CINXE.COM

Search results for: magnetic navigation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: magnetic navigation</title> <meta name="description" content="Search results for: magnetic navigation"> <meta name="keywords" content="magnetic navigation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="magnetic navigation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="magnetic navigation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1740</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: magnetic navigation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1740</span> An Optimized Method for 3D Magnetic Navigation of Nanoparticles inside Human Arteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evangelos%20G.%20Karvelas">Evangelos G. Karvelas</a>, <a href="https://publications.waset.org/abstracts/search?q=Christos%20Liosis"> Christos Liosis</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Theodorakakos"> Andreas Theodorakakos</a>, <a href="https://publications.waset.org/abstracts/search?q=Theodoros%20E.%20Karakasidis"> Theodoros E. Karakasidis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, a numerical method for the estimation of the appropriate gradient magnetic fields for optimum driving of the particles into the desired area inside the human body is presented. The proposed method combines Computational Fluid Dynamics (CFD), Discrete Element Method (DEM) and Covariance Matrix Adaptation (CMA) evolution strategy for the magnetic navigation of nanoparticles. It is based on an iteration procedure that intents to eliminate the deviation of the nanoparticles from a desired path. Hence, the gradient magnetic field is constantly adjusted in a suitable way so that the particles&rsquo; follow as close as possible to a desired trajectory. Using the proposed method, it is obvious that the diameter of particles is crucial parameter for an efficient navigation. In addition, increase of particles&#39; diameter decreases their deviation from the desired path. Moreover, the navigation method can navigate nanoparticles into the desired areas with efficiency approximately 99%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=covariance%20matrix%20adaptation%20evolution%20strategy" title=" covariance matrix adaptation evolution strategy"> covariance matrix adaptation evolution strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=DEM" title=" DEM"> DEM</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20navigation" title=" magnetic navigation"> magnetic navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20particles" title=" spherical particles"> spherical particles</a> </p> <a href="https://publications.waset.org/abstracts/131811/an-optimized-method-for-3d-magnetic-navigation-of-nanoparticles-inside-human-arteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1739</span> Magnetic Navigation of Nanoparticles inside a 3D Carotid Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20G.%20Karvelas">E. G. Karvelas</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Liosis"> C. Liosis</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Theodorakakos"> A. Theodorakakos</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20E.%20Karakasidis"> T. E. Karakasidis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic navigation of the drug inside the human vessels is a very important concept since the drug is delivered to the desired area. Consequently, the quantity of the drug required to reach therapeutic levels is being reduced while the drug concentration at targeted sites is increased. Magnetic navigation of drug agents can be achieved with the use of magnetic nanoparticles where anti-tumor agents are loaded on the surface of the nanoparticles. The magnetic field that is required to navigate the particles inside the human arteries is produced by a magnetic resonance imaging (MRI) device. The main factors which influence the efficiency of the usage of magnetic nanoparticles for biomedical applications in magnetic driving are the size and the magnetization of the biocompatible nanoparticles. In this study, a computational platform for the simulation of the optimal gradient magnetic fields for the navigation of magnetic nanoparticles inside a carotid artery is presented. For the propulsion model of the particles, seven major forces are considered, i.e., the magnetic force from MRIs main magnet static field as well as the magnetic field gradient force from the special propulsion gradient coils. The static field is responsible for the aggregation of nanoparticles, while the magnetic gradient contributes to the navigation of the agglomerates that are formed. Moreover, the contact forces among the aggregated nanoparticles and the wall and the Stokes drag force for each particle are considered, while only spherical particles are used in this study. In addition, gravitational forces due to gravity and the force due to buoyancy are included. Finally, Van der Walls force and Brownian motion are taken into account in the simulation. The OpenFoam platform is used for the calculation of the flow field and the uncoupled equations of particles' motion. To verify the optimal gradient magnetic fields, a covariance matrix adaptation evolution strategy (CMAES) is used in order to navigate the particles into the desired area. A desired trajectory is inserted into the computational geometry, which the particles are going to be navigated in. Initially, the CMAES optimization strategy provides the OpenFOAM program with random values of the gradient magnetic field. At the end of each simulation, the computational platform evaluates the distance between the particles and the desired trajectory. The present model can simulate the motion of particles when they are navigated by the magnetic field that is produced by the MRI device. Under the influence of fluid flow, the model investigates the effect of different gradient magnetic fields in order to minimize the distance of particles from the desired trajectory. In addition, the platform can navigate the particles into the desired trajectory with an efficiency between 80-90%. On the other hand, a small number of particles are stuck to the walls and remains there for the rest of the simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artery" title="artery">artery</a>, <a href="https://publications.waset.org/abstracts/search?q=drug" title=" drug"> drug</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation" title=" navigation"> navigation</a> </p> <a href="https://publications.waset.org/abstracts/130307/magnetic-navigation-of-nanoparticles-inside-a-3d-carotid-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1738</span> Research on the United Navigation Mechanism of Land, Sea and Air Targets under Multi-Sources Information Fusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rui%20Liu">Rui Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaus%20Greve"> Klaus Greve</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The navigation information is a kind of dynamic geographic information, and the navigation information system is a kind of special geographic information system. At present, there are many researches on the application of centralized management and cross-integration application of basic geographic information. However, the idea of information integration and sharing is not deeply applied into the research of navigation information service. And the imperfection of navigation target coordination and navigation information sharing mechanism under certain navigation tasks has greatly affected the reliability and scientificity of navigation service such as path planning. Considering this, the project intends to study the multi-source information fusion and multi-objective united navigation information interaction mechanism: first of all, investigate the actual needs of navigation users in different areas, and establish the preliminary navigation information classification and importance level model; and then analyze the characteristics of the remote sensing and GIS vector data, and design the fusion algorithm from the aspect of improving the positioning accuracy and extracting the navigation environment data. At last, the project intends to analyze the feature of navigation information of the land, sea and air navigation targets, and design the united navigation data standard and navigation information sharing model under certain navigation tasks, and establish a test navigation system for united navigation simulation experiment. The aim of this study is to explore the theory of united navigation service and optimize the navigation information service model, which will lay the theory and technology foundation for the united navigation of land, sea and air targets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20fusion" title="information fusion">information fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=united%20navigation" title=" united navigation"> united navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20path%20planning" title=" dynamic path planning"> dynamic path planning</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation%20information%20visualization" title=" navigation information visualization"> navigation information visualization</a> </p> <a href="https://publications.waset.org/abstracts/70612/research-on-the-united-navigation-mechanism-of-land-sea-and-air-targets-under-multi-sources-information-fusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1737</span> Design of an Air and Land Multi-Element Expression Pattern of Navigation Electronic Map for Ground Vehicles under United Navigation Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rui%20Liu">Rui Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengyu%20Cui"> Pengyu Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Nan%20Jiang"> Nan Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, there is much research on the application of centralized management and cross-integration application of basic geographic information. However, the idea of information integration and sharing between land, sea, and air navigation targets is not deeply applied into the research of navigation information service, especially in the information expression. Targeting at this problem, the paper carries out works about the expression pattern of navigation electronic map for ground vehicles under air and land united navigation mechanism. At first, with the support from multi-source information fusion of GIS vector data, RS data, GPS data, etc., an air and land united information expression pattern is designed aiming at specific navigation task of emergency rescue in the earthquake. And then, the characteristics and specifications of the united expression of air and land navigation information under the constraints of map load are summarized and transferred into expression rules in the rule bank. At last, the related navigation experiment is implemented to evaluate the effect of the expression pattern. The experiment selects evaluation factors of the navigation task accomplishment time and the navigation error rate as the main index, and make comparisons with the traditional single information expression pattern. To sum up, the research improved the theory of navigation electronic map and laid a certain foundation for the design and realization of united navigation system in the aspect of real-time navigation information delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=navigation%20electronic%20map" title="navigation electronic map">navigation electronic map</a>, <a href="https://publications.waset.org/abstracts/search?q=united%20navigation" title=" united navigation"> united navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-element%20expression%20pattern" title=" multi-element expression pattern"> multi-element expression pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-source%20information%20fusion" title=" multi-source information fusion"> multi-source information fusion</a> </p> <a href="https://publications.waset.org/abstracts/79171/design-of-an-air-and-land-multi-element-expression-pattern-of-navigation-electronic-map-for-ground-vehicles-under-united-navigation-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1736</span> Optical Flow Localisation and Appearance Mapping (OFLAAM) for Long-Term Navigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Pastor">Daniel Pastor</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo-Sang%20Shin"> Hyo-Sang Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a novel method to use optical flow navigation for long-term navigation. Unlike standard SLAM approaches for augmented reality, OFLAAM is designed for Micro Air Vehicles (MAV). It uses an optical flow camera pointing downwards, an IMU and a monocular camera pointing frontwards. That configuration avoids the expensive mapping and tracking of the 3D features. It only maps these features in a vocabulary list by a localization module to tackle the loss of the navigation estimation. That module, based on the well-established algorithm DBoW2, will be also used to close the loop and allow long-term navigation in confined areas. That combination of high-speed optical flow navigation with a low rate localization algorithm allows fully autonomous navigation for MAV, at the same time it reduces the overall computational load. This framework is implemented in ROS (Robot Operating System) and tested attached to a laptop. A representative scenarios is used to analyse the performance of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vision" title="vision">vision</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation" title=" navigation"> navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=SLAM" title=" SLAM"> SLAM</a> </p> <a href="https://publications.waset.org/abstracts/20509/optical-flow-localisation-and-appearance-mapping-oflaam-for-long-term-navigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1735</span> Development of Modular Shortest Path Navigation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nalinee%20Sophatsathit">Nalinee Sophatsathit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a variation of navigation systems which tallies every node along the shortest path from start to destination nodes. The underlying technique rests on the well-established Dijkstra Algorithm. The ultimate goal is to serve as a user navigation guide that furnishes stop over cost of every node along this shortest path, whereby users can decide whether or not to visit any specific nodes. The output is an implementable module that can be further refined to run on the Internet and smartphone technology. This will benefit large organizations having physical installations spreaded over wide area such as hospitals, universities, etc. The savings on service personnel, let alone lost time and unproductive work, are attributive to innovative navigation system management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=navigation%20systems" title="navigation systems">navigation systems</a>, <a href="https://publications.waset.org/abstracts/search?q=shortest%20path" title=" shortest path"> shortest path</a>, <a href="https://publications.waset.org/abstracts/search?q=smartphone%20technology" title=" smartphone technology"> smartphone technology</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20navigation%20guide" title=" user navigation guide"> user navigation guide</a> </p> <a href="https://publications.waset.org/abstracts/12201/development-of-modular-shortest-path-navigation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1734</span> Magnetic Navigation in Underwater Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumar%20Divyendra">Kumar Divyendra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering" title="clustering">clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20backbone" title=" network backbone"> network backbone</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20computing" title=" parallel computing"> parallel computing</a> </p> <a href="https://publications.waset.org/abstracts/151978/magnetic-navigation-in-underwater-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1733</span> Magnetic Nanoparticles for Cancer Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sachinkumar%20Patil">Sachinkumar Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonali%20Patil"> Sonali Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Shitalkumar%20Patil"> Shitalkumar Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanoparticles played important role in the biomedicine. New advanced methods having great potential apllication in the diagnosis and therapy of cancer. Now a day’s magnetic nanoparticles used in cancer therapy. Cancer is the major disease causes death. Magnetic nanoparticles show response to the magnetic field on the basis of this property they are used in cancer therapy. Cancer treated with hyperthermia by using magnetic nanoparticles it is unconventional but more safe and effective method. Magnetic nanoparticles prepared by using different innovative techniques that makes particles in uniform size and desired effect. Magnetic nanoparticles already used as contrast media in magnetic resonance imaging. A magnetic nanoparticle has been great potential application in cancer diagnosis and treatment as well as in gene therapy. In this review we will discuss the progress in cancer therapy based on magnetic nanoparticles, mainly including magnetic hyperthermia, synthesis and characterization of magnetic nanoparticles, mechanism of magnetic nanoparticles and application of magnetic nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title="magnetic nanoparticles">magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20therapy" title=" cancer therapy"> cancer therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermia" title=" hyperthermia"> hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a> </p> <a href="https://publications.waset.org/abstracts/31421/magnetic-nanoparticles-for-cancer-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">639</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1732</span> A Short-Baseline Dual-Antenna BDS/MEMS-IMU Integrated Navigation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tijing%20Cai">Tijing Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Qimeng%20Xu"> Qimeng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Daijin%20Zhou"> Daijin Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper puts forward a short-baseline dual-antenna BDS/MEMS-IMU integrated navigation, constructs the carrier phase double difference model of BDS (BeiDou Navigation Satellite System), and presents a 2-position initial orientation method on BDS. The Extended Kalman-filter has been introduced for the integrated navigation system. The differences between MEMS-IMU and BDS position, velocity and carrier phase indications are used as measurements. To show the performance of the short-baseline dual-antenna BDS/MEMS-IMU integrated navigation system, the experiment results show that the position error is less than 1m, the pitch angle error and roll angle error are less than 0.1°, and the heading angle error is about 1°. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS-IMU%20%28Micro-Electro-Mechanical%20System%20Inertial%20Measurement%20Unit%29" title="MEMS-IMU (Micro-Electro-Mechanical System Inertial Measurement Unit)">MEMS-IMU (Micro-Electro-Mechanical System Inertial Measurement Unit)</a>, <a href="https://publications.waset.org/abstracts/search?q=BDS%20%28BeiDou%20Navigation%20Satellite%20System%29" title=" BDS (BeiDou Navigation Satellite System)"> BDS (BeiDou Navigation Satellite System)</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-antenna" title=" dual-antenna"> dual-antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20navigation" title=" integrated navigation"> integrated navigation</a> </p> <a href="https://publications.waset.org/abstracts/97626/a-short-baseline-dual-antenna-bdsmems-imu-integrated-navigation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1731</span> Effects of Structure on Density-Induced Flow in Coastal and Estuarine Navigation Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuo%20Huang">Shuo Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Huomiao%20Guo"> Huomiao Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenrui%20Huang"> Wenrui Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In navigation channels located in coasts and estuaries as the waterways connecting coastal water to ports or harbors, density-induced flow often exist due to the density-gradient or gravity gradient as the results of mixing between fresh water from coastal rivers and saline water in the coasts. The density-induced flow often carries sediment transport into navigation channels and causes sediment depositions in the channels. As a result, expensive dredging may need to maintain the water depth required for navigation. In our study, we conduct a series of experiments to investigate the characteristics of density-induced flow in the estuarine navigation channels under different density gradients. Empirical equations between density flow and salinity gradient were derived. Effects of coastal structures for regulating navigation channel on density-induced flow have also been investigated. Results will be very helpful for improving the understanding of the characteristics of density-induced flow in estuarine navigation channels. The results will also provide technical support for cost-effective waterway regulation and management to maintain coastal and estuarine navigation channels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20flow" title="density flow">density flow</a>, <a href="https://publications.waset.org/abstracts/search?q=estuarine" title=" estuarine"> estuarine</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation%20channel" title=" navigation channel"> navigation channel</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a> </p> <a href="https://publications.waset.org/abstracts/119059/effects-of-structure-on-density-induced-flow-in-coastal-and-estuarine-navigation-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1730</span> The Influence of Reaction Parameters on Magnetic Properties of Synthesized Strontium Ferrite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bahgat">M. Bahgat</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20Awan"> F. M. Awan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Hanafy"> H. A. Hanafy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The conventional ceramic route was utilized to prepare a hard magnetic powder (M-type strontium ferrite, SrFe12O19). The stoichiometric mixture of iron oxide and strontium carbonate were calcined at 1000°C and then fired at various temperatures. The influence of various reaction parameters such as mixing ratio, calcination temperature, firing temperature and firing time on the magnetic behaviors of the synthesized magnetic powder were investigated.The magnetic properties including Coercivity (Hc), Magnetic saturation (Ms), and Magnetic remnance (Mr) were measured by vibrating sample magnetometer. Morphologically the produced magnetic powder has a dense hexagonal grain shape structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20magnetic%20materials" title="hard magnetic materials">hard magnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20route" title=" ceramic route"> ceramic route</a>, <a href="https://publications.waset.org/abstracts/search?q=strontium%20ferrite" title=" strontium ferrite"> strontium ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a> </p> <a href="https://publications.waset.org/abstracts/21878/the-influence-of-reaction-parameters-on-magnetic-properties-of-synthesized-strontium-ferrite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">693</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1729</span> Performance Analysis of Geophysical Database Referenced Navigation: The Combination of Gravity Gradient and Terrain Using Extended Kalman Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jisun%20Lee">Jisun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jay%20Hyoun%20Kwon"> Jay Hyoun Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As an alternative way to compensate the INS (inertial navigation system) error in non-GNSS (Global Navigation Satellite System) environment, geophysical database referenced navigation is being studied. In this study, both gravity gradient and terrain data were combined to complement the weakness of sole geophysical data as well as to improve the stability of the positioning. The main process to compensate the INS error using geophysical database was constructed on the basis of the EKF (Extended Kalman Filter). In detail, two type of combination method, centralized and decentralized filter, were applied to check the pros and cons of its algorithm and to find more robust results. The performance of each navigation algorithm was evaluated based on the simulation by supposing that the aircraft flies with precise geophysical DB and sensors above nine different trajectories. Especially, the results were compared to the ones from sole geophysical database referenced navigation to check the improvement due to a combination of the heterogeneous geophysical database. It was found that the overall navigation performance was improved, but not all trajectories generated better navigation result by the combination of gravity gradient with terrain data. Also, it was found that the centralized filter generally showed more stable results. It is because that the way to allocate the weight for the decentralized filter could not be optimized due to the local inconsistency of geophysical data. In the future, switching of geophysical data or combining different navigation algorithm are necessary to obtain more robust navigation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Extended%20Kalman%20Filter" title="Extended Kalman Filter">Extended Kalman Filter</a>, <a href="https://publications.waset.org/abstracts/search?q=geophysical%20database%20referenced%20navigation" title=" geophysical database referenced navigation"> geophysical database referenced navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity%20gradient" title=" gravity gradient"> gravity gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain" title=" terrain "> terrain </a> </p> <a href="https://publications.waset.org/abstracts/67266/performance-analysis-of-geophysical-database-referenced-navigation-the-combination-of-gravity-gradient-and-terrain-using-extended-kalman-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1728</span> Improving the Gain of a Multiband Antenna by Adding an Artificial Magnetic Conductor Metasurface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amira%20Bousselmi">Amira Bousselmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a PIFA antenna designed for geolocation applications (GNSS) operating on 1.278 GHz, 2.8 GHz, 5.7 GHz and 10 GHz. To improve the performance of the antenna, an artificial magnetic conductor structure (AMC) was used. Adding the antenna with AMC resulted in a measured gain of 4.78 dBi. The results of simulations and measurements are presented. CST Microwave Studio is used to design and compare antenna performance. An antenna design methodology, design and characterization of the AMC surface are described as well as the simulated and measured performances of the AMC antenna are then discussed. Finally, in Section V, there is a conclusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna%20multiband" title="antenna multiband">antenna multiband</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20navigation%20system" title=" global navigation system"> global navigation system</a>, <a href="https://publications.waset.org/abstracts/search?q=AMC" title=" AMC"> AMC</a>, <a href="https://publications.waset.org/abstracts/search?q=Galeleo" title=" Galeleo"> Galeleo</a> </p> <a href="https://publications.waset.org/abstracts/150107/improving-the-gain-of-a-multiband-antenna-by-adding-an-artificial-magnetic-conductor-metasurface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1727</span> Tactile Cues and Spatial Navigation in Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rubaiyea%20Uddin">Rubaiyea Uddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hippocampus, located in the limbic system, is most commonly known for its role in memory and spatial navigation (as cited in Brain Reward and Pathways). It maintains an especially important role in specifically episodic and declarative memory. The hippocampus has also recently been linked to dopamine, the reward pathway’s primary neurotransmitter. Since research has found that dopamine also contributes to memory consolidation and hippocampal plasticity, this neurotransmitter is potentially responsible for contributing to the hippocampus’s role in memory formation. In this experiment we tested to see the effect of tactile cues on spatial navigation for eight different mice. We used a radial arm that had one designated 'reward' arm containing sucrose. The presence or absence of bedding was our tactile cue. We attempted to see if the memory of that cue would enhance the mice’s memory of having received the reward in that arm. The results from our study showed there was no significant response from the use of tactile cues on spatial navigation on our 129 mice. Tactile cues therefore do not influence spatial navigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mice" title="mice">mice</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20arm%20maze" title=" radial arm maze"> radial arm maze</a>, <a href="https://publications.waset.org/abstracts/search?q=memory" title=" memory"> memory</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20navigation" title=" spatial navigation"> spatial navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=tactile%20cues" title=" tactile cues"> tactile cues</a>, <a href="https://publications.waset.org/abstracts/search?q=hippocampus" title=" hippocampus"> hippocampus</a>, <a href="https://publications.waset.org/abstracts/search?q=reward" title=" reward"> reward</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20skills" title=" sensory skills"> sensory skills</a>, <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s" title=" Alzheimer’s"> Alzheimer’s</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegnerative%20disease" title=" neurodegnerative disease"> neurodegnerative disease</a> </p> <a href="https://publications.waset.org/abstracts/21710/tactile-cues-and-spatial-navigation-in-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">649</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1726</span> Relative Navigation with Laser-Based Intermittent Measurement for Formation Flying Satellites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jongwoo%20Lee">Jongwoo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Eun%20Kang"> Dae-Eun Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Young%20Park"> Sang-Young Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a precise relative navigational method for satellites flying in formation using laser-based intermittent measurement data. The measurement data for the relative navigation between two satellites consist of a relative distance measured by a laser instrument and relative attitude angles measured by attitude determination. The relative navigation solutions are estimated by both the Extended Kalman filter (EKF) and unscented Kalman filter (UKF). The solutions estimated by the EKF may become inaccurate or even diverge as measurement outage time gets longer because the EKF utilizes a linearization approach. However, this study shows that the UKF with the appropriate scaling parameters provides a stable and accurate relative navigation solutions despite the long measurement outage time and large initial error as compared to the relative navigation solutions of the EKF. Various navigation results have been analyzed by adjusting the scaling parameters of the UKF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellite%20relative%20navigation" title="satellite relative navigation">satellite relative navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=laser-based%20measurement" title=" laser-based measurement"> laser-based measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=intermittent%20measurement" title=" intermittent measurement"> intermittent measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=unscented%20Kalman%20filter" title=" unscented Kalman filter"> unscented Kalman filter</a> </p> <a href="https://publications.waset.org/abstracts/80146/relative-navigation-with-laser-based-intermittent-measurement-for-formation-flying-satellites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1725</span> Users’ Preferences for Map Navigation Gestures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Y.%20Pang">Y. Y. Pang</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Ismail"> N. A. Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The map is a powerful and convenient tool in helping us to navigate to different places, but the use of indirect devices often makes its usage cumbersome. This study intends to propose a new map navigation dialogue that uses hand gesture. A set of dialogue was developed from users’ perspective to provide users complete freedom for panning, zooming, rotate, and find direction operations. A participatory design experiment was involved here where one hand gesture and two hand gesture dialogues had been analysed in the forms of hand gestures to develop a set of usable dialogues. The major finding was that users prefer one-hand gesture compared to two-hand gesture in map navigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hand%20gesture" title="hand gesture">hand gesture</a>, <a href="https://publications.waset.org/abstracts/search?q=map%20navigation" title=" map navigation"> map navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=participatory%20design" title=" participatory design"> participatory design</a>, <a href="https://publications.waset.org/abstracts/search?q=intuitive%20interaction" title=" intuitive interaction"> intuitive interaction</a> </p> <a href="https://publications.waset.org/abstracts/19455/users-preferences-for-map-navigation-gestures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1724</span> Analytical Model for Vacuum Cathode Arcs in an Oblique Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20W.%20Chen">P. W. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20T.%20Chang"> C. T. Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Peng"> Y. Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Y.%20Wu"> J. Y. Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20J.%20Jan"> D. J. Jan</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Manirul%20Ali"> Md. Manirul Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decade, the nature of cathode spot splitting and the current per spot depended on an oblique magnetic field was investigated. This model for cathode current splitting is developed that we have investigated with relationship the magnetic pressures produced by kinetic pressure, self-magnetic pressure, and changed with an external magnetic field. We propose a theoretical model that has been established to an external magnetic field with components normal and tangential to the cathode surface influenced on magnetic pressure strength. We mainly focus on developed to understand the current per spot influenced with the tangential magnetic field strength and normal magnetic field strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cathode%20spot" title="cathode spot">cathode spot</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20arc%20discharge" title=" vacuum arc discharge"> vacuum arc discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20magnetic%20field" title=" oblique magnetic field"> oblique magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=tangential%20magnetic%20field" title=" tangential magnetic field"> tangential magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/52606/analytical-model-for-vacuum-cathode-arcs-in-an-oblique-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1723</span> Consideration of Magnetic Lines of Force as Magnets Produced by Percussion Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angel%20P%C3%A9rez%20S%C3%A1nchez">Angel Pérez Sánchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Consider magnetic lines of force as a vector magnetic current was introduced by convention around 1830. But this leads to a dead end in traditional physics, and quantum explanations must be referred to explain the magnetic phenomenon. However, a study of magnetic lines as percussive waves leads to other paths capable of interpreting magnetism through traditional physics. Methodology: Brick used in the experiment: two parallel electric current cables attract each other if current goes in the same direction and its application at a microscopic level inside magnets. Significance: Consideration of magnetic lines as magnets themselves would mean a paradigm shift in the study of magnetism and open the way to provide solutions to mysteries of magnetism until now only revealed by quantum mechanics. Major findings: discover how a magnetic field is created, as well as reason how magnetic attraction and repulsion work, understand how magnets behave when splitting them, and reveal the impossibility of a Magnetic Monopole. All of this is presented as if it were a symphony in which all the notes fit together perfectly to create a beautiful, smart, and simple work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force" title="magnetic lines of force">magnetic lines of force</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20attraction%20and%20repulsion" title=" magnetic attraction and repulsion"> magnetic attraction and repulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=magnet%20split" title=" magnet split"> magnet split</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20monopole" title=" magnetic monopole"> magnetic monopole</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force%20as%20magnets" title=" magnetic lines of force as magnets"> magnetic lines of force as magnets</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20lines%20of%20force%20as%20waves" title=" magnetic lines of force as waves"> magnetic lines of force as waves</a> </p> <a href="https://publications.waset.org/abstracts/172916/consideration-of-magnetic-lines-of-force-as-magnets-produced-by-percussion-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1722</span> Performance Evaluation of GPS/INS Main Integration Approach </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othman%20Maklouf">Othman Maklouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Adwaib"> Ahmed Adwaib </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a comparative study between the main GPS/INS coupling schemes, this will include the loosely coupled and tightly coupled configurations, several types of situations and operational conditions, in which the data fusion process is done using Kalman filtering. This will include the importance of sensors calibration as well as the alignment of the strap down inertial navigation system. The limitations of the inertial navigation systems are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPS" title="GPS">GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=INS" title=" INS"> INS</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20calibration" title=" sensor calibration"> sensor calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation%20system" title=" navigation system"> navigation system</a> </p> <a href="https://publications.waset.org/abstracts/1700/performance-evaluation-of-gpsins-main-integration-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1721</span> Multifunctional Janus Microbots for Intracellular Delivery of Therapeutic Agents </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shilpee%20Jain">Shilpee Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachin%20Latiyan"> Sachin Latiyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaushik%20Suneet"> Kaushik Suneet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unlike traditional robots, medical microbots are not only smaller in size, but they also possess various unique properties, for example, biocompatibility, stability in the biological fluids, navigation opposite to the bloodstream, wireless control over locomotion, etc. The idea behind their usage in the medical field was to build a minimally invasive method for addressing the post-operative complications, including longer recovery time, infection eruption and pain. Herein, the present study demonstrates the fabrication of dual nature magneto-conducting Fe3O4 magnetic nanoparticles (MNPs) and SU8 derived carbon-based Janus microbots for the efficient intracellular delivery of biomolecules. The low aspect ratio with feature size 2-5 μm microbots were fabricated by using a photolithography technique. These microbots were pyrolyzed at 900°C, which converts SU8 into amorphous carbon. The pyrolyzed microbots have dual properties, i.e., the half part is magneto-conducting and another half is only conducting for sufficing the therapeutic payloads efficiently with the application of external electric/magnetic field stimulations. For the efficient intracellular delivery of the microbots, the size and aspect ratio plays a significant role. However, on a smaller scale, the proper control over movement is difficult to achieve. The dual nature of Janus microbots allowed to control its maneuverability in the complex fluids using external electric as well as the magnetic field. Interestingly, Janus microbots move faster with the application of an external electric field (44 µm/s) as compared to the magnetic field (18 µm/s) application. Furthermore, these Janus microbots exhibit auto-fluorescence behavior that will help to track their pathway during navigation. Typically, the use of MNPs in the microdevices enhances the tendency to agglomerate. However, the incorporation of Fe₃O₄ MNPs in the pyrolyzed carbon reduces the chances of agglomeration of the microbots. The biocompatibility of the medical microbots, which is the essential property of any biosystems, was determined in vitro using HeLa cells. The microbots were found to compatible with HeLa cells. Additionally, the intracellular uptake of microbots was higher in the presence of an external electric field as compared to without electric field stimulation. In summary, the cytocompatible Janus microbots were fabricated successfully. They are stable in the biological fluids, wireless controllable navigation with the help of a few Guess external magnetic fields, their movement can be tracked because of autofluorescence behavior, they are less susceptible to agglomeration and higher cellular uptake could be achieved with the application of the external electric field. Thus, these carriers could offer a versatile platform to suffice the therapeutic payloads under wireless actuation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amorphous%20carbon" title="amorphous carbon">amorphous carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%2Fmagnetic%20stimulations" title=" electric/magnetic stimulations"> electric/magnetic stimulations</a>, <a href="https://publications.waset.org/abstracts/search?q=Janus%20microbots" title=" Janus microbots"> Janus microbots</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title=" magnetic nanoparticles"> magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=minimally%20invasive%20procedures" title=" minimally invasive procedures"> minimally invasive procedures</a> </p> <a href="https://publications.waset.org/abstracts/124012/multifunctional-janus-microbots-for-intracellular-delivery-of-therapeutic-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1720</span> Exposure to Tactile Cues Does Not Influence Spatial Navigation in 129 S1/SvLm Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rubaiyea%20Uddin">Rubaiyea Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebecca%20Taylor"> Rebecca Taylor</a>, <a href="https://publications.waset.org/abstracts/search?q=Emily%20Levesque"> Emily Levesque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hippocampus, located in the limbic system, is most commonly known for its role in memory and spatial navigation (as cited in Brain Reward and Pathways). It maintains an especially important role in specifically episodic and declarative memory. The hippocampus has also recently been linked to dopamine, the reward pathway’s primary neurotransmitter. Since research has found that dopamine also contributes to memory consolidation and hippocampal plasticity, this neurotransmitter is potentially responsible for contributing to the hippocampus’s role in memory formation. In this experiment we tested to see the effect of tactile cues on spatial navigation for eight different mice. We used a radial arm that had one designated “reward” arm containing sucrose. The presence or absence of bedding was our tactile cue. We attempted to see if the memory of that cue would enhance the mice’s memory of having received the reward in that arm. The results from our study showed there was no significant response from the use of tactile cues on spatial navigation on our 129 mice. Tactile cues therefore do not influence spatial navigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mice" title="mice">mice</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20arm%20maze" title=" radial arm maze"> radial arm maze</a>, <a href="https://publications.waset.org/abstracts/search?q=memory" title=" memory"> memory</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20navigation" title=" spatial navigation"> spatial navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=tactile%20cues" title=" tactile cues"> tactile cues</a>, <a href="https://publications.waset.org/abstracts/search?q=hippocampus" title=" hippocampus"> hippocampus</a>, <a href="https://publications.waset.org/abstracts/search?q=reward" title=" reward"> reward</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20skills" title=" sensory skills"> sensory skills</a>, <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%27s" title=" Alzheimer&#039;s"> Alzheimer&#039;s</a>, <a href="https://publications.waset.org/abstracts/search?q=neuro-degenerative%20diseases" title=" neuro-degenerative diseases"> neuro-degenerative diseases</a> </p> <a href="https://publications.waset.org/abstracts/17816/exposure-to-tactile-cues-does-not-influence-spatial-navigation-in-129-s1svlm-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">688</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1719</span> Genetic Algorithms Based ACPS Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emine%20Laarouchi">Emine Laarouchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Cancila"> Daniela Cancila</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Soulier"> Laurent Soulier</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakima%20Chaouchi"> Hakima Chaouchi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cyber-Physical Systems as drones proved their efficiency for supporting emergency applications. For these particular applications, travel time and autonomous navigation algorithms are of paramount importance, especially when missions are performed in urban environments with high obstacle density. In this context, however, safety properties are not properly addressed. Our ambition is to optimize the system safety level under autonomous navigation systems, by preserving performance of the CPS. At this aim, we introduce genetic algorithms in the autonomous navigation process of the drone to better infer its trajectory considering the possible obstacles. We first model the wished safety requirements through a cost function and then seek to optimize it though genetics algorithms (GA). The main advantage in the use of GA is to consider different parameters together, for example, the level of battery for navigation system selection. Our tests show that the GA introduction in the autonomous navigation systems minimize the risk of safety lossless. Finally, although our simulation has been tested for autonomous drones, our approach and results could be extended for other autonomous navigation systems such as autonomous cars, robots, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=safety" title="safety">safety</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicles" title=" unmanned aerial vehicles "> unmanned aerial vehicles </a>, <a href="https://publications.waset.org/abstracts/search?q=CPS" title=" CPS"> CPS</a>, <a href="https://publications.waset.org/abstracts/search?q=ACPS" title=" ACPS"> ACPS</a>, <a href="https://publications.waset.org/abstracts/search?q=drones" title=" drones"> drones</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20planning" title=" path planning"> path planning</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithms" title=" genetic algorithms"> genetic algorithms</a> </p> <a href="https://publications.waset.org/abstracts/117828/genetic-algorithms-based-acps-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1718</span> Digital Twin Platform for BDS-3 Satellite Navigation Using Digital Twin Intelligent Visualization Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rundong%20Li">Rundong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Wu"> Peng Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Junfeng%20Zhang"> Junfeng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhipeng%20Ren"> Zhipeng Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Yang"> Chen Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiahui%20Gan"> Jiahui Gan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Feng"> Lu Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Haibo%20Tong"> Haibo Tong</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuemei%20Xiao"> Xuemei Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuying%20Chen"> Yuying Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research of Beidou-3 satellite navigation is on the rise, but in actual work, it is inevitable that satellite data is insecure, research and development is inefficient, and there is no ability to deal with failures in advance. Digital twin technology has obvious advantages in the simulation of life cycle models of aerospace satellite navigation products. In order to meet the increasing demand, this paper builds a Beidou-3 satellite navigation digital twin platform (BDSDTP). The basic establishment of BDSDTP was completed by establishing a digital twin double, Beidou-3 comprehensive digital twin design, predictive maintenance (PdM) mathematical model, and visual interaction design. Finally, this paper provides a time application case of the platform, which provides a reference for the application of BDSDTP in various fields of navigation and provides obvious help for extending the full cycle life of Beidou-3 satellite navigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BDS-3" title="BDS-3">BDS-3</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20twin" title=" digital twin"> digital twin</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=PdM" title=" PdM"> PdM</a> </p> <a href="https://publications.waset.org/abstracts/167908/digital-twin-platform-for-bds-3-satellite-navigation-using-digital-twin-intelligent-visualization-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1717</span> Screen Method of Distributed Cooperative Navigation Factors for Unmanned Aerial Vehicle Swarm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Can%20Zhang">Can Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qun%20Li"> Qun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yonglin%20Lei"> Yonglin Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi%20Zhu"> Zhi Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Guo"> Dong Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aiming at the problem of factor screen in distributed collaborative navigation of dense UAV swarm, an efficient distributed collaborative navigation factor screen method is proposed. The method considered the balance between computing load and positioning accuracy. The proposed algorithm utilized the factor graph model to implement a distributed collaborative navigation algorithm. The GNSS information of the UAV itself and the ranging information between the UAVs are used as the positioning factors. In this distributed scheme, a local factor graph is established for each UAV. The positioning factors of nodes with good geometric position distribution and small variance are selected to participate in the navigation calculation. To demonstrate and verify the proposed methods, the simulation and experiments in different scenarios are performed in this research. Simulation results show that the proposed scheme achieves a good balance between the computing load and positioning accuracy in the distributed cooperative navigation calculation of UAV swarm. This proposed algorithm has important theoretical and practical value for both industry and academic areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=screen%20method" title="screen method">screen method</a>, <a href="https://publications.waset.org/abstracts/search?q=cooperative%20positioning%20system" title=" cooperative positioning system"> cooperative positioning system</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV%20swarm" title=" UAV swarm"> UAV swarm</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20graph" title=" factor graph"> factor graph</a>, <a href="https://publications.waset.org/abstracts/search?q=cooperative%20navigation" title=" cooperative navigation"> cooperative navigation</a> </p> <a href="https://publications.waset.org/abstracts/166690/screen-method-of-distributed-cooperative-navigation-factors-for-unmanned-aerial-vehicle-swarm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1716</span> Digital Rehabilitation for Navigation Impairment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milan%20N.%20A.%20Van%20Der%20Kuil">Milan N. A. Van Der Kuil</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20M.%20A.%20Visser-Meily"> Anne M. A. Visser-Meily</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20W.%20M.%20Evers"> Andrea W. M. Evers</a>, <a href="https://publications.waset.org/abstracts/search?q=Ineke%20J.%20M.%20Van%20Der%20Ham"> Ineke J. M. Van Der Ham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Navigation ability is essential for autonomy and mobility in daily life. In patients with acquired brain injury, navigation impairment is frequently impaired; however, in this study, we tested the effectiveness of a serious gaming training protocol as a tool for cognitive rehabilitation to reduce navigation impairment. In total, 38 patients with acquired brain injury and subjective navigation complaints completed the experiment, with a partially blind, randomized control trial design. An objective navigation test was used to construct a strengths and weaknesses profile for each patient. Subsequently, patients received personalized compensation training that matched their strengths and weaknesses by addressing an egocentric or allocentric strategy or a strategy aimed at minimizing the use of landmarks. Participants in the experimental condition received psychoeducation and a home-based rehabilitation game with a series of exercises (e.g., map reading, place finding, and turn memorization). The exercises were developed to stimulate the adoption of more beneficial strategies, according to the compensatory approach. Self-reported navigation ability (wayfinding questionnaire), participation level, and objective navigation performance were measured before and after 1 and 4 weeks after completing the six-week training program. Results indicate that the experimental group significantly improved in subjective navigation ability both 1 and 4 weeks after completion of the training, in comparison to the score before training and the scores of the control group. Similarly, goal attainment showed a significant increase after the first and fourth week after training. Objective navigation performance was not affected by the training. This navigation training protocol provides an effective solution to address navigation impairment after acquired brain injury, with clear improvements in subjective performance and goal attainment of the participants. The outcomes of the training should be re-examined after implementation in a clinical setting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20navigation" title="spatial navigation">spatial navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20rehabilitation" title=" cognitive rehabilitation"> cognitive rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=serious%20gaming" title=" serious gaming"> serious gaming</a>, <a href="https://publications.waset.org/abstracts/search?q=acquired%20brain%20injury" title=" acquired brain injury"> acquired brain injury</a> </p> <a href="https://publications.waset.org/abstracts/130239/digital-rehabilitation-for-navigation-impairment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1715</span> Integrated Navigation System Using Simplified Kalman Filter Algorithm </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othman%20Maklouf">Othman Maklouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdunnaser%20Tresh"> Abdunnaser Tresh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GPS and inertial navigation system (INS) have complementary qualities that make them ideal use for sensor fusion. The limitations of GPS include occasional high noise content, outages when satellite signals are blocked, interference and low bandwidth. The strengths of GPS include its long-term stability and its capacity to function as a stand-alone navigation system. In contrast, INS is not subject to interference or outages, have high bandwidth and good short-term noise characteristics, but have long-term drift errors and require external information for initialization. A combined system of GPS and INS subsystems can exhibit the robustness, higher bandwidth and better noise characteristics of the inertial system with the long-term stability of GPS. The most common estimation algorithm used in integrated INS/GPS is the Kalman Filter (KF). KF is able to take advantages of these characteristics to provide a common integrated navigation implementation with performance superior to that of either subsystem (GPS or INS). This paper presents a simplified KF algorithm for land vehicle navigation application. In this integration scheme, the GPS derived positions and velocities are used as the update measurements for the INS derived PVA. The KF error state vector in this case includes the navigation parameters as well as the accelerometer and gyroscope error states. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPS" title="GPS">GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=INS" title=" INS"> INS</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title=" Kalman filter"> Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=inertial%20navigation%20system" title=" inertial navigation system"> inertial navigation system</a> </p> <a href="https://publications.waset.org/abstracts/11049/integrated-navigation-system-using-simplified-kalman-filter-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1714</span> Magnetic and Optical Properties of GaFeMnN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.Abbad">A.Abbad</a>, <a href="https://publications.waset.org/abstracts/search?q=H.A.Bentounes"> H.A.Bentounes</a>, <a href="https://publications.waset.org/abstracts/search?q=W.Benstaali"> W.Benstaali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The full-potential linearized augmented plane wave method (FP-LAPW) within the Generalized Gradient Approximation (GGA) is used to calculate the magnetic and optical properties of quaternary GaFeMnN. The results show that the compound becomes magnetic and half metallic and there is an apparition of peaks at low frequencies for the optical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FP-LAPW" title="FP-LAPW">FP-LAPW</a>, <a href="https://publications.waset.org/abstracts/search?q=LSDA" title=" LSDA"> LSDA</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20moment" title=" magnetic moment"> magnetic moment</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectivity" title=" reflectivity "> reflectivity </a> </p> <a href="https://publications.waset.org/abstracts/26313/magnetic-and-optical-properties-of-gafemnn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1713</span> First Principle Calculation of The Magnetic Properties of Mn-doped 6H-SiC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Al%20Azri">M. Al Azri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Elzain"> M. Elzain</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bouziane"> K. Bouziane</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Ch%C3%A9rif"> S. M. Chérif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electronic and magnetic properties of 6H-SiC with Mn impurities have been calculated using ab-initio calculations. Various configurations of Mn sites and Si and C vacancies were considered. The magnetic coupling between the two Mn atoms at substitutional and interstitials sites with and without vacancies is studied as a function of Mn atoms interatomic distance. It was found that the magnetic interaction energy decreases with increasing distance between the magnetic atoms. The energy levels appearing in the band gap due to vacancies and due to Mn impurities are determined. The calculated DOS’s are used to analyze the nature of the exchange interaction between the impurities. The band coupling model based on the p-d and d-d level repulsions between Mn and SiC has been used to describe the magnetism observed in each configuration. Furthermore, the impacts of applying U to Mn-d orbital on the magnetic moment have also been investigated. The results are used to understand the experimental data obtained on Mn- 6H-SiC (as-implanted and as –annealed) for various Mn concentration (CMn = 0.7%, 1.6%, 7%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ab-initio%20calculations" title="ab-initio calculations">ab-initio calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=diluted%20magnetic%20semiconductors" title=" diluted magnetic semiconductors"> diluted magnetic semiconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a> </p> <a href="https://publications.waset.org/abstracts/34017/first-principle-calculation-of-the-magnetic-properties-of-mn-doped-6h-sic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1712</span> Accuracy of Autonomy Navigation of Unmanned Aircraft Systems through Imagery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sidney%20A.%20Lima">Sidney A. Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Hermann%20J.%20H.%20Kux"> Hermann J. H. Kux</a>, <a href="https://publications.waset.org/abstracts/search?q=Elcio%20H.%20Shiguemori"> Elcio H. Shiguemori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Unmanned Aircraft Systems (UAS) usually navigate through the Global Navigation Satellite System (GNSS) associated with an Inertial Navigation System (INS). However, GNSS can have its accuracy degraded at any time or even turn off the signal of GNSS. In addition, there is the possibility of malicious interferences, known as jamming. Therefore, the image navigation system can solve the autonomy problem, because if the GNSS is disabled or degraded, the image navigation system would continue to provide coordinate information for the INS, allowing the autonomy of the system. This work aims to evaluate the accuracy of the positioning though photogrammetry concepts. The methodology uses orthophotos and Digital Surface Models (DSM) as a reference to represent the object space and photograph obtained during the flight to represent the image space. For the calculation of the coordinates of the perspective center and camera attitudes, it is necessary to know the coordinates of homologous points in the object space (orthophoto coordinates and DSM altitude) and image space (column and line of the photograph). So if it is possible to automatically identify in real time the homologous points the coordinates and attitudes can be calculated whit their respective accuracies. With the methodology applied in this work, it is possible to verify maximum errors in the order of 0.5 m in the positioning and 0.6&ordm; in the attitude of the camera, so the navigation through the image can reach values equal to or higher than the GNSS receivers without differential correction. Therefore, navigating through the image is a good alternative to enable autonomous navigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomy" title="autonomy">autonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation" title=" navigation"> navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=photogrammetry" title=" photogrammetry"> photogrammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20resection" title=" spatial resection"> spatial resection</a>, <a href="https://publications.waset.org/abstracts/search?q=UAS" title=" UAS"> UAS</a> </p> <a href="https://publications.waset.org/abstracts/91629/accuracy-of-autonomy-navigation-of-unmanned-aircraft-systems-through-imagery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1711</span> Analysis of Autonomous Orbit Determination for Lagrangian Navigation Constellation with Different Dynamical Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gao%20Youtao">Gao Youtao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Tanran"> Zhao Tanran</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Bingyu"> Jin Bingyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Bo"> Xu Bo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global navigation satellite system(GNSS) can deliver navigation information for spacecraft orbiting on low-Earth orbits and medium Earth orbits. However, the GNSS cannot navigate the spacecraft on high-Earth orbit or deep space probes effectively. With the deep space exploration becoming a hot spot of aerospace, the demand for a deep space satellite navigation system is becoming increasingly prominent. Many researchers discussed the feasibility and performance of a satellite navigation system on periodic orbits around the Earth-Moon libration points which can be called Lagrangian point satellite navigation system. Autonomous orbit determination (AOD) is an important performance for the Lagrangian point satellite navigation system. With this ability, the Lagrangian point satellite navigation system can reduce the dependency on ground stations. AOD also can greatly reduce total system cost and assure mission continuity. As the elliptical restricted three-body problem can describe the Earth-Moon system more accurately than the circular restricted three-body problem, we study the autonomous orbit determination of Lagrangian navigation constellation using only crosslink range based on elliptical restricted three body problem. Extended Kalman filter is used in the autonomous orbit determination. In order to compare the autonomous orbit determination results based on elliptical restricted three-body problem to the results of autonomous orbit determination based on circular restricted three-body problem, we give the autonomous orbit determination position errors of a navigation constellation include four satellites based on the circular restricted three-body problem. The simulation result shows that the Lagrangian navigation constellation can achieve long-term precise autonomous orbit determination using only crosslink range. In addition, the type of the libration point orbit will influence the autonomous orbit determination accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extended%20Kalman%20filter" title="extended Kalman filter">extended Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20orbit%20determination" title=" autonomous orbit determination"> autonomous orbit determination</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-periodic%20orbit" title=" quasi-periodic orbit"> quasi-periodic orbit</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation%20constellation" title=" navigation constellation"> navigation constellation</a> </p> <a href="https://publications.waset.org/abstracts/72040/analysis-of-autonomous-orbit-determination-for-lagrangian-navigation-constellation-with-different-dynamical-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20navigation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20navigation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20navigation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20navigation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20navigation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20navigation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20navigation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20navigation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20navigation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20navigation&amp;page=57">57</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20navigation&amp;page=58">58</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20navigation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10