CINXE.COM
View source for Area of a circle - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-disabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-not-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>View source for Area of a circle - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-disabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-not-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":true,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat": "dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"0760f4d2-c0ee-4634-bd77-d12cfcb93081","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Area_of_a_circle","wgTitle":"Area of a circle","wgCurRevisionId":1258021794,"wgRevisionId":0,"wgArticleId":1896782,"wgIsArticle":false,"wgIsRedirect":false,"wgAction":"edit","wgUserName":null,"wgUserGroups":["*"],"wgCategories":[],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Area_of_a_circle","wgRelevantArticleId":1896782,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0, "wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading", "skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.charinsert.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.edit.collapsibleFooter","site","mediawiki.page.ready","jquery.makeCollapsible","skins.vector.js","ext.centralNotice.geoIP","ext.charinsert","ext.gadget.ReferenceTooltips","ext.gadget.charinsert","ext.gadget.extra-toolbar-buttons","ext.gadget.refToolbar","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.checkUser.clientHints", "ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.charinsert.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="noindex,nofollow,max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="View source for Area of a circle - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Area_of_a_circle"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Area_of_a_circle&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Area_of_a_circle"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Area_of_a_circle rootpage-Area_of_a_circle skin-vector-2022 action-edit"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Area+of+a+circle&returntoquery=action%3Dedit" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Area+of+a+circle&returntoquery=action%3Dedit" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Area+of+a+circle&returntoquery=action%3Dedit" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Area+of+a+circle&returntoquery=action%3Dedit" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <h1 id="firstHeading" class="firstHeading mw-first-heading">View source for Area of a circle</h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="This article exist only in this language. Add the article for other languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-0" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">Add languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> <div class="after-portlet after-portlet-lang"><span class="uls-after-portlet-link"></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Area_of_a_circle" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Area_of_a_circle" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="vector-tab-noicon mw-list-item"><a href="/wiki/Area_of_a_circle"><span>Read</span></a></li><li id="ca-edit" class="selected vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Area_of_a_circle&action=edit" title="Edit this page"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Area_of_a_circle&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="vector-more-collapsible-item mw-list-item"><a href="/wiki/Area_of_a_circle"><span>Read</span></a></li><li id="ca-more-edit" class="selected vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Area_of_a_circle&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Area_of_a_circle&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Area_of_a_circle" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Area_of_a_circle" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Area_of_a_circle&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DArea_of_a_circle%26action%3Dedit"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fw%2Findex.php%3Ftitle%3DArea_of_a_circle%26action%3Dedit"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q4115331" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> </div> <div id="contentSub"><div id="mw-content-subtitle">← <a href="/wiki/Area_of_a_circle" title="Area of a circle">Area of a circle</a></div></div> <div id="mw-content-text" class="mw-body-content"><p>You do not have permission to edit this page, for the following reasons: </p> <ul class="permissions-errors"><li class="mw-permissionerror-blockedtext"> <div id="mw-blocked-text" style="border: 1px solid #AAA; background-color: var(--background-color-warning-subtle, ivory); color: inherit; padding: 1.5em; width: 100%; box-sizing: border-box;"> <div style="text-align: center;"><span style="font-size: 26px;"><span typeof="mw:File"><a href="/wiki/File:Stop_hand_nuvola.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/en/thumb/f/f1/Stop_hand_nuvola.svg/50px-Stop_hand_nuvola.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/f1/Stop_hand_nuvola.svg/75px-Stop_hand_nuvola.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/f1/Stop_hand_nuvola.svg/100px-Stop_hand_nuvola.svg.png 2x" data-file-width="240" data-file-height="240" /></a></span><b> This IP address has been <a href="/wiki/Wikipedia:Blocking_policy" title="Wikipedia:Blocking policy">blocked</a> from <i>editing</i> Wikipedia.</b></span><br /><span style="font-size: 18px;">This does not affect your ability to <i>read</i> Wikipedia pages.</span></div><div class="paragraphbreak" style="margin-top:0.5em"></div><b>Most people who see this message have done nothing wrong.</b> Some kinds of blocks restrict editing from specific service providers or telecom companies in response to recent abuse or vandalism, and can sometimes affect other users who are unrelated to that abuse. Review the information below for assistance if you do not believe that you have done anything wrong.<div class="paragraphbreak" style="margin-top:0.5em"></div> <p>The IP address or range 8.222.128.0/17 has been <a href="/wiki/Wikipedia:Blocking_policy" title="Wikipedia:Blocking policy">blocked</a> by <a href="/wiki/User:L235" title="User:L235">L235</a> for the following reason(s): </p> <div style="padding:10px; background:var(--background-color-base, white); color:inherit; border:1px #666 solid;"> <div class="user-block colocation-webhost" style="margin-bottom: 0.5em; background-color: #ffefd5; border: 1px solid #AAA; padding: 0.7em;"> <figure class="mw-halign-left" typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/Server-multiple.svg/40px-Server-multiple.svg.png" decoding="async" width="40" height="57" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/53/Server-multiple.svg/60px-Server-multiple.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/53/Server-multiple.svg/80px-Server-multiple.svg.png 2x" data-file-width="744" data-file-height="1052" /></span><figcaption></figcaption></figure><b>The <a href="/wiki/IP_address" title="IP address">IP address</a> that you are currently using has been blocked because it is believed to be a <a href="/wiki/Web_hosting_service" title="Web hosting service">web host provider</a> or <a href="/wiki/Colocation_centre" title="Colocation centre">colocation provider</a>.</b> To prevent abuse, <a href="/wiki/Wikipedia:Open_proxies" title="Wikipedia:Open proxies">web hosts and colocation providers may be blocked</a> from editing Wikipedia. <div style="border-top: 1px solid #AAA; clear: both">You will not be able to edit Wikipedia using a web host or colocation provider because it hides your IP address, much like a <a href="/wiki/Wikipedia:Open_proxies" title="Wikipedia:Open proxies">proxy</a> or <a href="/wiki/Virtual_private_network" title="Virtual private network">VPN</a>. <p><b>We recommend that you attempt to use another connection to edit.</b> For example, if you use a proxy or VPN to connect to the internet, turn it off when editing Wikipedia. If you edit using a mobile connection, try using a Wi-Fi connection, and vice versa. If you are using a corporate internet connection, switch to a different Wi-Fi network. If you have a Wikipedia account, please log in. </p><p>If you do not have any other way to edit Wikipedia, you will need to <a href="/wiki/Wikipedia:IP_block_exemption#Requesting_and_granting_exemption" title="Wikipedia:IP block exemption">request an IP block exemption</a>. </p> <style data-mw-deduplicate="TemplateStyles:r1214851843">.mw-parser-output .hidden-begin{box-sizing:border-box;width:100%;padding:5px;border:none;font-size:95%}.mw-parser-output .hidden-title{font-weight:bold;line-height:1.6;text-align:left}.mw-parser-output .hidden-content{text-align:left}@media all and (max-width:500px){.mw-parser-output .hidden-begin{width:auto!important;clear:none!important;float:none!important}}</style><div class="hidden-begin mw-collapsible mw-collapsed" style=""><div class="hidden-title skin-nightmode-reset-color" style="text-align:center;">How to appeal if you are confident that your connection does not use a colocation provider's IP address:</div><div class="hidden-content mw-collapsible-content" style=""> If you are confident that you are not using a web host, you may <a href="/wiki/Wikipedia:Appealing_a_block" title="Wikipedia:Appealing a block">appeal this block</a> by adding the following text on your <a href="/wiki/Help:Talk_pages" title="Help:Talk pages">talk page</a>: <code>{{<a href="/wiki/Template:Unblock" title="Template:Unblock">unblock</a>|reason=Caught by a colocation web host block but this host or IP is not a web host. My IP address is _______. <i>Place any further information here.</i> ~~~~}}</code>. <b>You must fill in the blank with your IP address for this block to be investigated.</b> Your IP address can be determined <span class="plainlinks"><b><a class="external text" href="https://en.wikipedia.org/wiki/Wikipedia:Get_my_IP_address?withJS=MediaWiki:Get-my-ip.js">here</a></b></span>. Alternatively, if you wish to keep your IP address private you can use the <a href="/wiki/Wikipedia:Unblock_Ticket_Request_System" title="Wikipedia:Unblock Ticket Request System">unblock ticket request system</a>. There are several reasons you might be editing using the IP address of a web host or colocation provider (such as if you are using VPN software or a business network); please use this method of appeal only if you think your IP address is in fact not a web host or colocation provider.</div></div> <p><span class="sysop-show" style="font-size: 85%;"><span style="border:#707070 solid 1px;background-color:#ffe0e0;padding:2px"><b>Administrators:</b></span> The <a href="/wiki/Wikipedia:IP_block_exemption" title="Wikipedia:IP block exemption">IP block exemption</a> user right should only be applied to allow users to edit using web host in exceptional circumstances, and requests should usually be directed to the functionaries team via email. If you intend to give the IPBE user right, a <a href="/wiki/Wikipedia:CheckUser" title="Wikipedia:CheckUser">CheckUser</a> needs to take a look at the account. This can be requested most easily at <a href="/wiki/Wikipedia:SPI#Quick_CheckUser_requests" class="mw-redirect" title="Wikipedia:SPI">SPI Quick Checkuser Requests</a>. <b>Unblocking</b> an IP or IP range with this template <b>is highly discouraged</b> without at least contacting the blocking administrator.</span> </p> </div></div> </div> <p>This block will expire on 18:23, 24 August 2026. Your current IP address is 8.222.208.146. </p> <div class="paragraphbreak" style="margin-top:0.5em"></div><div style="font-size: 16px;"> <p>Even when blocked, you will <i>usually</i> still be able to edit your <a href="/wiki/Special:MyTalk" title="Special:MyTalk">user talk page</a>, as well as <a href="/wiki/Wikipedia:Emailing_users" title="Wikipedia:Emailing users">email</a> administrators and other editors. </p> </div> <div class="paragraphbreak" style="margin-top:0.5em"></div><div style="font-size: 16px;"> <p>For information on how to proceed, please read the <b><a href="/wiki/Wikipedia:Appealing_a_block#Common_questions" title="Wikipedia:Appealing a block">FAQ for blocked users</a></b> and the <a href="/wiki/Wikipedia:Appealing_a_block" title="Wikipedia:Appealing a block">guideline on block appeals</a>. The <a href="/wiki/Wikipedia:Guide_to_appealing_blocks" title="Wikipedia:Guide to appealing blocks">guide to appealing blocks</a> may also be helpful. </p> </div> <p>Other useful links: <a href="/wiki/Wikipedia:Blocking_policy" title="Wikipedia:Blocking policy">Blocking policy</a> · <a href="/wiki/Help:I_have_been_blocked" title="Help:I have been blocked">Help:I have been blocked</a> </p> </div></li><li class="mw-permissionerror-globalblocking-blockedtext-range"> <div id="mw-blocked-text" style="border: 1px solid #AAA; background-color: var(--background-color-warning-subtle, ivory); color: inherit; padding: 1.5em; width: 100%; box-sizing: border-box;"> <div style="text-align: center;"><span style="font-size: 26px;"><span typeof="mw:File"><a href="/wiki/File:Stop_hand_nuvola.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/en/thumb/f/f1/Stop_hand_nuvola.svg/50px-Stop_hand_nuvola.svg.png" decoding="async" width="50" height="50" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/f1/Stop_hand_nuvola.svg/75px-Stop_hand_nuvola.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/f1/Stop_hand_nuvola.svg/100px-Stop_hand_nuvola.svg.png 2x" data-file-width="240" data-file-height="240" /></a></span><b> This IP address range has been <a href="https://meta.wikimedia.org/wiki/Global_blocks" class="extiw" title="m:Global blocks">globally blocked</a>.</b></span><br /><span style="font-size: 18px;">This does not affect your ability to <i>read</i> Wikipedia pages.</span></div><div class="paragraphbreak" style="margin-top:0.5em"></div><b>Most people who see this message have done nothing wrong.</b> Some kinds of blocks restrict editing from specific service providers or telecom companies in response to recent abuse or vandalism, and can sometimes affect other users who are unrelated to that abuse. Review the information below for assistance if you do not believe that you have done anything wrong.<div class="paragraphbreak" style="margin-top:0.5em"></div><div class="paragraphbreak" style="margin-top:0.5em"></div> <p>This block affects editing on all Wikimedia wikis. </p><p>The IP address or range 8.222.128.0/17 has been globally <a href="/wiki/Wikipedia:Blocking_policy" title="Wikipedia:Blocking policy">blocked</a> by <a href="/wiki/User:Jon_Kolbert" title="User:Jon Kolbert">Jon Kolbert</a> for the following reason(s): </p> <div style="padding:10px; background:var(--background-color-base, white); color:inherit; border:1px #666 solid;"> <p><a href="https://meta.wikimedia.org/wiki/Special:MyLanguage/NOP" class="extiw" title="m:Special:MyLanguage/NOP">Open proxy/Webhost</a>: See the <a href="https://meta.wikimedia.org/wiki/WM:OP/H" class="extiw" title="m:WM:OP/H">help page</a> if you are affected </p> </div> <p>This block will expire on 15:12, 27 August 2028. Your current IP address is 8.222.208.146. </p> <div class="paragraphbreak" style="margin-top:0.5em"></div><div style="font-size: 16px;"> <p>Even while globally blocked, you will <i>usually</i> still be able to edit pages on <a href="https://meta.wikimedia.org/wiki/" class="extiw" title="m:">Meta-Wiki</a>. </p> </div> <div class="paragraphbreak" style="margin-top:0.5em"></div><div style="font-size: 16px;"> <p>If you believe you were blocked by mistake, you can find additional information and instructions in the <a href="https://meta.wikimedia.org/wiki/Special:MyLanguage/No_open_proxies" class="extiw" title="m:Special:MyLanguage/No open proxies">No open proxies</a> global policy. Otherwise, to discuss the block please <a href="https://meta.wikimedia.org/wiki/Steward_requests/Global" class="extiw" title="m:Steward requests/Global">post a request for review on Meta-Wiki</a>. You could also send an email to the <a href="https://meta.wikimedia.org/wiki/Special:MyLanguage/Stewards" class="extiw" title="m:Special:MyLanguage/Stewards">stewards</a> <a href="https://meta.wikimedia.org/wiki/Special:MyLanguage/VRT" class="extiw" title="m:Special:MyLanguage/VRT">VRT</a> queue at <kbd>stewards@wikimedia.org</kbd> including all above details. </p> </div> <p>Other useful links: <a href="https://meta.wikimedia.org/wiki/Global_blocks" class="extiw" title="m:Global blocks">Global blocks</a> · <a href="/wiki/Help:I_have_been_blocked" title="Help:I have been blocked">Help:I have been blocked</a> </p> </div></li></ul><hr /> <div id="viewsourcetext">You can view and copy the source of this page:</div><textarea readonly="" accesskey="," id="wpTextbox1" cols="80" rows="25" style="" class="mw-editfont-monospace" lang="en" dir="ltr" name="wpTextbox1">{{Short description|Concept in geometry}} {{Pi box}} {{General geometry}} In [[geometry]], the [[area]] enclosed by a [[circle]] of [[radius]] {{mvar|r}} is {{math|&pi;''r''<sup>2</sup>}}. Here, the Greek letter [[pi|{{pi}}]] represents the [[constant (mathematics)|constant]] ratio of the [[circumference]] of any circle to its [[diameter]], approximately equal to 3.14159. One method of deriving this formula, which originated with [[Archimedes]], involves viewing the circle as the [[Limit (mathematics)|limit]] of a sequence of [[regular polygon]]s with an increasing number of sides. The area of a regular polygon is half its [[perimeter]] multiplied by the [[apothem|distance from its center to its sides]], and because the sequence tends to a circle, the corresponding formula&ndash;that the area is half the [[circumference]] times the radius&ndash;namely, {{math|1=''A'' = {{sfrac|1|2}} × 2&pi;''r'' × ''r''}}, holds for a circle. ==Terminology== Although often referred to as the area of a circle in informal contexts, strictly speaking, the term [[Disk (mathematics)|disk]] refers to the interior region of the circle, while circle is reserved for the boundary only, which is a [[curve]] and covers no area itself. Therefore, the area of a disk is the more precise phrase for the area enclosed by a circle. ==History== Modern mathematics can obtain the area using the methods of [[Integral|integral calculus]] or its more sophisticated offspring, [[real analysis]]. However, the area of a disk was studied by the [[Ancient Greeks]]. [[Eudoxus of Cnidus]] in the fifth century B.C. had found that the area of a disk is proportional to its radius squared.<ref>{{cite book|url=https://archive.org/details/singlevariableca00stew/page/3|title=Single variable calculus early transcendentals.|last=Stewart|first=James|publisher=Brook/Cole|year=2003|isbn=0-534-39330-6|edition=5th.|location=Toronto ON|pages=[https://archive.org/details/singlevariableca00stew/page/3 3]|quote=However, by indirect reasoning, Eudoxus (fifth century B.C.) used exhaustion to prove the familiar formula for the area of a disk: <math>A= \pi r^2.</math>|url-access=registration}} <!--This quote may be an overstatement. I have not been able to confirm that he discovered the actual formula, but perhaps only the proportionality between A and r-squared.--></ref> [[Archimedes]] used the tools of [[Euclidean geometry]] to show that the area inside a circle is equal to that of a [[right triangle]] whose base has the length of the circle's circumference and whose height equals the circle's radius in his book ''[[Measurement of a Circle]]''. The circumference is 2{{pi}}''r'', and the area of a triangle is half the base times the height, yielding the area {{pi}}&thinsp;''r''<sup>2</sup> for the disk. Prior to Archimedes, [[Hippocrates of Chios]] was the first to show that the area of a disk is proportional to the square of its diameter, as part of his quadrature of the [[lune of Hippocrates]],<ref name="heath">{{citation|first=Thomas L.|last=Heath|author-link=Thomas Little Heath|title=A Manual of Greek Mathematics|publisher=Courier Dover Publications|year=2003|isbn=0-486-43231-9|pages=121–132|url=https://books.google.com/books?id=_HZNr_mGFzQC&pg=PA121}}.</ref> but did not identify the [[constant of proportionality]]. ==Historical arguments== A variety of arguments have been advanced historically to establish the equation <math>A=\pi r^2</math> to varying degrees of mathematical rigor. The most famous of these is Archimedes' [[method of exhaustion]], one of the earliest uses of the mathematical concept of a [[limit (mathematics)|limit]], as well as the origin of [[Archimedean property|Archimedes' axiom]] which remains part of the standard analytical treatment of the [[real number system]]. The original proof of Archimedes is not rigorous by modern standards, because it assumes that we can compare the length of arc of a circle to the length of a secant and a tangent line, and similar statements about the area, as geometrically evident. ===Using polygons=== The area of a [[regular polygon]] is half its perimeter times the [[apothem]]. As the number of sides of the regular polygon increases, the polygon tends to a circle, and the apothem tends to the radius. This suggests that the area of a disk is half the circumference of its bounding circle times the radius.<ref>Hill, George. ''[https://archive.org/details/lessonsingeomet04hillgoog/page/n136 <!-- pg=124 --> Lessons in Geometry: For the Use of Beginners]'', page 124 (1894).</ref> ===Archimedes's proof=== Following Archimedes' argument in ''The Measurement of a Circle'' (c. 260 BCE), compare the area enclosed by a circle to a right triangle whose base has the length of the circle's circumference and whose height equals the circle's radius. If the area of the circle is not equal to that of the triangle, then it must be either greater or less. We eliminate each of these by contradiction, leaving equality as the only possibility. We use [[regular polygon]]s in the same way. ====Not greater==== [[File:Archimedes circle area proof - inscribed polygons.svg|thumb|right|Circle with square and octagon inscribed, showing area gap]] Suppose that the area ''C'' enclosed by the circle is greater than the area ''T''&nbsp;= ''cr''/2 of the triangle. Let ''E'' denote the excess amount. [[Inscribe]] a square in the circle, so that its four corners lie on the circle. Between the square and the circle are four segments. If the total area of those gaps, ''G''<sub>4</sub>, is greater than ''E'', split each arc in half. This makes the inscribed square into an inscribed octagon, and produces eight segments with a smaller total gap, ''G''<sub>8</sub>. Continue splitting until the total gap area, ''G<sub>n</sub>'', is less than ''E''. Now the area of the inscribed polygon, ''P<sub>n</sub>''&nbsp;= ''C''&nbsp;−&nbsp;''G<sub>n</sub>'', must be greater than that of the triangle. :<math>\begin{align} E &{}= C - T \\ &{}> G_n \\ P_n &{}= C - G_n \\ &{}> C - E \\ P_n &{}> T \end{align}</math> But this forces a contradiction, as follows. Draw a perpendicular from the center to the midpoint of a side of the polygon; its length, ''h'', is less than the circle radius. Also, let each side of the polygon have length ''s''; then the sum of the sides is ''ns'', which is less than the circle circumference. The polygon area consists of ''n'' equal triangles with height ''h'' and base ''s'', thus equals ''nhs''/2. But since ''h''&nbsp;&lt;&nbsp;''r'' and ''ns''&nbsp;&lt;&nbsp;''c'', the polygon area must be less than the triangle area, ''cr''/2, a contradiction. Therefore, our supposition that ''C'' might be greater than ''T'' must be wrong. ====Not less==== [[File:Archimedes circle area proof - circumscribed polygons.svg|thumb|right|Circle with square and octagon circumscribed, showing area gap]] Suppose that the area enclosed by the circle is less than the area ''T'' of the triangle. Let ''D'' denote the deficit amount. Circumscribe a square, so that the midpoint of each edge lies on the circle. If the total area gap between the square and the circle, ''G''<sub>4</sub>, is greater than ''D'', slice off the corners with circle tangents to make a circumscribed octagon, and continue slicing until the gap area is less than ''D''. The area of the polygon, ''P<sub>n</sub>'', must be less than ''T''. :<math>\begin{align} D &{}= T - C \\ &{}> G_n \\ P_n &{}= C + G_n \\ &{}< C + D \\ P_n &{}< T \end{align}</math> This, too, forces a contradiction. For, a perpendicular to the midpoint of each polygon side is a radius, of length ''r''. And since the total side length is greater than the circumference, the polygon consists of ''n'' identical triangles with total area greater than ''T''. Again we have a contradiction, so our supposition that ''C'' might be less than ''T'' must be wrong as well. Therefore, it must be the case that the area enclosed by the circle is precisely the same as the area of the triangle. This concludes the proof. ===Rearrangement proof=== [[File:CircleArea.svg|thumb|right|Circle area by rearrangement]] {{regular_polygon_side_count_graph.svg}} Following Satō Moshun {{Harv|Smith|Mikami|1914|loc=pp.&nbsp;130–132}}, [[Nicholas of Cusa]]<ref>{{cite book |last=Clegg |first=Brian |title=Introducing Infinity |date=2012 |publisher=Icon Books |page=69 |isbn=978-1-84831-406-1}}</ref> and [[Leonardo da Vinci]] {{Harv|Beckmann|1976|loc=p.&nbsp;19}}, we can use inscribed regular polygons in a different way. Suppose we inscribe a [[hexagon]]. Cut the hexagon into six triangles by splitting it from the center. Two opposite triangles both touch two common diameters; slide them along one so the radial edges are adjacent. They now form a [[parallelogram]], with the hexagon sides making two opposite edges, one of which is the base, ''s''. Two radial edges form slanted sides, and the height, ''h'' is equal to its [[apothem]] (as in the Archimedes proof). In fact, we can also assemble all the triangles into one big parallelogram by putting successive pairs next to each other. The same is true if we increase it to eight sides and so on. For a polygon with 2''n'' sides, the parallelogram will have a base of length ''ns'', and a height ''h''. As the number of sides increases, the length of the parallelogram base approaches half the circle circumference, and its height approaches the circle radius. In the limit, the parallelogram becomes a rectangle with width {{pi}}''r'' and height ''r''. :{| class="wikitable" frame="vsides" style="text-align:center" cellspacing="0" cellpadding="3" |+ '''''Unit disk area by rearranging n polygons.''''' |- ! colspan="2" | polygon | rowspan="11" style="padding:1px;"| ! colspan="3" | parallelogram |- ! ''n'' !! side !! base !! height !! area |- | align="right" | 4 || 1.4142136 || 2.8284271 || 0.7071068 || 2.0000000 |- | align="right" | 6 || 1.0000000 || 3.0000000 || 0.8660254 || 2.5980762 |- | align="right" | 8 || 0.7653669 || 3.0614675 || 0.9238795 || 2.8284271 |- | align="right" | 10 || 0.6180340 || 3.0901699 || 0.9510565 || 2.9389263 |- | align="right" | 12 || 0.5176381 || 3.1058285 || 0.9659258 || 3.0000000 |- | align="right" | 14 || 0.4450419 || 3.1152931 || 0.9749279 || 3.0371862 |- | align="right" | 16 || 0.3901806 || 3.1214452 || 0.9807853 || 3.0614675 |- | align="right" | 96 || 0.0654382 || 3.1410320 || 0.9994646 || 3.1393502 |- | ∞ || 1/∞ || {{pi}} || 1 || {{pi}} |} ==Modern proofs== There are various equivalent definitions of the constant &pi;. The conventional definition in pre-calculus geometry is the ratio of the circumference of a circle to its diameter: :<math>\pi=\frac{C}{D}.</math> However, because the circumference of a circle is not a primitive analytical concept, this definition is not suitable in modern rigorous treatments. A standard modern definition is that {{pi}} is equal to twice the least positive root of the [[cosine]] function or, equivalently, the half-period of the [[sine]] (or cosine) function. The cosine function can be defined either as a [[power series]], or as the solution of a certain [[differential equation]]. This avoids any reference to circles in the definition of {{pi}}, so that statements about the relation of {{pi}} to the circumference and area of circles are actually theorems, rather than definitions, that follow from the analytical definitions of concepts like "area" and "circumference". The analytical definitions are seen to be equivalent, if it is agreed that the circumference of the circle is measured as a [[rectifiable curve]] by means of the [[integral]] :<math>C = 2\int_{-R}^R \frac{R\,dx}{\sqrt{R^2-x^2}} = 2R\int_{-1}^1\frac{dx}{\sqrt{1-x^2}}.</math> The integral appearing on the right is an [[abelian integral]] whose value is a half-period of the [[sine]] function, equal to {{pi}}. Thus <math>C=2\pi R=\pi D</math> is seen to be true as a theorem. Several of the arguments that follow use only concepts from elementary calculus to reproduce the formula <math>A=\pi r^2</math>, but in many cases to regard these as actual proofs, they rely implicitly on the fact that one can develop trigonometric functions and the fundamental constant {{pi}} in a way that is totally independent of their relation to geometry. We have indicated where appropriate how each of these proofs can be made totally independent of all trigonometry, but in some cases that requires more sophisticated mathematical ideas than those afforded by elementary calculus. ===Onion proof=== [[File:Circle area rings.svg|thumb|right|Area of the disk via ring integration]] Using calculus, we can sum the area incrementally, partitioning the disk into thin concentric rings like the layers of an [[onion]]. This is the method of [[shell integration]] in two dimensions. For an infinitesimally thin ring of the "onion" of radius ''t'', the accumulated area is 2{{pi}}''t dt'', the circumferential length of the ring times its infinitesimal width (one can approximate this ring by a rectangle with width=2{{pi}}''t'' and height=''dt''). This gives an elementary integral for a disk of radius ''r''. :<math>\begin{align} \mathrm{Area}(r) &{}= \int_0^{r} 2 \pi t \, dt \\ &{}= 2\pi \left[\frac{t^2}{2} \right]_{0}^{r}\\ &{}= \pi r^2. \end{align} </math> It is rigorously justified by the [[Integration by substitution#Substitution for multiple variables|multivariate substitution rule]] in polar coordinates. Namely, the area is given by a [[double integral]] of the constant function 1 over the disk itself. If ''D'' denotes the disk, then the double integral can be computed in [[polar coordinates]] as follows: :<math>\begin{align} \mathrm{Area}(r) &{}= \iint_D 1\ d(x, y)\\ &{} = \iint_D t\ dt\ d\theta\\ &{} = \int_0^r \int_0^{2\pi} t\ d\theta\ dt\\ &{} = \int_0^r \left[ t\theta \right]_{0}^{2\pi} dt\\ &{}= \int_0^{r} 2 \pi t \, dt \\ \end{align}</math> which is the same result as obtained above. An equivalent rigorous justification, without relying on the special coordinates of trigonometry, uses the [[coarea formula]]. Define a function <math>\rho:\mathbb R^2\to\mathbb R</math> by <math display="inline">\rho(x,y)=\sqrt{x^2+y^2}</math>. Note ρ is a [[Lipschitz function]] whose [[gradient]] is a unit vector <math>|\nabla\rho|=1</math> ([[almost everywhere]]). Let ''D'' be the disc <math>\rho<1</math> in <math>\mathbb R^2</math>. We will show that <math>\mathcal L^2(D)=\pi</math>, where <math>\mathcal L^2</math> is the two-dimensional Lebesgue measure in <math>\mathbb R^2</math>. We shall assume that the one-dimensional [[Hausdorff measure]] of the circle <math>\rho=r</math> is <math>2\pi r</math>, the circumference of the circle of radius ''r''. (This can be taken as the definition of circumference.) Then, by the coarea formula, :<math>\begin{align} \mathcal L^2(D) &= \iint_D |\nabla \rho|\,d\mathcal{L}^2\\ &= \int_{\mathbb R} \mathcal H^1(\rho^{-1}(r)\cap D)\,dr\\ &= \int_0^1\mathcal H^1(\rho^{-1}(r))\,dr \\ &= \int_0^1 2\pi r\, dr= \pi. \end{align}</math> ===Triangle proof=== [[File:TriangleFromCircle.gif|thumb|right|Circle unwrapped to form a triangle]] [[File:Area of circle and triangle.svg|thumb|The circle and the triangle are equal in area.]] Similar to the onion proof outlined above, we could exploit calculus in a different way in order to arrive at the formula for the area of a disk. Consider unwrapping the concentric circles to straight strips. This will form a right angled triangle with r as its height and 2{{pi}}r (being the outer slice of onion) as its base. Finding the area of this triangle will give the area of the disk :<math>\begin{align} \text{Area} &{}= \frac{1}{2} \cdot \text{base} \cdot \text{height} \\[6pt] &{}= \frac{1}{2} \cdot 2 \pi r \cdot r \\[6pt] &{}= \pi r^2 \end{align}</math> The opposite and adjacent angles for this triangle are respectively in degrees 9.0430611..., 80.956939... and in radians 0.1578311... {{OEIS2C|A233527}}, 1.4129651...{{OEIS2C|A233528}}. Explicitly, we imagine dividing up a circle into triangles, each with a height equal to the circle's radius and a base that is infinitesimally small. The area of each of these triangles is equal to <math>1/2\cdot r \cdot du</math>. By summing up (integrating) all of the areas of these triangles, we arrive at the formula for the circle's area: :<math>\begin{align} \mathrm{Area}(r) &{}= \int_0^{2\pi r} \frac{1}{2} r \, du \\[6pt] &{}= \left[ \frac{1}{2} r u \right]_{0}^{2 \pi r}\\[6pt] &{}= \pi r^2. \end{align} </math> It too can be justified by a double integral of the constant function 1 over the disk by reversing the [[order of integration (calculus)|order of integration]] and using a change of variables in the above iterated integral: :<math>\begin{align} \mathrm{Area}(r) &{}= \iint_D 1\ d(x, y)\\ &{} = \iint_D t\ dt\ d\theta\\ &{} = \int_0^{2\pi} \int_0^r t\ dt\ d\theta\\ &{} = \int_0^{2\pi} \frac{1}{2}r^2\ d\theta\\ \end{align}</math> Making the substitution <math>u = r\theta,\ du = r\ d\theta</math> converts the integral to :<math>\int_0^{2\pi r} \frac{1}{2} \frac{r^2}{r} du = \int_0^{2\pi r} \frac{1}{2} r\ du </math> which is the same as the above result. The triangle proof can be reformulated as an application of [[Green's theorem]] in flux-divergence form (i.e. a two-dimensional version of the [[divergence theorem]]), in a way that avoids all mention of trigonometry and the constant {{pi}}. Consider the [[vector field]] <math>\mathbf r = x\mathbf i + y\mathbf j</math> in the plane. So the [[divergence]] of '''r''' is equal to two, and hence the area of a disc ''D'' is equal to :<math>A = \frac 1 2 \iint_D \operatorname{div}\mathbf r\, dA.</math> By Green's theorem, this is the same as the outward flux of '''r''' across the circle bounding ''D'': :<math>A = \frac 1 2 \oint_{\partial D} \mathbf r\cdot\mathbf n\, ds</math> where '''n''' is the unit normal and ''ds'' is the arc length measure. For a circle of radius ''R'' centered at the origin, we have <math>|\mathbf r|=R</math> and <math>\mathbf n=\mathbf r/R</math>, so the above equality is :<math>A = \frac 1 2\oint_{\partial D} \mathbf r\cdot\frac{\mathbf r}{R}\, ds = \frac{R}{2}\oint_{\partial D} \,ds.</math> The integral of ''ds'' over the whole circle <math>\partial D</math> is just the arc length, which is its circumference, so this shows that the area ''A'' enclosed by the circle is equal to <math>R/2</math> times the circumference of the circle. Another proof that uses triangles considers the area enclosed by a circle to be made up of an infinite number of triangles (i.e. the triangles each have an angle of {{math|''d{{theta}}''}} at the centre of the circle), each with an area of {{math|{{sfrac|1|2}} · ''r''<sup>2</sup> · ''d{{theta}}''}} (derived from the expression for the area of a triangle: {{math|1={{sfrac|1|2}} · ''a'' · ''b'' · sin''{{theta}}'' = {{sfrac|1|2}} · ''r'' · ''r'' · sin(''d{{theta}}'') = {{sfrac|1|2}} · ''r''<sup>2</sup> · ''d{{theta}}''}}). Note that {{math|1=sin(''d{{theta}}'') ≈ ''d{{theta}}''}} due to [[Small-angle approximation|small angle approximation]]. Through summing the areas of the triangles, the expression for the area of the circle can therefore be found: <math display="block">\begin{align} \mathrm{Area}&{}= \int_0^{2\pi} \frac{1}{2} r^2 \, d \theta \\ &{}= \left[ \frac{1}{2} r^2 \theta \right]_{0}^{2 \pi}\\ &{}= \pi r^2. \end{align} </math> ===Semicircle proof=== Note that the area of a semicircle of radius ''r'' can be computed by the integral <math display="inline">\int_{-r}^r \sqrt{r^2 - x^2}\,dx</math>. [[Image:semicircle.svg|frame|A semicircle of radius ''r'']] By [[trigonometric substitution]], we substitute <math>x=r \sin\theta </math>, hence <math>dx=r\cos \theta\, d\theta.</math> <math display="block">\begin{align}\int_{-r}^r \sqrt{r^2 - x^2}\,dx &=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{r^2\left(1-\sin ^2 \theta\right)} \cdot r \cos \theta\, d \theta \\[5pt] &=2r^2\int_{0}^{\frac{\pi}{2}} \cos ^2 \theta\, d \theta \\[5pt] &=\frac{\pi r^2}{2}. \end{align}</math> The last step follows since the trigonometric identity <math>\cos(\theta)=\sin(\pi/2-\theta)</math> implies that <math>\cos^2\theta</math> and <math>\sin^2\theta</math> have equal integrals over the interval <math>[0,\pi/2]</math>, using [[integration by substitution]]. But on the other hand, since <math>\cos^2\theta+\sin^2\theta=1</math>, the sum of the two integrals is the length of that interval, which is <math>\pi/2</math>. Consequently, the integral of <math>\cos^2 \theta</math> is equal to half the length of that interval, which is <math>\pi/4</math>. Therefore, the area of a circle of radius ''r'', which is twice the area of the semi-circle, is equal to <math>2 \cdot \frac{\pi r^2}{2} = \pi r^2</math>. This particular proof may appear to beg the question, if the sine and cosine functions involved in the trigonometric substitution are regarded as being defined in relation to circles. However, as noted earlier, it is possible to define sine, cosine, and {{pi}} in a way that is totally independent of trigonometry, in which case the proof is valid by the [[change of variables formula]] and [[Fubini's theorem]], assuming the basic properties of sine and cosine (which can also be proved without assuming anything about their relation to circles). ==Isoperimetric inequality== The circle is the closed curve of least perimeter that encloses the maximum area. This is known as the [[isoperimetric inequality]], which states that if a rectifiable Jordan curve in the Euclidean plane has perimeter ''C'' and encloses an area ''A'' (by the [[Jordan curve theorem]]) then :<math>4\pi A\le C^2.</math> Moreover, equality holds in this inequality if and only if the curve is a circle, in which case <math>A=\pi r^2</math> and <math>C=2\pi r</math>. ==Fast approximation== The calculations Archimedes used to approximate the area numerically were laborious, and he stopped with a polygon of 96 sides. A faster method uses ideas of [[Willebrord Snell]] (''Cyclometricus''<!--: de circuli dimensione secundum logistarum abacos, &amp; ad mechanicem accuratissima; atque omnium parabilissima: eiusdemque usus in quarumlibet, adscriptarum inventione longe elegantissimus, &amp; quidem ex ratione diametri ad suam peripheriam data--><!--, Lugduni Batavorum: Elzevir-->, 1621), further developed by [[Christiaan Huygens]] (''De Circuli Magnitudine Inventa'', 1654), described in {{Harvtxt|Gerretsen|Verdenduin|1983|loc=pp.&nbsp;243–250}}. ===Archimedes' doubling method=== Given a circle, let ''u<sub>n</sub>'' be the [[perimeter]] of an inscribed regular ''n-''gon, and let ''U<sub>n</sub>'' be the perimeter of a circumscribed regular ''n-''gon. Then ''u<sub>n</sub>'' and ''U<sub>n</sub>'' are lower and upper bounds for the circumference of the circle that become sharper and sharper as ''n'' increases, and their average (''u<sub>n</sub>'' + ''U<sub>n</sub>'')/2 is an especially good approximation to the circumference. To compute ''u<sub>n</sub>'' and ''U<sub>n</sub>'' for large ''n'', Archimedes derived the following doubling formulae: :<math>u_{2n} = \sqrt{U_{2n} u_n}</math> &nbsp;&nbsp;([[geometric mean]]), and :<math>U_{2n} = \frac{2 U_n u_n}{ U_n + u_n}</math> &nbsp;&nbsp; ([[harmonic mean]]). Starting from a hexagon, Archimedes doubled ''n'' four times to get a 96-gon, which gave him a good approximation to the circumference of the circle. In modern notation, we can reproduce his computation (and go further) as follows. For a unit circle, an inscribed hexagon has ''u''<sub>6</sub>&nbsp;= 6, and a circumscribed hexagon has ''U''<sub>6</sub>&nbsp;= 4{{radic|3}}. Doubling seven times yields :{| class="wikitable" frame="vsides" style="text-align:center" cellspacing="0" cellpadding="3" |+ '''Archimedes doubling seven times; ''n''&nbsp;=&nbsp;6&nbsp;×&nbsp;2<sup>''k''</sup>.''' |- style="background-color:#eeeeee" ! ''k'' !! ''n'' !! ''u<sub>n</sub>'' !! ''U<sub>n</sub>'' !! {{sfrac|''u<sub>n</sub>''&nbsp;+&nbsp;''U<sub>n</sub>''|4}} |- | 0 || 6 || 6.0000000 || 6.9282032 || 3.2320508 |- | 1 || 12 || 6.2116571 || 6.4307806 || 3.1606094 |- | 2 || 24 || 6.2652572 || 6.3193199 || 3.1461443 |- | 3 || 48 || 6.2787004 || 6.2921724 || 3.1427182 |- | 4 || 96 || 6.2820639 || 6.2854292 || 3.1418733 |- | 5 || 192 || 6.2829049 || 6.2837461 || 3.1416628 |- | 6 || 384 || 6.2831152 || 6.2833255 || 3.1416102 |- | 7 || 768 || 6.2831678 || 6.2832204 || 3.1415970 |} (Here {{sfrac|''u<sub>n</sub>'' + ''U<sub>n</sub>''|2}} approximates the circumference of the unit circle, which is 2{{pi}}, so {{sfrac|''u<sub>n</sub>'' + ''U<sub>n</sub>''|4}} approximates {{pi}}.) The last entry of the table has <sup>355</sup>⁄<sub>113</sub> as one of its [[Continued fraction#Best rational approximation|best rational approximations]]; i.e., there is no better approximation among rational numbers with denominator up to 113. The number <sup>355</sup>⁄<sub>113</sub> is also an excellent approximation to {{pi}}, attributed to Chinese mathematician [[Zu Chongzhi]], who named it [[Milü]].<ref>{{cite book|last=Martzloff|first=Jean-Claude|title=A History of Chinese Mathematics|url=https://archive.org/details/historychinesema00mart_058|url-access=limited|date=2006|publisher=Springer|page=[https://archive.org/details/historychinesema00mart_058/page/n298 281]|isbn=9783540337829}}</ref> This approximation is better than any other rational number with denominator less than 16,604.<ref>[http://shreevatsa.wordpress.com/2011/01/10/not-all-best-rational-approximations-are-the-convergents-of-the-continued-fraction/ Not all best rational approximations are the convergents of the continued fraction!]</ref> ===The Snell–Huygens refinement=== Snell proposed (and Huygens proved) a tighter bound than Archimedes': :<math> n \frac{3 \sin \frac{\pi}{n}}{2+\cos\frac{\pi}{n}} < \pi < n \left(2 \sin \frac{\pi}{3 n} + \tan \frac{\pi}{3 n}\right). </math> This for ''n'' = 48 gives a better approximation (about 3.14159292) than Archimedes' method for ''n'' = 768. ===Derivation of Archimedes' doubling formulae=== [[File:Huygens + Snell + van Ceulen - regular polygon doubling.svg|thumb|right|Circle with similar triangles: circumscribed side, inscribed side and complement, inscribed split side and complement]] Let one side of an inscribed regular ''n-''gon have length ''s<sub>n</sub>'' and touch the circle at points A and B. Let A&prime; be the point opposite A on the circle, so that A&prime;A is a diameter, and A&prime;AB is an inscribed triangle on a diameter. By [[Thales' theorem]], this is a right triangle with right angle at B. Let the length of A&prime;B be ''c<sub>n</sub>'', which we call the complement of ''s<sub>n</sub>''; thus ''c<sub>n</sub>''<sup>2</sup>+''s<sub>n</sub>''<sup>2</sup>&nbsp;= (2''r'')<sup>2</sup>. Let C bisect the arc from A to B, and let C&prime; be the point opposite C on the circle. Thus the length of CA is ''s''<sub>2''n''</sub>, the length of C&prime;A is ''c''<sub>2''n''</sub>, and C&prime;CA is itself a right triangle on diameter C&prime;C. Because C bisects the arc from A to B, C&prime;C perpendicularly bisects the chord from A to B, say at P. Triangle C&prime;AP is thus a right triangle, and is [[similarity (geometry)#Similar triangles|similar]] to C&prime;CA since they share the angle at C&prime;. Thus all three corresponding sides are in the same proportion; in particular, we have C&prime;A&nbsp;:&nbsp;C&prime;C&nbsp;= C&prime;P&nbsp;:&nbsp;C&prime;A and AP&nbsp;:&nbsp;C&prime;A&nbsp;= CA&nbsp;:&nbsp;C&prime;C. The center of the circle, O, bisects A&prime;A, so we also have triangle OAP similar to A&prime;AB, with OP half the length of A&prime;B. In terms of side lengths, this gives us :<math>\begin{align} c_{2n}^2 &{}= \left( r + \frac{1}{2} c_n \right) 2r \\ c_{2n} &{}= \frac{s_n}{s_{2n}} . \end{align}</math> In the first equation C&prime;P is C&prime;O+OP, length ''r''&nbsp;+&nbsp;{{sfrac|1|2}}''c<sub>n</sub>'', and C&prime;C is the diameter, 2''r''. For a unit circle we have the famous doubling equation of [[Ludolph van Ceulen]], :<math> c_{2n} = \sqrt{2+c_n} . </math> If we now circumscribe a regular ''n-''gon, with side A&Prime;B&Prime; parallel to AB, then OAB and OA&Prime;B&Prime; are similar triangles, with A&Prime;B&Prime;&nbsp;:&nbsp;AB&nbsp;= OC&nbsp;:&nbsp;OP. Call the circumscribed side ''S<sub>n</sub>''; then this is ''S<sub>n</sub>''&nbsp;:&nbsp;''s<sub>n</sub>''&nbsp;= 1&nbsp;:&nbsp;<sup>1</sup>⁄<sub>2</sub>''c<sub>n</sub>''. (We have again used that OP is half the length of A&prime;B.) Thus we obtain :<math> c_n = 2\frac{s_n}{S_n} . </math> Call the inscribed perimeter ''u<sub>n</sub>''&nbsp;= ''ns<sub>n</sub>'', and the circumscribed perimeter ''U<sub>n</sub>''&nbsp;= ''nS<sub>n</sub>''. Then combining equations, we have :<math> c_{2n} = \frac{s_n}{s_{2n}} = 2 \frac{s_{2n}}{S_{2n}} , </math> so that :<math> u_{2n}^2 = u_n U_{2n} . </math> This gives a [[geometric mean]] equation. We can also deduce :<math> 2 \frac{s_{2n}}{S_{2n}} \frac{s_n}{s_{2n}} = 2 + 2 \frac{s_n}{S_n} , </math> or :<math> \frac{2}{U_{2n}} = \frac{1}{u_n} + \frac{1}{U_n} . </math> This gives a [[harmonic mean]] equation. ==Dart approximation== [[File:Circle area Monte Carlo integration.svg|thumb|right|Unit circle area Monte Carlo integration. Estimate by these 900 samples is 4×{{sfrac|709|900}}&nbsp;= 3.15111...]] When more efficient methods of finding areas are not available, we can resort to "throwing darts". This [[Monte Carlo method]] uses the fact that if random samples are taken uniformly scattered across the surface of a square in which a disk resides, the proportion of samples that hit the disk approximates the ratio of the area of the disk to the area of the square. This should be considered a method of last resort for computing the area of a disk (or any shape), as it requires an enormous number of samples to get useful accuracy; an estimate good to 10<sup>−''n''</sup> requires about 100<sup>''n''</sup> random samples {{Harv|Thijssen|2006|loc=p.&nbsp;273}}. ==Finite rearrangement== We have seen that by partitioning the disk into an infinite number of pieces we can reassemble the pieces into a rectangle. A remarkable fact discovered relatively recently {{Harv|Laczkovich|1990}} is that we can dissect the disk into a large but ''finite'' number of pieces and then reassemble the pieces into a square of equal area. This is called [[Tarski's circle-squaring problem]]. The nature of Laczkovich's proof is such that it proves the existence of such a partition (in fact, of many such partitions) but does not exhibit any particular partition. ==Non-Euclidean circles== Circles can be defined in [[non-Euclidean geometry]], and in particular in the [[hyperbolic plane|hyperbolic]] and [[elliptic plane|elliptic]] planes. For example, the [[unit sphere]] <math>S^2(1)</math> is a model for the two-dimensional elliptic plane. It carries an [[intrinsic metric]] that arises by measuring [[geodesic]] length. The geodesic circles are the parallels in a [[latitude|geodesic coordinate system]]. More precisely, fix a point <math>\mathbf z\in S^2(1)</math> that we place at the zenith. Associated to that zenith is a geodesic polar coordinate system <math>(\varphi,\theta)</math>, <math>0\le\varphi\le\pi</math>, <math>0\le\theta< 2\pi</math>, where '''z''' is the point <math>\varphi=0</math>. In these coordinates, the geodesic distance from '''z''' to any other point <math>\mathbf x\in S^2(1)</math> having coordinates <math>(\varphi,\theta)</math> is the value of <math>\varphi</math> at '''x'''. A spherical circle is the set of points a geodesic distance ''R'' from the zenith point '''z'''. Equivalently, with a fixed embedding into <math>\mathbb R^3</math>, the spherical circle of radius <math>R\le\pi</math> centered at '''z''' is the set of '''x''' in <math>S^2(1)</math> such that <math>\mathbf x\cdot\mathbf z = \cos R</math>. We can also measure the area of the spherical disk enclosed within a spherical circle, using the intrinsic surface area measure on the sphere. The area of the disk of radius ''R'' is then given by :<math>A = \int_0^{2\pi} \int_0^R \sin(\varphi) \, d\varphi\,d\theta = 2\pi(1-\cos R).</math> More generally, if a sphere <math>S^2(\rho)</math> has radius of curvature <math>\rho</math>, then the area of the disk of radius ''R'' is given by :<math>A = 2\pi\rho^2(1-\cos(R/\rho)).</math> Observe that, as an application of [[L'Hôpital's rule]], this tends to the Euclidean area <math>\pi R^2</math> in the flat limit <math>\rho\to\infty</math>. The hyperbolic case is similar, with the area of a disk of intrinsic radius ''R'' in the (constant curvature <math>-1</math>) hyperbolic plane given by :<math>A = 2\pi(1-\cosh R)</math> where cosh is the [[hyperbolic cosine]]. More generally, for the constant curvature <math>-k</math> hyperbolic plane, the answer is :<math>A = 2\pi k^{-2}(1-\cosh(kR)).</math> These identities are important for comparison inequalities in geometry. For example, the area enclosed by a circle of radius ''R'' in a flat space is always greater than the area of a spherical circle and smaller than a hyperbolic circle, provided all three circles have the same (intrinsic) radius. That is, :<math>2\pi(1-\cos R) < \pi R^2 < 2\pi(1-\cosh R)</math> for all <math>R>0</math>. Intuitively, this is because the sphere tends to curve back on itself, yielding circles of smaller area than those in the plane, whilst the hyperbolic plane, when immersed into space, develops fringes that produce additional area. It is more generally true that the area of the circle of a fixed radius ''R'' is a strictly decreasing function of the curvature. In all cases, if <math>k</math> is the curvature (constant, positive or negative), then the [[isoperimetric inequality]] for a domain with area ''A'' and perimeter ''L'' is :<math>L^2\ge 4\pi A - kA^2</math> where equality is achieved precisely for the circle.<ref>{{citation|author=Isaac Chavel|title=Isoperimetric inequalities|publisher=Cambridge University Press|year=2001}}</ref> ==Generalizations== We can stretch a disk to form an [[ellipse]]. Because this stretch is a [[linear transformation]] of the plane, it has a distortion factor which will change the area but preserve ''ratios'' of areas. This observation can be used to compute the area of an arbitrary ellipse from the area of a unit circle. Consider the unit circle circumscribed by a square of side length 2. The transformation sends the circle to an ellipse by stretching or shrinking the horizontal and vertical diameters to the major and minor axes of the ellipse. The square gets sent to a rectangle circumscribing the ellipse. The ratio of the area of the circle to the square is {{pi}}/4, which means the ratio of the ellipse to the rectangle is also {{pi}}/4. Suppose ''a'' and ''b'' are the lengths of the major and minor axes of the ellipse. Since the area of the rectangle is ''ab'', the area of the ellipse is {{pi}}''ab''/4. We can also consider analogous measurements in higher dimensions. For example, we may wish to find the volume inside a sphere. When we have a formula for the surface area, we can use the same kind of "onion" approach we used for the disk. ==See also== *[[Area-equivalent radius]] *[[Area of a triangle]] ==References== <references /> ==Bibliography== * {{citation | author=Archimedes |author-link=Archimedes |editor-last=Heath |editor-first=T. L. |editor-link=T. L. Heath |title=The Works of Archimedes |date=1897 |publisher=Cambridge University Press |chapter=Measurement of a circle |chapter-url=https://archive.org/stream/worksofarchimede029517mbp#page/n279/mode/2up |url=https://www.archive.org/details/worksofarchimede029517mbp |ref={{harvid|Archimedes|c. 260 BCE}} }}<br />(Originally published by [[Cambridge University Press]], 1897, based on J. L. Heiberg's Greek version.) * {{citation | last = Beckmann | first = Petr | author-link = Petr Beckmann | title = A History of Pi | year = 1976 | publisher = [[St. Martin's Press|St. Martin's Griffin]] | isbn = 978-0-312-38185-1 }} * {{citation | last1=Gerretsen | first1=J. | last2=Verdenduin | first2=P. | chapter=Chapter 8: Polygons and Polyhedra | pages=243–250 | title=Fundamentals of Mathematics, Volume II: Geometry | editor= H. Behnke |editor2=F. Bachmann |editor3=K. Fladt |editor4=H. Kunle |translator=S. H. Gould | publisher=[[MIT Press]] | year=1983 | isbn=978-0-262-52094-2 }}<br />(Originally ''Grundzüge der Mathematik'', Vandenhoeck & Ruprecht, Göttingen, 1971.) * {{citation |last=Laczkovich |first=Miklós |author-link=Miklós Laczkovich |title=Equidecomposability and discrepancy: A solution to Tarski's circle squaring problem |journal=[[Crelle's Journal|Journal für die reine und angewandte Mathematik]] |volume=1990 |pages=77–117 |year=1990 |issue=404 |url=https://eudml.org/doc/153197 |mr=1037431 |doi=10.1515/crll.1990.404.77 |s2cid=117762563 }} * {{citation | last = Lang | first = Serge | author-link = Serge Lang | chapter = The length of the circle | title = Math! : Encounters with High School Students | year = 1985 | publisher = [[Springer-Verlag]] | isbn = 978-0-387-96129-3 }} * {{citation | last1=Smith | first1=David Eugene | author1-link=David Eugene Smith | last2=Mikami | first2=Yoshio | pages=130–132 | title=A history of Japanese mathematics | place=Chicago | publisher=[[Open Court Publishing Company|Open Court Publishing]] | year=1914 | isbn=978-0-87548-170-8 | url=https://archive.org/details/historyofjapanes00smituoft }} * {{citation | title=Computational Physics | last1=Thijssen | first1=J. M. | pages=273 | publisher=Cambridge University Press | year=2006 | isbn=978-0-521-57588-1 }} == External links == * [http://www.sciencenews.org/articles/20041030/mathtrek.asp Science News on Tarski problem] {{Webarchive|url=https://web.archive.org/web/20080413114409/http://www.sciencenews.org/articles/20041030/mathtrek.asp |date=2008-04-13 }} [[Category:Area]] [[Category:Circles]] [[Category:Articles containing proofs]] [[de:Kreis#Kreisfläche]] </textarea><div class="templatesUsed"><div class="mw-templatesUsedExplanation"><p><span id="templatesused">Pages transcluded onto the current version of this page<span class="posteditwindowhelplinks"> (<a href="/wiki/Help:Transclusion" title="Help:Transclusion">help</a>)</span>:</span> </p></div><ul> <li><a href="/wiki/Template:Citation" title="Template:Citation">Template:Citation</a> (<a href="/w/index.php?title=Template:Citation&action=edit" title="Template:Citation">view source</a>) (protected)</li><li><a href="/wiki/Template:Cite_book" title="Template:Cite book">Template:Cite book</a> (<a href="/w/index.php?title=Template:Cite_book&action=edit" title="Template:Cite book">view source</a>) (protected)</li><li><a href="/wiki/Template:Gaps" title="Template:Gaps">Template:Gaps</a> (<a href="/w/index.php?title=Template:Gaps&action=edit" title="Template:Gaps">view source</a>) (semi-protected)</li><li><a href="/wiki/Template:General_geometry" title="Template:General geometry">Template:General geometry</a> (<a href="/w/index.php?title=Template:General_geometry&action=edit" title="Template:General geometry">edit</a>) </li><li><a href="/wiki/Template:Harv" class="mw-redirect" title="Template:Harv">Template:Harv</a> (<a href="/w/index.php?title=Template:Harv&action=edit" class="mw-redirect" title="Template:Harv">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:Harvard_citation" title="Template:Harvard citation">Template:Harvard citation</a> (<a href="/w/index.php?title=Template:Harvard_citation&action=edit" title="Template:Harvard citation">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:Harvard_citation_text" title="Template:Harvard citation text">Template:Harvard citation text</a> (<a href="/w/index.php?title=Template:Harvard_citation_text&action=edit" title="Template:Harvard citation text">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:Harvid" class="mw-redirect" title="Template:Harvid">Template:Harvid</a> (<a href="/w/index.php?title=Template:Harvid&action=edit" class="mw-redirect" title="Template:Harvid">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:Harvtxt" class="mw-redirect" title="Template:Harvtxt">Template:Harvtxt</a> (<a href="/w/index.php?title=Template:Harvtxt&action=edit" class="mw-redirect" title="Template:Harvtxt">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:Hlist" title="Template:Hlist">Template:Hlist</a> (<a href="/w/index.php?title=Template:Hlist&action=edit" title="Template:Hlist">view source</a>) (protected)</li><li><a href="/wiki/Template:Hlist/styles.css" title="Template:Hlist/styles.css">Template:Hlist/styles.css</a> (<a href="/w/index.php?title=Template:Hlist/styles.css&action=edit" title="Template:Hlist/styles.css">view source</a>) (protected)</li><li><a href="/wiki/Template:Main_other" title="Template:Main other">Template:Main other</a> (<a href="/w/index.php?title=Template:Main_other&action=edit" title="Template:Main other">view source</a>) (protected)</li><li><a href="/wiki/Template:Math" title="Template:Math">Template:Math</a> (<a href="/w/index.php?title=Template:Math&action=edit" title="Template:Math">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:Mvar" title="Template:Mvar">Template:Mvar</a> (<a href="/w/index.php?title=Template:Mvar&action=edit" title="Template:Mvar">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:Nowrap" title="Template:Nowrap">Template:Nowrap</a> (<a href="/w/index.php?title=Template:Nowrap&action=edit" title="Template:Nowrap">view source</a>) (protected)</li><li><a href="/wiki/Template:OEIS2C" title="Template:OEIS2C">Template:OEIS2C</a> (<a href="/w/index.php?title=Template:OEIS2C&action=edit" title="Template:OEIS2C">view source</a>) (semi-protected)</li><li><a href="/wiki/Template:Pagetype" title="Template:Pagetype">Template:Pagetype</a> (<a href="/w/index.php?title=Template:Pagetype&action=edit" title="Template:Pagetype">view source</a>) (protected)</li><li><a href="/wiki/Template:Pi" title="Template:Pi">Template:Pi</a> (<a href="/w/index.php?title=Template:Pi&action=edit" title="Template:Pi">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:Pi_box" title="Template:Pi box">Template:Pi box</a> (<a href="/w/index.php?title=Template:Pi_box&action=edit" title="Template:Pi box">edit</a>) </li><li><a href="/wiki/Template:Plainlist/styles.css" title="Template:Plainlist/styles.css">Template:Plainlist/styles.css</a> (<a href="/w/index.php?title=Template:Plainlist/styles.css&action=edit" title="Template:Plainlist/styles.css">view source</a>) (protected)</li><li><a href="/wiki/Template:Radic" title="Template:Radic">Template:Radic</a> (<a href="/w/index.php?title=Template:Radic&action=edit" title="Template:Radic">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:Regular_polygon_side_count_graph.svg" title="Template:Regular polygon side count graph.svg">Template:Regular polygon side count graph.svg</a> (<a href="/w/index.php?title=Template:Regular_polygon_side_count_graph.svg&action=edit" title="Template:Regular polygon side count graph.svg">edit</a>) </li><li><a href="/wiki/Template:SDcat" title="Template:SDcat">Template:SDcat</a> (<a href="/w/index.php?title=Template:SDcat&action=edit" title="Template:SDcat">view source</a>) (protected)</li><li><a href="/wiki/Template:SfnRef" title="Template:SfnRef">Template:SfnRef</a> (<a href="/w/index.php?title=Template:SfnRef&action=edit" title="Template:SfnRef">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:Sfrac" title="Template:Sfrac">Template:Sfrac</a> (<a href="/w/index.php?title=Template:Sfrac&action=edit" title="Template:Sfrac">view source</a>) (extended confirmed protected)</li><li><a href="/wiki/Template:Sfrac/styles.css" title="Template:Sfrac/styles.css">Template:Sfrac/styles.css</a> (<a href="/w/index.php?title=Template:Sfrac/styles.css&action=edit" title="Template:Sfrac/styles.css">view source</a>) (extended confirmed protected)</li><li><a href="/wiki/Template:Short_description" title="Template:Short description">Template:Short description</a> (<a href="/w/index.php?title=Template:Short_description&action=edit" title="Template:Short description">view source</a>) (protected)</li><li><a href="/wiki/Template:Short_description/lowercasecheck" title="Template:Short description/lowercasecheck">Template:Short description/lowercasecheck</a> (<a href="/w/index.php?title=Template:Short_description/lowercasecheck&action=edit" title="Template:Short description/lowercasecheck">view source</a>) (protected)</li><li><a href="/wiki/Template:Sidebar" title="Template:Sidebar">Template:Sidebar</a> (<a href="/w/index.php?title=Template:Sidebar&action=edit" title="Template:Sidebar">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:Theta" title="Template:Theta">Template:Theta</a> (<a href="/w/index.php?title=Template:Theta&action=edit" title="Template:Theta">edit</a>) </li><li><a href="/wiki/Template:Webarchive" title="Template:Webarchive">Template:Webarchive</a> (<a href="/w/index.php?title=Template:Webarchive&action=edit" title="Template:Webarchive">view source</a>) (template editor protected)</li><li><a href="/wiki/Template:%5C" title="Template:\">Template:\</a> (<a href="/w/index.php?title=Template:%5C&action=edit" title="Template:\">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Arguments" title="Module:Arguments">Module:Arguments</a> (<a href="/w/index.php?title=Module:Arguments&action=edit" title="Module:Arguments">view source</a>) (protected)</li><li><a href="/wiki/Module:Check_for_unknown_parameters" title="Module:Check for unknown parameters">Module:Check for unknown parameters</a> (<a href="/w/index.php?title=Module:Check_for_unknown_parameters&action=edit" title="Module:Check for unknown parameters">view source</a>) (protected)</li><li><a href="/wiki/Module:Citation/CS1" title="Module:Citation/CS1">Module:Citation/CS1</a> (<a href="/w/index.php?title=Module:Citation/CS1&action=edit" title="Module:Citation/CS1">view source</a>) (protected)</li><li><a href="/wiki/Module:Citation/CS1/COinS" title="Module:Citation/CS1/COinS">Module:Citation/CS1/COinS</a> (<a href="/w/index.php?title=Module:Citation/CS1/COinS&action=edit" title="Module:Citation/CS1/COinS">view source</a>) (protected)</li><li><a href="/wiki/Module:Citation/CS1/Configuration" title="Module:Citation/CS1/Configuration">Module:Citation/CS1/Configuration</a> (<a href="/w/index.php?title=Module:Citation/CS1/Configuration&action=edit" title="Module:Citation/CS1/Configuration">view source</a>) (protected)</li><li><a href="/wiki/Module:Citation/CS1/Date_validation" title="Module:Citation/CS1/Date validation">Module:Citation/CS1/Date validation</a> (<a href="/w/index.php?title=Module:Citation/CS1/Date_validation&action=edit" title="Module:Citation/CS1/Date validation">view source</a>) (protected)</li><li><a href="/wiki/Module:Citation/CS1/Identifiers" title="Module:Citation/CS1/Identifiers">Module:Citation/CS1/Identifiers</a> (<a href="/w/index.php?title=Module:Citation/CS1/Identifiers&action=edit" title="Module:Citation/CS1/Identifiers">view source</a>) (protected)</li><li><a href="/wiki/Module:Citation/CS1/Utilities" title="Module:Citation/CS1/Utilities">Module:Citation/CS1/Utilities</a> (<a href="/w/index.php?title=Module:Citation/CS1/Utilities&action=edit" title="Module:Citation/CS1/Utilities">view source</a>) (protected)</li><li><a href="/wiki/Module:Citation/CS1/Whitelist" title="Module:Citation/CS1/Whitelist">Module:Citation/CS1/Whitelist</a> (<a href="/w/index.php?title=Module:Citation/CS1/Whitelist&action=edit" title="Module:Citation/CS1/Whitelist">view source</a>) (protected)</li><li><a href="/wiki/Module:Citation/CS1/styles.css" title="Module:Citation/CS1/styles.css">Module:Citation/CS1/styles.css</a> (<a href="/w/index.php?title=Module:Citation/CS1/styles.css&action=edit" title="Module:Citation/CS1/styles.css">view source</a>) (protected)</li><li><a href="/wiki/Module:Disambiguation/templates" title="Module:Disambiguation/templates">Module:Disambiguation/templates</a> (<a href="/w/index.php?title=Module:Disambiguation/templates&action=edit" title="Module:Disambiguation/templates">view source</a>) (protected)</li><li><a href="/wiki/Module:Footnotes" title="Module:Footnotes">Module:Footnotes</a> (<a href="/w/index.php?title=Module:Footnotes&action=edit" title="Module:Footnotes">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Footnotes/anchor_id_list" title="Module:Footnotes/anchor id list">Module:Footnotes/anchor id list</a> (<a href="/w/index.php?title=Module:Footnotes/anchor_id_list&action=edit" title="Module:Footnotes/anchor id list">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Footnotes/anchor_id_list/data" title="Module:Footnotes/anchor id list/data">Module:Footnotes/anchor id list/data</a> (<a href="/w/index.php?title=Module:Footnotes/anchor_id_list/data&action=edit" title="Module:Footnotes/anchor id list/data">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Footnotes/whitelist" title="Module:Footnotes/whitelist">Module:Footnotes/whitelist</a> (<a href="/w/index.php?title=Module:Footnotes/whitelist&action=edit" title="Module:Footnotes/whitelist">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Gaps" title="Module:Gaps">Module:Gaps</a> (<a href="/w/index.php?title=Module:Gaps&action=edit" title="Module:Gaps">view source</a>) (semi-protected)</li><li><a href="/wiki/Module:List" title="Module:List">Module:List</a> (<a href="/w/index.php?title=Module:List&action=edit" title="Module:List">view source</a>) (protected)</li><li><a href="/wiki/Module:Navbar" title="Module:Navbar">Module:Navbar</a> (<a href="/w/index.php?title=Module:Navbar&action=edit" title="Module:Navbar">view source</a>) (protected)</li><li><a href="/wiki/Module:Navbar/configuration" title="Module:Navbar/configuration">Module:Navbar/configuration</a> (<a href="/w/index.php?title=Module:Navbar/configuration&action=edit" title="Module:Navbar/configuration">view source</a>) (protected)</li><li><a href="/wiki/Module:Navbar/styles.css" title="Module:Navbar/styles.css">Module:Navbar/styles.css</a> (<a href="/w/index.php?title=Module:Navbar/styles.css&action=edit" title="Module:Navbar/styles.css">view source</a>) (protected)</li><li><a href="/wiki/Module:Pagetype" title="Module:Pagetype">Module:Pagetype</a> (<a href="/w/index.php?title=Module:Pagetype&action=edit" title="Module:Pagetype">view source</a>) (protected)</li><li><a href="/wiki/Module:Pagetype/config" title="Module:Pagetype/config">Module:Pagetype/config</a> (<a href="/w/index.php?title=Module:Pagetype/config&action=edit" title="Module:Pagetype/config">view source</a>) (protected)</li><li><a href="/wiki/Module:Pagetype/disambiguation" class="mw-redirect" title="Module:Pagetype/disambiguation">Module:Pagetype/disambiguation</a> (<a href="/w/index.php?title=Module:Pagetype/disambiguation&action=edit" class="mw-redirect" title="Module:Pagetype/disambiguation">view source</a>) (protected)</li><li><a href="/wiki/Module:Pagetype/rfd" title="Module:Pagetype/rfd">Module:Pagetype/rfd</a> (<a href="/w/index.php?title=Module:Pagetype/rfd&action=edit" title="Module:Pagetype/rfd">view source</a>) (protected)</li><li><a href="/wiki/Module:Pagetype/setindex" title="Module:Pagetype/setindex">Module:Pagetype/setindex</a> (<a href="/w/index.php?title=Module:Pagetype/setindex&action=edit" title="Module:Pagetype/setindex">view source</a>) (protected)</li><li><a href="/wiki/Module:Pagetype/softredirect" title="Module:Pagetype/softredirect">Module:Pagetype/softredirect</a> (<a href="/w/index.php?title=Module:Pagetype/softredirect&action=edit" title="Module:Pagetype/softredirect">view source</a>) (protected)</li><li><a href="/wiki/Module:SDcat" title="Module:SDcat">Module:SDcat</a> (<a href="/w/index.php?title=Module:SDcat&action=edit" title="Module:SDcat">view source</a>) (protected)</li><li><a href="/wiki/Module:Sidebar" title="Module:Sidebar">Module:Sidebar</a> (<a href="/w/index.php?title=Module:Sidebar&action=edit" title="Module:Sidebar">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Sidebar/configuration" title="Module:Sidebar/configuration">Module:Sidebar/configuration</a> (<a href="/w/index.php?title=Module:Sidebar/configuration&action=edit" title="Module:Sidebar/configuration">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Sidebar/styles.css" title="Module:Sidebar/styles.css">Module:Sidebar/styles.css</a> (<a href="/w/index.php?title=Module:Sidebar/styles.css&action=edit" title="Module:Sidebar/styles.css">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:String" title="Module:String">Module:String</a> (<a href="/w/index.php?title=Module:String&action=edit" title="Module:String">view source</a>) (protected)</li><li><a href="/wiki/Module:TableTools" title="Module:TableTools">Module:TableTools</a> (<a href="/w/index.php?title=Module:TableTools&action=edit" title="Module:TableTools">view source</a>) (protected)</li><li><a href="/wiki/Module:Unsubst" title="Module:Unsubst">Module:Unsubst</a> (<a href="/w/index.php?title=Module:Unsubst&action=edit" title="Module:Unsubst">view source</a>) (protected)</li><li><a href="/wiki/Module:Webarchive" title="Module:Webarchive">Module:Webarchive</a> (<a href="/w/index.php?title=Module:Webarchive&action=edit" title="Module:Webarchive">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Webarchive/data" title="Module:Webarchive/data">Module:Webarchive/data</a> (<a href="/w/index.php?title=Module:Webarchive/data&action=edit" title="Module:Webarchive/data">view source</a>) (template editor protected)</li><li><a href="/wiki/Module:Wikitext_Parsing" title="Module:Wikitext Parsing">Module:Wikitext Parsing</a> (<a href="/w/index.php?title=Module:Wikitext_Parsing&action=edit" title="Module:Wikitext Parsing">view source</a>) (protected)</li><li><a href="/wiki/Module:Yesno" title="Module:Yesno">Module:Yesno</a> (<a href="/w/index.php?title=Module:Yesno&action=edit" title="Module:Yesno">view source</a>) (protected)</li></ul></div><p id="mw-returnto">Return to <a href="/wiki/Area_of_a_circle" title="Area of a circle">Area of a circle</a>.</p> <!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/wiki/Area_of_a_circle">https://en.wikipedia.org/wiki/Area_of_a_circle</a>"</div></div> <div id="catlinks" class="catlinks catlinks-allhidden" data-mw="interface"></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Area_of_a_circle&action=edit&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6df7948d6c-k2d95","wgBackendResponseTime":257,"wgPageParseReport":{"limitreport":{"cputime":"0.055","walltime":"0.069","ppvisitednodes":{"value":418,"limit":1000000},"postexpandincludesize":{"value":17740,"limit":2097152},"templateargumentsize":{"value":6556,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":469,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 42.660 1 -total"," 99.87% 42.605 2 Template:Blocked_text"," 42.60% 18.172 2 Template:Replace"," 37.90% 16.168 1 Template:Colocationwebhost"," 34.39% 14.671 1 Template:Hidden"," 15.17% 6.471 1 Template:Hidden_begin"," 13.36% 5.698 1 Template:Tlx"," 2.43% 1.037 1 Template:Hidden_end"," 2.40% 1.024 1 MediaWiki:Wikimedia-globalblocking-blockedtext-mistake"," 2.19% 0.935 1 MediaWiki:Wikimedia-globalblocking-blockedtext-mistake-email-steward"]},"scribunto":{"limitreport-timeusage":{"value":"0.010","limit":"10.000"},"limitreport-memusage":{"value":1043317,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-6df7948d6c-k2d95","timestamp":"20241127212420","ttl":2592000,"transientcontent":false}}});});</script> </body> </html>