title="Singularity theory">Singularity theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Generalizations</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_manifold" title="Banach manifold">Banach manifold</a></li> <li><a href="/wiki/Diffeology" title="Diffeology">Diffeology</a></li> <li><a href="/wiki/Diffiety" title="Diffiety">Diffiety</a></li> <li><a href="/wiki/Fr%C3%A9chet_manifold" title="Fréchet manifold">Fréchet manifold</a></li> <li><a href="/wiki/K-theory" title="K-theory">K-theory</a></li> <li><a href="/wiki/Orbifold" title="Orbifold">Orbifold</a></li> <li><a href="/wiki/Secondary_calculus_and_cohomological_physics" title="Secondary calculus and cohomological physics">Secondary calculus</a> <ul><li><a href="/wiki/Differential_calculus_over_commutative_algebras" title="Differential calculus over commutative algebras">over commutative algebras</a></li></ul></li> <li><a href="/wiki/Sheaf_(mathematics)" title="Sheaf (mathematics)">Sheaf</a></li> <li><a href="/wiki/Stratifold" title="Stratifold">Stratifold</a></li> <li><a href="/wiki/Supermanifold" title="Supermanifold">Supermanifold</a></li> <li><a href="/wiki/Stratified_space" title="Stratified space">Stratified space</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235" /></div><div role="navigation" class="navbox" aria-labelledby="Tensors176" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374" /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231" /><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Tensors" title="Template:Tensors"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Tensors" title="Template talk:Tensors"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Tensors" title="Special:EditPage/Template:Tensors"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Tensors176" style="font-size:114%;margin:0 4em"><a href="/wiki/Tensor" title="Tensor">Tensors</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div><i><a href="/wiki/Glossary_of_tensor_theory" title="Glossary of tensor theory">Glossary of tensor theory</a></i></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Scope</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Mathematics" title="Mathematics">Mathematics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Coordinate_system" title="Coordinate system">Coordinate system</a></li> <li><a href="/wiki/Differential_geometry" title="Differential geometry">Differential geometry</a></li> <li><a href="/wiki/Dyadics" title="Dyadics">Dyadic algebra</a></li> <li><a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a></li> <li><a href="/wiki/Exterior_calculus" class="mw-redirect" title="Exterior calculus">Exterior calculus</a></li> <li><a href="/wiki/Multilinear_algebra" title="Multilinear algebra">Multilinear algebra</a></li> <li><a href="/wiki/Tensor_algebra" title="Tensor algebra">Tensor algebra</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor calculus</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><div class="hlist"><ul><li><a href="/wiki/Physics" title="Physics">Physics</a></li><li><a href="/wiki/Engineering" title="Engineering">Engineering</a></li></ul></div></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Computer_vision" title="Computer vision">Computer vision</a></li> <li><a href="/wiki/Continuum_mechanics" title="Continuum mechanics">Continuum mechanics</a></li> <li><a href="/wiki/Electromagnetism" title="Electromagnetism">Electromagnetism</a></li> <li><a href="/wiki/General_relativity" title="General relativity">General relativity</a></li> <li><a href="/wiki/Transport_phenomena" title="Transport phenomena">Transport phenomena</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Notation</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_index_notation" title="Abstract index notation">Abstract index notation</a></li> <li><a href="/wiki/Einstein_notation" title="Einstein notation">Einstein notation</a></li> <li><a href="/wiki/Index_notation" title="Index notation">Index notation</a></li> <li><a href="/wiki/Multi-index_notation" title="Multi-index notation">Multi-index notation</a></li> <li><a href="/wiki/Penrose_graphical_notation" title="Penrose graphical notation">Penrose graphical notation</a></li> <li><a href="/wiki/Ricci_calculus" title="Ricci calculus">Ricci calculus</a></li> <li><a href="/wiki/Tetrad_(index_notation)" class="mw-redirect" title="Tetrad (index notation)">Tetrad (index notation)</a></li> <li><a href="/wiki/Van_der_Waerden_notation" title="Van der Waerden notation">Van der Waerden notation</a></li> <li><a href="/wiki/Voigt_notation" title="Voigt notation">Voigt notation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Tensor<br />definitions</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Tensor_(intrinsic_definition)" title="Tensor (intrinsic definition)">Tensor (intrinsic definition)</a></li> <li><a href="/wiki/Tensor_field" title="Tensor field">Tensor field</a></li> <li><a href="/wiki/Tensor_density" title="Tensor density">Tensor density</a></li> <li><a href="/wiki/Tensors_in_curvilinear_coordinates" title="Tensors in curvilinear coordinates">Tensors in curvilinear coordinates</a></li> <li><a href="/wiki/Mixed_tensor" title="Mixed tensor">Mixed tensor</a></li> <li><a href="/wiki/Antisymmetric_tensor" title="Antisymmetric tensor">Antisymmetric tensor</a></li> <li><a href="/wiki/Symmetric_tensor" title="Symmetric tensor">Symmetric tensor</a></li> <li><a href="/wiki/Tensor_operator" title="Tensor operator">Tensor operator</a></li> <li><a href="/wiki/Tensor_bundle" title="Tensor bundle">Tensor bundle</a></li> <li><a href="/wiki/Two-point_tensor" title="Two-point tensor">Two-point tensor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">Operations</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Covariant_derivative" title="Covariant derivative">Covariant derivative</a></li> <li><a href="/wiki/Exterior_covariant_derivative" title="Exterior covariant derivative">Exterior covariant derivative</a></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior derivative</a></li> <li><a href="/wiki/Exterior_product" class="mw-redirect" title="Exterior product">Exterior product</a></li> <li><a href="/wiki/Hodge_star_operator" title="Hodge star operator">Hodge star operator</a></li> <li><a class="mw-selflink selflink">Lie derivative</a></li> <li><a href="/wiki/Raising_and_lowering_indices" title="Raising and lowering indices">Raising and lowering indices</a></li> <li><a href="/wiki/Symmetrization" title="Symmetrization">Symmetrization</a></li> <li><a href="/wiki/Tensor_contraction" title="Tensor contraction">Tensor contraction</a></li> <li><a href="/wiki/Tensor_product" title="Tensor product">Tensor product</a></li> <li><a href="/wiki/Transpose" title="Transpose">Transpose</a> (2nd-order tensors)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related<br />abstractions</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Affine_connection" title="Affine connection">Affine connection</a></li> <li><a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">Basis</a></li> <li><a href="/wiki/Cartan_formalism_(physics)" class="mw-redirect" title="Cartan formalism (physics)">Cartan formalism (physics)</a></li> <li><a href="/wiki/Connection_form" title="Connection form">Connection form</a></li> <li><a href="/wiki/Covariance_and_contravariance_of_vectors" title="Covariance and contravariance of vectors">Covariance and contravariance of vectors</a></li> <li><a href="/wiki/Differential_form" title="Differential form">Differential form</a></li> <li><a href="/wiki/Dimension" title="Dimension">Dimension</a></li> <li><a href="/wiki/Exterior_form" class="mw-redirect" title="Exterior form">Exterior form</a></li> <li><a href="/wiki/Fiber_bundle" title="Fiber bundle">Fiber bundle</a></li> <li><a href="/wiki/Geodesic" title="Geodesic">Geodesic</a></li> <li><a href="/wiki/Levi-Civita_connection" title="Levi-Civita connection">Levi-Civita connection</a></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear map</a></li> <li><a href="/wiki/Manifold" title="Manifold">Manifold</a></li> <li><a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">Matrix</a></li> <li><a href="/wiki/Multivector" title="Multivector">Multivector</a></li> <li><a href="/wiki/Pseudotensor" title="Pseudotensor">Pseudotensor</a></li> <li><a href="/wiki/Spinor" title="Spinor">Spinor</a></li> <li><a href="/wiki/Vector_(mathematics_and_physics)" title="Vector (mathematics and physics)">Vector</a></li> <li><a href="/wiki/Vector_space" title="Vector space">Vector space</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Notable tensors</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Mathematics</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a></li> <li><a href="/wiki/Levi-Civita_symbol" title="Levi-Civita symbol">Levi-Civita symbol</a></li> <li><a href="/wiki/Metric_tensor" title="Metric tensor">Metric tensor</a></li> <li><a href="/wiki/Nonmetricity_tensor" title="Nonmetricity tensor">Nonmetricity tensor</a></li> <li><a href="/wiki/Ricci_curvature" title="Ricci curvature">Ricci curvature</a></li> <li><a href="/wiki/Riemann_curvature_tensor" title="Riemann curvature tensor">Riemann curvature tensor</a></li> <li><a href="/wiki/Torsion_tensor" title="Torsion tensor">Torsion tensor</a></li> <li><a href="/wiki/Weyl_tensor" title="Weyl tensor">Weyl tensor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Physics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Moment_of_inertia#Inertia_tensor" title="Moment of inertia">Moment of inertia</a></li> <li><a href="/wiki/Angular_momentum#Angular_momentum_in_relativistic_mechanics" title="Angular momentum">Angular momentum tensor</a></li> <li><a href="/wiki/Spin_tensor" title="Spin tensor">Spin tensor</a></li> <li><a href="/wiki/Cauchy_stress_tensor" title="Cauchy stress tensor">Cauchy stress tensor</a></li> <li><a href="/wiki/Stress%E2%80%93energy_tensor" title="Stress–energy tensor">stress–energy tensor</a></li> <li><a href="/wiki/Einstein_tensor" title="Einstein tensor">Einstein tensor</a></li> <li><a href="/wiki/Electromagnetic_tensor" title="Electromagnetic tensor">EM tensor</a></li> <li><a href="/wiki/Gluon_field_strength_tensor" title="Gluon field strength tensor">Gluon field strength tensor</a></li> <li><a href="/wiki/Metric_tensor_(general_relativity)" title="Metric tensor (general relativity)">Metric tensor (GR)</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Mathematician" title="Mathematician">Mathematicians</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Élie Cartan</a></li> <li><a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a></li> <li><a href="/wiki/Elwin_Bruno_Christoffel" title="Elwin Bruno Christoffel">Elwin Bruno Christoffel</a></li> <li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a></li> <li><a href="/wiki/Hermann_Grassmann" title="Hermann Grassmann">Hermann Grassmann</a></li> <li><a href="/wiki/Tullio_Levi-Civita" title="Tullio Levi-Civita">Tullio Levi-Civita</a></li> <li><a href="/wiki/Gregorio_Ricci-Curbastro" title="Gregorio Ricci-Curbastro">Gregorio Ricci-Curbastro</a></li> <li><a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a></li> <li><a href="/wiki/Jan_Arnoldus_Schouten" title="Jan Arnoldus Schouten">Jan Arnoldus Schouten</a></li> <li><a href="/wiki/Woldemar_Voigt" title="Woldemar Voigt">Woldemar Voigt</a></li> <li><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Hermann Weyl</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐5c6f46dcf‐4sqrw Cached time: 20250331030321 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.616 seconds Real time usage: 0.869 seconds Preprocessor visited node count: 2695/1000000 Post‐expand include size: 93252/2097152 bytes Template argument size: 1028/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 88376/5000000 bytes Lua time usage: 0.295/10.000 seconds Lua memory usage: 6480986/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 497.677 1 -total 30.64% 152.507 1 Template:Reflist 25.75% 128.157 13 Template:Cite_book 19.46% 96.832 4 Template:Navbox 17.71% 88.146 1 Template:Short_description 16.22% 80.729 1 Template:Manifolds 12.46% 62.004 2 Template:Pagetype 7.42% 36.934 7 Template:Cite_journal 5.80% 28.850 1 Template:IPAc-en 4.06% 20.193 1 Template:See_also --> <!-- Saved in parser cache with key enwiki:pcache:294437:|#|:idhash:canonical and timestamp 20250331030321 and revision id 1282730053. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://auth.wikimedia.org/loginwiki/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Lie_derivative&amp;oldid=1282730053">https://en.wikipedia.org/w/index.php?title=Lie_derivative&amp;oldid=1282730053</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Differential_geometry" title="Category:Differential geometry">Differential geometry</a></li><li><a href="/wiki/Category:Differential_topology" title="Category:Differential topology">Differential topology</a></li><li><a href="/wiki/Category:Differential_operators" title="Category:Differential operators">Differential operators</a></li><li><a href="/wiki/Category:Generalizations_of_the_derivative" title="Category:Generalizations of the derivative">Generalizations of the derivative</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">CS1 maint: multiple names: authors list</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_November_2024" title="Category:Use dmy dates from November 2024">Use dmy dates from November 2024</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 28 March 2025, at 07:18<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Lie_derivative&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://www.wikimedia.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/static/images/footer/wikimedia-button.svg" width="84" height="29"><img src="/static/images/footer/wikimedia.svg" width="25" height="25" alt="Wikimedia Foundation" lang="en" loading="lazy"></picture></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" lang="en" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Lie derivative</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>15 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="mw-portlet mw-portlet-dock-bottom emptyPortlet" id="p-dock-bottom"> <ul> </ul> </div> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-684955989f-bjc42","wgBackendResponseTime":256,"wgPageParseReport":{"limitreport":{"cputime":"0.616","walltime":"0.869","ppvisitednodes":{"value":2695,"limit":1000000},"postexpandincludesize":{"value":93252,"limit":2097152},"templateargumentsize":{"value":1028,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":88376,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 497.677 1 -total"," 30.64% 152.507 1 Template:Reflist"," 25.75% 128.157 13 Template:Cite_book"," 19.46% 96.832 4 Template:Navbox"," 17.71% 88.146 1 Template:Short_description"," 16.22% 80.729 1 Template:Manifolds"," 12.46% 62.004 2 Template:Pagetype"," 7.42% 36.934 7 Template:Cite_journal"," 5.80% 28.850 1 Template:IPAc-en"," 4.06% 20.193 1 Template:See_also"]},"scribunto":{"limitreport-timeusage":{"value":"0.295","limit":"10.000"},"limitreport-memusage":{"value":6480986,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-5c6f46dcf-4sqrw","timestamp":"20250331030321","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Lie derivative","url":"https:\/\/en.wikipedia.org\/wiki\/Lie_derivative","sameAs":"http:\/\/www.wikidata.org\/entity\/Q579267","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q579267","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-08-12T01:38:37Z","dateModified":"2025-03-28T07:18:28Z","headline":"derivative of a tensor field along the flow defined by a vector field"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10