CINXE.COM
About: Periodic graph (geometry)
<!DOCTYPE html> <html prefix=" dbp: http://dbpedia.org/property/ dbo: http://dbedia.org/ontology/ dct: http://purl.org/dc/terms/ dbd: http://dbpedia.org/datatype/ og: https://ogp.me/ns# " > <!-- header --> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>About: Periodic graph (geometry)</title> <!-- Links --> <link rel="alternate" type="application/rdf+xml" href="http://dbpedia.org/data/Periodic_graph_(geometry).rdf" title="Structured Descriptor Document (RDF/XML format)" /> <link rel="alternate" type="text/n3" href="http://dbpedia.org/data/Periodic_graph_(geometry).n3" title="Structured Descriptor Document (N3 format)" /> <link rel="alternate" type="text/turtle" href="http://dbpedia.org/data/Periodic_graph_(geometry).ttl" title="Structured Descriptor Document (Turtle format)" /> <link rel="alternate" type="application/json+rdf" href="http://dbpedia.org/data/Periodic_graph_(geometry).jrdf" title="Structured Descriptor Document (RDF/JSON format)" /> <link rel="alternate" type="application/json" href="http://dbpedia.org/data/Periodic_graph_(geometry).json" title="Structured Descriptor Document (RDF/JSON format)" /> <link rel="alternate" type="application/atom+xml" href="http://dbpedia.org/data/Periodic_graph_(geometry).atom" title="OData (Atom+Feed format)" /> <link rel="alternate" type="text/plain" href="http://dbpedia.org/data/Periodic_graph_(geometry).ntriples" title="Structured Descriptor Document (N-Triples format)" /> <link rel="alternate" type="text/csv" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPeriodic_graph_%28geometry%29%3E&format=text%2Fcsv" title="Structured Descriptor Document (CSV format)" /> <link rel="alternate" type="application/microdata+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPeriodic_graph_%28geometry%29%3E&format=application%2Fmicrodata%2Bjson" title="Structured Descriptor Document (Microdata/JSON format)" /> <link rel="alternate" type="text/html" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPeriodic_graph_%28geometry%29%3E&format=text%2Fhtml" title="Structured Descriptor Document (Microdata/HTML format)" /> <link rel="alternate" type="application/ld+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPeriodic_graph_%28geometry%29%3E&format=application%2Fld%2Bjson" title="Structured Descriptor Document (JSON-LD format)" /> <link rel="alternate" type="text/x-html-script-ld+json" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPeriodic_graph_%28geometry%29%3E&format=text%2Fx-html-script-ld%2Bjson" title="Structured Descriptor Document (HTML with embedded JSON-LD)" /> <link rel="alternate" type="text/x-html-script-turtle" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPeriodic_graph_%28geometry%29%3E&format=text%2Fx-html-script-turtle" title="Structured Descriptor Document (HTML with embedded Turtle)" /> <link rel="timegate" type="text/html" href="http://dbpedia.mementodepot.org/timegate/http://dbpedia.org/page/Periodic_graph_(geometry)" title="Time Machine" /> <link rel="foaf:primarytopic" href="http://dbpedia.org/resource/Periodic_graph_(geometry)"/> <link rev="describedby" href="http://dbpedia.org/resource/Periodic_graph_(geometry)"/> <!-- /Links --> <!-- Stylesheets --> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bootstrap/5.2.1/css/bootstrap.min.css" integrity="sha512-siwe/oXMhSjGCwLn+scraPOWrJxHlUgMBMZXdPe2Tnk3I0x3ESCoLz7WZ5NTH6SZrywMY+PB1cjyqJ5jAluCOg==" crossorigin="anonymous" /> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bootstrap-icons/1.9.1/font/bootstrap-icons.min.css" integrity="sha512-5PV92qsds/16vyYIJo3T/As4m2d8b6oWYfoqV+vtizRB6KhF1F9kYzWzQmsO6T3z3QG2Xdhrx7FQ+5R1LiQdUA==" crossorigin="anonymous" /> <!-- link rel="stylesheet" href="/statics/css/dbpedia.css" --> <!-- /Stylesheets--> <!-- OpenGraph --> <meta property="og:title" content="Periodic graph (geometry)" /> <meta property="og:type" content="article" /> <meta property="og:url" content="http://dbpedia.org/resource/Periodic_graph_(geometry)" /> <meta property="og:image" content="/statics/images/dbpedia_logo.png" /> <meta property="og:description" content="A Euclidean graph (a graph embedded in some Euclidean space) is periodic if there exists a basis of that Euclidean space whose corresponding translations induce symmetries of that graph (i.e., application of any such translation to the graph embedded in the Euclidean space leaves the graph unchanged). Equivalently, a periodic Euclidean graph is a periodic realization of an abelian covering graph over a finite graph. A Euclidean graph is uniformly discrete if there is a minimal distance between any two vertices. Periodic graphs are closely related to tessellations of space (or honeycombs) and the geometry of their symmetry groups, hence to geometric group theory, as well as to discrete geometry and the theory of polytopes, and similar areas." /> <meta property="og:site_name" content="DBpedia" /> <!-- /OpenGraph--> </head> <body about="http://dbpedia.org/resource/Periodic_graph_(geometry)"> <!-- navbar --> <nav class="navbar navbar-expand-md navbar-light bg-light fixed-top align-items-center"> <div class="container-xl"> <a class="navbar-brand" href="http://wiki.dbpedia.org/about" title="About DBpedia" style="color: #2c5078"> <img class="img-fluid" src="/statics/images/dbpedia_logo_land_120.png" alt="About DBpedia" /> </a> <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#dbp-navbar" aria-controls="dbp-navbar" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="collapse navbar-collapse" id="dbp-navbar"> <ul class="navbar-nav me-auto mb-2 mb-lg-0"> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownBrowse" role="button" data-bs-toggle="dropdown" aria-expanded="false"> <i class="bi-eye-fill"></i> Browse using<span class="caret"></span></a> <ul class="dropdown-menu" aria-labelledby="navbarDropdownBrowse"> <li class="dropdown-item"><a class="nav-link" href="/describe/?uri=http%3A%2F%2Fdbpedia.org%2Fresource%2FPeriodic_graph_%28geometry%29">OpenLink Faceted Browser</a></li> <li class="dropdown-item"><a class="nav-link" href="http://osde.demo.openlinksw.com/#/editor?uri=http%3A%2F%2Fdbpedia.org%2Fdata%2FPeriodic_graph_%28geometry%29.ttl&view=statements">OpenLink Structured Data Editor</a></li> <li class="dropdown-item"><a class="nav-link" href="http://en.lodlive.it/?http%3A%2F%2Fdbpedia.org%2Fresource%2FPeriodic_graph_%28geometry%29">LodLive Browser</a></li> <!-- li class="dropdown-item"><a class="nav-link" href="http://lodmilla.sztaki.hu/lodmilla/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FPeriodic_graph_%28geometry%29">LODmilla Browser</a></li --> </ul> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownFormats" role="button" data-bs-toggle="dropdown" aria-expanded="false"> <i class="bi-file-earmark-fill"></i> Formats<span class="caret"></span></a> <ul class="dropdown-menu" aria-labelledby="navbarDropdownFormats"> <li class="dropdown-item-text">RDF:</li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Periodic_graph_(geometry).ntriples">N-Triples</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Periodic_graph_(geometry).n3">N3</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Periodic_graph_(geometry).ttl">Turtle</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Periodic_graph_(geometry).json">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Periodic_graph_(geometry).rdf">XML</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">OData:</li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Periodic_graph_(geometry).atom">Atom</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/data/Periodic_graph_(geometry).jsod">JSON</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Microdata:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPeriodic_graph_%28geometry%29%3E&format=application%2Fmicrodata%2Bjson">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPeriodic_graph_%28geometry%29%3E&format=text%2Fhtml">HTML</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Embedded:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPeriodic_graph_%28geometry%29%3E&format=text%2Fx-html-script-ld%2Bjson">JSON</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPeriodic_graph_%28geometry%29%3E&format=text%2Fx-html-script-turtle">Turtle</a></li> <li class="dropdown-divider"></li> <li class="dropdown-item-text">Other:</li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPeriodic_graph_%28geometry%29%3E&format=text%2Fcsv">CSV</a></li> <li><a class="dropdown-item" href="http://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=DESCRIBE%20%3Chttp%3A%2F%2Fdbpedia.org%2Fresource%2FPeriodic_graph_%28geometry%29%3E&format=application%2Fld%2Bjson">JSON-LD</a></li> </ul> </li> </ul> <ul class="navbar-nav ms-auto"> <li class="nav-item"> <a class="nav-link" href="/fct/" title="Switch to /fct endpoint"><i class="bi-box-arrow-up-right"></i> Faceted Browser </a> </li> <li class="nav-item"> <a class="nav-link" href="/sparql/" title="Switch to /sparql endpoint"><i class="bi-box-arrow-up-right"></i> Sparql Endpoint </a> </li> </ul> </div> </div> </nav> <div style="margin-bottom: 60px"></div> <!-- /navbar --> <!-- page-header --> <section> <div class="container-xl"> <div class="row"> <div class="col"> <h1 id="title" class="display-6"><b>About:</b> <a href="http://dbpedia.org/resource/Periodic_graph_(geometry)">Periodic graph (geometry)</a> </h1> </div> </div> <div class="row"> <div class="col"> <div class="text-muted"> <span class="text-nowrap">An Entity of Type: <a href="http://dbpedia.org/class/yago/WikicatGeometricGraphs">WikicatGeometricGraphs</a>, </span> <span class="text-nowrap">from Named Graph: <a href="http://dbpedia.org">http://dbpedia.org</a>, </span> <span class="text-nowrap">within Data Space: <a href="http://dbpedia.org">dbpedia.org</a></span> </div> </div> </div> <div class="row pt-2"> <div class="col-xs-9 col-sm-10"> <p class="lead">A Euclidean graph (a graph embedded in some Euclidean space) is periodic if there exists a basis of that Euclidean space whose corresponding translations induce symmetries of that graph (i.e., application of any such translation to the graph embedded in the Euclidean space leaves the graph unchanged). Equivalently, a periodic Euclidean graph is a periodic realization of an abelian covering graph over a finite graph. A Euclidean graph is uniformly discrete if there is a minimal distance between any two vertices. Periodic graphs are closely related to tessellations of space (or honeycombs) and the geometry of their symmetry groups, hence to geometric group theory, as well as to discrete geometry and the theory of polytopes, and similar areas.</p> </div> </div> </div> </section> <!-- page-header --> <!-- property-table --> <section> <div class="container-xl"> <div class="row"> <div class="table-responsive"> <table class="table table-hover table-sm table-light"> <thead> <tr> <th class="col-xs-3 ">Property</th> <th class="col-xs-9 px-3">Value</th> </tr> </thead> <tbody> <tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/abstract"><small>dbo:</small>abstract</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:abstract" lang="en" >A Euclidean graph (a graph embedded in some Euclidean space) is periodic if there exists a basis of that Euclidean space whose corresponding translations induce symmetries of that graph (i.e., application of any such translation to the graph embedded in the Euclidean space leaves the graph unchanged). Equivalently, a periodic Euclidean graph is a periodic realization of an abelian covering graph over a finite graph. A Euclidean graph is uniformly discrete if there is a minimal distance between any two vertices. Periodic graphs are closely related to tessellations of space (or honeycombs) and the geometry of their symmetry groups, hence to geometric group theory, as well as to discrete geometry and the theory of polytopes, and similar areas. Much of the effort in periodic graphs is motivated by applications to natural science and engineering, particularly of three-dimensional crystal nets to crystal engineering, crystal prediction (design), and modeling crystal behavior. Periodic graphs have also been studied in modeling very-large-scale integration (VLSI) circuits.</span><small> (en)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageID"><small>dbo:</small>wikiPageID</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageID" datatype="xsd:integer" >29008597</span><small> (xsd:integer)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageLength"><small>dbo:</small>wikiPageLength</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageLength" datatype="xsd:nonNegativeInteger" >18151</span><small> (xsd:nonNegativeInteger)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageRevisionID"><small>dbo:</small>wikiPageRevisionID</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="dbo:wikiPageRevisionID" datatype="xsd:integer" >1076596015</span><small> (xsd:integer)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://dbpedia.org/ontology/wikiPageWikiLink"><small>dbo:</small>wikiPageWikiLink</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Schl盲fli_symbol" href="http://dbpedia.org/resource/Schl盲fli_symbol"><small>dbr</small>:Schl盲fli_symbol</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Basis_(linear_algebra)" href="http://dbpedia.org/resource/Basis_(linear_algebra)"><small>dbr</small>:Basis_(linear_algebra)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Boris_Delaunay" href="http://dbpedia.org/resource/Boris_Delaunay"><small>dbr</small>:Boris_Delaunay</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Category:Geometric_graphs" href="http://dbpedia.org/resource/Category:Geometric_graphs"><small>dbc</small>:Geometric_graphs</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Cycle_(graph_theory)" href="http://dbpedia.org/resource/Cycle_(graph_theory)"><small>dbr</small>:Cycle_(graph_theory)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Degree_(graph_theory)" href="http://dbpedia.org/resource/Degree_(graph_theory)"><small>dbr</small>:Degree_(graph_theory)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Line_segment" href="http://dbpedia.org/resource/Line_segment"><small>dbr</small>:Line_segment</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Prototile" href="http://dbpedia.org/resource/Prototile"><small>dbr</small>:Prototile</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Geometric_graph_theory" href="http://dbpedia.org/resource/Geometric_graph_theory"><small>dbr</small>:Geometric_graph_theory</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Geometric_group_theory" href="http://dbpedia.org/resource/Geometric_group_theory"><small>dbr</small>:Geometric_group_theory</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Net_(polyhedron)" href="http://dbpedia.org/resource/Net_(polyhedron)"><small>dbr</small>:Net_(polyhedron)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Quasicrystal" href="http://dbpedia.org/resource/Quasicrystal"><small>dbr</small>:Quasicrystal</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/N-skeleton" href="http://dbpedia.org/resource/N-skeleton"><small>dbr</small>:N-skeleton</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Coordination_sequence" href="http://dbpedia.org/resource/Coordination_sequence"><small>dbr</small>:Coordination_sequence</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Crystal_engineering" href="http://dbpedia.org/resource/Crystal_engineering"><small>dbr</small>:Crystal_engineering</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Crystal_structure_prediction" href="http://dbpedia.org/resource/Crystal_structure_prediction"><small>dbr</small>:Crystal_structure_prediction</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Homotopic" href="http://dbpedia.org/resource/Homotopic"><small>dbr</small>:Homotopic</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ludwig_Bieberbach" href="http://dbpedia.org/resource/Ludwig_Bieberbach"><small>dbr</small>:Ludwig_Bieberbach</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Fundamental_domain" href="http://dbpedia.org/resource/Fundamental_domain"><small>dbr</small>:Fundamental_domain</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Triply_periodic_minimal_surface" href="http://dbpedia.org/resource/Triply_periodic_minimal_surface"><small>dbr</small>:Triply_periodic_minimal_surface</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Three-dimensional" href="http://dbpedia.org/resource/Three-dimensional"><small>dbr</small>:Three-dimensional</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Glass" href="http://dbpedia.org/resource/Glass"><small>dbr</small>:Glass</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polynomial-time_reduction" href="http://dbpedia.org/resource/Polynomial-time_reduction"><small>dbr</small>:Polynomial-time_reduction</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Minimal_surface" href="http://dbpedia.org/resource/Minimal_surface"><small>dbr</small>:Minimal_surface</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Euclidean_space" href="http://dbpedia.org/resource/Euclidean_space"><small>dbr</small>:Euclidean_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Evgraf_Fedorov" href="http://dbpedia.org/resource/Evgraf_Fedorov"><small>dbr</small>:Evgraf_Fedorov</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Discrete_geometry" href="http://dbpedia.org/resource/Discrete_geometry"><small>dbr</small>:Discrete_geometry</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hilbert's_eighteenth_problem" href="http://dbpedia.org/resource/Hilbert's_eighteenth_problem"><small>dbr</small>:Hilbert's_eighteenth_problem</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Isomorphism_(crystallography)" href="http://dbpedia.org/resource/Isomorphism_(crystallography)"><small>dbr</small>:Isomorphism_(crystallography)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Hyperbolic_geometry" href="http://dbpedia.org/resource/Hyperbolic_geometry"><small>dbr</small>:Hyperbolic_geometry</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Symmetry_groups" href="http://dbpedia.org/resource/Symmetry_groups"><small>dbr</small>:Symmetry_groups</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Translation_(geometry)" href="http://dbpedia.org/resource/Translation_(geometry)"><small>dbr</small>:Translation_(geometry)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Discrete_space" href="http://dbpedia.org/resource/Discrete_space"><small>dbr</small>:Discrete_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/CW_complex" href="http://dbpedia.org/resource/CW_complex"><small>dbr</small>:CW_complex</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Space_group" href="http://dbpedia.org/resource/Space_group"><small>dbr</small>:Space_group</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polynomial_time" href="http://dbpedia.org/resource/Polynomial_time"><small>dbr</small>:Polynomial_time</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Tessellation_of_space" href="http://dbpedia.org/resource/Tessellation_of_space"><small>dbr</small>:Tessellation_of_space</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Set_(mathematics)" href="http://dbpedia.org/resource/Set_(mathematics)"><small>dbr</small>:Set_(mathematics)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Gyroid" href="http://dbpedia.org/resource/Gyroid"><small>dbr</small>:Gyroid</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Zeolite" href="http://dbpedia.org/resource/Zeolite"><small>dbr</small>:Zeolite</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Schwarz_minimal_surface" href="http://dbpedia.org/resource/Schwarz_minimal_surface"><small>dbr</small>:Schwarz_minimal_surface</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Polytope" href="http://dbpedia.org/resource/Polytope"><small>dbr</small>:Polytope</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Schoenflies" href="http://dbpedia.org/resource/Schoenflies"><small>dbr</small>:Schoenflies</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Periodic_Graphs_(Crystallography)" href="http://dbpedia.org/resource/Periodic_Graphs_(Crystallography)"><small>dbr</small>:Periodic_Graphs_(Crystallography)</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Vlsi" href="http://dbpedia.org/resource/Vlsi"><small>dbr</small>:Vlsi</a></span></li> <li><span class="literal"><a class="uri" rel="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Crystal_net" href="http://dbpedia.org/resource/Crystal_net"><small>dbr</small>:Crystal_net</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://dbpedia.org/property/wikiPageUsesTemplate"><small>dbp:</small>wikiPageUsesTemplate</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:!" href="http://dbpedia.org/resource/Template:!"><small>dbt</small>:!</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Citation" href="http://dbpedia.org/resource/Template:Citation"><small>dbt</small>:Citation</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Other_uses" href="http://dbpedia.org/resource/Template:Other_uses"><small>dbt</small>:Other_uses</a></span></li> <li><span class="literal"><a class="uri" rel="dbp:wikiPageUsesTemplate" resource="http://dbpedia.org/resource/Template:Reflist" href="http://dbpedia.org/resource/Template:Reflist"><small>dbt</small>:Reflist</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://purl.org/dc/terms/subject"><small>dcterms:</small>subject</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="dcterms:subject" resource="http://dbpedia.org/resource/Category:Geometric_graphs" prefix="dcterms: http://purl.org/dc/terms/" href="http://dbpedia.org/resource/Category:Geometric_graphs"><small>dbc</small>:Geometric_graphs</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"><small>rdf:</small>type</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Abstraction100002137" href="http://dbpedia.org/class/yago/Abstraction100002137"><small>yago</small>:Abstraction100002137</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Communication100033020" href="http://dbpedia.org/class/yago/Communication100033020"><small>yago</small>:Communication100033020</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/Graph107000195" href="http://dbpedia.org/class/yago/Graph107000195"><small>yago</small>:Graph107000195</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/WikicatGeometricGraphs" href="http://dbpedia.org/class/yago/WikicatGeometricGraphs"><small>yago</small>:WikicatGeometricGraphs</a></span></li> <li><span class="literal"><a class="uri" rel="rdf:type" resource="http://dbpedia.org/class/yago/VisualCommunication106873252" href="http://dbpedia.org/class/yago/VisualCommunication106873252"><small>yago</small>:VisualCommunication106873252</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/2000/01/rdf-schema#comment"><small>rdfs:</small>comment</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="rdfs:comment" lang="en" >A Euclidean graph (a graph embedded in some Euclidean space) is periodic if there exists a basis of that Euclidean space whose corresponding translations induce symmetries of that graph (i.e., application of any such translation to the graph embedded in the Euclidean space leaves the graph unchanged). Equivalently, a periodic Euclidean graph is a periodic realization of an abelian covering graph over a finite graph. A Euclidean graph is uniformly discrete if there is a minimal distance between any two vertices. Periodic graphs are closely related to tessellations of space (or honeycombs) and the geometry of their symmetry groups, hence to geometric group theory, as well as to discrete geometry and the theory of polytopes, and similar areas.</span><small> (en)</small></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/2000/01/rdf-schema#label"><small>rdfs:</small>label</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><span property="rdfs:label" lang="en" >Periodic graph (geometry)</span><small> (en)</small></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://www.w3.org/2002/07/owl#sameAs"><small>owl:</small>sameAs</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://rdf.freebase.com/ns/m.0dgrkhs" href="http://rdf.freebase.com/ns/m.0dgrkhs"><small>freebase</small>:Periodic graph (geometry)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://yago-knowledge.org/resource/Periodic_graph_(geometry)" href="http://yago-knowledge.org/resource/Periodic_graph_(geometry)"><small>yago-res</small>:Periodic graph (geometry)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="http://www.wikidata.org/entity/Q7168638" href="http://www.wikidata.org/entity/Q7168638"><small>wikidata</small>:Periodic graph (geometry)</a></span></li> <li><span class="literal"><a class="uri" rel="owl:sameAs" resource="https://global.dbpedia.org/id/4tC7h" href="https://global.dbpedia.org/id/4tC7h">https://global.dbpedia.org/id/4tC7h</a></span></li> </ul></td></tr><tr class="even"><td class="col-2"><a class="uri" href="http://www.w3.org/ns/prov#wasDerivedFrom"><small>prov:</small>wasDerivedFrom</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="prov:wasDerivedFrom" resource="http://en.wikipedia.org/wiki/Periodic_graph_(geometry)?oldid=1076596015&ns=0" href="http://en.wikipedia.org/wiki/Periodic_graph_(geometry)?oldid=1076596015&ns=0"><small>wikipedia-en</small>:Periodic_graph_(geometry)?oldid=1076596015&ns=0</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2"><a class="uri" href="http://xmlns.com/foaf/0.1/isPrimaryTopicOf"><small>foaf:</small>isPrimaryTopicOf</a> </td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rel="foaf:isPrimaryTopicOf" resource="http://en.wikipedia.org/wiki/Periodic_graph_(geometry)" href="http://en.wikipedia.org/wiki/Periodic_graph_(geometry)"><small>wikipedia-en</small>:Periodic_graph_(geometry)</a></span></li> </ul></td></tr><tr class="even"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/wikiPageDisambiguates"><small>dbo:</small>wikiPageDisambiguates</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:wikiPageDisambiguates" resource="http://dbpedia.org/resource/Periodic_graph" href="http://dbpedia.org/resource/Periodic_graph"><small>dbr</small>:Periodic_graph</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/wikiPageRedirects"><small>dbo:</small>wikiPageRedirects</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Periodic_Graph_(Geometry)" href="http://dbpedia.org/resource/Periodic_Graph_(Geometry)"><small>dbr</small>:Periodic_Graph_(Geometry)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageRedirects" resource="http://dbpedia.org/resource/Periodic_Graphs_(Geometry)" href="http://dbpedia.org/resource/Periodic_Graphs_(Geometry)"><small>dbr</small>:Periodic_Graphs_(Geometry)</a></span></li> </ul></td></tr><tr class="even"><td class="col-2">is <a class="uri" href="http://dbpedia.org/ontology/wikiPageWikiLink"><small>dbo:</small>wikiPageWikiLink</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Periodic_graph_(crystallography)" href="http://dbpedia.org/resource/Periodic_graph_(crystallography)"><small>dbr</small>:Periodic_graph_(crystallography)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Periodic_Graph_(Geometry)" href="http://dbpedia.org/resource/Periodic_Graph_(Geometry)"><small>dbr</small>:Periodic_Graph_(Geometry)</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Ludwig_Bieberbach" href="http://dbpedia.org/resource/Ludwig_Bieberbach"><small>dbr</small>:Ludwig_Bieberbach</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Periodic_graph" href="http://dbpedia.org/resource/Periodic_graph"><small>dbr</small>:Periodic_graph</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Discrete_geometry" href="http://dbpedia.org/resource/Discrete_geometry"><small>dbr</small>:Discrete_geometry</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_Russian_mathematicians" href="http://dbpedia.org/resource/List_of_Russian_mathematicians"><small>dbr</small>:List_of_Russian_mathematicians</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_Russian_scientists" href="http://dbpedia.org/resource/List_of_Russian_scientists"><small>dbr</small>:List_of_Russian_scientists</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_Tokyo_Institute_of_Technology_people" href="http://dbpedia.org/resource/List_of_Tokyo_Institute_of_Technology_people"><small>dbr</small>:List_of_Tokyo_Institute_of_Technology_people</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Laves_graph" href="http://dbpedia.org/resource/Laves_graph"><small>dbr</small>:Laves_graph</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/List_of_Russian_people" href="http://dbpedia.org/resource/List_of_Russian_people"><small>dbr</small>:List_of_Russian_people</a></span></li> <li><span class="literal"><a class="uri" rev="dbo:wikiPageWikiLink" resource="http://dbpedia.org/resource/Periodic_Graphs_(Geometry)" href="http://dbpedia.org/resource/Periodic_Graphs_(Geometry)"><small>dbr</small>:Periodic_Graphs_(Geometry)</a></span></li> </ul></td></tr><tr class="odd"><td class="col-2">is <a class="uri" href="http://xmlns.com/foaf/0.1/primaryTopic"><small>foaf:</small>primaryTopic</a> of</td><td class="col-10 text-break"><ul> <li><span class="literal"><a class="uri" rev="foaf:primaryTopic" resource="http://en.wikipedia.org/wiki/Periodic_graph_(geometry)" href="http://en.wikipedia.org/wiki/Periodic_graph_(geometry)"><small>wikipedia-en</small>:Periodic_graph_(geometry)</a></span></li> </ul></td></tr> </tbody> </table> </div> </div> </div> </section> <!-- property-table --> <!-- footer --> <section> <div class="container-xl"> <div class="text-center p-4 bg-light"> <a href="https://virtuoso.openlinksw.com/" title="OpenLink Virtuoso"><img class="powered_by" src="/statics/images/virt_power_no_border.png" alt="Powered by OpenLink Virtuoso"/></a>    <a href="http://linkeddata.org/"><img alt="This material is Open Knowledge" src="/statics/images/LoDLogo.gif"/></a>     <a href="http://dbpedia.org/sparql"><img alt="W3C Semantic Web Technology" src="/statics/images/sw-sparql-blue.png"/></a>     <a href="https://opendefinition.org/"><img alt="This material is Open Knowledge" src="/statics/images/od_80x15_red_green.png"/></a>    <span style="display:none;" about="" resource="http://www.w3.org/TR/rdfa-syntax" rel="dc:conformsTo"> <a href="https://validator.w3.org/check?uri=referer"> <img src="https://www.w3.org/Icons/valid-xhtml-rdfa" alt="Valid XHTML + RDFa" /> </a> </span> <br /> <small class="text-muted"> This content was extracted from <a href="http://en.wikipedia.org/wiki/Periodic_graph_(geometry)">Wikipedia</a> and is licensed under the <a href="http://creativecommons.org/licenses/by-sa/3.0/">Creative Commons Attribution-ShareAlike 3.0 Unported License</a> </small> </div> </div> </section> <!-- #footer --> <!-- scripts --> <script src="https://cdnjs.cloudflare.com/ajax/libs/bootstrap/5.2.1/js/bootstrap.bundle.min.js" integrity="sha512-1TK4hjCY5+E9H3r5+05bEGbKGyK506WaDPfPe1s/ihwRjr6OtL43zJLzOFQ+/zciONEd+sp7LwrfOCnyukPSsg==" crossorigin="anonymous"> </script> </body> </html>