CINXE.COM
Search results for: dispersion
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: dispersion</title> <meta name="description" content="Search results for: dispersion"> <meta name="keywords" content="dispersion"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="dispersion" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="dispersion"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 659</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: dispersion</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">629</span> Evaluation of Turbulence Prediction over Washington, D.C.: Comparison of DCNet Observations and North American Mesoscale Model Outputs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nebila%20Lichiheb">Nebila Lichiheb</a>, <a href="https://publications.waset.org/abstracts/search?q=LaToya%20Myles"> LaToya Myles</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Pendergrass"> William Pendergrass</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruce%20Hicks"> Bruce Hicks</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawson%20Cagle"> Dawson Cagle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atmospheric transport of hazardous materials in urban areas is increasingly under investigation due to the potential impact on human health and the environment. In response to health and safety concerns, several dispersion models have been developed to analyze and predict the dispersion of hazardous contaminants. The models of interest usually rely on meteorological information obtained from the meteorological models of NOAA’s National Weather Service (NWS). However, due to the complexity of the urban environment, NWS forecasts provide an inadequate basis for dispersion computation in urban areas. A dense meteorological network in Washington, DC, called DCNet, has been operated by NOAA since 2003 to support the development of urban monitoring methodologies and provide the driving meteorological observations for atmospheric transport and dispersion models. This study focuses on the comparison of wind observations from the DCNet station on the U.S. Department of Commerce Herbert C. Hoover Building against the North American Mesoscale (NAM) model outputs for the period 2017-2019. The goal is to develop a simple methodology for modifying NAM outputs so that the dispersion requirements of the city and its urban area can be satisfied. This methodology will allow us to quantify the prediction errors of the NAM model and propose adjustments of key variables controlling dispersion model calculation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=meteorological%20data" title="meteorological data">meteorological data</a>, <a href="https://publications.waset.org/abstracts/search?q=Washington%20D.C." title=" Washington D.C."> Washington D.C.</a>, <a href="https://publications.waset.org/abstracts/search?q=DCNet%20data" title=" DCNet data"> DCNet data</a>, <a href="https://publications.waset.org/abstracts/search?q=NAM%20model" title=" NAM model"> NAM model</a> </p> <a href="https://publications.waset.org/abstracts/140950/evaluation-of-turbulence-prediction-over-washington-dc-comparison-of-dcnet-observations-and-north-american-mesoscale-model-outputs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">628</span> Estimation of Longitudinal Dispersion Coefficient Using Tracer Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Ebrahimi">K. Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Shahid"> Sh. Shahid</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mohammadi%20Ghaleni"> M. Mohammadi Ghaleni</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Omid"> M. H. Omid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The longitudinal dispersion coefficient is a crucial parameter for 1-D water quality analysis of riverine flows. So far, different types of empirical equations for estimation of the coefficient have been developed, based on various case studies. The main objective of this paper is to develop an empirical equation for estimation of the coefficient for a riverine flow. For this purpose, a set of tracer experiments was conducted, involving salt tracer, at three sections located in downstream of a lengthy canal. Tracer data were measured in three mixing lengths along the canal including; 45, 75 and 100m. According to the results, the obtained coefficients from new developed empirical equation gave an encouraging level of agreement with the theoretical values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coef%EF%AC%81cients" title="coefficients">coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=river" title=" river"> river</a>, <a href="https://publications.waset.org/abstracts/search?q=tracer" title=" tracer"> tracer</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/31418/estimation-of-longitudinal-dispersion-coefficient-using-tracer-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">627</span> Effects of Variable Properties and Double Dispersion on Magnetohydrodynamic (MHD) Mixed Convection in a Power-Law Fluid Saturated Non-Darcy Porous Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pranitha%20Janapatla">Pranitha Janapatla</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkata%20Suman%20Gontla"> Venkata Suman Gontla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper investigates the effects of MHD, double dispersion and variable properties on mixed convection flow from a vertical surface in a power-law fluid saturated non-Darcy porous medium. The governing non-linear partial differential equations are reduced to a system of ordinary differential equations by using a special form of Lie group transformations viz. scaling group of transformations. These ordinary differential equations are solved numerically by using Shooting technique. The influence of relevant parameters on the non-dimensional velocity, temperature, concentration for pseudo-plastic fluid, Newtonian and dilatant fluid are discussed and displayed graphically. The behavior of heat and mass transfer coefficients are shown in tabular form. Comparisons with the published works are performed and are found to be in very good agreement. From this analysis, it is observed that an increase in variable viscosity causes to decrease in velocity profile and increase the temperature and concentration distributions. It is also concluded that increase in the solutal dispersion decreases the velocity and concentration but raises the temperature profile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power-law%20fluid" title="power-law fluid">power-law fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20dispersion" title=" thermal dispersion"> thermal dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=solutal%20dispersion" title=" solutal dispersion"> solutal dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20viscosity" title=" variable viscosity"> variable viscosity</a> </p> <a href="https://publications.waset.org/abstracts/54707/effects-of-variable-properties-and-double-dispersion-on-magnetohydrodynamic-mhd-mixed-convection-in-a-power-law-fluid-saturated-non-darcy-porous-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">626</span> Specific Emitter Identification Based on Refined Composite Multiscale Dispersion Entropy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaoying%20Guo">Shaoying Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanyun%20Xu"> Yanyun Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Zhang"> Meng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiqing%20Huang"> Weiqing Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wireless communication network is developing rapidly, thus the wireless security becomes more and more important. Specific emitter identification (SEI) is an vital part of wireless communication security as a technique to identify the unique transmitters. In this paper, a SEI method based on multiscale dispersion entropy (MDE) and refined composite multiscale dispersion entropy (RCMDE) is proposed. The algorithms of MDE and RCMDE are used to extract features for identification of five wireless devices and cross-validation support vector machine (CV-SVM) is used as the classifier. The experimental results show that the total identification accuracy is 99.3%, even at low signal-to-noise ratio(SNR) of 5dB, which proves that MDE and RCMDE can describe the communication signal series well. In addition, compared with other methods, the proposed method is effective and provides better accuracy and stability for SEI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-validation%20support%20vector%20machine" title="cross-validation support vector machine">cross-validation support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=refined%20com-%20posite%20multiscale%20dispersion%20entropy" title=" refined com- posite multiscale dispersion entropy"> refined com- posite multiscale dispersion entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20emitter%20identification" title=" specific emitter identification"> specific emitter identification</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20signal" title=" transient signal"> transient signal</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communication%20device" title=" wireless communication device"> wireless communication device</a> </p> <a href="https://publications.waset.org/abstracts/105514/specific-emitter-identification-based-on-refined-composite-multiscale-dispersion-entropy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">625</span> The Effect of PM10 Dispersion from Industrial, Residential and Commercial Areas in Arid Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meshari%20Al-Harbi">Meshari Al-Harbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comparative area-season-elemental-wise time series analysis by Dust Track monitor (2012-2013) revealed high PM10 dispersion in the outdoor environment in the sequence of industrial> express highways>residential>open areas. Time series analysis from 7AM-6AM (until next day), 30d (monthly), 3600sec. (for any given period of a month), and 12 months (yearly) showed peak PM10 dispersion during 1AM-7AM, 1d-4d and 25d-31d of every month, 1500-3600 with the exception in PM10 dispersion in residential areas, and in the months-March to June, respectively. This time-bound PM10 dispersion suggests the primary influence of human activities (peak mobility and productivity period for a given time frame) besides the secondary influence of meteorological parameters (high temperature and wind action) and, occasional dust storms. Whereas, gravimetric analysis reveals the influence of precipitation, low temperature and low volatility resulting high trace metals in PM10 during winter than in summer and primarily attributes to the influence of nature besides, the secondary attributes of smoke stack emission from various industries and automobiles. Furthermore, our study recommends residents to limit outdoor air pollution exposures and take precautionary measures to inhale PM10 pollutants from the atmosphere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol" title="aerosol">aerosol</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=respirable%20particulates" title=" respirable particulates"> respirable particulates</a>, <a href="https://publications.waset.org/abstracts/search?q=trace-metals" title=" trace-metals"> trace-metals</a> </p> <a href="https://publications.waset.org/abstracts/25866/the-effect-of-pm10-dispersion-from-industrial-residential-and-commercial-areas-in-arid-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">624</span> Interesting Behavior of Non-Thermal Plasma Photonic Crystals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mousavi">A. Mousavi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sadegzadeh"> S. Sadegzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, the effect of non-thermal micro plasma with non-Maxwellian distribution function on the one dimensional plasma photonic crystals containing alternate plasma-dielectric layers, has been studied. By using Kronig Penny model, the dispersion relation of electromagnetic modes for such a periodic structure is obtained. In this study we take two plasma photonic crystals with different dielectric layers: the first one with Silicon monoxide named PPCI, and the second one with Tellurium dioxide named PPCII. The effects of the plasma layer thickness and the material of the dielectric layer on the plasma photonic crystal band gaps have been illustrated in the dispersion relation and the group velocity figures. Results revealed that in such a system, the non-thermal plasma exerts stronger limit on the wave’s propagation. In another word, for the non-thermal plasma photonic crystals (NPPC), there are two distinct regions in the dispersion plot. The upper region consists of alternate band gaps in such a way that both width and length of the bands decrease gradually as the band gaps order increases. Whereas in the lower region where v_ph > 20 c (for PPCI), waves will not be allowed to propagate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=band%20gap" title="band gap">band gap</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20relation" title=" dispersion relation"> dispersion relation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-thermal%20plasma" title=" non-thermal plasma"> non-thermal plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20photonic%20crystal" title=" plasma photonic crystal"> plasma photonic crystal</a> </p> <a href="https://publications.waset.org/abstracts/24618/interesting-behavior-of-non-thermal-plasma-photonic-crystals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">623</span> Enhancement of 2, 4-Dichlorophenoxyacetic Acid Solubility via Solid Dispersion Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamer%20M.%20Shehata">Tamer M. Shehata</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20S.%20Elsewedy"> Heba S. Elsewedy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mashel%20Al%20Dosary"> Mashel Al Dosary</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Elshehry"> Alaa Elshehry</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Khedr"> Mohamed A. Khedr</a>, <a href="https://publications.waset.org/abstracts/search?q=Maged%20E.%20Mohamed"> Maged E. Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: 2,4-Dichlorophenoxy acetic acid (2,4-D) is a well-known herbicide widely used as a weed killer. Recently, 2,4-D was rediscovered as a new anti-inflammatory agent through in silico as well as in-vivo experiments. However, poor solubility of 2,4-D could represent a problems during pharmaceutical development in addition to lower bioavailability. Solid dispersion (SD) refers to a group of solid products consisting of at least two different components, usually a hydrophobic drug and hydrophilic matrix. It is well known technique for enhancing drug solubility. Therefore, selecting SD as a tool for enhancing 2,4-D could be of great interest to the formulator. Method: In our project, several polymers were investigated (such as PEG, HPMC, citric acid and others) in addition to drug polymer ratios and its effect on solubility. Evaluation of drug polymer interaction was investigated through both Fourier Transform Infrared (FTIR) and Differential Scanning Calorimetry (DSC). Finally, in-vivo evaluation was performed for the best selected preparation through inflammatory response of rat induce hind paw. Results: Results indicated that, citric acid 2,4-D and in ratio of 0.75 : 1 showed modified the dissolution profile of the drug. The FTIR resltes indicated no significant chemical interaction, however DSC showed shifting of the drug melting point. Finally, Carragenan induced rat hind paw edema showed significant reduction of the drug solid dispersion in comparison to the pure drug, indicating rapid and complete absorption of the drug in solid dispersion form. Conclusion: Solid dispersion technology can be utilized efficiently to enhance the solubility of 2,4-D. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20dispersion" title="solid dispersion">solid dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=2" title=" 2"> 2</a>, <a href="https://publications.waset.org/abstracts/search?q=4-D%20solubility" title="4-D solubility">4-D solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=carragenan%20induced%20edema" title=" carragenan induced edema"> carragenan induced edema</a> </p> <a href="https://publications.waset.org/abstracts/41335/enhancement-of-2-4-dichlorophenoxyacetic-acid-solubility-via-solid-dispersion-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">622</span> Air Dispersion Modeling for Prediction of Accidental Emission in the Atmosphere along Northern Coast of Egypt </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Osman">Moustafa Osman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modeling of air pollutants from the accidental release is performed for quantifying the impact of industrial facilities into the ambient air. The mathematical methods are requiring for the prediction of the accidental scenario in probability of failure-safe mode and analysis consequences to quantify the environmental damage upon human health. The initial statement of mitigation plan is supporting implementation during production and maintenance periods. In a number of mathematical methods, the flow rate at which gaseous and liquid pollutants might be accidentally released is determined from various types in term of point, line and area sources. These emissions are integrated meteorological conditions in simplified stability parameters to compare dispersion coefficients from non-continuous air pollution plumes. The differences are reflected in concentrations levels and greenhouse effect to transport the parcel load in both urban and rural areas. This research reveals that the elevation effect nearby buildings with other structure is higher 5 times more than open terrains. These results are agreed with Sutton suggestion for dispersion coefficients in different stability classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollutants" title="air pollutants">air pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20modeling" title=" dispersion modeling"> dispersion modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20effect" title=" health effect"> health effect</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning" title=" urban planning"> urban planning</a> </p> <a href="https://publications.waset.org/abstracts/5517/air-dispersion-modeling-for-prediction-of-accidental-emission-in-the-atmosphere-along-northern-coast-of-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">621</span> Parametric Dependence of the Advection-Diffusion Equation in Two Dimensions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matheus%20Fernando%20Pereira">Matheus Fernando Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Varese%20Salvador%20Timoteo"> Varese Salvador Timoteo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we have solved the two-dimensional advection-diffusion equation numerically for a spatially dependent solute dispersion along non-uniform flow with a pulse type source in order to make a systematic study on the influence of medium heterogeneity, initial flow velocity, and initial dispersion coefficient parameters on the solutions of the equation. The behavior of the solutions is then investigated as we change the three parameters independently. Our results show that even though the parameters represent different physical features of the system, the effect on their variation is very similar. We also observe that the effects caused by the parameters on the concentration depend on the distance from the source. Finally, our numerical results are in good agreement with the exact solutions for all values of the parameters we used in our analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advection-diffusion%20equation" title="advection-diffusion equation">advection-diffusion equation</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20methods" title=" numerical methods"> numerical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse-type%20source" title=" pulse-type source"> pulse-type source</a> </p> <a href="https://publications.waset.org/abstracts/94370/parametric-dependence-of-the-advection-diffusion-equation-in-two-dimensions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">620</span> Evaluating the Validity of CFD Model of Dispersion in a Complex Urban Geometry Using Two Sets of Experimental Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20R.%20Kavian%20Nezhad">Mohammad R. Kavian Nezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20F.%20Lange"> Carlos F. Lange</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20A.%20Fleck"> Brian A. Fleck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents the validation study of a computational fluid dynamics (CFD) model developed to simulate the scalar dispersion emitted from rooftop sources around the buildings at the University of Alberta North Campus. The ANSYS CFX code was used to perform the numerical simulation of the wind regime and pollutant dispersion by solving the 3D steady Reynolds-averaged Navier-Stokes (RANS) equations on a building-scale high-resolution grid. The validation study was performed in two steps. First, the CFD model performance in 24 cases (eight wind directions and three wind speeds) was evaluated by comparing the predicted flow fields with the available data from the previous measurement campaign designed at the North Campus, using the standard deviation method (SDM), while the estimated results of the numerical model showed maximum average percent errors of approximately 53% and 37% for wind incidents from the North and Northwest, respectively. Good agreement with the measurements was observed for the other six directions, with an average error of less than 30%. In the second step, the reliability of the implemented turbulence model, numerical algorithm, modeling techniques, and the grid generation scheme was further evaluated using the Mock Urban Setting Test (MUST) dispersion dataset. Different statistical measures, including the fractional bias (FB), the geometric mean bias (MG), and the normalized mean square error (NMSE), were used to assess the accuracy of the predicted dispersion field. Our CFD results are in very good agreement with the field measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=plume%20dispersion" title=" plume dispersion"> plume dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20urban%20geometry" title=" complex urban geometry"> complex urban geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=validation%20study" title=" validation study"> validation study</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20flow" title=" wind flow"> wind flow</a> </p> <a href="https://publications.waset.org/abstracts/142973/evaluating-the-validity-of-cfd-model-of-dispersion-in-a-complex-urban-geometry-using-two-sets-of-experimental-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">619</span> Estimation of the Road Traffic Emissions and Dispersion in the Developing Countries Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hicham%20Gourgue">Hicham Gourgue</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Aharoune"> Ahmed Aharoune</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Ihlal"> Ahmed Ihlal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present in this work our model of road traffic emissions (line sources) and dispersion of these emissions, named DISPOLSPEM (Dispersion of Poly Sources and Pollutants Emission Model). In its emission part, this model was designed to keep the consistent bottom-up and top-down approaches. It also allows to generate emission inventories from reduced input parameters being adapted to existing conditions in Morocco and in the other developing countries. While several simplifications are made, all the performance of the model results are kept. A further important advantage of the model is that it allows the uncertainty calculation and emission rate uncertainty according to each of the input parameters. In the dispersion part of the model, an improved line source model has been developed, implemented and tested against a reference solution. It provides improvement in accuracy over previous formulas of line source Gaussian plume model, without being too demanding in terms of computational resources. In the case study presented here, the biggest errors were associated with the ends of line source sections; these errors will be canceled by adjacent sections of line sources during the simulation of a road network. In cases where the wind is parallel to the source line, the use of the combination discretized source and analytical line source formulas minimizes remarkably the error. Because this combination is applied only for a small number of wind directions, it should not excessively increase the calculation time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title="air pollution">air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20sources" title=" line sources"> line sources</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20traffic" title=" road traffic"> road traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20transport" title=" urban transport"> urban transport</a> </p> <a href="https://publications.waset.org/abstracts/43382/estimation-of-the-road-traffic-emissions-and-dispersion-in-the-developing-countries-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">618</span> Implications of Meteorological Parameters in Decision Making for Public Protective Actions during a Nuclear Emergency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hussaina">M. Hussaina</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mahboobb"> K. Mahboobb</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Z.%20Ilyasa"> S. Z. Ilyasa</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Shaheena"> S. Shaheena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plume dispersion modeling is a computational procedure to establish a relationship between emissions, meteorology, atmospheric concentrations, deposition and other factors. The emission characteristics (stack height, stack diameter, release velocity, heat contents, chemical and physical properties of the gases/particle released etc.), terrain (surface roughness, local topography, nearby buildings) and meteorology (wind speed, stability, mixing height, etc.) are required for the modeling of the plume dispersion and estimation of ground and air concentration. During the early phase of Fukushima accident, plume dispersion modeling and decisions were taken for the implementation of protective measures. A difference in estimated results and decisions made by different countries for taking protective actions created a concern in local and international community regarding the exact identification of the safe zone. The current study is focused to highlight the importance of accurate and exact weather data availability, scientific approach for decision making for taking urgent protective actions, compatible and harmonized approach for plume dispersion modeling during a nuclear emergency. As a case study, the influence of meteorological data on plume dispersion modeling and decision-making process has been performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20making%20process" title="decision making process">decision making process</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20doses" title=" radiation doses"> radiation doses</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20emergency" title=" nuclear emergency"> nuclear emergency</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20implications" title=" meteorological implications"> meteorological implications</a> </p> <a href="https://publications.waset.org/abstracts/138237/implications-of-meteorological-parameters-in-decision-making-for-public-protective-actions-during-a-nuclear-emergency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">617</span> Analysis of Evolution of Higher Order Solitons by Numerical Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Khadidja">K. Khadidja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solitons are stable solution of nonlinear Schrodinger equation. Their stability is due to the exact combination between nonlinearity and dispersion which causes pulse broadening. Higher order solitons are born when nonlinear length is N multiple of dispersive length. Soliton order is determined by the number N itself. In this paper, evolution of higher order solitons is illustrated by simulation using Matlab. Results show that higher order solitons change their shape periodically, the reason why they are bad for transmission comparing to fundamental solitons which are constant. Partial analysis of a soliton of higher order explains that the periodic shape is due to the interplay between nonlinearity and dispersion which are not equal during a period. This class of solitons has many applications such as generation of supercontinuum and the impulse compression on the Femtosecond scale. As a conclusion, the periodicity which is harmful to transmission can be beneficial in other applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersion" title="dispersion">dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinearity" title=" nonlinearity"> nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20fiber" title=" optical fiber"> optical fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton" title=" soliton"> soliton</a> </p> <a href="https://publications.waset.org/abstracts/80812/analysis-of-evolution-of-higher-order-solitons-by-numerical-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">616</span> Modeling Solute Transport through Porous Media with Scale Dependent Dispersion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teodrose%20Atnafu%20Abegaze">Teodrose Atnafu Abegaze</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Sharma"> P. K. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an attempt has been made to study the behavior of breakthrough curves in both layered and mixed heterogeneous soil by conducting experiments in long soil columns. Sodium chloride has been used as a conservative tracer in the experiment. Advective dispersive transport equations, including equilibrium sorption and first-order degradation coefficients, are used for solute transport through mobile-immobile porous media. In order to do the governing equation for solute transport, there are explicit and implicit schemes for our condition; we use an implicit scheme to numerically model the solute concentration. Results of experimental breakthrough curves indicate that the behavior of observed breakthrough curves is approximately similar in both cases of layered and mixed soil, while earlier arrival of solute concentration is obtained in the case of mixed soil. It means that the types of heterogeneity of the soil media affect the behavior of solute concentration. Finally, it is also shown that the asymptotic dispersion model simulates the experimental data better than the constant and linear distance-dependent dispersion models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20method" title="numerical method">numerical method</a>, <a href="https://publications.waset.org/abstracts/search?q=distance%20dependant%20dispersion" title=" distance dependant dispersion"> distance dependant dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20transport" title=" reactive transport"> reactive transport</a>, <a href="https://publications.waset.org/abstracts/search?q=experiment" title=" experiment"> experiment</a> </p> <a href="https://publications.waset.org/abstracts/179547/modeling-solute-transport-through-porous-media-with-scale-dependent-dispersion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">615</span> Analyzing Transit Network Design versus Urban Dispersion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hugo%20Badia">Hugo Badia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research answers which is the most suitable transit network structure to serve specific demand requirements in an increasing urban dispersion process. Two main approaches of network design are found in the literature. On the one hand, a traditional answer, widespread in our cities, that develops a high number of lines to connect most of origin-destination pairs by direct trips; an approach based on the idea that users averse to transfers. On the other hand, some authors advocate an alternative design characterized by simple networks where transfer is essential to complete most of trips. To answer which of them is the best option, we use a two-step methodology. First, by means of an analytical model, three basic network structures are compared: a radial scheme, starting point for the other two structures, a direct trip-based network, and a transfer-based one, which represent the two alternative transit network designs. The model optimizes the network configuration with regard to the total cost for each structure. For a scenario of dispersion, the best alternative is the structure with the minimum cost. This dispersion degree is defined in a simple way considering that only a central area attracts all trips. If this area is small, we have a high concentrated mobility pattern; if this area is too large, the city is highly decentralized. In this first step, we can determine the area of applicability for each structure in function to that urban dispersion degree. The analytical results show that a radial structure is suitable when the demand is so centralized, however, when this demand starts to scatter, new transit lines should be implemented to avoid transfers. If the urban dispersion advances, the introduction of more lines is no longer a good alternative, in this case, the best solution is a change of structure, from direct trips to a network based on transfers. The area of applicability of each network strategy is not constant, it depends on the characteristics of demand, city and transport technology. In the second step, we translate analytical results to a real case study by the relationship between the parameters of dispersion of the model and direct measures of dispersion in a real city. Two dimensions of the urban sprawl process are considered: concentration, defined by Gini coefficient, and centralization by area based centralization index. Once it is estimated the real dispersion degree, we are able to identify in which area of applicability the city is located. In summary, from a strategic point of view, we can obtain with this methodology which is the best network design approach for a city, comparing the theoretical results with the real dispersion degree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20network%20design%20model" title="analytical network design model">analytical network design model</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20structure" title=" network structure"> network structure</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20transport" title=" public transport"> public transport</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20dispersion" title=" urban dispersion"> urban dispersion</a> </p> <a href="https://publications.waset.org/abstracts/68930/analyzing-transit-network-design-versus-urban-dispersion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">614</span> Study of Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans Dispersion in the Environment of a Municipal Solid Waste Incinerator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%B3mez%20R.%20Marta">Gómez R. Marta</a>, <a href="https://publications.waset.org/abstracts/search?q=Mart%C3%ADn%20M.%20Jes%C3%BAs%20Mar%C3%ADa"> Martín M. Jesús María</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The general aim of this paper identifies the areas of highest concentration of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) around the incinerator through the use of dispersion models. Atmospheric dispersion models are useful tools for estimating and prevent the impact of emissions from a particular source in air quality. These models allow considering different factors that influence in air pollution: source characteristics, the topography of the receiving environment and weather conditions to predict the pollutants concentration. The PCDD/Fs, after its emission into the atmosphere, are deposited on water or land, near or far from emission source depending on the size of the associated particles and climatology. In this way, they are transferred and mobilized through environmental compartments. The modelling of PCDD/Fs was carried out with following tools: Atmospheric Dispersion Model Software (ADMS) and Surfer. ADMS is a dispersion model Gaussian plume, used to model the impact of air quality industrial facilities. And Surfer is a program of surfaces which is used to represent the dispersion of pollutants on a map. For the modelling of emissions, ADMS software requires the following input parameters: characterization of emission sources (source type, height, diameter, the temperature of the release, flow rate, etc.) meteorological and topographical data (coordinate system), mainly. The study area was set at 5 Km around the incinerator and the first population center nearest to focus PCDD/Fs emission is about 2.5 Km, approximately. Data were collected during one year (2013) both PCDD/Fs emissions of the incinerator as meteorology in the study area. The study has been carried out during period's average that legislation establishes, that is to say, the output parameters are taking into account the current legislation. Once all data required by software ADMS, described previously, are entered, and in order to make the representation of the spatial distribution of PCDD/Fs concentration and the areas affecting them, the modelling was proceeded. In general, the dispersion plume is in the direction of the predominant winds (Southwest and Northeast). Total levels of PCDD/Fs usually found in air samples, are from <2 pg/m3 for remote rural areas, from 2-15 pg/m3 in urban areas and from 15-200 pg/m3 for areas near to important sources, as can be an incinerator. The results of dispersion maps show that maximum concentrations are the order of 10-8 ng/m3, well below the values considered for areas close to an incinerator, as in this case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20dispersion" title="atmospheric dispersion">atmospheric dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=dioxin" title=" dioxin"> dioxin</a>, <a href="https://publications.waset.org/abstracts/search?q=furan" title=" furan"> furan</a>, <a href="https://publications.waset.org/abstracts/search?q=incinerator" title=" incinerator"> incinerator</a> </p> <a href="https://publications.waset.org/abstracts/56836/study-of-polychlorinated-dibenzo-p-dioxins-and-dibenzofurans-dispersion-in-the-environment-of-a-municipal-solid-waste-incinerator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">613</span> Population Size Estimation Based on the GPD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Anan">O. Anan</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20B%C3%B6hning"> D. Böhning</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Maruotti"> A. Maruotti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the study is to estimate the elusive target population size under a truncated count model that accounts for heterogeneity. The purposed estimator is based on the generalized Poisson distribution (GPD), which extends the Poisson distribution by adding a dispersion parameter. Thus, it becomes an useful model for capture-recapture data where concurrent events are not homogeneous. In addition, it can account for over-dispersion and under-dispersion. The ratios of neighboring frequency counts are used as a tool for investigating the validity of whether generalized Poisson or Poisson distribution. Since capture-recapture approaches do not provide the zero counts, the estimated parameters can be achieved by modifying the EM-algorithm technique for the zero-truncated generalized Poisson distribution. The properties and the comparative performance of proposed estimator were investigated through simulation studies. Furthermore, some empirical examples are represented insights on the behavior of the estimators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capture" title="capture">capture</a>, <a href="https://publications.waset.org/abstracts/search?q=recapture%20methods" title=" recapture methods"> recapture methods</a>, <a href="https://publications.waset.org/abstracts/search?q=ratio%20plot" title=" ratio plot"> ratio plot</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20population" title=" heterogeneous population"> heterogeneous population</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-truncated%20count" title=" zero-truncated count"> zero-truncated count</a> </p> <a href="https://publications.waset.org/abstracts/37160/population-size-estimation-based-on-the-gpd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">612</span> Synthesis of Dispersion-Compensating Triangular Lattice Index-Guiding Photonic Crystal Fibers Using the Directed Tabu Search Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Karim">F. Karim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, triangular lattice index-guiding photonic crystal fibers (PCFs) are synthesized to compensate the chromatic dispersion of a single mode fiber (SMF-28) for an 80 km optical link operating at 1.55 µm, by using the directed tabu search algorithm. Hole-to-hole distance, circular air-hole diameter, solid-core diameter, ring number and PCF length parameters are optimized for this purpose. Three Synthesized PCFs with different physical parameters are compared in terms of their objective functions values, residual dispersions and compensation ratios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=triangular%20lattice%20index-guiding%20photonic%20crystal%20fiber" title="triangular lattice index-guiding photonic crystal fiber">triangular lattice index-guiding photonic crystal fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20compensation" title=" dispersion compensation"> dispersion compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=directed%20tabu%20search" title=" directed tabu search"> directed tabu search</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/39125/synthesis-of-dispersion-compensating-triangular-lattice-index-guiding-photonic-crystal-fibers-using-the-directed-tabu-search-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">611</span> Discussion on Dispersion Curves of Non-penetrable Soils from in-Situ Seismic Dilatometer Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angelo%20Aloisio%20Dag">Angelo Aloisio Dag</a>, <a href="https://publications.waset.org/abstracts/search?q=Pasquale%20Pasca"> Pasquale Pasca</a>, <a href="https://publications.waset.org/abstracts/search?q=Massimo%20Fragiacomo"> Massimo Fragiacomo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferdinando%20Totani"> Ferdinando Totani</a>, <a href="https://publications.waset.org/abstracts/search?q=Gianfranco%20Totani"> Gianfranco Totani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The estimate of the velocity of shear waves (Vs) is essential in seismic engineering to characterize the dynamic response of soils. There are various direct methods to estimate the Vs. The authors report the results of site characterization in Macerata, where they measured the Vs using the seismic dilatometer in a 100m deep borehole. The standard Vs estimation originates from the cross-correlation between the signals acquired by two geophones at increasing depths. This paper focuses on the estimate of the dependence of Vs on the wavenumber. The dispersion curves reveal an unexpected hyperbolic dispersion curve typical of Lamb waves. Interestingly, the contribution of Lamb waves may be notable up to 100m depth. The amplitude of surface waves decrease rapidly with depth: still, their influence may be essential up to depths considered unusual for standard geotechnical investigations, where their effect is generally neglected. Accordingly, these waves may bias the outcomes of the standard Vs estimations, which ignore frequency-dependent phenomena. The paper proposes an enhancement of the accepted procedure to estimate Vs and addresses the importance of Lamb waves in soil characterization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersion%20curve" title="dispersion curve">dispersion curve</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20dilatometer" title=" seismic dilatometer"> seismic dilatometer</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave" title=" shear wave"> shear wave</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20mechanics" title=" soil mechanics"> soil mechanics</a> </p> <a href="https://publications.waset.org/abstracts/132758/discussion-on-dispersion-curves-of-non-penetrable-soils-from-in-situ-seismic-dilatometer-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">610</span> Guided Wave in a Cylinder with Trepezoid Cross-Section</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nan%20Tang">Nan Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Wu"> Bin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cunfu%20He"> Cunfu He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The trapezoid rods are widely used in civil engineering as load –carrying members. Ultrasonic guided wave is one of the most popular techniques in analyzing the propagation of elastic guided wave. The goal of this paper is to investigate the propagation of elastic waves in the isotropic bar with trapezoid cross-section. Dispersion curves that describe the relationship between the frequency and velocity provide the fundamental information to describe the propagation of elastic waves through a structure. Based on the SAFE (semi-analytical finite element) a linear algebraic system of equations is obtained. By using numerical methods, dispersion curves solved for the rods with the trapezoid cross-section. These fundamental information plays an important role in applying ultrasonic guided waves to NTD for structures with trapezoid cross section. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=guided%20wave" title="guided wave">guided wave</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoid%20rod" title=" trapezoid rod"> trapezoid rod</a> </p> <a href="https://publications.waset.org/abstracts/30839/guided-wave-in-a-cylinder-with-trepezoid-cross-section" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">609</span> Impacts of Urban Morphologies on Air Pollutants Dispersion in Porto's Urban Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandra%20%20Rafael">Sandra Rafael</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Vicente"> Bruno Vicente</a>, <a href="https://publications.waset.org/abstracts/search?q=Vera%20Rodrigues"> Vera Rodrigues</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20%20Borrego"> Carlos Borrego</a>, <a href="https://publications.waset.org/abstracts/search?q=Myriam%20Lopes"> Myriam Lopes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air pollution is an environmental and social issue at different spatial scales, especially in a climate change context, with an expected decrease of air quality. Air pollution is a combination of high emissions and unfavourable weather conditions, where wind speed and wind direction play a key role. The urban design (location and structure of buildings and trees) can both promote the air pollutants dispersion as well as promote their retention within the urban area. Today, most of the urban areas are applying measures to adapt to future extreme climatic events. Most of these measures are grounded on nature-based solutions, namely green roofs and green areas. In this sense, studies are required to evaluate how the implementation of these actions will influence the wind flow within the urban area and, consequently, how this will influence air pollutants' dispersion. The main goal of this study was to evaluate the influence of a set of urban morphologies in the wind conditions and in the dispersion of air pollutants, in a built-up area in Portugal. For that, two pollutants were analysed (NOx and PM10) and four scenarios were developed: i) a baseline scenario, which characterizes the current status of the study area, ii) an urban green scenario, which implies the implementation of a green area inside the domain, iii) a green roof scenario, which consists in the implementation of green roofs in a specific area of the domain; iv) a 'grey' scenario, which consists in a scenario with absence of vegetation. For that, two models were used, namely the Weather Research and Forecasting model (WRF) and the CFD model VADIS (pollutant dispersion in the atmosphere under variable wind conditions). The WRF model was used to initialize the CFD model, while the last was used to perform the set of numerical simulations, on an hourly basis. The implementation of the green urban area promoted a reduction of air pollutants' concentrations, 16% on average, related to the increase in the wind flow, which promotes air pollutants dispersion; while the application of green roofs showed an increase of concentrations (reaching 60% during specific time periods). Overall the results showed that a strategic placement of vegetation in cities has the potential to make an important contribution to increase air pollutants dispersion and so promote the improvement of air quality and sustainability of urban environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollutants%20dispersion" title="air pollutants dispersion">air pollutants dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20conditions" title=" wind conditions"> wind conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20morphologies" title=" urban morphologies"> urban morphologies</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20traffic%20emissions" title=" road traffic emissions"> road traffic emissions</a> </p> <a href="https://publications.waset.org/abstracts/80540/impacts-of-urban-morphologies-on-air-pollutants-dispersion-in-portos-urban-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">608</span> Chitosan-Aluminum Monostearate Dispersion as Fabricating Liquid for Constructing Controlled Drug Release Matrix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kotchamon%20Yodkhum">Kotchamon Yodkhum</a>, <a href="https://publications.waset.org/abstracts/search?q=Thawatchai%20Phaechamud"> Thawatchai Phaechamud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrophobic chitosan-based materials have been developed as controlled drug delivery system. This study was aimed to prepare and evaluate chitosan-aluminum monostearate composite dispersion (CLA) as fabricating liquid for construct a hydrophobic, controlled-release solid drug delivery matrix. This work was attempted to blend hydrophobic substance, aluminum monostearate (AMS), with chitosan in acidic aqueous medium without using any surfactants or grafting reaction, and high temperature during mixing that are normally performed when preparing hydrophobic chitosan system. Lactic acid solution (2%w/v) was employed as chitosan solvent. CLA dispersion was prepared by dispersing different amounts of AMS (1-20% w/w) in chitosan solution (4% w/w) with continuous agitation using magnetic stirrer for 24 h. Effect of AMS amount on physicochemical properties of the dispersion such as viscosity, rheology and particle size was evaluated. Morphology of chitosan-AMS complex (dispersant) was observed under inverted microscope and atomic force microscope. Stability of CLA dispersions was evaluated after preparation within 48 h. CLA dispersions containing AMS less than 5 % w/w exhibited rheological behavior as Newtonian while that containing higher AMS amount exhibited as pseudoplastic. Particle size of the dispersant was significantly smaller when AMS amount was increased up to 5% w/w and was not different between the higher AMS amount system. Morphology of the dispersant under inverted microscope displayed irregular shape and their size exhibited the same trend with particle size measurement. Observation of the dispersion stability revealed that phase separation occurred faster in the system containing higher AMS amount which indicated lower stability of the system. However, the dispersions were homogeneous and stable more than 12 hours after preparation that enough for fabrication process. The prepared dispersions had ability to be fabricated as a porous matrix via lyophilization technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20monostearate" title=" aluminum monostearate"> aluminum monostearate</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled-release" title=" controlled-release"> controlled-release</a> </p> <a href="https://publications.waset.org/abstracts/12349/chitosan-aluminum-monostearate-dispersion-as-fabricating-liquid-for-constructing-controlled-drug-release-matrix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">607</span> Estimation of PM2.5 Emissions and Source Apportionment Using Receptor and Dispersion Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swetha%20Priya%20Darshini%20Thammadi">Swetha Priya Darshini Thammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sateesh%20Kumar%20Pisini"> Sateesh Kumar Pisini</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar%20Shukla"> Sanjay Kumar Shukla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Source apportionment using Dispersion model depends primarily on the quality of Emission Inventory. In the present study, a CMB receptor model has been used to identify the sources of PM<sub>2.5</sub>, while the AERMOD dispersion model has been used to account for missing sources of PM<sub>2.5 </sub>in the Emission Inventory. A statistical approach has been developed to quantify the missing sources not considered in the Emission Inventory. The inventory of each grid was improved by adjusting emissions based on road lengths and deficit in measured and modelled concentrations. The results showed that in CMB analyses, fugitive sources - soil and road dust - contribute significantly to ambient PM<sub>2.5</sub> pollution. As a result, AERMOD significantly underestimated the ambient air concentration at most locations. The revised Emission Inventory showed a significant improvement in AERMOD performance which is evident through statistical tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMB" title="CMB">CMB</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=AERMOD" title=" AERMOD"> AERMOD</a>, <a href="https://publications.waset.org/abstracts/search?q=PM%E2%82%82.%E2%82%85" title=" PM₂.₅"> PM₂.₅</a>, <a href="https://publications.waset.org/abstracts/search?q=fugitive" title=" fugitive"> fugitive</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20inventory" title=" emission inventory"> emission inventory</a> </p> <a href="https://publications.waset.org/abstracts/95921/estimation-of-pm25-emissions-and-source-apportionment-using-receptor-and-dispersion-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">606</span> Effect of Transmission Distance on the Performance of Hybrid Configuration Using Non Return to Zero (NRZ) Pulse Format</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mais%20Wa%27ad">Mais Wa'ad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of transmission distance on the performance of hybrid configuration H 10-40 Gb/s with Non-Return to Zero (NRZ) pulse format, 100 GHz channel spacing, and Multiplexer/De-Multiplexer Band width (MUX/DEMUX BW) of 60 GHz has been investigated in this study. The laser Continuous Wave (CW) power launched into the modulator is set to 4 dBm. Eight neighboring DWDM channels are selected around 1550.12 nm carrying different data rates in hybrid optical communication systems travel through the same optical fiber and use the same passive and active optical modules. The simulation has been done using Optiwave Inc Optisys software. Usually, increasing distance will lead to decrease in performance; however this is not always the case, as the simulation conducted in this work, shows different system performance for each channel. This is due to differences in interaction between dispersion and non-linearity, and the differences in residual dispersion for each channel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersion%20and%20non-linearity%20interaction" title="dispersion and non-linearity interaction">dispersion and non-linearity interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20hybrid%20configuration" title=" optical hybrid configuration"> optical hybrid configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=multiplexer%2Fde%20multiplexer%20bandwidth" title=" multiplexer/de multiplexer bandwidth"> multiplexer/de multiplexer bandwidth</a>, <a href="https://publications.waset.org/abstracts/search?q=non-return%20to%20zero" title=" non-return to zero"> non-return to zero</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20transmission%20distance" title=" optical transmission distance"> optical transmission distance</a>, <a href="https://publications.waset.org/abstracts/search?q=optisys" title=" optisys"> optisys</a> </p> <a href="https://publications.waset.org/abstracts/33577/effect-of-transmission-distance-on-the-performance-of-hybrid-configuration-using-non-return-to-zero-nrz-pulse-format" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">559</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">605</span> Inversion of the Spectral Analysis of Surface Waves Dispersion Curves through the Particle Swarm Optimization Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Cerrato%20Casado">A. Cerrato Casado</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Guigou"> C. Guigou</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Jean"> P. Jean</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation, the particle swarm optimization (PSO) algorithm is used to perform the inversion of the dispersion curves in the spectral analysis of surface waves (SASW) method. This inverse problem usually presents complicated solution spaces with many local minima that make difficult the convergence to the correct solution. PSO is a metaheuristic method that was originally designed to simulate social behavior but has demonstrated powerful capabilities to solve inverse problems with complex space solution and a high number of variables. The dispersion curve of the synthetic soils is constructed by the vertical flexibility coefficient method, which is especially convenient for soils where the stiffness does not increase gradually with depth. The reason is that these types of soil profiles are not normally dispersive since the dominant mode of Rayleigh waves is usually not coincident with the fundamental mode. Multiple synthetic soil profiles have been tested to show the characteristics of the convergence process and assess the accuracy of the final soil profile. In addition, the inversion procedure is applied to multiple real soils and the final profile compared with the available information. The combination of the vertical flexibility coefficient method to obtain the dispersion curve and the PSO algorithm to carry out the inversion process proves to be a robust procedure that is able to provide good solutions for complex soil profiles even with scarce prior information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersion" title="dispersion">dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problem" title=" inverse problem"> inverse problem</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=SASW" title=" SASW"> SASW</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20profile" title=" soil profile"> soil profile</a> </p> <a href="https://publications.waset.org/abstracts/87227/inversion-of-the-spectral-analysis-of-surface-waves-dispersion-curves-through-the-particle-swarm-optimization-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">604</span> Assessment of Air Pollutant Dispersion and Soil Contamination: The Critical Role of MATLAB Modeling in Evaluating Emissions from the Covanta Municipal Solid Waste Incineration Facility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jadon%20Matthiasa">Jadon Matthiasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Cindy%20Donga"> Cindy Donga</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Al%20Jibouria"> Ali Al Jibouria</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsin%20Kuo"> Hsin Kuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The environmental impact of emissions from the Covanta Waste-to-Energy facility in Burnaby, BC, was comprehensively evaluated, focusing on the dispersion of air pollutants and the subsequent assessment of heavy metal contamination in surrounding soils. A Gaussian Plume Model, implemented in MATLAB, was utilized to simulate the dispersion of key pollutants to understand their atmospheric behaviour and potential deposition patterns. The MATLAB code developed for this study enhanced the accuracy of pollutant concentration predictions and provided capabilities for visualizing pollutant dispersion in 3D plots. Furthermore, the code could predict the maximum concentration of pollutants at ground level, eliminating the need to use the Ranchoux model for predictions. Complementing the modelling approach, empirical soil sampling and analysis were conducted to evaluate heavy metal concentrations in the vicinity of the facility. This integrated methodology underscored the importance of computational modelling in air pollution assessment and highlighted the necessity of soil analysis to obtain a holistic understanding of environmental impacts. The findings emphasized the effectiveness of current emissions controls while advocating for ongoing monitoring to safeguard public health and environmental integrity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20emissions" title="air emissions">air emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20Plume%20Model" title=" Gaussian Plume Model"> Gaussian Plume Model</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20contamination" title=" soil contamination"> soil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20pollution%20monitoring" title=" air pollution monitoring"> air pollution monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=waste-to-energy" title=" waste-to-energy"> waste-to-energy</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutant%20dispersion%20visualization" title=" pollutant dispersion visualization"> pollutant dispersion visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20analysis" title=" heavy metal analysis"> heavy metal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact%20assessment" title=" environmental impact assessment"> environmental impact assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20control%20effectiveness" title=" emission control effectiveness"> emission control effectiveness</a> </p> <a href="https://publications.waset.org/abstracts/192268/assessment-of-air-pollutant-dispersion-and-soil-contamination-the-critical-role-of-matlab-modeling-in-evaluating-emissions-from-the-covanta-municipal-solid-waste-incineration-facility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">16</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">603</span> Amplification of electromagnetic pulse by conducting cone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20S.%20Manuylovich">E. S. Manuylovich</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Astapenko"> V. A. Astapenko</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20A.%20Golovinsky"> P. A. Golovinsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dispersion relation binding the constant of propagation and frequency is calculated for silver cone. The evolution of the electric field of ultrashort pulse during its propagation in conical structure is considered. Increasing of electric field during pulse propagation to the top of the cone is observed. Reduction of the pulse duration at a certain distance is observed. The dependence of minimum pulse duration on initial chirp and cone angle is investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrashort%20pulses" title="ultrashort pulses">ultrashort pulses</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20polariton" title=" surface plasmon polariton"> surface plasmon polariton</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20cone" title=" silver cone"> silver cone</a> </p> <a href="https://publications.waset.org/abstracts/27539/amplification-of-electromagnetic-pulse-by-conducting-cone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">602</span> Investigation of Stoneley Waves in Multilayered Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bing%20Li">Bing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tong%20Lu"> Tong Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Qiang"> Lei Qiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stoneley waves are interface waves that propagate at the interface between two solid media. In this study, the dispersion characteristics and wave structures of Stoneley waves in elastic multilayered plates are displayed and investigated. With a perspective of bulk wave, a reasonable assumption of the potential function forms of the expansion wave and shear wave in nth layer medium is adopted, and the characteristic equation of Stoneley waves in a three-layered plate is given in a determinant form. The dispersion curves and wave structures are solved and presented in both numerical and simulation results. It is observed that two Stoneley wave modes exist in a three-layered plate, that conspicuous dispersion occurs on low frequency band, that the velocity of each Stoneley wave mode approaches the corresponding Stoneley wave velocity at interface between two half infinite spaces. The wave structures reveal that the in-plane displacement of Stoneley waves are relatively high at interfaces, which shows great potential for interface defects detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristic%20equation" title="characteristic equation">characteristic equation</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20waves" title=" interface waves"> interface waves</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20function" title=" potential function"> potential function</a>, <a href="https://publications.waset.org/abstracts/search?q=Stoneley%20waves" title=" Stoneley waves"> Stoneley waves</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20structure" title=" wave structure"> wave structure</a> </p> <a href="https://publications.waset.org/abstracts/45214/investigation-of-stoneley-waves-in-multilayered-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">601</span> Magnetorheological Silicone Composites Filled with Micro- and Nano-Sized Magnetites with the Addition of Ionic Liquids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mas%C5%82owski">M. Masłowski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zaborski"> M. Zaborski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetorheological elastomer composites based on micro- and nano-sized Fe3O4 magnetoactive fillers in silicone rubber are reported and studied. To improve the dispersion of applied fillers in polymer matrix, ionic liquids such as 1-ethyl-3-methylimidazolium diethylphosphate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium trifluoromethanesulfonate,1-butyl-3-methylimidazolium tetrafluoroborate, trihexyltetradecylphosphonium chloride were added during the process of composites preparation. The method of preparation process influenced the specific properties of MREs (isotropy/anisotropy), similarly to ferromagnetic particles content and theirs quantity. Micro and non-sized magnetites were active fillers improving the mechanical properties of elastomers. They also changed magnetic properties and reinforced the magnetorheological effect of composites. Application of ionic liquids as dispersing agents influenced the dispersion of magnetic fillers in the elastomer matrix. Scanning electron microscopy images used to observe magnetorheological elastomer microstructures proved that the dispersion improvement had a significant effect on the composites properties. Moreover, the particles orientation and their arrangement in the elastomer investigated by vibration sample magnetometer showed the correlation between MRE microstructure and their magnetic properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetorheological%20elastomers" title="magnetorheological elastomers">magnetorheological elastomers</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxides" title=" iron oxides"> iron oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a> </p> <a href="https://publications.waset.org/abstracts/9033/magnetorheological-silicone-composites-filled-with-micro-and-nano-sized-magnetites-with-the-addition-of-ionic-liquids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">600</span> Dispersion Rate of Spilled Oil in Water Column under Non-Breaking Water Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanifeh%20Imanian">Hanifeh Imanian</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Kolahdoozan"> Morteza Kolahdoozan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to present a mathematical phrase for calculating the dispersion rate of spilled oil in water column under non-breaking waves. In this regard, a multiphase numerical model is applied for which waves and oil phase were computed concurrently, and accuracy of its hydraulic calculations have been proven. More than 200 various scenarios of oil spilling in wave waters were simulated using the multiphase numerical model and its outcome were collected in a database. The recorded results were investigated to identify the major parameters affected vertical oil dispersion and finally 6 parameters were identified as main independent factors. Furthermore, some statistical tests were conducted to identify any relationship between the dependent variable (dispersed oil mass in the water column) and independent variables (water wave specifications containing height, length and wave period and spilled oil characteristics including density, viscosity and spilled oil mass). Finally, a mathematical-statistical relationship is proposed to predict dispersed oil in marine waters. To verify the proposed relationship, a laboratory example available in the literature was selected. Oil mass rate penetrated in water body computed by statistical regression was in accordance with experimental data was predicted. On this occasion, it was necessary to verify the proposed mathematical phrase. In a selected laboratory case available in the literature, mass oil rate penetrated in water body computed by suggested regression. Results showed good agreement with experimental data. The validated mathematical-statistical phrase is a useful tool for oil dispersion prediction in oil spill events in marine areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersion" title="dispersion">dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20environment" title=" marine environment"> marine environment</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical-statistical%20relationship" title=" mathematical-statistical relationship"> mathematical-statistical relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill" title=" oil spill"> oil spill</a> </p> <a href="https://publications.waset.org/abstracts/51962/dispersion-rate-of-spilled-oil-in-water-column-under-non-breaking-water-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dispersion&page=1" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dispersion&page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dispersion&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dispersion&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dispersion&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dispersion&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dispersion&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dispersion&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dispersion&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dispersion&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dispersion&page=21">21</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dispersion&page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dispersion&page=3" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>