CINXE.COM

Serkan Araci | Hasan Kalyoncu University - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Serkan Araci | Hasan Kalyoncu University - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="gLtvsEpj929pcGQMZDlsKg/1joH5QzonBU4RxKzaFIPbWJ8ELrQn/2yaOWDjXI7zp8q6Z+aCJThD2ABIpgvlpQ==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="serkan araci" /> <meta name="description" content="Serkan Araci was born in Hatay, Turkey, on October 1, 1988. He haspublished more than 100 papers in reputed international journals. His research interests…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '9387f500ddcbb8d05c67bef28a2fe0334f1aafb8'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15268,"monthly_visitors":"113 million","monthly_visitor_count":113692424,"monthly_visitor_count_in_millions":113,"user_count":277711831,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1733001992000); window.Aedu.timeDifference = new Date().getTime() - 1733001992000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-3e572e3b706c3ed2ec5b2c1cb44a411fadc81f62a97963cb7bd9c327a0a9d5f2.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-2e8d3f30eaaddd1debd6ce4630b3453b23a23c91ac7c823ddf8822879835b029.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://hku-tr.academia.edu/saraci" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-ae3d0ee232cd83d11499343688b0160a3c7db15e95cb2d0844cae78d49ea53f1.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci","photo":"https://0.academia-photos.com/990498/355571/17202883/s65_serkan.araci.jpg","has_photo":true,"department":{"id":3200184,"name":"Department of Basic Sciences","url":"https://hku-tr.academia.edu/Departments/Department_of_Basic_Sciences/Documents","university":{"id":7875,"name":"Hasan Kalyoncu University","url":"https://hku-tr.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":287193,"name":"Daniel Bernoulli","url":"https://www.academia.edu/Documents/in/Daniel_Bernoulli"},{"id":350509,"name":"Leonhard Euler","url":"https://www.academia.edu/Documents/in/Leonhard_Euler"},{"id":51368,"name":"Srinivasa Ramanujan","url":"https://www.academia.edu/Documents/in/Srinivasa_Ramanujan"},{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":302,"name":"Analytic Number Theory","url":"https://www.academia.edu/Documents/in/Analytic_Number_Theory"},{"id":301,"name":"Number Theory","url":"https://www.academia.edu/Documents/in/Number_Theory"},{"id":928438,"name":"Bernstein Polynomials","url":"https://www.academia.edu/Documents/in/Bernstein_Polynomials"},{"id":346244,"name":"bernoulli, genocchi and Euler polynomials","url":"https://www.academia.edu/Documents/in/bernoulli_genocchi_and_Euler_polynomials"},{"id":247668,"name":"Eulerian Numbers","url":"https://www.academia.edu/Documents/in/Eulerian_Numbers"},{"id":367,"name":"Analysis (Mathematics)","url":"https://www.academia.edu/Documents/in/Analysis_Mathematics_"},{"id":491193,"name":"Umbral Calculus","url":"https://www.academia.edu/Documents/in/Umbral_Calculus"},{"id":375,"name":"P Adic Analysis","url":"https://www.academia.edu/Documents/in/P_Adic_Analysis"},{"id":56624,"name":"Fractional calculus and its applications","url":"https://www.academia.edu/Documents/in/Fractional_calculus_and_its_applications"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = [{"id":262106,"link":"http://scholar.google.com/citations?user=cjjT6uAAAAAJ\u0026hl=en","name":"Google Scholar","link_domain":"scholar.google.com","icon":"//www.google.com/s2/u/0/favicons?domain=scholar.google.com"},{"id":391383,"link":"http://www.sciepub.com/journal/TJANT/EditorialBoard","name":"Turkish Journal of Analysis and Number Theory","link_domain":"www.sciepub.com","icon":"//www.google.com/s2/u/0/favicons?domain=www.sciepub.com"},{"id":391386,"link":"http://www.numbertheory.org/","name":"Number Theory Web","link_domain":"www.numbertheory.org","icon":"//www.google.com/s2/u/0/favicons?domain=www.numbertheory.org"},{"id":391388,"link":"http://www.mathontheweb.org/mathweb/mi-journals.html","name":"Mathematical Journals","link_domain":"www.mathontheweb.org","icon":"//www.google.com/s2/u/0/favicons?domain=www.mathontheweb.org"},{"id":391390,"link":"http://www.sozluk.net/","name":"Dictionary","link_domain":"www.sozluk.net","icon":"//www.google.com/s2/u/0/favicons?domain=www.sozluk.net"},{"id":391632,"link":"http://www.linkedin.com/profile/view?id=119301436\u0026trk=nav_responsive_tab_profile","name":"Linkedin","link_domain":"www.linkedin.com","icon":"//www.google.com/s2/u/0/favicons?domain=www.linkedin.com"},{"id":408030,"link":"http://www.hindawi.com/98292347/","name":"The biography of Serkan Araci","link_domain":"www.hindawi.com","icon":"//www.google.com/s2/u/0/favicons?domain=www.hindawi.com"},{"id":449955,"link":"http://arxiv.org/list/math.NT/recent","name":"In arxiv.org, recent submissions related to Number Theory","link_domain":"arxiv.org","icon":"//www.google.com/s2/u/0/favicons?domain=arxiv.org"},{"id":461660,"link":"https://twitter.com/araci_serkan","name":"Twitter","link_domain":"twitter.com","icon":"//www.google.com/s2/u/0/favicons?domain=twitter.com"},{"id":461666,"link":"https://www.facebook.com/serkan.araci.10?ref=tn_tnmn","name":"Facebook","link_domain":"www.facebook.com","icon":"//www.google.com/s2/u/0/favicons?domain=www.facebook.com"},{"id":644754,"link":"http://www.livedna.net/?dna=90.5945","name":"LiveDNA","link_domain":"www.livedna.net","icon":"//www.google.com/s2/u/0/favicons?domain=www.livedna.net"}]</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://hku-tr.academia.edu/saraci&quot;,&quot;location&quot;:&quot;/saraci&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;hku-tr.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/saraci&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-a06e462a-deb7-4ea9-a7df-9963af703073"></div> <div id="ProfileCheckPaperUpdate-react-component-a06e462a-deb7-4ea9-a7df-9963af703073"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Serkan Araci" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/990498/355571/17202883/s200_serkan.araci.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Serkan Araci</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://hku-tr.academia.edu/">Hasan Kalyoncu University</a>, <a class="u-tcGrayDarker" href="https://hku-tr.academia.edu/Departments/Department_of_Basic_Sciences/Documents">Department of Basic Sciences</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Serkan" data-follow-user-id="990498" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="990498"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">150</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">114</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">4</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">Serkan Araci was born in Hatay, Turkey, on October 1, 1988. He haspublished more than 100 papers in reputed international journals. His research interests include p-adic analysis, analytic theory of numbers, q-series and q-polynomials, and theory of umbral calculus. He is an editor and a referee for several international journals.<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="990498">View All (13)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="990498" href="https://www.academia.edu/Documents/in/Daniel_Bernoulli"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://hku-tr.academia.edu/saraci&quot;,&quot;location&quot;:&quot;/saraci&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;hku-tr.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/saraci&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Daniel Bernoulli&quot;]}" data-trace="false" data-dom-id="Pill-react-component-f902609b-1ddb-4f17-8a4c-889b699304f7"></div> <div id="Pill-react-component-f902609b-1ddb-4f17-8a4c-889b699304f7"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="990498" href="https://www.academia.edu/Documents/in/Leonhard_Euler"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Leonhard Euler&quot;]}" data-trace="false" data-dom-id="Pill-react-component-6111f04f-5f06-4b16-b6f1-4ebbd25892fa"></div> <div id="Pill-react-component-6111f04f-5f06-4b16-b6f1-4ebbd25892fa"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="990498" href="https://www.academia.edu/Documents/in/Srinivasa_Ramanujan"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Srinivasa Ramanujan&quot;]}" data-trace="false" data-dom-id="Pill-react-component-ac64aa61-a580-40d1-b940-3cffe51db2a6"></div> <div id="Pill-react-component-ac64aa61-a580-40d1-b940-3cffe51db2a6"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="990498" href="https://www.academia.edu/Documents/in/Mathematics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Mathematics&quot;]}" data-trace="false" data-dom-id="Pill-react-component-756f76fb-80f8-40e4-b813-7e500f2f11ba"></div> <div id="Pill-react-component-756f76fb-80f8-40e4-b813-7e500f2f11ba"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="990498" href="https://www.academia.edu/Documents/in/Analytic_Number_Theory"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Analytic Number Theory&quot;]}" data-trace="false" data-dom-id="Pill-react-component-5b02e679-8736-464a-bea9-21e00fe060b7"></div> <div id="Pill-react-component-5b02e679-8736-464a-bea9-21e00fe060b7"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="nav-container backbone-profile-documents-nav hidden-xs"><ul class="nav-tablist" role="tablist"><li class="nav-chip active" role="presentation"><a data-section-name="" data-toggle="tab" href="#all" role="tab">all</a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Papers" data-toggle="tab" href="#papers" role="tab" title="Papers"><span>118</span>&nbsp;<span class="ds2-5-body-sm-bold">Papers</span></a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="My-refereeings-in-international-Journals" data-toggle="tab" href="#myrefereeingsininternationaljournals" role="tab" title="My refereeings in international Journals"><span>1</span>&nbsp;<span class="ds2-5-body-sm-bold">My refereeings in international Journals</span></a></li><li class="nav-chip more-tab" role="presentation"><a class="js-profile-documents-more-tab link-unstyled u-textTruncate" data-toggle="dropdown" role="tab">More&nbsp;&nbsp;<i class="fa fa-chevron-down"></i></a><ul class="js-profile-documents-more-dropdown dropdown-menu dropdown-menu-right profile-documents-more-dropdown" role="menu"><li role="presentation"><a data-click-track="profile-works-tab" data-section-name="Member-of-the-Editorial-Boards" data-toggle="tab" href="#memberoftheeditorialboards" role="tab" style="border: none;"><span>1</span>&nbsp;Member of the Editorial Boards</a></li><li role="presentation"><a data-click-track="profile-works-tab" data-section-name="Conference-Brochurs" data-toggle="tab" href="#conferencebrochurs" role="tab" style="border: none;"><span>1</span>&nbsp;Conference Brochurs</a></li></ul></li></ul></div><div class="divider ds-divider-16" style="margin: 0px;"></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Serkan Araci</h3></div><div class="js-work-strip profile--work_container" data-work-id="85962554"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962554/Identities_involving_q_Genocchi_numbers"><img alt="Research paper thumbnail of Identities involving q-Genocchi numbers" class="work-thumbnail" src="https://attachments.academia-assets.com/90519797/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962554/Identities_involving_q_Genocchi_numbers">Identities involving q-Genocchi numbers</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b91e95150b597c43145d9d14bfc1f7c7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519797,&quot;asset_id&quot;:85962554,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519797/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962554"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962554"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962554; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962554]").text(description); $(".js-view-count[data-work-id=85962554]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962554; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962554']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962554, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b91e95150b597c43145d9d14bfc1f7c7" } } $('.js-work-strip[data-work-id=85962554]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962554,"title":"Identities involving q-Genocchi numbers","translated_title":"","metadata":{"grobid_abstract":"In this paper, we focus on the q-Genocchi numbers and polynomials. We shall introduce new identities of the q-Genocchi numbers and polynomials by using the fermionic p-adic integral on Zp which are very important in the study of Frobenius-Genocchi numbers and polynomials. Also, we give Cauchy-integral formula for the q-Genocchi polynomials and moreover by using measure theory on p-adic integral we derive the distribution formula q-Genocchi polynomials. Finally, we present a new definition of q-Zeta-type function by using Mellin transformation which is the interpolation function of the q-Genocchi polynomials at negative integers.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"grobid_abstract_attachment_id":90519797},"translated_abstract":null,"internal_url":"https://www.academia.edu/85962554/Identities_involving_q_Genocchi_numbers","translated_internal_url":"","created_at":"2022-09-01T00:12:13.961-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519797,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519797/thumbnails/1.jpg","file_name":"1210.0847.pdf","download_url":"https://www.academia.edu/attachments/90519797/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identities_involving_q_Genocchi_numbers.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519797/1210.0847-libre.pdf?1662016613=\u0026response-content-disposition=attachment%3B+filename%3DIdentities_involving_q_Genocchi_numbers.pdf\u0026Expires=1732990258\u0026Signature=PcMfy0NJBrdVCV7JpYhAgpPnRDLeg3ZFtLPpv1CRVcsL08HJ2ObnELmulnk6G~MfveIWrJG6Tr8neGnapWvkNHSKmCz6WPpYiqpxq9BqAH2lz~Z86x0Cd8sxEXv7Wqyb7Ni9h~75YBf9am66DSmoxNmFEZtESvyGKdiJyHcxAZKweBmVahtyQ2snzCIEjrVKikz2jk0U51BOEv~b240W8bMHPmEYpG~LA9ipG5fs0OB6byqSV4M7THyg~oXUT1ptCD4aRifNXHaj~jl0IGQnD41Zy6wI3fm2wWmgrcTmeLVTca0FHumz2ADZIULpmCAxNTmoHiPpMsWC-q69biWIwA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Identities_involving_q_Genocchi_numbers","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519797,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519797/thumbnails/1.jpg","file_name":"1210.0847.pdf","download_url":"https://www.academia.edu/attachments/90519797/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identities_involving_q_Genocchi_numbers.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519797/1210.0847-libre.pdf?1662016613=\u0026response-content-disposition=attachment%3B+filename%3DIdentities_involving_q_Genocchi_numbers.pdf\u0026Expires=1732990258\u0026Signature=PcMfy0NJBrdVCV7JpYhAgpPnRDLeg3ZFtLPpv1CRVcsL08HJ2ObnELmulnk6G~MfveIWrJG6Tr8neGnapWvkNHSKmCz6WPpYiqpxq9BqAH2lz~Z86x0Cd8sxEXv7Wqyb7Ni9h~75YBf9am66DSmoxNmFEZtESvyGKdiJyHcxAZKweBmVahtyQ2snzCIEjrVKikz2jk0U51BOEv~b240W8bMHPmEYpG~LA9ipG5fs0OB6byqSV4M7THyg~oXUT1ptCD4aRifNXHaj~jl0IGQnD41Zy6wI3fm2wWmgrcTmeLVTca0FHumz2ADZIULpmCAxNTmoHiPpMsWC-q69biWIwA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":23520934,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.762.6065\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962552"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962552/New_Generalization_of_Eulerian_Polynomials_and_their_Applications"><img alt="Research paper thumbnail of New Generalization of Eulerian Polynomials and their Applications" class="work-thumbnail" src="https://attachments.academia-assets.com/90519739/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962552/New_Generalization_of_Eulerian_Polynomials_and_their_Applications">New Generalization of Eulerian Polynomials and their Applications</a></div><div class="wp-workCard_item"><span>arXiv: Number Theory</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">SERKAN ARACI, MEHMET ACIKGOZ, AND ERDOGAN S¸EN˘Abstract. In the present paper, we introduce Euler...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">SERKAN ARACI, MEHMET ACIKGOZ, AND ERDOGAN S¸EN˘Abstract. In the present paper, we introduce Eulerian polynomialswith parameters aand band give the definition of them. By using thedefinition of generating function for our polynomials, we derive some newidentities in Analytic Numbers Theory. Also, we give relations betweenEulerian polynomials with parameters aand b, Bernstein polynomials,Poly-logarithm functions, Bernoulli and Euler numbers. Moreover, wesee that our polynomials at a= −1 are related to Euler-Zeta function atnegative inetegers. Finally, we get Witt’s formula for new generalizationof Eulerian polynomials which we express in this paper.2010MathematicsSubjectClassification. Primary 05A10, 11B65;Secondary 11B68, 11B73.Keywords and phrases. Eulerian polynomials, Poly-logarithm func-tions, Stirling numbersofthe second kind, Bernstein polynomials, Bernoullinumbers, Euler numbers and Euler-Zeta function, p-adic fermionic inte-gral on Z</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2e2cdc20c63a00a20f43f732a096d5e7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519739,&quot;asset_id&quot;:85962552,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519739/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962552"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962552"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962552; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962552]").text(description); $(".js-view-count[data-work-id=85962552]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962552; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962552']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962552, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2e2cdc20c63a00a20f43f732a096d5e7" } } $('.js-work-strip[data-work-id=85962552]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962552,"title":"New Generalization of Eulerian Polynomials and their Applications","translated_title":"","metadata":{"abstract":"SERKAN ARACI, MEHMET ACIKGOZ, AND ERDOGAN S¸EN˘Abstract. In the present paper, we introduce Eulerian polynomialswith parameters aand band give the definition of them. By using thedefinition of generating function for our polynomials, we derive some newidentities in Analytic Numbers Theory. Also, we give relations betweenEulerian polynomials with parameters aand b, Bernstein polynomials,Poly-logarithm functions, Bernoulli and Euler numbers. Moreover, wesee that our polynomials at a= −1 are related to Euler-Zeta function atnegative inetegers. Finally, we get Witt’s formula for new generalizationof Eulerian polynomials which we express in this paper.2010MathematicsSubjectClassification. Primary 05A10, 11B65;Secondary 11B68, 11B73.Keywords and phrases. Eulerian polynomials, Poly-logarithm func-tions, Stirling numbersofthe second kind, Bernstein polynomials, Bernoullinumbers, Euler numbers and Euler-Zeta function, p-adic fermionic inte-gral on Z","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"arXiv: Number Theory"},"translated_abstract":"SERKAN ARACI, MEHMET ACIKGOZ, AND ERDOGAN S¸EN˘Abstract. In the present paper, we introduce Eulerian polynomialswith parameters aand band give the definition of them. By using thedefinition of generating function for our polynomials, we derive some newidentities in Analytic Numbers Theory. Also, we give relations betweenEulerian polynomials with parameters aand b, Bernstein polynomials,Poly-logarithm functions, Bernoulli and Euler numbers. Moreover, wesee that our polynomials at a= −1 are related to Euler-Zeta function atnegative inetegers. Finally, we get Witt’s formula for new generalizationof Eulerian polynomials which we express in this paper.2010MathematicsSubjectClassification. Primary 05A10, 11B65;Secondary 11B68, 11B73.Keywords and phrases. Eulerian polynomials, Poly-logarithm func-tions, Stirling numbersofthe second kind, Bernstein polynomials, Bernoullinumbers, Euler numbers and Euler-Zeta function, p-adic fermionic inte-gral on Z","internal_url":"https://www.academia.edu/85962552/New_Generalization_of_Eulerian_Polynomials_and_their_Applications","translated_internal_url":"","created_at":"2022-09-01T00:12:13.192-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519739,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519739/thumbnails/1.jpg","file_name":"AraciAcikgozSen2014b.pdf","download_url":"https://www.academia.edu/attachments/90519739/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"New_Generalization_of_Eulerian_Polynomia.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519739/AraciAcikgozSen2014b-libre.pdf?1662016619=\u0026response-content-disposition=attachment%3B+filename%3DNew_Generalization_of_Eulerian_Polynomia.pdf\u0026Expires=1732990258\u0026Signature=BPAOKOYtov~7Cch-7jfGBjLfoVEmXZlRsIQzl4Ks77ehJs74ujSoqz2haKzqI17vDSM-fACJFs5x33-yaRx3vc-j9aXIVN7zD0Xig-IokIpwtTFWlk3zRM7hafZIO2Sd6eDWjMKNMIRAs7Lf-opHPH2O18TrZBcoes98tSKMxqr2LrS3FWMWL7xtXo74~zAZ5A~F9FsUco1Eq1F5U4qWK14YqOkK4cG630A0z8cSuO68jojvUUUYLE2chv4tjHnE9ogfwi0P4rc0HxtKrkS8-4zxlaXGCdNWwhlBNIzov~y4e1DHSvdJXrDTo7etNxKONQfXeqQdnxUsXcjsjFfzXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"New_Generalization_of_Eulerian_Polynomials_and_their_Applications","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519739,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519739/thumbnails/1.jpg","file_name":"AraciAcikgozSen2014b.pdf","download_url":"https://www.academia.edu/attachments/90519739/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"New_Generalization_of_Eulerian_Polynomia.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519739/AraciAcikgozSen2014b-libre.pdf?1662016619=\u0026response-content-disposition=attachment%3B+filename%3DNew_Generalization_of_Eulerian_Polynomia.pdf\u0026Expires=1732990258\u0026Signature=BPAOKOYtov~7Cch-7jfGBjLfoVEmXZlRsIQzl4Ks77ehJs74ujSoqz2haKzqI17vDSM-fACJFs5x33-yaRx3vc-j9aXIVN7zD0Xig-IokIpwtTFWlk3zRM7hafZIO2Sd6eDWjMKNMIRAs7Lf-opHPH2O18TrZBcoes98tSKMxqr2LrS3FWMWL7xtXo74~zAZ5A~F9FsUco1Eq1F5U4qWK14YqOkK4cG630A0z8cSuO68jojvUUUYLE2chv4tjHnE9ogfwi0P4rc0HxtKrkS8-4zxlaXGCdNWwhlBNIzov~y4e1DHSvdJXrDTo7etNxKONQfXeqQdnxUsXcjsjFfzXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":23520932,"url":"http://users.dimi.uniud.it/~giacomo.dellariccia/Table%20of%20contents/AraciAcikgozSen2014b.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962551"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962551/Dirichlets_type_of_twisted_Eulerian_polynomials_in_connection_with_Eulerian_L_function"><img alt="Research paper thumbnail of Dirichlet&#39;s type of twisted Eulerian polynomials in connection with Eulerian-L-function" class="work-thumbnail" src="https://attachments.academia-assets.com/90519737/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962551/Dirichlets_type_of_twisted_Eulerian_polynomials_in_connection_with_Eulerian_L_function">Dirichlet&#39;s type of twisted Eulerian polynomials in connection with Eulerian-L-function</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the present paper, we effect Dirichlet&amp;#39;s type of twisted Eulerian polynomials by using p-a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the present paper, we effect Dirichlet&amp;#39;s type of twisted Eulerian polynomials by using p-adic fermionic q-integral on the p-adic integer ring. Also, we introduce some new interesting identities for them. As a result of them, by using contour integral on the generating function of Dirichlet&amp;#39;s type of twisted Eulerian polynomials and so we define twisted Eulerian-L-function which interpolates of Dirichlet&amp;#39;s type of Eulerian polynomials at negative integers which we state in this paper.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9063b90e9f410c2e168d935ae2096661" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519737,&quot;asset_id&quot;:85962551,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519737/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962551"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962551"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962551; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962551]").text(description); $(".js-view-count[data-work-id=85962551]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962551; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962551']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962551, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9063b90e9f410c2e168d935ae2096661" } } $('.js-work-strip[data-work-id=85962551]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962551,"title":"Dirichlet's type of twisted Eulerian polynomials in connection with Eulerian-L-function","translated_title":"","metadata":{"abstract":"In the present paper, we effect Dirichlet\u0026#39;s type of twisted Eulerian polynomials by using p-adic fermionic q-integral on the p-adic integer ring. Also, we introduce some new interesting identities for them. As a result of them, by using contour integral on the generating function of Dirichlet\u0026#39;s type of twisted Eulerian polynomials and so we define twisted Eulerian-L-function which interpolates of Dirichlet\u0026#39;s type of Eulerian polynomials at negative integers which we state in this paper.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}}},"translated_abstract":"In the present paper, we effect Dirichlet\u0026#39;s type of twisted Eulerian polynomials by using p-adic fermionic q-integral on the p-adic integer ring. Also, we introduce some new interesting identities for them. As a result of them, by using contour integral on the generating function of Dirichlet\u0026#39;s type of twisted Eulerian polynomials and so we define twisted Eulerian-L-function which interpolates of Dirichlet\u0026#39;s type of Eulerian polynomials at negative integers which we state in this paper.","internal_url":"https://www.academia.edu/85962551/Dirichlets_type_of_twisted_Eulerian_polynomials_in_connection_with_Eulerian_L_function","translated_internal_url":"","created_at":"2022-09-01T00:12:12.857-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519737,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519737/thumbnails/1.jpg","file_name":"1208.0589v1.pdf","download_url":"https://www.academia.edu/attachments/90519737/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dirichlets_type_of_twisted_Eulerian_poly.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519737/1208.0589v1-libre.pdf?1662016619=\u0026response-content-disposition=attachment%3B+filename%3DDirichlets_type_of_twisted_Eulerian_poly.pdf\u0026Expires=1732990258\u0026Signature=EpxUqePfZUXdPNYropDBKVryrRt2DdoKBOILhzlROoOoJV~eT7wvPq4AxhS~MH8LHxbxDvdpETCsAHr-3rmX6Ve3JLBLz879RjvmZCMn5V8rsteimoaKPikJPXoOcsLk4h5cttsiACgytG~ABB2nxt7nhXTjFw686JEE9iOGegL55CTMiKwp4ZiiCnAE1NX9MHLYjfoF5xl8gmhoHxif9isegquB0czneuGLJM8PBVKgSuq82Jfm-26VTjA9YFjmqUIv6th7eqHgy8hmKEOD9IQAzm8h5ALx4ZJcw44CnnvErjxYOFhCW3RBoeJ3jhrEd8QWN8h5qGObcRFCsBJLhg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dirichlets_type_of_twisted_Eulerian_polynomials_in_connection_with_Eulerian_L_function","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519737,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519737/thumbnails/1.jpg","file_name":"1208.0589v1.pdf","download_url":"https://www.academia.edu/attachments/90519737/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dirichlets_type_of_twisted_Eulerian_poly.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519737/1208.0589v1-libre.pdf?1662016619=\u0026response-content-disposition=attachment%3B+filename%3DDirichlets_type_of_twisted_Eulerian_poly.pdf\u0026Expires=1732990258\u0026Signature=EpxUqePfZUXdPNYropDBKVryrRt2DdoKBOILhzlROoOoJV~eT7wvPq4AxhS~MH8LHxbxDvdpETCsAHr-3rmX6Ve3JLBLz879RjvmZCMn5V8rsteimoaKPikJPXoOcsLk4h5cttsiACgytG~ABB2nxt7nhXTjFw686JEE9iOGegL55CTMiKwp4ZiiCnAE1NX9MHLYjfoF5xl8gmhoHxif9isegquB0czneuGLJM8PBVKgSuq82Jfm-26VTjA9YFjmqUIv6th7eqHgy8hmKEOD9IQAzm8h5ALx4ZJcw44CnnvErjxYOFhCW3RBoeJ3jhrEd8QWN8h5qGObcRFCsBJLhg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":90519738,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519738/thumbnails/1.jpg","file_name":"1208.0589v1.pdf","download_url":"https://www.academia.edu/attachments/90519738/download_file","bulk_download_file_name":"Dirichlets_type_of_twisted_Eulerian_poly.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519738/1208.0589v1-libre.pdf?1662016622=\u0026response-content-disposition=attachment%3B+filename%3DDirichlets_type_of_twisted_Eulerian_poly.pdf\u0026Expires=1732990258\u0026Signature=XfgnYa7VnnR0634QJWABa0dgwfOPAcP7oaWX6SKXAO37ww2E1n-xbMbARZs513MSHTdawmLIfkxniRu3AXjOOVcCTXw7-UalM7tzbezUpx8sabDEj0wKi7NcK~ymOyUfYkdARWGtY4CzzR-PvRIhic67-sy3I9zcLRhbGc8rNSvv~2mFEIeAD-BqH-nICk0hVDqVuUyFVAIViGH-Q~uWj2it6N-nLr0Bmv1sBR6~v0yK9r73wnzSf1ZxOaIczoFr4dBZokPpg5U8FUzIENgwrCq4bAlUhAj4pOuwvZ6WA0YcArnHB-Q0DOe2gluIdIRsXSiBxUrRi53dW8VBkNPMLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":23520931,"url":"https://arxiv.org/pdf/1208.0589v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962550"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962550/Identities_involving_some_new_special_polynomials_arising_from_the_applications_of_fractional_calculus"><img alt="Research paper thumbnail of Identities involving some new special polynomials arising from the applications of fractional calculus" class="work-thumbnail" src="https://attachments.academia-assets.com/90519803/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962550/Identities_involving_some_new_special_polynomials_arising_from_the_applications_of_fractional_calculus">Identities involving some new special polynomials arising from the applications of fractional calculus</a></div><div class="wp-workCard_item"><span>arXiv: Classical Analysis and ODEs</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Inspired by a number of recent investigations, we introduce the new analogues of the Apostol-Bern...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Inspired by a number of recent investigations, we introduce the new analogues of the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials, the Apostol-Genocchi polynom ials based on Mittag-Leffler function. Making use of the Capu to-fractional derivative, we derive some new interesting identities of th ese polynomials. It turns out that some known results are der ived as special cases.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e1bc2ea2b541375ba33f367e7d932ee4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519803,&quot;asset_id&quot;:85962550,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519803/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962550"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962550"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962550; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962550]").text(description); $(".js-view-count[data-work-id=85962550]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962550; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962550']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962550, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e1bc2ea2b541375ba33f367e7d932ee4" } } $('.js-work-strip[data-work-id=85962550]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962550,"title":"Identities involving some new special polynomials arising from the applications of fractional calculus","translated_title":"","metadata":{"abstract":"Inspired by a number of recent investigations, we introduce the new analogues of the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials, the Apostol-Genocchi polynom ials based on Mittag-Leffler function. Making use of the Capu to-fractional derivative, we derive some new interesting identities of th ese polynomials. It turns out that some known results are der ived as special cases.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"arXiv: Classical Analysis and ODEs"},"translated_abstract":"Inspired by a number of recent investigations, we introduce the new analogues of the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials, the Apostol-Genocchi polynom ials based on Mittag-Leffler function. Making use of the Capu to-fractional derivative, we derive some new interesting identities of th ese polynomials. It turns out that some known results are der ived as special cases.","internal_url":"https://www.academia.edu/85962550/Identities_involving_some_new_special_polynomials_arising_from_the_applications_of_fractional_calculus","translated_internal_url":"","created_at":"2022-09-01T00:12:12.531-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519803,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519803/thumbnails/1.jpg","file_name":"1305.3220.pdf","download_url":"https://www.academia.edu/attachments/90519803/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identities_involving_some_new_special_po.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519803/1305.3220-libre.pdf?1662016612=\u0026response-content-disposition=attachment%3B+filename%3DIdentities_involving_some_new_special_po.pdf\u0026Expires=1732990258\u0026Signature=OYfOoN83yZ2xs2Q-yWJ2g37EWrtdCNwBxZIpI67wjiXXCiOjHSCGsBp~cHCEKGfjPZ4iMsGasay~iGjgxCAGV4Hnm3CkjEwi3Cw~s3LXCkQUp5zq9mAY-9FEVlhDh0xripzy5v5Sty33Vwm-933NsD0XHhw~PNWkGprYFeS-g~IjPu8NjgwaOFJTErKcA361hxZBMMtCTJdAwg66kwSFBDKw5iV5ZZteeC6hSz0-vEu0i-JYYBC~IX~LMDZlixVjYGXZTgVyNl0BVqHZp3eHauGcdXjpT72qKOAw4EzR96Co4Zfa3G3BuVORWvnn~i9e3DkWWllA65zhKclweIzN2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Identities_involving_some_new_special_polynomials_arising_from_the_applications_of_fractional_calculus","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519803,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519803/thumbnails/1.jpg","file_name":"1305.3220.pdf","download_url":"https://www.academia.edu/attachments/90519803/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identities_involving_some_new_special_po.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519803/1305.3220-libre.pdf?1662016612=\u0026response-content-disposition=attachment%3B+filename%3DIdentities_involving_some_new_special_po.pdf\u0026Expires=1732990258\u0026Signature=OYfOoN83yZ2xs2Q-yWJ2g37EWrtdCNwBxZIpI67wjiXXCiOjHSCGsBp~cHCEKGfjPZ4iMsGasay~iGjgxCAGV4Hnm3CkjEwi3Cw~s3LXCkQUp5zq9mAY-9FEVlhDh0xripzy5v5Sty33Vwm-933NsD0XHhw~PNWkGprYFeS-g~IjPu8NjgwaOFJTErKcA361hxZBMMtCTJdAwg66kwSFBDKw5iV5ZZteeC6hSz0-vEu0i-JYYBC~IX~LMDZlixVjYGXZTgVyNl0BVqHZp3eHauGcdXjpT72qKOAw4EzR96Co4Zfa3G3BuVORWvnn~i9e3DkWWllA65zhKclweIzN2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":301,"name":"Number Theory","url":"https://www.academia.edu/Documents/in/Number_Theory"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":56624,"name":"Fractional calculus and its applications","url":"https://www.academia.edu/Documents/in/Fractional_calculus_and_its_applications"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962548"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962548/On_the_Properties_of_q_Bernstein_type_Polynomials"><img alt="Research paper thumbnail of On the Properties of q-Bernstein-type Polynomials" class="work-thumbnail" src="https://attachments.academia-assets.com/90519796/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962548/On_the_Properties_of_q_Bernstein_type_Polynomials">On the Properties of q-Bernstein-type Polynomials</a></div><div class="wp-workCard_item"><span>Applied Mathematics &amp; Information Sciences</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="463d12b3581f2f4a4127f20bfcc52c73" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519796,&quot;asset_id&quot;:85962548,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519796/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962548"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962548"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962548; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962548]").text(description); $(".js-view-count[data-work-id=85962548]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962548; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962548']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962548, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "463d12b3581f2f4a4127f20bfcc52c73" } } $('.js-work-strip[data-work-id=85962548]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962548,"title":"On the Properties of q-Bernstein-type Polynomials","translated_title":"","metadata":{"publisher":"Natural Sciences Publishing","grobid_abstract":"The aim of this paper is to give a new approach to modified q-Bernstein polynomials for functions of several variables. By using these polynomials, the recurrence formulas and some new interesting identities related to the second Stirling numbers and generalized Bernoulli polynomials are derived. Moreover, the generating function, interpolation function of these polynomials of several variables and also the derivatives of these polynomials and their generating function are given. Finally, we get new interesting identities of modified q-Bernoulli numbers and q-Euler numbers applying p-adic q-integral representation on Z p and p-adic fermionic q-invariant integral on Z p , respectively, to the inverse of q-Bernstein polynomials.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Applied Mathematics \u0026 Information Sciences","grobid_abstract_attachment_id":90519796},"translated_abstract":null,"internal_url":"https://www.academia.edu/85962548/On_the_Properties_of_q_Bernstein_type_Polynomials","translated_internal_url":"","created_at":"2022-09-01T00:12:12.120-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519796,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519796/thumbnails/1.jpg","file_name":"1111.pdf","download_url":"https://www.academia.edu/attachments/90519796/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Properties_of_q_Bernstein_type_Po.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519796/1111-libre.pdf?1662016621=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Properties_of_q_Bernstein_type_Po.pdf\u0026Expires=1732990258\u0026Signature=hCzudU1sovvt6jeX1EK6Yl0BGLFydHAXMrLT3BK2~1ylBtnmV-PvM4-jBxDIi-HiYnWEjW~pXa5rB5T5A1wqx8eZ3LQE-KAztkhMPAV-b9auL-z74Z~BBGhaOzxyTDq2ZgXbOzaRWBIOy71XQWaXnITvtIjQsiyDV7bNrFwlwN1CrUYi589r0PJ2o0~aUn5Ujtya~EkBkn6CR5DfarEK5nFVPn8U02Z2xgXQUGe3v5eIM8XNnS2apYnAVouinoiUFzfuXfctJuqKQ2-fHgYEOrcfOBUXFFqrYz-LmlfthJGHvznHsMg4tJveBJs2P3bvbeyGoO-qLDRkF6hlR85XPQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_Properties_of_q_Bernstein_type_Polynomials","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519796,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519796/thumbnails/1.jpg","file_name":"1111.pdf","download_url":"https://www.academia.edu/attachments/90519796/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Properties_of_q_Bernstein_type_Po.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519796/1111-libre.pdf?1662016621=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Properties_of_q_Bernstein_type_Po.pdf\u0026Expires=1732990258\u0026Signature=hCzudU1sovvt6jeX1EK6Yl0BGLFydHAXMrLT3BK2~1ylBtnmV-PvM4-jBxDIi-HiYnWEjW~pXa5rB5T5A1wqx8eZ3LQE-KAztkhMPAV-b9auL-z74Z~BBGhaOzxyTDq2ZgXbOzaRWBIOy71XQWaXnITvtIjQsiyDV7bNrFwlwN1CrUYi589r0PJ2o0~aUn5Ujtya~EkBkn6CR5DfarEK5nFVPn8U02Z2xgXQUGe3v5eIM8XNnS2apYnAVouinoiUFzfuXfctJuqKQ2-fHgYEOrcfOBUXFFqrYz-LmlfthJGHvznHsMg4tJveBJs2P3bvbeyGoO-qLDRkF6hlR85XPQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":12026,"name":"Orthogonal polynomials","url":"https://www.academia.edu/Documents/in/Orthogonal_polynomials"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962546"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962546/A_class_of_generating_functions_for_a_new_generalization_of_Eulerian_polynomials_with_their_interpolation_functions"><img alt="Research paper thumbnail of A class of generating functions for a new generalization of Eulerian polynomials with their interpolation functions" class="work-thumbnail" src="https://attachments.academia-assets.com/90519794/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962546/A_class_of_generating_functions_for_a_new_generalization_of_Eulerian_polynomials_with_their_interpolation_functions">A class of generating functions for a new generalization of Eulerian polynomials with their interpolation functions</a></div><div class="wp-workCard_item"><span>Filomat</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Motivated by a number of recent investigations, we define and investigate the various properties ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Motivated by a number of recent investigations, we define and investigate the various properties of a new family of the Eulerian polynomials. We derive useful results involving these Eulerian polynomials including (for example) their generating functions, new series and L-type functions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="824677ffb16b34f34b0a7c42be46fe22" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519794,&quot;asset_id&quot;:85962546,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519794/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962546"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962546"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962546; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962546]").text(description); $(".js-view-count[data-work-id=85962546]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962546; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962546']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962546, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "824677ffb16b34f34b0a7c42be46fe22" } } $('.js-work-strip[data-work-id=85962546]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962546,"title":"A class of generating functions for a new generalization of Eulerian polynomials with their interpolation functions","translated_title":"","metadata":{"abstract":"Motivated by a number of recent investigations, we define and investigate the various properties of a new family of the Eulerian polynomials. We derive useful results involving these Eulerian polynomials including (for example) their generating functions, new series and L-type functions.","publisher":"National Library of Serbia","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Filomat"},"translated_abstract":"Motivated by a number of recent investigations, we define and investigate the various properties of a new family of the Eulerian polynomials. We derive useful results involving these Eulerian polynomials including (for example) their generating functions, new series and L-type functions.","internal_url":"https://www.academia.edu/85962546/A_class_of_generating_functions_for_a_new_generalization_of_Eulerian_polynomials_with_their_interpolation_functions","translated_internal_url":"","created_at":"2022-09-01T00:12:11.894-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519794,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519794/thumbnails/1.jpg","file_name":"1254eb97bf2dda6bf2ba55fb510c196ba70b.pdf","download_url":"https://www.academia.edu/attachments/90519794/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_class_of_generating_functions_for_a_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519794/1254eb97bf2dda6bf2ba55fb510c196ba70b-libre.pdf?1662016612=\u0026response-content-disposition=attachment%3B+filename%3DA_class_of_generating_functions_for_a_ne.pdf\u0026Expires=1732990258\u0026Signature=bks0FKbGr1PfEUKg8Mt68pGZX9NeFwLhoewedaNX7OJGUm2-lUnUreEY7gpLPYRgi2NeyH7OsSKI2QP7t1qCjL~CszBkRGYSkAGNqtYiPzT5njZ22CrhzZFQUf2q629gvlMmcJBojv0mmnpG5ljvAllfI4JoEJ5gYy95oVfKpsOKTl~t67nP95nyCcLl0sCxPNqMF0OEK9I8YTQbv9W4M0G-FO4vIEOVI-v0Z~w66WJr6QbM0L9PuRf8gNTgXNCuOOmeYd5ppNfaU9MlXtfBtkQfjzSWLMyYPGn~y3FgCKTSvFwP3rhcRMpdmSV5Mm9n26462miHGlOxWQiHRpmAyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_class_of_generating_functions_for_a_new_generalization_of_Eulerian_polynomials_with_their_interpolation_functions","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519794,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519794/thumbnails/1.jpg","file_name":"1254eb97bf2dda6bf2ba55fb510c196ba70b.pdf","download_url":"https://www.academia.edu/attachments/90519794/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_class_of_generating_functions_for_a_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519794/1254eb97bf2dda6bf2ba55fb510c196ba70b-libre.pdf?1662016612=\u0026response-content-disposition=attachment%3B+filename%3DA_class_of_generating_functions_for_a_ne.pdf\u0026Expires=1732990258\u0026Signature=bks0FKbGr1PfEUKg8Mt68pGZX9NeFwLhoewedaNX7OJGUm2-lUnUreEY7gpLPYRgi2NeyH7OsSKI2QP7t1qCjL~CszBkRGYSkAGNqtYiPzT5njZ22CrhzZFQUf2q629gvlMmcJBojv0mmnpG5ljvAllfI4JoEJ5gYy95oVfKpsOKTl~t67nP95nyCcLl0sCxPNqMF0OEK9I8YTQbv9W4M0G-FO4vIEOVI-v0Z~w66WJr6QbM0L9PuRf8gNTgXNCuOOmeYd5ppNfaU9MlXtfBtkQfjzSWLMyYPGn~y3FgCKTSvFwP3rhcRMpdmSV5Mm9n26462miHGlOxWQiHRpmAyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962545"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962545/A_NOTE_ON_THE_q_ANALOGUE_OF_KIMS_p_ADIC_log_GAMMA_TYPE_FUNCTIONS_ASSOCIATED_WITH_q_EXTENSION_OF_GENOCCHI_AND_EULER_NUMBERS_WITH_WEIGHT_%CE%B1"><img alt="Research paper thumbnail of A NOTE ON THE q-ANALOGUE OF KIM&#39;S p-ADIC log GAMMA TYPE FUNCTIONS ASSOCIATED WITH q-EXTENSION OF GENOCCHI AND EULER NUMBERS WITH WEIGHT α" class="work-thumbnail" src="https://attachments.academia-assets.com/90519793/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962545/A_NOTE_ON_THE_q_ANALOGUE_OF_KIMS_p_ADIC_log_GAMMA_TYPE_FUNCTIONS_ASSOCIATED_WITH_q_EXTENSION_OF_GENOCCHI_AND_EULER_NUMBERS_WITH_WEIGHT_%CE%B1">A NOTE ON THE q-ANALOGUE OF KIM&#39;S p-ADIC log GAMMA TYPE FUNCTIONS ASSOCIATED WITH q-EXTENSION OF GENOCCHI AND EULER NUMBERS WITH WEIGHT α</a></div><div class="wp-workCard_item"><span>Bulletin of the Korean Mathematical Society</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ef8b2ad2dc016f02b562ca611c50ecaf" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519793,&quot;asset_id&quot;:85962545,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519793/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962545"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962545"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962545; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962545]").text(description); $(".js-view-count[data-work-id=85962545]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962545; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962545']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962545, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ef8b2ad2dc016f02b562ca611c50ecaf" } } $('.js-work-strip[data-work-id=85962545]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962545,"title":"A NOTE ON THE q-ANALOGUE OF KIM'S p-ADIC log GAMMA TYPE FUNCTIONS ASSOCIATED WITH q-EXTENSION OF GENOCCHI AND EULER NUMBERS WITH WEIGHT α","translated_title":"","metadata":{"publisher":"The Korean Mathematical Society","ai_title_tag":"q-Analogue of p-adic log Gamma Functions and Genocchi Numbers","grobid_abstract":"In this paper, we introduce the q-analogue of p-adic log gamma functions with weight alpha. Moreover, we give a relationship between weighted p-adic q-log gamma functions and q-extension of Genocchi and Euler numbers with weight alpha.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Bulletin of the Korean Mathematical Society","grobid_abstract_attachment_id":90519793},"translated_abstract":null,"internal_url":"https://www.academia.edu/85962545/A_NOTE_ON_THE_q_ANALOGUE_OF_KIMS_p_ADIC_log_GAMMA_TYPE_FUNCTIONS_ASSOCIATED_WITH_q_EXTENSION_OF_GENOCCHI_AND_EULER_NUMBERS_WITH_WEIGHT_%CE%B1","translated_internal_url":"","created_at":"2022-09-01T00:12:11.722-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519793,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519793/thumbnails/1.jpg","file_name":"E1BMAX_2013_v50n2_583.pdf","download_url":"https://www.academia.edu/attachments/90519793/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_NOTE_ON_THE_q_ANALOGUE_OF_KIMS_p_ADIC.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519793/E1BMAX_2013_v50n2_583-libre.pdf?1662016612=\u0026response-content-disposition=attachment%3B+filename%3DA_NOTE_ON_THE_q_ANALOGUE_OF_KIMS_p_ADIC.pdf\u0026Expires=1732990258\u0026Signature=Lz~JkTCQhygnXzBgFRY8cMQV2VOI1H9RlI1m86I-TeGlObvaioTmVAFTm9GJqmz7g-4qdg~sUL9Lp~fzZVQYjPJUN6b-SoU~JPTC4CgCX7rGX4otQZZbTTSVtdibV63iWuv1HcN6ChFmYYr2lFklqeIjyEtk8b4HzDKMe6rwbIh7gSOpyNvv8hP~GquZbXCFQ8sZyaDZmANXA-1nVNJkA2-esoCrTreDnwbMc3RascXkzn3QjNX5degg8gsJ~jLJaZLyJBNbh17ATFiXD2JzpXhS7twVqwdgS05GbFnk8TazAnQfEBVslLz0J-xODb6lQJC~whKEgtuOSm7iFkQzXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_NOTE_ON_THE_q_ANALOGUE_OF_KIMS_p_ADIC_log_GAMMA_TYPE_FUNCTIONS_ASSOCIATED_WITH_q_EXTENSION_OF_GENOCCHI_AND_EULER_NUMBERS_WITH_WEIGHT_α","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519793,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519793/thumbnails/1.jpg","file_name":"E1BMAX_2013_v50n2_583.pdf","download_url":"https://www.academia.edu/attachments/90519793/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_NOTE_ON_THE_q_ANALOGUE_OF_KIMS_p_ADIC.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519793/E1BMAX_2013_v50n2_583-libre.pdf?1662016612=\u0026response-content-disposition=attachment%3B+filename%3DA_NOTE_ON_THE_q_ANALOGUE_OF_KIMS_p_ADIC.pdf\u0026Expires=1732990258\u0026Signature=Lz~JkTCQhygnXzBgFRY8cMQV2VOI1H9RlI1m86I-TeGlObvaioTmVAFTm9GJqmz7g-4qdg~sUL9Lp~fzZVQYjPJUN6b-SoU~JPTC4CgCX7rGX4otQZZbTTSVtdibV63iWuv1HcN6ChFmYYr2lFklqeIjyEtk8b4HzDKMe6rwbIh7gSOpyNvv8hP~GquZbXCFQ8sZyaDZmANXA-1nVNJkA2-esoCrTreDnwbMc3RascXkzn3QjNX5degg8gsJ~jLJaZLyJBNbh17ATFiXD2JzpXhS7twVqwdgS05GbFnk8TazAnQfEBVslLz0J-xODb6lQJC~whKEgtuOSm7iFkQzXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":301,"name":"Number Theory","url":"https://www.academia.edu/Documents/in/Number_Theory"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962543"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962543/A_New_Family_of_q_analogue_of_Genocchi_Numbers_and_Polynomials_of_Higher_Order"><img alt="Research paper thumbnail of A New Family of q-analogue of Genocchi Numbers and Polynomials of Higher Order" class="work-thumbnail" src="https://attachments.academia-assets.com/90519792/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962543/A_New_Family_of_q_analogue_of_Genocchi_Numbers_and_Polynomials_of_Higher_Order">A New Family of q-analogue of Genocchi Numbers and Polynomials of Higher Order</a></div><div class="wp-workCard_item"><span>Kyungpook mathematical journal</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9e765319bb26d8bf75a258bfe8938097" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519792,&quot;asset_id&quot;:85962543,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519792/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962543"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962543"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962543; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962543]").text(description); $(".js-view-count[data-work-id=85962543]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962543; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962543']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962543, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9e765319bb26d8bf75a258bfe8938097" } } $('.js-work-strip[data-work-id=85962543]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962543,"title":"A New Family of q-analogue of Genocchi Numbers and Polynomials of Higher Order","translated_title":"","metadata":{"publisher":"Department of Mathematics, Kyungpook National University","grobid_abstract":"∞ j=0 z j [j] q ! Ej,q (x) = [2] q eq (z) + 1 eq (xz). In this work, we consider the generating function of Kim's q-Euler polynomials and introduce new generalization of q-Genocchi polynomials and numbers of higher order. Also, we give surprising identities for studying in Analytic Numbers Theory and especially in Mathematical Physics. Moreover, by applying q-Mellin transformation to generating function of q-Genocchi polynomials of higher order and so we define q-Hurwitz-Zeta type function which interpolates of this polynomials at negative integers.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Kyungpook mathematical journal","grobid_abstract_attachment_id":90519792},"translated_abstract":null,"internal_url":"https://www.academia.edu/85962543/A_New_Family_of_q_analogue_of_Genocchi_Numbers_and_Polynomials_of_Higher_Order","translated_internal_url":"","created_at":"2022-09-01T00:12:11.587-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519792,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519792/thumbnails/1.jpg","file_name":"1205.pdf","download_url":"https://www.academia.edu/attachments/90519792/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_New_Family_of_q_analogue_of_Genocchi_N.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519792/1205-libre.pdf?1662016616=\u0026response-content-disposition=attachment%3B+filename%3DA_New_Family_of_q_analogue_of_Genocchi_N.pdf\u0026Expires=1732990258\u0026Signature=Qjz9RZavawPCvmIutw8vua2qhzcxIsUmVvOqLvlp81IYZ0ObonMY6rt7NXIwUfyhPfP3DbnLzxjQ76ZplaBakddzWvZdbaFzipJSar83sVHA9Q~9pm9dAYWyTsVpbDZVzPs8bYwYPfoyh42FA3dHHOtBFfPS--kntnql3rQlCoqwOPaFutp~dVNVRlo7OwLdcQvh~bKhVHvMZIojLgz5O17dr~-IPrtAhn5dVSB-UMoUup-7AXgYk5lcbarZbXYTy4kmOT-8-XfDV6hbbsAkAuFPy1Jb3eCNh6wgELZhRmKXdmjOoVKMFLkM0vGBx~ogkY0Osu07edLmSxK3MY8xhQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_New_Family_of_q_analogue_of_Genocchi_Numbers_and_Polynomials_of_Higher_Order","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519792,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519792/thumbnails/1.jpg","file_name":"1205.pdf","download_url":"https://www.academia.edu/attachments/90519792/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_New_Family_of_q_analogue_of_Genocchi_N.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519792/1205-libre.pdf?1662016616=\u0026response-content-disposition=attachment%3B+filename%3DA_New_Family_of_q_analogue_of_Genocchi_N.pdf\u0026Expires=1732990258\u0026Signature=Qjz9RZavawPCvmIutw8vua2qhzcxIsUmVvOqLvlp81IYZ0ObonMY6rt7NXIwUfyhPfP3DbnLzxjQ76ZplaBakddzWvZdbaFzipJSar83sVHA9Q~9pm9dAYWyTsVpbDZVzPs8bYwYPfoyh42FA3dHHOtBFfPS--kntnql3rQlCoqwOPaFutp~dVNVRlo7OwLdcQvh~bKhVHvMZIojLgz5O17dr~-IPrtAhn5dVSB-UMoUup-7AXgYk5lcbarZbXYTy4kmOT-8-XfDV6hbbsAkAuFPy1Jb3eCNh6wgELZhRmKXdmjOoVKMFLkM0vGBx~ogkY0Osu07edLmSxK3MY8xhQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":301,"name":"Number Theory","url":"https://www.academia.edu/Documents/in/Number_Theory"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962540"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962540/A_new_generalization_of_Apostol_type_Hermite_Genocchi_polynomials_and_its_applications"><img alt="Research paper thumbnail of A new generalization of Apostol type Hermite-Genocchi polynomials and its applications" class="work-thumbnail" src="https://attachments.academia-assets.com/90519791/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962540/A_new_generalization_of_Apostol_type_Hermite_Genocchi_polynomials_and_its_applications">A new generalization of Apostol type Hermite-Genocchi polynomials and its applications</a></div><div class="wp-workCard_item"><span>SpringerPlus</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">By using the modified Milne-Thomson&amp;#39;s polynomial given in Araci et al. (Appl Math Inf Sci 8(6...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">By using the modified Milne-Thomson&amp;#39;s polynomial given in Araci et al. (Appl Math Inf Sci 8(6):2803-2808, 2014), we introduce a new concept of the Apostol Hermite-Genocchi polynomials. We also perform a further investigation for aforementioned polynomial and derive some implicit summation formulae and general symmetric identities arising from different analytical means and generating functions method. The results obtained here are an extension of Hermite-Bernoulli polynomials (Pathan and Khan in Mediterr J Math 12:679-695, 2015a) and Hermite-Euler polynomials (Pathan and Khan in Mediterr J Math 2015b, doi:10.1007/s00009-015-0551-1) to Apostol type Hermite-Genocchi polynomials defined in this paper.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1a693fe626b20e5d210272cc8a5a386b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519791,&quot;asset_id&quot;:85962540,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519791/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962540"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962540"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962540; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962540]").text(description); $(".js-view-count[data-work-id=85962540]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962540; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962540']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962540, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1a693fe626b20e5d210272cc8a5a386b" } } $('.js-work-strip[data-work-id=85962540]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962540,"title":"A new generalization of Apostol type Hermite-Genocchi polynomials and its applications","translated_title":"","metadata":{"abstract":"By using the modified Milne-Thomson\u0026#39;s polynomial given in Araci et al. (Appl Math Inf Sci 8(6):2803-2808, 2014), we introduce a new concept of the Apostol Hermite-Genocchi polynomials. We also perform a further investigation for aforementioned polynomial and derive some implicit summation formulae and general symmetric identities arising from different analytical means and generating functions method. The results obtained here are an extension of Hermite-Bernoulli polynomials (Pathan and Khan in Mediterr J Math 12:679-695, 2015a) and Hermite-Euler polynomials (Pathan and Khan in Mediterr J Math 2015b, doi:10.1007/s00009-015-0551-1) to Apostol type Hermite-Genocchi polynomials defined in this paper.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"SpringerPlus"},"translated_abstract":"By using the modified Milne-Thomson\u0026#39;s polynomial given in Araci et al. (Appl Math Inf Sci 8(6):2803-2808, 2014), we introduce a new concept of the Apostol Hermite-Genocchi polynomials. We also perform a further investigation for aforementioned polynomial and derive some implicit summation formulae and general symmetric identities arising from different analytical means and generating functions method. The results obtained here are an extension of Hermite-Bernoulli polynomials (Pathan and Khan in Mediterr J Math 12:679-695, 2015a) and Hermite-Euler polynomials (Pathan and Khan in Mediterr J Math 2015b, doi:10.1007/s00009-015-0551-1) to Apostol type Hermite-Genocchi polynomials defined in this paper.","internal_url":"https://www.academia.edu/85962540/A_new_generalization_of_Apostol_type_Hermite_Genocchi_polynomials_and_its_applications","translated_internal_url":"","created_at":"2022-09-01T00:12:11.308-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519791,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519791/thumbnails/1.jpg","file_name":"pmc4920752.pdf","download_url":"https://www.academia.edu/attachments/90519791/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_new_generalization_of_Apostol_type_Her.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519791/pmc4920752-libre.pdf?1662016624=\u0026response-content-disposition=attachment%3B+filename%3DA_new_generalization_of_Apostol_type_Her.pdf\u0026Expires=1732990258\u0026Signature=DFftwwy4mJqfgFpI2~EhKHCRL1zV7bF5fMOS-UOMDVMfXJgJcpuSO6iU72xPA6T0Th-vAptZe-tEy23tlBZ0Z7N~60Pqa5kZNbErxIKp9x~M3nBgZNfCYkkA7KkFpuSkK35wRAtjrjs4vPfDB5m~m9Kcc7gFX26ocDktcHbWQb5Q8dGHqNiKyzCj8v8L3RTwCpXlRAjZZNTDzaoJwkGQLZYu88E65ibF3CxkgvdyruToSIN72FNStNVODeWLtRR5D5163Jb-Lqm9FhmolxXTajpU5X~UmYUuJ5e8-pp-VnlX4vHA0dt~15zlMmiwl0aGYToGfrnli-ELaHAOyWq0bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_new_generalization_of_Apostol_type_Hermite_Genocchi_polynomials_and_its_applications","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519791,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519791/thumbnails/1.jpg","file_name":"pmc4920752.pdf","download_url":"https://www.academia.edu/attachments/90519791/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_new_generalization_of_Apostol_type_Her.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519791/pmc4920752-libre.pdf?1662016624=\u0026response-content-disposition=attachment%3B+filename%3DA_new_generalization_of_Apostol_type_Her.pdf\u0026Expires=1732990258\u0026Signature=DFftwwy4mJqfgFpI2~EhKHCRL1zV7bF5fMOS-UOMDVMfXJgJcpuSO6iU72xPA6T0Th-vAptZe-tEy23tlBZ0Z7N~60Pqa5kZNbErxIKp9x~M3nBgZNfCYkkA7KkFpuSkK35wRAtjrjs4vPfDB5m~m9Kcc7gFX26ocDktcHbWQb5Q8dGHqNiKyzCj8v8L3RTwCpXlRAjZZNTDzaoJwkGQLZYu88E65ibF3CxkgvdyruToSIN72FNStNVODeWLtRR5D5163Jb-Lqm9FhmolxXTajpU5X~UmYUuJ5e8-pp-VnlX4vHA0dt~15zlMmiwl0aGYToGfrnli-ELaHAOyWq0bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":12026,"name":"Orthogonal polynomials","url":"https://www.academia.edu/Documents/in/Orthogonal_polynomials"},{"id":346242,"name":"Hermite Polynomials","url":"https://www.academia.edu/Documents/in/Hermite_Polynomials"},{"id":1479428,"name":"Laguerre Polynomials","url":"https://www.academia.edu/Documents/in/Laguerre_Polynomials"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962538"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962538/q_Analogue_of_p_Adic_log_and_915_Type_Functions_Associated_with_Modified_q_Extension_of_Genocchi_Numbers_with_Weight_and_945_and_and_946"><img alt="Research paper thumbnail of q-Analogue of p-Adic log &amp;#915; Type Functions Associated with Modified q-Extension of Genocchi Numbers with Weight &amp;#945; and &amp;#946" class="work-thumbnail" src="https://attachments.academia-assets.com/90519788/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962538/q_Analogue_of_p_Adic_log_and_915_Type_Functions_Associated_with_Modified_q_Extension_of_Genocchi_Numbers_with_Weight_and_945_and_and_946">q-Analogue of p-Adic log &amp;#915; Type Functions Associated with Modified q-Extension of Genocchi Numbers with Weight &amp;#945; and &amp;#946</a></div><div class="wp-workCard_item"><span>Turkish Journal of Analysis and Number Theory</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="df896e512a2da9c8bad068d5f777c18b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519788,&quot;asset_id&quot;:85962538,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519788/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962538"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962538"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962538; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962538]").text(description); $(".js-view-count[data-work-id=85962538]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962538; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962538']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962538, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "df896e512a2da9c8bad068d5f777c18b" } } $('.js-work-strip[data-work-id=85962538]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962538,"title":"q-Analogue of p-Adic log \u0026#915; Type Functions Associated with Modified q-Extension of Genocchi Numbers with Weight \u0026#945; and \u0026#946","translated_title":"","metadata":{"publisher":"Science and Education Publishing Co., Ltd.","grobid_abstract":"The p-adic log gamma functions associated with q-extensions of Genocchi and Euler polynomials with weight α were recently studied [6]. By the same motivation, we aim in this paper to describe q-analogue of p-adic log gamma functions with weight alpha and beta. Moreover, we give relationship between p-adic q-log gamma functions with weight (α,β) and q-extension of Genocchi numbers with weight alpha and beta and modified q-Euler numbers with weight α.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Turkish Journal of Analysis and Number Theory","grobid_abstract_attachment_id":90519788},"translated_abstract":null,"internal_url":"https://www.academia.edu/85962538/q_Analogue_of_p_Adic_log_and_915_Type_Functions_Associated_with_Modified_q_Extension_of_Genocchi_Numbers_with_Weight_and_945_and_and_946","translated_internal_url":"","created_at":"2022-09-01T00:12:10.793-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519788,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519788/thumbnails/1.jpg","file_name":"tjant-1-1-3.pdf","download_url":"https://www.academia.edu/attachments/90519788/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"q_Analogue_of_p_Adic_log_and_915_Type_Fu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519788/tjant-1-1-3-libre.pdf?1662016616=\u0026response-content-disposition=attachment%3B+filename%3Dq_Analogue_of_p_Adic_log_and_915_Type_Fu.pdf\u0026Expires=1732990258\u0026Signature=NUF98b3d0N3D2YLhX5myugzeNPWK2jEajx-z4MiIiqW9CwHDjeBTC3D3nRx4QZFgu1AVvyYgmnBJlwkGlL7JuF~3numjbPV42PVj7M4tj8xTGo-FId0oLr2MSK24skf8N4Ms2kNQDWGd~yqpAst~zvPnaKcSXhYTZC0xGscNgd-2RsKE5fnTqVHUBRaDXigxDrR0XxWeeE97KLsmgdD-BN2Qemn9vVuHgR-apCnOIZSsp~3FEZ2TfZvAmilj2rhI9xQuUppiTo~Maxseh6Ff1GouPrV3cXlr2IAXirI4ugM4CgJNzsy4fHQvB4Ib0hXxHwMPWc1Yuj9j606leVjZow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"q_Analogue_of_p_Adic_log_and_915_Type_Functions_Associated_with_Modified_q_Extension_of_Genocchi_Numbers_with_Weight_and_945_and_and_946","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519788,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519788/thumbnails/1.jpg","file_name":"tjant-1-1-3.pdf","download_url":"https://www.academia.edu/attachments/90519788/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"q_Analogue_of_p_Adic_log_and_915_Type_Fu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519788/tjant-1-1-3-libre.pdf?1662016616=\u0026response-content-disposition=attachment%3B+filename%3Dq_Analogue_of_p_Adic_log_and_915_Type_Fu.pdf\u0026Expires=1732990258\u0026Signature=NUF98b3d0N3D2YLhX5myugzeNPWK2jEajx-z4MiIiqW9CwHDjeBTC3D3nRx4QZFgu1AVvyYgmnBJlwkGlL7JuF~3numjbPV42PVj7M4tj8xTGo-FId0oLr2MSK24skf8N4Ms2kNQDWGd~yqpAst~zvPnaKcSXhYTZC0xGscNgd-2RsKE5fnTqVHUBRaDXigxDrR0XxWeeE97KLsmgdD-BN2Qemn9vVuHgR-apCnOIZSsp~3FEZ2TfZvAmilj2rhI9xQuUppiTo~Maxseh6Ff1GouPrV3cXlr2IAXirI4ugM4CgJNzsy4fHQvB4Ib0hXxHwMPWc1Yuj9j606leVjZow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962536"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962536/On_the_families_of_q_Euler_polynomials_and_their_applications"><img alt="Research paper thumbnail of On the families of q-Euler polynomials and their applications" class="work-thumbnail" src="https://attachments.academia-assets.com/90519787/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962536/On_the_families_of_q_Euler_polynomials_and_their_applications">On the families of q-Euler polynomials and their applications</a></div><div class="wp-workCard_item"><span>Journal of the Egyptian Mathematical Society</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="755151937858014afc20567b244e884a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519787,&quot;asset_id&quot;:85962536,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519787/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962536"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962536"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962536; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962536]").text(description); $(".js-view-count[data-work-id=85962536]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962536; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962536']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962536, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "755151937858014afc20567b244e884a" } } $('.js-work-strip[data-work-id=85962536]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962536,"title":"On the families of q-Euler polynomials and their applications","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"In the present paper, we investigate special generalized q-Euler numbers and polynomials. Some earlier results of T. Kim in terms of q-Euler polynomials with weight α can be deduced. For presentation of our formulas we apply the method of generating function and p-adic q-integral representation on Zp. We summarize our results as follows. In section 2, by using combinatorial techniques we present two formulas for q-Euler numbers with weight α. In section 3, we derive distribution formula (Multiplication Theorem) for Dirichlet type of q-Euler numbers and polynomials with weight α. Moreover we define partial Dirichlet type zeta function and Dirichlet q-L-function, and obtain some interesting combinatorial identities for interpolating our new definitions. In addition, we derive behavior of the Dirichlet type of q-Euler L-function with weight α, L χ q (s, x | α) at s = 0. Furthermore by using second kind stirling numbers, we obtain an explicit formula for Dirichlet type q-Euler numbers with weight α, and β. Moreover a novel formula for q-Euler-Zeta function with weight α in terms of nested series of ζ E,q (n | α) is derived. In section 4, by introducing p-adic Dirichlet type of q-Euler measure with weight α, and β, we obtain some combinatorial relations, which interpolate our previous results. In section 5, which is the main section of our paper. As an application, we introduce a novel concept of dynamics of the zeros of analytically continued q-Euler polynomials with weight α.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Journal of the Egyptian Mathematical Society","grobid_abstract_attachment_id":90519787},"translated_abstract":null,"internal_url":"https://www.academia.edu/85962536/On_the_families_of_q_Euler_polynomials_and_their_applications","translated_internal_url":"","created_at":"2022-09-01T00:12:10.397-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519787,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519787/thumbnails/1.jpg","file_name":"1206.5433v1.pdf","download_url":"https://www.academia.edu/attachments/90519787/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_families_of_q_Euler_polynomials_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519787/1206.5433v1-libre.pdf?1662016614=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_families_of_q_Euler_polynomials_a.pdf\u0026Expires=1732990258\u0026Signature=NJwORVdgh29hqSFWDRgSm9ERoOFUqfeijdeE9b0Fx79qYKjib3ztn~t9bA7LV0Nz86uoAKrw9Tjamo~Aj0jSLfOGOETmrYN4PvXTu31lqLJgWdLxXkTEDaMn41SKrzotyZ7B7czS5iHd9OXFvqmcjz3bvP4oDfOK7Ur9wZhzLQQQGgBuufhwtriSU83rG5IoTYLJwkHRV0JPznJRcJYD7uOAhbhrU0PEdP3P0vjE61unXDhl-lBoAMmwn95UHoiCimtHzIDjGvsS3lftcLMFEnru4qFaIXiijxtPJOFsbmuT7wjb1KidAz-RWexg4EkzBSaIM6dqvzSSt58qq83LdQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_families_of_q_Euler_polynomials_and_their_applications","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519787,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519787/thumbnails/1.jpg","file_name":"1206.5433v1.pdf","download_url":"https://www.academia.edu/attachments/90519787/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_families_of_q_Euler_polynomials_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519787/1206.5433v1-libre.pdf?1662016614=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_families_of_q_Euler_polynomials_a.pdf\u0026Expires=1732990258\u0026Signature=NJwORVdgh29hqSFWDRgSm9ERoOFUqfeijdeE9b0Fx79qYKjib3ztn~t9bA7LV0Nz86uoAKrw9Tjamo~Aj0jSLfOGOETmrYN4PvXTu31lqLJgWdLxXkTEDaMn41SKrzotyZ7B7czS5iHd9OXFvqmcjz3bvP4oDfOK7Ur9wZhzLQQQGgBuufhwtriSU83rG5IoTYLJwkHRV0JPznJRcJYD7uOAhbhrU0PEdP3P0vjE61unXDhl-lBoAMmwn95UHoiCimtHzIDjGvsS3lftcLMFEnru4qFaIXiijxtPJOFsbmuT7wjb1KidAz-RWexg4EkzBSaIM6dqvzSSt58qq83LdQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962533"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962533/Identities_involving_the_h_q_Genocchi_polynomials_and_h_q_Zeta_type_function"><img alt="Research paper thumbnail of Identities involving the (h,q)-Genocchi polynomials and (h,q)-Zeta-type function" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962533/Identities_involving_the_h_q_Genocchi_polynomials_and_h_q_Zeta_type_function">Identities involving the (h,q)-Genocchi polynomials and (h,q)-Zeta-type function</a></div><div class="wp-workCard_item"><span>Advanced Studies in Contemporary Mathematics (Kyungshang)</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The aim of this paper is to obtain some properties of (h,q)-Genocchi numbers and polynomials by u...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The aim of this paper is to obtain some properties of (h,q)-Genocchi numbers and polynomials by using the fermionic p-adic q-integral on Z_p and mentioned in the paper q-Bernstein polynomials. By considering the q-Euler zeta function defined by T. Kim, which can also be obtained by applying the Mellin transformation to the generating function of (h,q)-Genocchi polynomials, we study (h,q)-Zeta-type function. We derive symmetric properties of (h,q)-Zeta function and from these properties we give symmetric property of (h,q)-Genocchi polynomials.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962533"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962533"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962533; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962533]").text(description); $(".js-view-count[data-work-id=85962533]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962533; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962533']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962533, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85962533]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962533,"title":"Identities involving the (h,q)-Genocchi polynomials and (h,q)-Zeta-type function","translated_title":"","metadata":{"abstract":"The aim of this paper is to obtain some properties of (h,q)-Genocchi numbers and polynomials by using the fermionic p-adic q-integral on Z_p and mentioned in the paper q-Bernstein polynomials. By considering the q-Euler zeta function defined by T. Kim, which can also be obtained by applying the Mellin transformation to the generating function of (h,q)-Genocchi polynomials, we study (h,q)-Zeta-type function. We derive symmetric properties of (h,q)-Zeta function and from these properties we give symmetric property of (h,q)-Genocchi polynomials.","publication_name":"Advanced Studies in Contemporary Mathematics (Kyungshang)"},"translated_abstract":"The aim of this paper is to obtain some properties of (h,q)-Genocchi numbers and polynomials by using the fermionic p-adic q-integral on Z_p and mentioned in the paper q-Bernstein polynomials. By considering the q-Euler zeta function defined by T. Kim, which can also be obtained by applying the Mellin transformation to the generating function of (h,q)-Genocchi polynomials, we study (h,q)-Zeta-type function. We derive symmetric properties of (h,q)-Zeta function and from these properties we give symmetric property of (h,q)-Genocchi polynomials.","internal_url":"https://www.academia.edu/85962533/Identities_involving_the_h_q_Genocchi_polynomials_and_h_q_Zeta_type_function","translated_internal_url":"","created_at":"2022-09-01T00:12:10.297-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Identities_involving_the_h_q_Genocchi_polynomials_and_h_q_Zeta_type_function","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[],"research_interests":[{"id":1185612,"name":"H","url":"https://www.academia.edu/Documents/in/H"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962531"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962531/On_the_modified_q_Genocchi_numbers_and_polynomials_and_their_applications"><img alt="Research paper thumbnail of On the modified q-Genocchi numbers and polynomials and their applications" class="work-thumbnail" src="https://attachments.academia-assets.com/90519789/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962531/On_the_modified_q_Genocchi_numbers_and_polynomials_and_their_applications">On the modified q-Genocchi numbers and polynomials and their applications</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="72f0a6c993d4c9475e9437c9596f79ad" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519789,&quot;asset_id&quot;:85962531,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519789/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962531"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962531"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962531; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962531]").text(description); $(".js-view-count[data-work-id=85962531]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962531; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962531']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962531, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "72f0a6c993d4c9475e9437c9596f79ad" } } $('.js-work-strip[data-work-id=85962531]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962531,"title":"On the modified q-Genocchi numbers and polynomials and their applications","translated_title":"","metadata":{"grobid_abstract":"The main objective of this paper is to introduce the modified q-Genocchi polynomials and to define their generating function. In the paper, we show new relations, which are explicit formula, derivative formula, multiplication formula, and some others, for mentioned q-Genocchi polynomials. By applying Mellin transformation to the generating function of the modified q-Genocchi polynomials, we define q-Genocchi zeta-type functions which are interpolated by the modified q-Genocchi polynomials at negative integers.","grobid_abstract_attachment_id":90519789},"translated_abstract":null,"internal_url":"https://www.academia.edu/85962531/On_the_modified_q_Genocchi_numbers_and_polynomials_and_their_applications","translated_internal_url":"","created_at":"2022-09-01T00:12:10.061-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519789,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519789/thumbnails/1.jpg","file_name":"1311.5992.pdf","download_url":"https://www.academia.edu/attachments/90519789/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_modified_q_Genocchi_numbers_and_p.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519789/1311.5992-libre.pdf?1662016613=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_modified_q_Genocchi_numbers_and_p.pdf\u0026Expires=1732990258\u0026Signature=BqgWxAm-3kJJ8XFR7xVA1v1m62zL0tpnu8a-BZMWQOW9UDB3xbjV11VUqhYNAUyPImzcxiESKP0Kaf33Gq3zZaL26gZeFiWb5XZVhXYXEKh63TeLX17lFa8FcoDcDjkAbHaST05BPP2jbeGTaJLjMeNOy2pxnnYE-2RJYP-eZso6aIVIUwUmqMMF1st9L6iUAdxc7AOkshWmj52221v47YPd~zKh9mitsi7q6bVvjaken0~LvCWv7ejSmSWRX0xBbJEYUvE-zZI2DW59CZ9uPwoJL1b7MKgOnraUqORYQ7e8wMsH01RvnTEGlynK6-EfE0qQAnPACYnbNhqphVNIAw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_modified_q_Genocchi_numbers_and_polynomials_and_their_applications","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519789,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519789/thumbnails/1.jpg","file_name":"1311.5992.pdf","download_url":"https://www.academia.edu/attachments/90519789/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_modified_q_Genocchi_numbers_and_p.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519789/1311.5992-libre.pdf?1662016613=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_modified_q_Genocchi_numbers_and_p.pdf\u0026Expires=1732990258\u0026Signature=BqgWxAm-3kJJ8XFR7xVA1v1m62zL0tpnu8a-BZMWQOW9UDB3xbjV11VUqhYNAUyPImzcxiESKP0Kaf33Gq3zZaL26gZeFiWb5XZVhXYXEKh63TeLX17lFa8FcoDcDjkAbHaST05BPP2jbeGTaJLjMeNOy2pxnnYE-2RJYP-eZso6aIVIUwUmqMMF1st9L6iUAdxc7AOkshWmj52221v47YPd~zKh9mitsi7q6bVvjaken0~LvCWv7ejSmSWRX0xBbJEYUvE-zZI2DW59CZ9uPwoJL1b7MKgOnraUqORYQ7e8wMsH01RvnTEGlynK6-EfE0qQAnPACYnbNhqphVNIAw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":301,"name":"Number Theory","url":"https://www.academia.edu/Documents/in/Number_Theory"},{"id":375,"name":"P Adic Analysis","url":"https://www.academia.edu/Documents/in/P_Adic_Analysis"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962529"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962529/A_NOTE_ON_THE_GENERALIZED_q_GENOCCHI_MEASURES_WITH_WEIGHT"><img alt="Research paper thumbnail of A NOTE ON THE GENERALIZED q-GENOCCHI MEASURES WITH WEIGHT" class="work-thumbnail" src="https://attachments.academia-assets.com/90519780/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962529/A_NOTE_ON_THE_GENERALIZED_q_GENOCCHI_MEASURES_WITH_WEIGHT">A NOTE ON THE GENERALIZED q-GENOCCHI MEASURES WITH WEIGHT</a></div><div class="wp-workCard_item"><span>Boletim da Sociedade Paranaense de Matemática</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we investigate special generalized q-Genocchi measures. We introduce q-Genocchi mea...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we investigate special generalized q-Genocchi measures. We introduce q-Genocchi measures with weight alpha. The present paper deals with q-extension of Genocchi measure. Some earlier results of T. Kim in terms of q-Genocchi polynomials can be deduced. We apply the method of generating function, which are exploited to derive further classes of q-Genocchi polynomials and develop q-Genocchi measures. To be more precise, we present the integral representation of p-adic q-Genocchi measure with weight alpha which yields a deeper insight into the effectiveness of this type of generalizations. Generalized q-Genocchi numbers with weight alpha possess a number of interesting properties which we state in this paper.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="744d529a4b6c2c2123069c01b4714acd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519780,&quot;asset_id&quot;:85962529,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519780/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962529"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962529"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962529; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962529]").text(description); $(".js-view-count[data-work-id=85962529]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962529; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962529']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962529, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "744d529a4b6c2c2123069c01b4714acd" } } $('.js-work-strip[data-work-id=85962529]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962529,"title":"A NOTE ON THE GENERALIZED q-GENOCCHI MEASURES WITH WEIGHT","translated_title":"","metadata":{"abstract":"In this paper we investigate special generalized q-Genocchi measures. We introduce q-Genocchi measures with weight alpha. The present paper deals with q-extension of Genocchi measure. Some earlier results of T. Kim in terms of q-Genocchi polynomials can be deduced. We apply the method of generating function, which are exploited to derive further classes of q-Genocchi polynomials and develop q-Genocchi measures. To be more precise, we present the integral representation of p-adic q-Genocchi measure with weight alpha which yields a deeper insight into the effectiveness of this type of generalizations. Generalized q-Genocchi numbers with weight alpha possess a number of interesting properties which we state in this paper.","publisher":"Sociedade Paranaense de Matematica","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Boletim da Sociedade Paranaense de Matemática"},"translated_abstract":"In this paper we investigate special generalized q-Genocchi measures. We introduce q-Genocchi measures with weight alpha. The present paper deals with q-extension of Genocchi measure. Some earlier results of T. Kim in terms of q-Genocchi polynomials can be deduced. We apply the method of generating function, which are exploited to derive further classes of q-Genocchi polynomials and develop q-Genocchi measures. To be more precise, we present the integral representation of p-adic q-Genocchi measure with weight alpha which yields a deeper insight into the effectiveness of this type of generalizations. Generalized q-Genocchi numbers with weight alpha possess a number of interesting properties which we state in this paper.","internal_url":"https://www.academia.edu/85962529/A_NOTE_ON_THE_GENERALIZED_q_GENOCCHI_MEASURES_WITH_WEIGHT","translated_internal_url":"","created_at":"2022-09-01T00:12:09.954-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519780,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519780/thumbnails/1.jpg","file_name":"cda2ab89d6b27b80aad390817183b0c2585f.pdf","download_url":"https://www.academia.edu/attachments/90519780/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_NOTE_ON_THE_GENERALIZED_q_GENOCCHI_MEA.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519780/cda2ab89d6b27b80aad390817183b0c2585f-libre.pdf?1662016615=\u0026response-content-disposition=attachment%3B+filename%3DA_NOTE_ON_THE_GENERALIZED_q_GENOCCHI_MEA.pdf\u0026Expires=1732990258\u0026Signature=Z2NTUKgbKgoOYJaox2bksRPOHBE-kxsT5FWWATXes~QULi1AHr-u-asv6TRAD3t8ZXMRkQTYV9aZeTP0HrZ~0aMU88BgcMYQlFbYQBqerhOp588pA7rmZZ99OlaKrtVbr4ObBfYKUwVTt5WRq5~-x883~h~HreNtOMJhn~He6AHe9hO6GL-H426baJ7QYNEMRsiMxi1QXj7OdVh~e~BPYIilNvimconlxx2QPsXeajUO-lgpJ8FgPqmERxA9bVSaUvEwpOx-FBsXQPI-if8OfqHUZZjAzppMspAj0WowrePrP-x5gvyTkuRpUViAS~jY6F0L3n~rirgJm1uy40ZioA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_NOTE_ON_THE_GENERALIZED_q_GENOCCHI_MEASURES_WITH_WEIGHT","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519780,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519780/thumbnails/1.jpg","file_name":"cda2ab89d6b27b80aad390817183b0c2585f.pdf","download_url":"https://www.academia.edu/attachments/90519780/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_NOTE_ON_THE_GENERALIZED_q_GENOCCHI_MEA.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519780/cda2ab89d6b27b80aad390817183b0c2585f-libre.pdf?1662016615=\u0026response-content-disposition=attachment%3B+filename%3DA_NOTE_ON_THE_GENERALIZED_q_GENOCCHI_MEA.pdf\u0026Expires=1732990258\u0026Signature=Z2NTUKgbKgoOYJaox2bksRPOHBE-kxsT5FWWATXes~QULi1AHr-u-asv6TRAD3t8ZXMRkQTYV9aZeTP0HrZ~0aMU88BgcMYQlFbYQBqerhOp588pA7rmZZ99OlaKrtVbr4ObBfYKUwVTt5WRq5~-x883~h~HreNtOMJhn~He6AHe9hO6GL-H426baJ7QYNEMRsiMxi1QXj7OdVh~e~BPYIilNvimconlxx2QPsXeajUO-lgpJ8FgPqmERxA9bVSaUvEwpOx-FBsXQPI-if8OfqHUZZjAzppMspAj0WowrePrP-x5gvyTkuRpUViAS~jY6F0L3n~rirgJm1uy40ZioA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962527"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962527/A_note_on_the_values_of_weighted_q_Bernstein_polynomials_and_weighted_q_Genocchi_numbers"><img alt="Research paper thumbnail of A note on the values of weighted q-Bernstein polynomials and weighted q-Genocchi numbers" class="work-thumbnail" src="https://attachments.academia-assets.com/90519786/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962527/A_note_on_the_values_of_weighted_q_Bernstein_polynomials_and_weighted_q_Genocchi_numbers">A note on the values of weighted q-Bernstein polynomials and weighted q-Genocchi numbers</a></div><div class="wp-workCard_item"><span>Advances in Difference Equations</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c027070394467e78dd95dcb1a713b7be" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519786,&quot;asset_id&quot;:85962527,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519786/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962527"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962527"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962527; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962527]").text(description); $(".js-view-count[data-work-id=85962527]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962527; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962527']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962527, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c027070394467e78dd95dcb1a713b7be" } } $('.js-work-strip[data-work-id=85962527]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962527,"title":"A note on the values of weighted q-Bernstein polynomials and weighted q-Genocchi numbers","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"The rapid development of q-calculus has led to the discovery of new generalizations of Bernstein polynomials and Genocchi polynomials involving q-integers. The present paper deals with weighted q-Bernstein polynomials (or called q-Bernstein polynomials with weight α) and weighted q-Genocchi numbers (or called q-Genocchi numbers with weight α and β). We apply the method of generating function and p-adic q-integral representation on Z p , which are exploited to derive further classes of Bernstein polynomials and q-Genocchi numbers and polynomials. To be more precise, we summarize our results as follows: we obtain some combinatorial relations between q-Genocchi numbers and polynomials with weight α and β. Furthermore, we derive an integral representation of weighted q-Bernstein polynomials of degree n based on Z p. Also we deduce a fermionic p-adic q-integral representation of products of weighted q-Bernstein polynomials of different degrees n 1 , n 2 ,. .. on Z p and show that it can be in terms of q-Genocchi numbers with weight α and β, which yields a deeper insight into the effectiveness of this type of generalizations. We derive a new generating function which possesses a number of interesting properties which we state in this paper.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Advances in Difference Equations","grobid_abstract_attachment_id":90519786},"translated_abstract":null,"internal_url":"https://www.academia.edu/85962527/A_note_on_the_values_of_weighted_q_Bernstein_polynomials_and_weighted_q_Genocchi_numbers","translated_internal_url":"","created_at":"2022-09-01T00:12:09.727-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519786,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519786/thumbnails/1.jpg","file_name":"s13662-015-0369-y.pdf","download_url":"https://www.academia.edu/attachments/90519786/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_note_on_the_values_of_weighted_q_Berns.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519786/s13662-015-0369-y-libre.pdf?1662016615=\u0026response-content-disposition=attachment%3B+filename%3DA_note_on_the_values_of_weighted_q_Berns.pdf\u0026Expires=1732990258\u0026Signature=Dxd60QTM~GQjweFWmLvrqtj7QKcy-Ee9tPA~nHmes-z2ueQS~L06hAgXj-5Wnndscgu21zwTvLuTkpuQ4SvkMQV5Ap7PPQsbcKtTa5cC2jY3d0N0DgdDDGmi4VeciC1GXt~6YwFOUQogaj96vUXxqgoB50X7n0curJmhAMzpmoCyJdIyqCkPlJag-MkqbBhujoIFj3noTm0f8~Fi3ylyzReycHK7ygp5BPtVbtR~to6n2zQ-981avp2M--1m84dqDUZ1tdm~ECOqIOmLfMKf4PBK7i9l41gIRSGpALVggvsdbbgIEPZIbnxWHtOcSL51kiiyvNq4nn3tt~9kxBpTRw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_note_on_the_values_of_weighted_q_Bernstein_polynomials_and_weighted_q_Genocchi_numbers","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519786,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519786/thumbnails/1.jpg","file_name":"s13662-015-0369-y.pdf","download_url":"https://www.academia.edu/attachments/90519786/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_note_on_the_values_of_weighted_q_Berns.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519786/s13662-015-0369-y-libre.pdf?1662016615=\u0026response-content-disposition=attachment%3B+filename%3DA_note_on_the_values_of_weighted_q_Berns.pdf\u0026Expires=1732990258\u0026Signature=Dxd60QTM~GQjweFWmLvrqtj7QKcy-Ee9tPA~nHmes-z2ueQS~L06hAgXj-5Wnndscgu21zwTvLuTkpuQ4SvkMQV5Ap7PPQsbcKtTa5cC2jY3d0N0DgdDDGmi4VeciC1GXt~6YwFOUQogaj96vUXxqgoB50X7n0curJmhAMzpmoCyJdIyqCkPlJag-MkqbBhujoIFj3noTm0f8~Fi3ylyzReycHK7ygp5BPtVbtR~to6n2zQ-981avp2M--1m84dqDUZ1tdm~ECOqIOmLfMKf4PBK7i9l41gIRSGpALVggvsdbbgIEPZIbnxWHtOcSL51kiiyvNq4nn3tt~9kxBpTRw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":302,"name":"Analytic Number Theory","url":"https://www.academia.edu/Documents/in/Analytic_Number_Theory"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":672441,"name":"Difference Equations","url":"https://www.academia.edu/Documents/in/Difference_Equations"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962525"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962525/On_the_Dirichlet_s_type_of_Eulerian_polynomials"><img alt="Research paper thumbnail of On the Dirichlet’s type of Eulerian polynomials" class="work-thumbnail" src="https://attachments.academia-assets.com/90519778/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962525/On_the_Dirichlet_s_type_of_Eulerian_polynomials">On the Dirichlet’s type of Eulerian polynomials</a></div><div class="wp-workCard_item"><span>Mathematical Sciences</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0a41ac5ffb66927d90b49d28cb847713" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519778,&quot;asset_id&quot;:85962525,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519778/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962525"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962525"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962525; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962525]").text(description); $(".js-view-count[data-work-id=85962525]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962525; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962525']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962525, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0a41ac5ffb66927d90b49d28cb847713" } } $('.js-work-strip[data-work-id=85962525]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962525,"title":"On the Dirichlet’s type of Eulerian polynomials","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"In the present paper, we introduce Eulerian polynomials attached to χ by using p-adic q-integral on Zp. Also, we give new interesting identities via the generating functions of Dirichlet's type of Eulerian polynomials. After, by applying Mellin transformation to this generating function of Dirichlet's type of Eulerian polynomials, we derive L-function for Eulerian polynomials which interpolates of Dirichlet's type of Eulerian polynomials at negative integers.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Mathematical Sciences","grobid_abstract_attachment_id":90519778},"translated_abstract":null,"internal_url":"https://www.academia.edu/85962525/On_the_Dirichlet_s_type_of_Eulerian_polynomials","translated_internal_url":"","created_at":"2022-09-01T00:12:09.599-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519778,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519778/thumbnails/1.jpg","file_name":"1207.pdf","download_url":"https://www.academia.edu/attachments/90519778/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Dirichlet_s_type_of_Eulerian_poly.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519778/1207-libre.pdf?1662016619=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Dirichlet_s_type_of_Eulerian_poly.pdf\u0026Expires=1732990258\u0026Signature=O~Ngkom2Ket~PtxECsbBrqNMNBHLeqxE8QxONsPFn9VQA2fEBsSuFxjW0Qqoso3lS4oy2W4iricEPnks6g7dFl4k9BkS5rS6H1QJlL1n5~JVtgevYULc4wWyUVusKRXVnlM2KRAG9xEpZ3hzLwRLnvvXQZsOhGTOLc7PLr3S~euf5ToIxPkCrNq1pSChSENtGlk2S1ylnJtuHcDl3~Cmaz0SoMc1Nq1GDZ3exdwK5EMabOrnroUmxH2eC-HirhwT-6OHaOCnJ-TL-awQysMZYtrFa5CzaBrPCVCMMJl0b8347f6FG1ICHbGOTybpUEHtfwS9NAA-dsmpdEK~Y2gqIQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_Dirichlet_s_type_of_Eulerian_polynomials","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519778,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519778/thumbnails/1.jpg","file_name":"1207.pdf","download_url":"https://www.academia.edu/attachments/90519778/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Dirichlet_s_type_of_Eulerian_poly.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519778/1207-libre.pdf?1662016619=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Dirichlet_s_type_of_Eulerian_poly.pdf\u0026Expires=1732990258\u0026Signature=O~Ngkom2Ket~PtxECsbBrqNMNBHLeqxE8QxONsPFn9VQA2fEBsSuFxjW0Qqoso3lS4oy2W4iricEPnks6g7dFl4k9BkS5rS6H1QJlL1n5~JVtgevYULc4wWyUVusKRXVnlM2KRAG9xEpZ3hzLwRLnvvXQZsOhGTOLc7PLr3S~euf5ToIxPkCrNq1pSChSENtGlk2S1ylnJtuHcDl3~Cmaz0SoMc1Nq1GDZ3exdwK5EMabOrnroUmxH2eC-HirhwT-6OHaOCnJ-TL-awQysMZYtrFa5CzaBrPCVCMMJl0b8347f6FG1ICHbGOTybpUEHtfwS9NAA-dsmpdEK~Y2gqIQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":301,"name":"Number Theory","url":"https://www.academia.edu/Documents/in/Number_Theory"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962522"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962522/A_note_on_the_h_q_zeta_type_function_with_weight_%CE%B1"><img alt="Research paper thumbnail of A note on the (h,q)-zeta-type function with weight α" class="work-thumbnail" src="https://attachments.academia-assets.com/90519782/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962522/A_note_on_the_h_q_zeta_type_function_with_weight_%CE%B1">A note on the (h,q)-zeta-type function with weight α</a></div><div class="wp-workCard_item"><span>Journal of Inequalities and Applications</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The objective of this paper is to derive the symmetric property of an ( h , q ) -zeta function wi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The objective of this paper is to derive the symmetric property of an ( h , q ) -zeta function with weight α. By using this property, we give some interesting identities for ( h , q ) -Genocchi polynomials with weight α. As a result, our applications possess a number of interesting properties which we state in this paper. MSC:11S80, 11B68.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4835cee208710f866aa04b94b9a1a9d0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519782,&quot;asset_id&quot;:85962522,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519782/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962522"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962522"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962522; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962522]").text(description); $(".js-view-count[data-work-id=85962522]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962522; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962522']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962522, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4835cee208710f866aa04b94b9a1a9d0" } } $('.js-work-strip[data-work-id=85962522]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962522,"title":"A note on the (h,q)-zeta-type function with weight α","translated_title":"","metadata":{"abstract":"The objective of this paper is to derive the symmetric property of an ( h , q ) -zeta function with weight α. By using this property, we give some interesting identities for ( h , q ) -Genocchi polynomials with weight α. As a result, our applications possess a number of interesting properties which we state in this paper. MSC:11S80, 11B68.","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Journal of Inequalities and Applications"},"translated_abstract":"The objective of this paper is to derive the symmetric property of an ( h , q ) -zeta function with weight α. By using this property, we give some interesting identities for ( h , q ) -Genocchi polynomials with weight α. As a result, our applications possess a number of interesting properties which we state in this paper. MSC:11S80, 11B68.","internal_url":"https://www.academia.edu/85962522/A_note_on_the_h_q_zeta_type_function_with_weight_%CE%B1","translated_internal_url":"","created_at":"2022-09-01T00:12:09.394-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519782,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519782/thumbnails/1.jpg","file_name":"1029-242X-2013-100.pdf","download_url":"https://www.academia.edu/attachments/90519782/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_note_on_the_h_q_zeta_type_function_wit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519782/1029-242X-2013-100-libre.pdf?1662016614=\u0026response-content-disposition=attachment%3B+filename%3DA_note_on_the_h_q_zeta_type_function_wit.pdf\u0026Expires=1732990258\u0026Signature=JLEsfsIJhfq8BY3USoFBq7nRBtrEZyp-Uj0x9ierASGllD48jvH5NYQxt8MbonOdIjOL5lB9RSgB1cCKEAJdyoxEu5LHxn-pc3b4StmEwa7-5w-3E2jIi-eGglbm1o2v17BnE8TAkFm3O9jEakuj~tfW-uZ9bJqPW~~fHJFP8WeiuEZT1~kecPri1x~iPI~4v~qwn19gcN67N6DbDVFqAEBKuEts6ocB6d4v9kKguR3xwjkEx0Yfydml4FBJpuel-djIHJ-O-POVSTPyVT-vL~nMFzlqJuTuP~haPpAlOjQCNQcMT2zwrruo1I5YYXbOoUB2oyQaqyw-3RfrkxrWwA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_note_on_the_h_q_zeta_type_function_with_weight_α","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519782,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519782/thumbnails/1.jpg","file_name":"1029-242X-2013-100.pdf","download_url":"https://www.academia.edu/attachments/90519782/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_note_on_the_h_q_zeta_type_function_wit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519782/1029-242X-2013-100-libre.pdf?1662016614=\u0026response-content-disposition=attachment%3B+filename%3DA_note_on_the_h_q_zeta_type_function_wit.pdf\u0026Expires=1732990258\u0026Signature=JLEsfsIJhfq8BY3USoFBq7nRBtrEZyp-Uj0x9ierASGllD48jvH5NYQxt8MbonOdIjOL5lB9RSgB1cCKEAJdyoxEu5LHxn-pc3b4StmEwa7-5w-3E2jIi-eGglbm1o2v17BnE8TAkFm3O9jEakuj~tfW-uZ9bJqPW~~fHJFP8WeiuEZT1~kecPri1x~iPI~4v~qwn19gcN67N6DbDVFqAEBKuEts6ocB6d4v9kKguR3xwjkEx0Yfydml4FBJpuel-djIHJ-O-POVSTPyVT-vL~nMFzlqJuTuP~haPpAlOjQCNQcMT2zwrruo1I5YYXbOoUB2oyQaqyw-3RfrkxrWwA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":932075,"name":"Mathematical Inequalities and Applications","url":"https://www.academia.edu/Documents/in/Mathematical_Inequalities_and_Applications"},{"id":1185612,"name":"H","url":"https://www.academia.edu/Documents/in/H"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962519"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962519/Some_New_Formulae_for_Genocchi_Numbers_and_Polynomials_Involving_Bernoulli_and_Euler_Polynomials"><img alt="Research paper thumbnail of Some New Formulae for Genocchi Numbers and Polynomials Involving Bernoulli and Euler Polynomials" class="work-thumbnail" src="https://attachments.academia-assets.com/90519732/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962519/Some_New_Formulae_for_Genocchi_Numbers_and_Polynomials_Involving_Bernoulli_and_Euler_Polynomials">Some New Formulae for Genocchi Numbers and Polynomials Involving Bernoulli and Euler Polynomials</a></div><div class="wp-workCard_item"><span>International Journal of Mathematics and Mathematical Sciences</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We give some new formulae for product of two Genocchi polynomials including Euler polynomials and...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We give some new formulae for product of two Genocchi polynomials including Euler polynomials and Bernoulli polynomials. Moreover, we derive some applications for Genocchi polynomials to study a matrix formulation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="065baabd428ff66a577a4d9bd6213ce7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519732,&quot;asset_id&quot;:85962519,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519732/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962519"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962519"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962519; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962519]").text(description); $(".js-view-count[data-work-id=85962519]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962519; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962519']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962519, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "065baabd428ff66a577a4d9bd6213ce7" } } $('.js-work-strip[data-work-id=85962519]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962519,"title":"Some New Formulae for Genocchi Numbers and Polynomials Involving Bernoulli and Euler Polynomials","translated_title":"","metadata":{"abstract":"We give some new formulae for product of two Genocchi polynomials including Euler polynomials and Bernoulli polynomials. Moreover, we derive some applications for Genocchi polynomials to study a matrix formulation.","publisher":"Hindawi Limited","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"International Journal of Mathematics and Mathematical Sciences"},"translated_abstract":"We give some new formulae for product of two Genocchi polynomials including Euler polynomials and Bernoulli polynomials. Moreover, we derive some applications for Genocchi polynomials to study a matrix formulation.","internal_url":"https://www.academia.edu/85962519/Some_New_Formulae_for_Genocchi_Numbers_and_Polynomials_Involving_Bernoulli_and_Euler_Polynomials","translated_internal_url":"","created_at":"2022-09-01T00:12:09.120-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519732,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519732/thumbnails/1.jpg","file_name":"760613.pdf","download_url":"https://www.academia.edu/attachments/90519732/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_New_Formulae_for_Genocchi_Numbers_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519732/760613-libre.pdf?1662016633=\u0026response-content-disposition=attachment%3B+filename%3DSome_New_Formulae_for_Genocchi_Numbers_a.pdf\u0026Expires=1732990259\u0026Signature=EGDKgaaHPSul9CdAiuFWkKO0NrObq~w36wLMBw8wc1ajMJBDsjgvmr-Jsavz1omwRU9LpCp40BzACUqGqJ-4Up5aux8BdnfUYCpfafQ4IucYqj5QviOWVxRmcuhyIWfTp1iEibl~NVWOA3tWUgL~YK4yuJgKLYaQtL3qCkF-CVKS0PTtHLIBJw~np~k2eZgV2Tv2lL9pi45O45AS6X~lpeIjH1aEzIL7ACPG4BTGrbvXY3t4aDVR3NcQk61nDvNZjTC0zKRyu~bfBhVD4gxRucrfwigTMCZezCOMKljOda7wxJalNuH-hqwkEJzdySS5hR2f2NZQICgw5bnnYx9O7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Some_New_Formulae_for_Genocchi_Numbers_and_Polynomials_Involving_Bernoulli_and_Euler_Polynomials","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519732,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519732/thumbnails/1.jpg","file_name":"760613.pdf","download_url":"https://www.academia.edu/attachments/90519732/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_New_Formulae_for_Genocchi_Numbers_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519732/760613-libre.pdf?1662016633=\u0026response-content-disposition=attachment%3B+filename%3DSome_New_Formulae_for_Genocchi_Numbers_a.pdf\u0026Expires=1732990259\u0026Signature=EGDKgaaHPSul9CdAiuFWkKO0NrObq~w36wLMBw8wc1ajMJBDsjgvmr-Jsavz1omwRU9LpCp40BzACUqGqJ-4Up5aux8BdnfUYCpfafQ4IucYqj5QviOWVxRmcuhyIWfTp1iEibl~NVWOA3tWUgL~YK4yuJgKLYaQtL3qCkF-CVKS0PTtHLIBJw~np~k2eZgV2Tv2lL9pi45O45AS6X~lpeIjH1aEzIL7ACPG4BTGrbvXY3t4aDVR3NcQk61nDvNZjTC0zKRyu~bfBhVD4gxRucrfwigTMCZezCOMKljOda7wxJalNuH-hqwkEJzdySS5hR2f2NZQICgw5bnnYx9O7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":301,"name":"Number Theory","url":"https://www.academia.edu/Documents/in/Number_Theory"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":12026,"name":"Orthogonal polynomials","url":"https://www.academia.edu/Documents/in/Orthogonal_polynomials"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[{"id":23520925,"url":"http://downloads.hindawi.com/journals/ijmms/2014/760613.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962516"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962516/q_Analogue_of_p_adic_log_gamma_functions_associated_with_modified_q_extension_of_Genocchi_numbers_with_weight_alpha_and_beta"><img alt="Research paper thumbnail of q Analogue of p adic log gamma functions associated with modified q extension of Genocchi numbers with weight alpha and beta" class="work-thumbnail" src="https://attachments.academia-assets.com/90519733/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962516/q_Analogue_of_p_adic_log_gamma_functions_associated_with_modified_q_extension_of_Genocchi_numbers_with_weight_alpha_and_beta">q Analogue of p adic log gamma functions associated with modified q extension of Genocchi numbers with weight alpha and beta</a></div><div class="wp-workCard_item"><span>arXiv preprint arXiv:1201.1309</span><span>, Jan 5, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract: The fundamental aim of this paper is to describe q-Analogue of p-adic log gamma functio...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract: The fundamental aim of this paper is to describe q-Analogue of p-adic log gamma functions with weight alpha and beta. Moreover, we give relationship between p-adic q-log gamma funtions with weight ({\ alpha},{\ beta}) and q-extension of Genocchi numbers with weight alpha and beta and modified q Euler numbers with weight {\ alpha}</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cabeb1fea90c7ce12d4aa028b2711d43" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519733,&quot;asset_id&quot;:85962516,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519733/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962516"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962516"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962516; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962516]").text(description); $(".js-view-count[data-work-id=85962516]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962516; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962516']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962516, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cabeb1fea90c7ce12d4aa028b2711d43" } } $('.js-work-strip[data-work-id=85962516]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962516,"title":"q Analogue of p adic log gamma functions associated with modified q extension of Genocchi numbers with weight alpha and beta","translated_title":"","metadata":{"abstract":"Abstract: The fundamental aim of this paper is to describe q-Analogue of p-adic log gamma functions with weight alpha and beta. Moreover, we give relationship between p-adic q-log gamma funtions with weight ({\\ alpha},{\\ beta}) and q-extension of Genocchi numbers with weight alpha and beta and modified q Euler numbers with weight {\\ alpha}","publisher":"arxiv.org","ai_title_tag":"q-Analogue of p-adic Log Gamma Functions and Genocchi Numbers","publication_date":{"day":5,"month":1,"year":2012,"errors":{}},"publication_name":"arXiv preprint arXiv:1201.1309"},"translated_abstract":"Abstract: The fundamental aim of this paper is to describe q-Analogue of p-adic log gamma functions with weight alpha and beta. Moreover, we give relationship between p-adic q-log gamma funtions with weight ({\\ alpha},{\\ beta}) and q-extension of Genocchi numbers with weight alpha and beta and modified q Euler numbers with weight {\\ alpha}","internal_url":"https://www.academia.edu/85962516/q_Analogue_of_p_adic_log_gamma_functions_associated_with_modified_q_extension_of_Genocchi_numbers_with_weight_alpha_and_beta","translated_internal_url":"","created_at":"2022-09-01T00:12:08.849-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519733,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519733/thumbnails/1.jpg","file_name":"1201.pdf","download_url":"https://www.academia.edu/attachments/90519733/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"q_Analogue_of_p_adic_log_gamma_functions.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519733/1201-libre.pdf?1662016620=\u0026response-content-disposition=attachment%3B+filename%3Dq_Analogue_of_p_adic_log_gamma_functions.pdf\u0026Expires=1732990259\u0026Signature=CxXFMUjTnfqIBHrgX81izJtYcefUfT-0SQhao0mZX1myr4gB0KsbRP7Rl-CVXlNpLfFiDlPqi9XOFIiA8UY5dVyGWfFKlXCIa0qQOypMuCNVMxo9OU7I5Svh7fSv9fNy3~1jltMS~qlJmMZaGOoCc9mw2YdxBrK1ahImixlTlVQEN2NNBi2FmUISPKJkRi6UM4jXSglofXE~QhqY9t~HtB7P7n1w4JlfU3RnfX6mEMZj2mMmSU9nfo83Xu97FdZ3SlcVDW2JuaAKxu~T6j1Vjxc2dQt1Kfu6kAPEidfMmcuTuEwihquC65xwTfHGxwBkxn6iUUcpHALeH2Z0GtHjeQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"q_Analogue_of_p_adic_log_gamma_functions_associated_with_modified_q_extension_of_Genocchi_numbers_with_weight_alpha_and_beta","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519733,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519733/thumbnails/1.jpg","file_name":"1201.pdf","download_url":"https://www.academia.edu/attachments/90519733/download_file?st=MTczMzAwMTk5MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"q_Analogue_of_p_adic_log_gamma_functions.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519733/1201-libre.pdf?1662016620=\u0026response-content-disposition=attachment%3B+filename%3Dq_Analogue_of_p_adic_log_gamma_functions.pdf\u0026Expires=1732990259\u0026Signature=CxXFMUjTnfqIBHrgX81izJtYcefUfT-0SQhao0mZX1myr4gB0KsbRP7Rl-CVXlNpLfFiDlPqi9XOFIiA8UY5dVyGWfFKlXCIa0qQOypMuCNVMxo9OU7I5Svh7fSv9fNy3~1jltMS~qlJmMZaGOoCc9mw2YdxBrK1ahImixlTlVQEN2NNBi2FmUISPKJkRi6UM4jXSglofXE~QhqY9t~HtB7P7n1w4JlfU3RnfX6mEMZj2mMmSU9nfo83Xu97FdZ3SlcVDW2JuaAKxu~T6j1Vjxc2dQt1Kfu6kAPEidfMmcuTuEwihquC65xwTfHGxwBkxn6iUUcpHALeH2Z0GtHjeQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":23520924,"url":"http://arxiv.org/pdf/1201.1309"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962515"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962515/p_adic_interpolation_function_related_to_multiple_generalized_Genocchi_numbers"><img alt="Research paper thumbnail of p-adic interpolation function related to multiple generalized Genocchi numbers" class="work-thumbnail" src="https://attachments.academia-assets.com/90519731/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962515/p_adic_interpolation_function_related_to_multiple_generalized_Genocchi_numbers">p-adic interpolation function related to multiple generalized Genocchi numbers</a></div><div class="wp-workCard_item"><span>arXiv preprint arXiv:1301.4367</span><span>, Jan 15, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract: In the present paper, we deal with multiple generalized Genocchi numbers and polynomial...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract: In the present paper, we deal with multiple generalized Genocchi numbers and polynomials. Also, we introduce analytic interpolating function for the multiple generalized Genocchi numbers attached to\ c {hi} at negative integers in complex plane and we define the multiple Genocchi p-adic L-function. Finally, we derive the value of the partial derivative of our multiple p-adic l-function at s= 0.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b5c14ebf63492c139a9a5126a4d8be69" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519731,&quot;asset_id&quot;:85962515,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519731/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962515"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962515"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962515; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962515]").text(description); $(".js-view-count[data-work-id=85962515]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962515; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962515']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962515, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b5c14ebf63492c139a9a5126a4d8be69" } } $('.js-work-strip[data-work-id=85962515]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962515,"title":"p-adic interpolation function related to multiple generalized Genocchi numbers","translated_title":"","metadata":{"abstract":"Abstract: In the present paper, we deal with multiple generalized Genocchi numbers and polynomials. Also, we introduce analytic interpolating function for the multiple generalized Genocchi numbers attached to\\ c {hi} at negative integers in complex plane and we define the multiple Genocchi p-adic L-function. Finally, we derive the value of the partial derivative of our multiple p-adic l-function at s= 0.","publication_date":{"day":15,"month":1,"year":2013,"errors":{}},"publication_name":"arXiv preprint arXiv:1301.4367"},"translated_abstract":"Abstract: In the present paper, we deal with multiple generalized Genocchi numbers and polynomials. Also, we introduce analytic interpolating function for the multiple generalized Genocchi numbers attached to\\ c {hi} at negative integers in complex plane and we define the multiple Genocchi p-adic L-function. Finally, we derive the value of the partial derivative of our multiple p-adic l-function at s= 0.","internal_url":"https://www.academia.edu/85962515/p_adic_interpolation_function_related_to_multiple_generalized_Genocchi_numbers","translated_internal_url":"","created_at":"2022-09-01T00:12:08.358-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519731,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519731/thumbnails/1.jpg","file_name":"1301.pdf","download_url":"https://www.academia.edu/attachments/90519731/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"p_adic_interpolation_function_related_to.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519731/1301-libre.pdf?1662016628=\u0026response-content-disposition=attachment%3B+filename%3Dp_adic_interpolation_function_related_to.pdf\u0026Expires=1732990259\u0026Signature=fTrudmRwUv2KlxmQucigPE7WIthbJThgayjJpWw~OqHh85HC-FtCfeNQqPP89Og1BTziDib2ch4nV5xGtH5v25rP~2-QxALZXwE7UuEiWKTUfBm4WL5wfzW6sc-G5tzrdma5SAC8xQLFqhqvSJ1yc7d0lsVi7-ePQ6Rq7YDBt0cC~i1iSifrr0TftDBZJp5XOJBx-KKvOSHEE9FUWnwjy2SZTzWI8QD1AaDl8b3y-QF7C-NSQ4XExb5BKALXs~KomuTOelEYcM5cM84NMl8kTLkqNCVVQ8~IzYuRm8A3-Q7o-VVcaLskr36y4879Sgoik6lR0yLuRsYO4~~tugjbCQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"p_adic_interpolation_function_related_to_multiple_generalized_Genocchi_numbers","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519731,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519731/thumbnails/1.jpg","file_name":"1301.pdf","download_url":"https://www.academia.edu/attachments/90519731/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"p_adic_interpolation_function_related_to.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519731/1301-libre.pdf?1662016628=\u0026response-content-disposition=attachment%3B+filename%3Dp_adic_interpolation_function_related_to.pdf\u0026Expires=1732990259\u0026Signature=fTrudmRwUv2KlxmQucigPE7WIthbJThgayjJpWw~OqHh85HC-FtCfeNQqPP89Og1BTziDib2ch4nV5xGtH5v25rP~2-QxALZXwE7UuEiWKTUfBm4WL5wfzW6sc-G5tzrdma5SAC8xQLFqhqvSJ1yc7d0lsVi7-ePQ6Rq7YDBt0cC~i1iSifrr0TftDBZJp5XOJBx-KKvOSHEE9FUWnwjy2SZTzWI8QD1AaDl8b3y-QF7C-NSQ4XExb5BKALXs~KomuTOelEYcM5cM84NMl8kTLkqNCVVQ8~IzYuRm8A3-Q7o-VVcaLskr36y4879Sgoik6lR0yLuRsYO4~~tugjbCQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":23520923,"url":"http://arxiv.org/pdf/1301.4367"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="140682" id="papers"><div class="js-work-strip profile--work_container" data-work-id="85962554"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962554/Identities_involving_q_Genocchi_numbers"><img alt="Research paper thumbnail of Identities involving q-Genocchi numbers" class="work-thumbnail" src="https://attachments.academia-assets.com/90519797/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962554/Identities_involving_q_Genocchi_numbers">Identities involving q-Genocchi numbers</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b91e95150b597c43145d9d14bfc1f7c7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519797,&quot;asset_id&quot;:85962554,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519797/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962554"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962554"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962554; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962554]").text(description); $(".js-view-count[data-work-id=85962554]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962554; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962554']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962554, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b91e95150b597c43145d9d14bfc1f7c7" } } $('.js-work-strip[data-work-id=85962554]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962554,"title":"Identities involving q-Genocchi numbers","translated_title":"","metadata":{"grobid_abstract":"In this paper, we focus on the q-Genocchi numbers and polynomials. We shall introduce new identities of the q-Genocchi numbers and polynomials by using the fermionic p-adic integral on Zp which are very important in the study of Frobenius-Genocchi numbers and polynomials. Also, we give Cauchy-integral formula for the q-Genocchi polynomials and moreover by using measure theory on p-adic integral we derive the distribution formula q-Genocchi polynomials. Finally, we present a new definition of q-Zeta-type function by using Mellin transformation which is the interpolation function of the q-Genocchi polynomials at negative integers.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"grobid_abstract_attachment_id":90519797},"translated_abstract":null,"internal_url":"https://www.academia.edu/85962554/Identities_involving_q_Genocchi_numbers","translated_internal_url":"","created_at":"2022-09-01T00:12:13.961-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519797,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519797/thumbnails/1.jpg","file_name":"1210.0847.pdf","download_url":"https://www.academia.edu/attachments/90519797/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identities_involving_q_Genocchi_numbers.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519797/1210.0847-libre.pdf?1662016613=\u0026response-content-disposition=attachment%3B+filename%3DIdentities_involving_q_Genocchi_numbers.pdf\u0026Expires=1732990258\u0026Signature=PcMfy0NJBrdVCV7JpYhAgpPnRDLeg3ZFtLPpv1CRVcsL08HJ2ObnELmulnk6G~MfveIWrJG6Tr8neGnapWvkNHSKmCz6WPpYiqpxq9BqAH2lz~Z86x0Cd8sxEXv7Wqyb7Ni9h~75YBf9am66DSmoxNmFEZtESvyGKdiJyHcxAZKweBmVahtyQ2snzCIEjrVKikz2jk0U51BOEv~b240W8bMHPmEYpG~LA9ipG5fs0OB6byqSV4M7THyg~oXUT1ptCD4aRifNXHaj~jl0IGQnD41Zy6wI3fm2wWmgrcTmeLVTca0FHumz2ADZIULpmCAxNTmoHiPpMsWC-q69biWIwA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Identities_involving_q_Genocchi_numbers","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519797,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519797/thumbnails/1.jpg","file_name":"1210.0847.pdf","download_url":"https://www.academia.edu/attachments/90519797/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identities_involving_q_Genocchi_numbers.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519797/1210.0847-libre.pdf?1662016613=\u0026response-content-disposition=attachment%3B+filename%3DIdentities_involving_q_Genocchi_numbers.pdf\u0026Expires=1732990258\u0026Signature=PcMfy0NJBrdVCV7JpYhAgpPnRDLeg3ZFtLPpv1CRVcsL08HJ2ObnELmulnk6G~MfveIWrJG6Tr8neGnapWvkNHSKmCz6WPpYiqpxq9BqAH2lz~Z86x0Cd8sxEXv7Wqyb7Ni9h~75YBf9am66DSmoxNmFEZtESvyGKdiJyHcxAZKweBmVahtyQ2snzCIEjrVKikz2jk0U51BOEv~b240W8bMHPmEYpG~LA9ipG5fs0OB6byqSV4M7THyg~oXUT1ptCD4aRifNXHaj~jl0IGQnD41Zy6wI3fm2wWmgrcTmeLVTca0FHumz2ADZIULpmCAxNTmoHiPpMsWC-q69biWIwA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":23520934,"url":"http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.762.6065\u0026rep=rep1\u0026type=pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962552"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962552/New_Generalization_of_Eulerian_Polynomials_and_their_Applications"><img alt="Research paper thumbnail of New Generalization of Eulerian Polynomials and their Applications" class="work-thumbnail" src="https://attachments.academia-assets.com/90519739/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962552/New_Generalization_of_Eulerian_Polynomials_and_their_Applications">New Generalization of Eulerian Polynomials and their Applications</a></div><div class="wp-workCard_item"><span>arXiv: Number Theory</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">SERKAN ARACI, MEHMET ACIKGOZ, AND ERDOGAN S¸EN˘Abstract. In the present paper, we introduce Euler...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">SERKAN ARACI, MEHMET ACIKGOZ, AND ERDOGAN S¸EN˘Abstract. In the present paper, we introduce Eulerian polynomialswith parameters aand band give the definition of them. By using thedefinition of generating function for our polynomials, we derive some newidentities in Analytic Numbers Theory. Also, we give relations betweenEulerian polynomials with parameters aand b, Bernstein polynomials,Poly-logarithm functions, Bernoulli and Euler numbers. Moreover, wesee that our polynomials at a= −1 are related to Euler-Zeta function atnegative inetegers. Finally, we get Witt’s formula for new generalizationof Eulerian polynomials which we express in this paper.2010MathematicsSubjectClassification. Primary 05A10, 11B65;Secondary 11B68, 11B73.Keywords and phrases. Eulerian polynomials, Poly-logarithm func-tions, Stirling numbersofthe second kind, Bernstein polynomials, Bernoullinumbers, Euler numbers and Euler-Zeta function, p-adic fermionic inte-gral on Z</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2e2cdc20c63a00a20f43f732a096d5e7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519739,&quot;asset_id&quot;:85962552,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519739/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962552"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962552"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962552; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962552]").text(description); $(".js-view-count[data-work-id=85962552]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962552; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962552']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962552, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2e2cdc20c63a00a20f43f732a096d5e7" } } $('.js-work-strip[data-work-id=85962552]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962552,"title":"New Generalization of Eulerian Polynomials and their Applications","translated_title":"","metadata":{"abstract":"SERKAN ARACI, MEHMET ACIKGOZ, AND ERDOGAN S¸EN˘Abstract. In the present paper, we introduce Eulerian polynomialswith parameters aand band give the definition of them. By using thedefinition of generating function for our polynomials, we derive some newidentities in Analytic Numbers Theory. Also, we give relations betweenEulerian polynomials with parameters aand b, Bernstein polynomials,Poly-logarithm functions, Bernoulli and Euler numbers. Moreover, wesee that our polynomials at a= −1 are related to Euler-Zeta function atnegative inetegers. Finally, we get Witt’s formula for new generalizationof Eulerian polynomials which we express in this paper.2010MathematicsSubjectClassification. Primary 05A10, 11B65;Secondary 11B68, 11B73.Keywords and phrases. Eulerian polynomials, Poly-logarithm func-tions, Stirling numbersofthe second kind, Bernstein polynomials, Bernoullinumbers, Euler numbers and Euler-Zeta function, p-adic fermionic inte-gral on Z","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"arXiv: Number Theory"},"translated_abstract":"SERKAN ARACI, MEHMET ACIKGOZ, AND ERDOGAN S¸EN˘Abstract. In the present paper, we introduce Eulerian polynomialswith parameters aand band give the definition of them. By using thedefinition of generating function for our polynomials, we derive some newidentities in Analytic Numbers Theory. Also, we give relations betweenEulerian polynomials with parameters aand b, Bernstein polynomials,Poly-logarithm functions, Bernoulli and Euler numbers. Moreover, wesee that our polynomials at a= −1 are related to Euler-Zeta function atnegative inetegers. Finally, we get Witt’s formula for new generalizationof Eulerian polynomials which we express in this paper.2010MathematicsSubjectClassification. Primary 05A10, 11B65;Secondary 11B68, 11B73.Keywords and phrases. Eulerian polynomials, Poly-logarithm func-tions, Stirling numbersofthe second kind, Bernstein polynomials, Bernoullinumbers, Euler numbers and Euler-Zeta function, p-adic fermionic inte-gral on Z","internal_url":"https://www.academia.edu/85962552/New_Generalization_of_Eulerian_Polynomials_and_their_Applications","translated_internal_url":"","created_at":"2022-09-01T00:12:13.192-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519739,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519739/thumbnails/1.jpg","file_name":"AraciAcikgozSen2014b.pdf","download_url":"https://www.academia.edu/attachments/90519739/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"New_Generalization_of_Eulerian_Polynomia.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519739/AraciAcikgozSen2014b-libre.pdf?1662016619=\u0026response-content-disposition=attachment%3B+filename%3DNew_Generalization_of_Eulerian_Polynomia.pdf\u0026Expires=1732990258\u0026Signature=BPAOKOYtov~7Cch-7jfGBjLfoVEmXZlRsIQzl4Ks77ehJs74ujSoqz2haKzqI17vDSM-fACJFs5x33-yaRx3vc-j9aXIVN7zD0Xig-IokIpwtTFWlk3zRM7hafZIO2Sd6eDWjMKNMIRAs7Lf-opHPH2O18TrZBcoes98tSKMxqr2LrS3FWMWL7xtXo74~zAZ5A~F9FsUco1Eq1F5U4qWK14YqOkK4cG630A0z8cSuO68jojvUUUYLE2chv4tjHnE9ogfwi0P4rc0HxtKrkS8-4zxlaXGCdNWwhlBNIzov~y4e1DHSvdJXrDTo7etNxKONQfXeqQdnxUsXcjsjFfzXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"New_Generalization_of_Eulerian_Polynomials_and_their_Applications","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519739,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519739/thumbnails/1.jpg","file_name":"AraciAcikgozSen2014b.pdf","download_url":"https://www.academia.edu/attachments/90519739/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"New_Generalization_of_Eulerian_Polynomia.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519739/AraciAcikgozSen2014b-libre.pdf?1662016619=\u0026response-content-disposition=attachment%3B+filename%3DNew_Generalization_of_Eulerian_Polynomia.pdf\u0026Expires=1732990258\u0026Signature=BPAOKOYtov~7Cch-7jfGBjLfoVEmXZlRsIQzl4Ks77ehJs74ujSoqz2haKzqI17vDSM-fACJFs5x33-yaRx3vc-j9aXIVN7zD0Xig-IokIpwtTFWlk3zRM7hafZIO2Sd6eDWjMKNMIRAs7Lf-opHPH2O18TrZBcoes98tSKMxqr2LrS3FWMWL7xtXo74~zAZ5A~F9FsUco1Eq1F5U4qWK14YqOkK4cG630A0z8cSuO68jojvUUUYLE2chv4tjHnE9ogfwi0P4rc0HxtKrkS8-4zxlaXGCdNWwhlBNIzov~y4e1DHSvdJXrDTo7etNxKONQfXeqQdnxUsXcjsjFfzXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":23520932,"url":"http://users.dimi.uniud.it/~giacomo.dellariccia/Table%20of%20contents/AraciAcikgozSen2014b.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962551"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962551/Dirichlets_type_of_twisted_Eulerian_polynomials_in_connection_with_Eulerian_L_function"><img alt="Research paper thumbnail of Dirichlet&#39;s type of twisted Eulerian polynomials in connection with Eulerian-L-function" class="work-thumbnail" src="https://attachments.academia-assets.com/90519737/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962551/Dirichlets_type_of_twisted_Eulerian_polynomials_in_connection_with_Eulerian_L_function">Dirichlet&#39;s type of twisted Eulerian polynomials in connection with Eulerian-L-function</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In the present paper, we effect Dirichlet&amp;#39;s type of twisted Eulerian polynomials by using p-a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In the present paper, we effect Dirichlet&amp;#39;s type of twisted Eulerian polynomials by using p-adic fermionic q-integral on the p-adic integer ring. Also, we introduce some new interesting identities for them. As a result of them, by using contour integral on the generating function of Dirichlet&amp;#39;s type of twisted Eulerian polynomials and so we define twisted Eulerian-L-function which interpolates of Dirichlet&amp;#39;s type of Eulerian polynomials at negative integers which we state in this paper.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9063b90e9f410c2e168d935ae2096661" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519737,&quot;asset_id&quot;:85962551,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519737/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962551"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962551"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962551; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962551]").text(description); $(".js-view-count[data-work-id=85962551]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962551; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962551']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962551, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9063b90e9f410c2e168d935ae2096661" } } $('.js-work-strip[data-work-id=85962551]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962551,"title":"Dirichlet's type of twisted Eulerian polynomials in connection with Eulerian-L-function","translated_title":"","metadata":{"abstract":"In the present paper, we effect Dirichlet\u0026#39;s type of twisted Eulerian polynomials by using p-adic fermionic q-integral on the p-adic integer ring. Also, we introduce some new interesting identities for them. As a result of them, by using contour integral on the generating function of Dirichlet\u0026#39;s type of twisted Eulerian polynomials and so we define twisted Eulerian-L-function which interpolates of Dirichlet\u0026#39;s type of Eulerian polynomials at negative integers which we state in this paper.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}}},"translated_abstract":"In the present paper, we effect Dirichlet\u0026#39;s type of twisted Eulerian polynomials by using p-adic fermionic q-integral on the p-adic integer ring. Also, we introduce some new interesting identities for them. As a result of them, by using contour integral on the generating function of Dirichlet\u0026#39;s type of twisted Eulerian polynomials and so we define twisted Eulerian-L-function which interpolates of Dirichlet\u0026#39;s type of Eulerian polynomials at negative integers which we state in this paper.","internal_url":"https://www.academia.edu/85962551/Dirichlets_type_of_twisted_Eulerian_polynomials_in_connection_with_Eulerian_L_function","translated_internal_url":"","created_at":"2022-09-01T00:12:12.857-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519737,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519737/thumbnails/1.jpg","file_name":"1208.0589v1.pdf","download_url":"https://www.academia.edu/attachments/90519737/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dirichlets_type_of_twisted_Eulerian_poly.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519737/1208.0589v1-libre.pdf?1662016619=\u0026response-content-disposition=attachment%3B+filename%3DDirichlets_type_of_twisted_Eulerian_poly.pdf\u0026Expires=1732990258\u0026Signature=EpxUqePfZUXdPNYropDBKVryrRt2DdoKBOILhzlROoOoJV~eT7wvPq4AxhS~MH8LHxbxDvdpETCsAHr-3rmX6Ve3JLBLz879RjvmZCMn5V8rsteimoaKPikJPXoOcsLk4h5cttsiACgytG~ABB2nxt7nhXTjFw686JEE9iOGegL55CTMiKwp4ZiiCnAE1NX9MHLYjfoF5xl8gmhoHxif9isegquB0czneuGLJM8PBVKgSuq82Jfm-26VTjA9YFjmqUIv6th7eqHgy8hmKEOD9IQAzm8h5ALx4ZJcw44CnnvErjxYOFhCW3RBoeJ3jhrEd8QWN8h5qGObcRFCsBJLhg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dirichlets_type_of_twisted_Eulerian_polynomials_in_connection_with_Eulerian_L_function","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519737,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519737/thumbnails/1.jpg","file_name":"1208.0589v1.pdf","download_url":"https://www.academia.edu/attachments/90519737/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dirichlets_type_of_twisted_Eulerian_poly.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519737/1208.0589v1-libre.pdf?1662016619=\u0026response-content-disposition=attachment%3B+filename%3DDirichlets_type_of_twisted_Eulerian_poly.pdf\u0026Expires=1732990258\u0026Signature=EpxUqePfZUXdPNYropDBKVryrRt2DdoKBOILhzlROoOoJV~eT7wvPq4AxhS~MH8LHxbxDvdpETCsAHr-3rmX6Ve3JLBLz879RjvmZCMn5V8rsteimoaKPikJPXoOcsLk4h5cttsiACgytG~ABB2nxt7nhXTjFw686JEE9iOGegL55CTMiKwp4ZiiCnAE1NX9MHLYjfoF5xl8gmhoHxif9isegquB0czneuGLJM8PBVKgSuq82Jfm-26VTjA9YFjmqUIv6th7eqHgy8hmKEOD9IQAzm8h5ALx4ZJcw44CnnvErjxYOFhCW3RBoeJ3jhrEd8QWN8h5qGObcRFCsBJLhg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":90519738,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519738/thumbnails/1.jpg","file_name":"1208.0589v1.pdf","download_url":"https://www.academia.edu/attachments/90519738/download_file","bulk_download_file_name":"Dirichlets_type_of_twisted_Eulerian_poly.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519738/1208.0589v1-libre.pdf?1662016622=\u0026response-content-disposition=attachment%3B+filename%3DDirichlets_type_of_twisted_Eulerian_poly.pdf\u0026Expires=1732990258\u0026Signature=XfgnYa7VnnR0634QJWABa0dgwfOPAcP7oaWX6SKXAO37ww2E1n-xbMbARZs513MSHTdawmLIfkxniRu3AXjOOVcCTXw7-UalM7tzbezUpx8sabDEj0wKi7NcK~ymOyUfYkdARWGtY4CzzR-PvRIhic67-sy3I9zcLRhbGc8rNSvv~2mFEIeAD-BqH-nICk0hVDqVuUyFVAIViGH-Q~uWj2it6N-nLr0Bmv1sBR6~v0yK9r73wnzSf1ZxOaIczoFr4dBZokPpg5U8FUzIENgwrCq4bAlUhAj4pOuwvZ6WA0YcArnHB-Q0DOe2gluIdIRsXSiBxUrRi53dW8VBkNPMLw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":23520931,"url":"https://arxiv.org/pdf/1208.0589v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962550"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962550/Identities_involving_some_new_special_polynomials_arising_from_the_applications_of_fractional_calculus"><img alt="Research paper thumbnail of Identities involving some new special polynomials arising from the applications of fractional calculus" class="work-thumbnail" src="https://attachments.academia-assets.com/90519803/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962550/Identities_involving_some_new_special_polynomials_arising_from_the_applications_of_fractional_calculus">Identities involving some new special polynomials arising from the applications of fractional calculus</a></div><div class="wp-workCard_item"><span>arXiv: Classical Analysis and ODEs</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Inspired by a number of recent investigations, we introduce the new analogues of the Apostol-Bern...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Inspired by a number of recent investigations, we introduce the new analogues of the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials, the Apostol-Genocchi polynom ials based on Mittag-Leffler function. Making use of the Capu to-fractional derivative, we derive some new interesting identities of th ese polynomials. It turns out that some known results are der ived as special cases.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e1bc2ea2b541375ba33f367e7d932ee4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519803,&quot;asset_id&quot;:85962550,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519803/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962550"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962550"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962550; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962550]").text(description); $(".js-view-count[data-work-id=85962550]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962550; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962550']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962550, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e1bc2ea2b541375ba33f367e7d932ee4" } } $('.js-work-strip[data-work-id=85962550]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962550,"title":"Identities involving some new special polynomials arising from the applications of fractional calculus","translated_title":"","metadata":{"abstract":"Inspired by a number of recent investigations, we introduce the new analogues of the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials, the Apostol-Genocchi polynom ials based on Mittag-Leffler function. Making use of the Capu to-fractional derivative, we derive some new interesting identities of th ese polynomials. It turns out that some known results are der ived as special cases.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"arXiv: Classical Analysis and ODEs"},"translated_abstract":"Inspired by a number of recent investigations, we introduce the new analogues of the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials, the Apostol-Genocchi polynom ials based on Mittag-Leffler function. Making use of the Capu to-fractional derivative, we derive some new interesting identities of th ese polynomials. It turns out that some known results are der ived as special cases.","internal_url":"https://www.academia.edu/85962550/Identities_involving_some_new_special_polynomials_arising_from_the_applications_of_fractional_calculus","translated_internal_url":"","created_at":"2022-09-01T00:12:12.531-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519803,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519803/thumbnails/1.jpg","file_name":"1305.3220.pdf","download_url":"https://www.academia.edu/attachments/90519803/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identities_involving_some_new_special_po.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519803/1305.3220-libre.pdf?1662016612=\u0026response-content-disposition=attachment%3B+filename%3DIdentities_involving_some_new_special_po.pdf\u0026Expires=1732990258\u0026Signature=OYfOoN83yZ2xs2Q-yWJ2g37EWrtdCNwBxZIpI67wjiXXCiOjHSCGsBp~cHCEKGfjPZ4iMsGasay~iGjgxCAGV4Hnm3CkjEwi3Cw~s3LXCkQUp5zq9mAY-9FEVlhDh0xripzy5v5Sty33Vwm-933NsD0XHhw~PNWkGprYFeS-g~IjPu8NjgwaOFJTErKcA361hxZBMMtCTJdAwg66kwSFBDKw5iV5ZZteeC6hSz0-vEu0i-JYYBC~IX~LMDZlixVjYGXZTgVyNl0BVqHZp3eHauGcdXjpT72qKOAw4EzR96Co4Zfa3G3BuVORWvnn~i9e3DkWWllA65zhKclweIzN2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Identities_involving_some_new_special_polynomials_arising_from_the_applications_of_fractional_calculus","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519803,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519803/thumbnails/1.jpg","file_name":"1305.3220.pdf","download_url":"https://www.academia.edu/attachments/90519803/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Identities_involving_some_new_special_po.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519803/1305.3220-libre.pdf?1662016612=\u0026response-content-disposition=attachment%3B+filename%3DIdentities_involving_some_new_special_po.pdf\u0026Expires=1732990258\u0026Signature=OYfOoN83yZ2xs2Q-yWJ2g37EWrtdCNwBxZIpI67wjiXXCiOjHSCGsBp~cHCEKGfjPZ4iMsGasay~iGjgxCAGV4Hnm3CkjEwi3Cw~s3LXCkQUp5zq9mAY-9FEVlhDh0xripzy5v5Sty33Vwm-933NsD0XHhw~PNWkGprYFeS-g~IjPu8NjgwaOFJTErKcA361hxZBMMtCTJdAwg66kwSFBDKw5iV5ZZteeC6hSz0-vEu0i-JYYBC~IX~LMDZlixVjYGXZTgVyNl0BVqHZp3eHauGcdXjpT72qKOAw4EzR96Co4Zfa3G3BuVORWvnn~i9e3DkWWllA65zhKclweIzN2w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":301,"name":"Number Theory","url":"https://www.academia.edu/Documents/in/Number_Theory"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":56624,"name":"Fractional calculus and its applications","url":"https://www.academia.edu/Documents/in/Fractional_calculus_and_its_applications"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962548"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962548/On_the_Properties_of_q_Bernstein_type_Polynomials"><img alt="Research paper thumbnail of On the Properties of q-Bernstein-type Polynomials" class="work-thumbnail" src="https://attachments.academia-assets.com/90519796/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962548/On_the_Properties_of_q_Bernstein_type_Polynomials">On the Properties of q-Bernstein-type Polynomials</a></div><div class="wp-workCard_item"><span>Applied Mathematics &amp; Information Sciences</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="463d12b3581f2f4a4127f20bfcc52c73" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519796,&quot;asset_id&quot;:85962548,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519796/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962548"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962548"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962548; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962548]").text(description); $(".js-view-count[data-work-id=85962548]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962548; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962548']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962548, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "463d12b3581f2f4a4127f20bfcc52c73" } } $('.js-work-strip[data-work-id=85962548]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962548,"title":"On the Properties of q-Bernstein-type Polynomials","translated_title":"","metadata":{"publisher":"Natural Sciences Publishing","grobid_abstract":"The aim of this paper is to give a new approach to modified q-Bernstein polynomials for functions of several variables. By using these polynomials, the recurrence formulas and some new interesting identities related to the second Stirling numbers and generalized Bernoulli polynomials are derived. Moreover, the generating function, interpolation function of these polynomials of several variables and also the derivatives of these polynomials and their generating function are given. Finally, we get new interesting identities of modified q-Bernoulli numbers and q-Euler numbers applying p-adic q-integral representation on Z p and p-adic fermionic q-invariant integral on Z p , respectively, to the inverse of q-Bernstein polynomials.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Applied Mathematics \u0026 Information Sciences","grobid_abstract_attachment_id":90519796},"translated_abstract":null,"internal_url":"https://www.academia.edu/85962548/On_the_Properties_of_q_Bernstein_type_Polynomials","translated_internal_url":"","created_at":"2022-09-01T00:12:12.120-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519796,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519796/thumbnails/1.jpg","file_name":"1111.pdf","download_url":"https://www.academia.edu/attachments/90519796/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Properties_of_q_Bernstein_type_Po.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519796/1111-libre.pdf?1662016621=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Properties_of_q_Bernstein_type_Po.pdf\u0026Expires=1732990258\u0026Signature=hCzudU1sovvt6jeX1EK6Yl0BGLFydHAXMrLT3BK2~1ylBtnmV-PvM4-jBxDIi-HiYnWEjW~pXa5rB5T5A1wqx8eZ3LQE-KAztkhMPAV-b9auL-z74Z~BBGhaOzxyTDq2ZgXbOzaRWBIOy71XQWaXnITvtIjQsiyDV7bNrFwlwN1CrUYi589r0PJ2o0~aUn5Ujtya~EkBkn6CR5DfarEK5nFVPn8U02Z2xgXQUGe3v5eIM8XNnS2apYnAVouinoiUFzfuXfctJuqKQ2-fHgYEOrcfOBUXFFqrYz-LmlfthJGHvznHsMg4tJveBJs2P3bvbeyGoO-qLDRkF6hlR85XPQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_Properties_of_q_Bernstein_type_Polynomials","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519796,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519796/thumbnails/1.jpg","file_name":"1111.pdf","download_url":"https://www.academia.edu/attachments/90519796/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Properties_of_q_Bernstein_type_Po.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519796/1111-libre.pdf?1662016621=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Properties_of_q_Bernstein_type_Po.pdf\u0026Expires=1732990258\u0026Signature=hCzudU1sovvt6jeX1EK6Yl0BGLFydHAXMrLT3BK2~1ylBtnmV-PvM4-jBxDIi-HiYnWEjW~pXa5rB5T5A1wqx8eZ3LQE-KAztkhMPAV-b9auL-z74Z~BBGhaOzxyTDq2ZgXbOzaRWBIOy71XQWaXnITvtIjQsiyDV7bNrFwlwN1CrUYi589r0PJ2o0~aUn5Ujtya~EkBkn6CR5DfarEK5nFVPn8U02Z2xgXQUGe3v5eIM8XNnS2apYnAVouinoiUFzfuXfctJuqKQ2-fHgYEOrcfOBUXFFqrYz-LmlfthJGHvznHsMg4tJveBJs2P3bvbeyGoO-qLDRkF6hlR85XPQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":12026,"name":"Orthogonal polynomials","url":"https://www.academia.edu/Documents/in/Orthogonal_polynomials"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962546"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962546/A_class_of_generating_functions_for_a_new_generalization_of_Eulerian_polynomials_with_their_interpolation_functions"><img alt="Research paper thumbnail of A class of generating functions for a new generalization of Eulerian polynomials with their interpolation functions" class="work-thumbnail" src="https://attachments.academia-assets.com/90519794/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962546/A_class_of_generating_functions_for_a_new_generalization_of_Eulerian_polynomials_with_their_interpolation_functions">A class of generating functions for a new generalization of Eulerian polynomials with their interpolation functions</a></div><div class="wp-workCard_item"><span>Filomat</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Motivated by a number of recent investigations, we define and investigate the various properties ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Motivated by a number of recent investigations, we define and investigate the various properties of a new family of the Eulerian polynomials. We derive useful results involving these Eulerian polynomials including (for example) their generating functions, new series and L-type functions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="824677ffb16b34f34b0a7c42be46fe22" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519794,&quot;asset_id&quot;:85962546,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519794/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962546"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962546"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962546; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962546]").text(description); $(".js-view-count[data-work-id=85962546]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962546; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962546']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962546, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "824677ffb16b34f34b0a7c42be46fe22" } } $('.js-work-strip[data-work-id=85962546]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962546,"title":"A class of generating functions for a new generalization of Eulerian polynomials with their interpolation functions","translated_title":"","metadata":{"abstract":"Motivated by a number of recent investigations, we define and investigate the various properties of a new family of the Eulerian polynomials. We derive useful results involving these Eulerian polynomials including (for example) their generating functions, new series and L-type functions.","publisher":"National Library of Serbia","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Filomat"},"translated_abstract":"Motivated by a number of recent investigations, we define and investigate the various properties of a new family of the Eulerian polynomials. We derive useful results involving these Eulerian polynomials including (for example) their generating functions, new series and L-type functions.","internal_url":"https://www.academia.edu/85962546/A_class_of_generating_functions_for_a_new_generalization_of_Eulerian_polynomials_with_their_interpolation_functions","translated_internal_url":"","created_at":"2022-09-01T00:12:11.894-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519794,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519794/thumbnails/1.jpg","file_name":"1254eb97bf2dda6bf2ba55fb510c196ba70b.pdf","download_url":"https://www.academia.edu/attachments/90519794/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_class_of_generating_functions_for_a_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519794/1254eb97bf2dda6bf2ba55fb510c196ba70b-libre.pdf?1662016612=\u0026response-content-disposition=attachment%3B+filename%3DA_class_of_generating_functions_for_a_ne.pdf\u0026Expires=1732990258\u0026Signature=bks0FKbGr1PfEUKg8Mt68pGZX9NeFwLhoewedaNX7OJGUm2-lUnUreEY7gpLPYRgi2NeyH7OsSKI2QP7t1qCjL~CszBkRGYSkAGNqtYiPzT5njZ22CrhzZFQUf2q629gvlMmcJBojv0mmnpG5ljvAllfI4JoEJ5gYy95oVfKpsOKTl~t67nP95nyCcLl0sCxPNqMF0OEK9I8YTQbv9W4M0G-FO4vIEOVI-v0Z~w66WJr6QbM0L9PuRf8gNTgXNCuOOmeYd5ppNfaU9MlXtfBtkQfjzSWLMyYPGn~y3FgCKTSvFwP3rhcRMpdmSV5Mm9n26462miHGlOxWQiHRpmAyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_class_of_generating_functions_for_a_new_generalization_of_Eulerian_polynomials_with_their_interpolation_functions","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519794,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519794/thumbnails/1.jpg","file_name":"1254eb97bf2dda6bf2ba55fb510c196ba70b.pdf","download_url":"https://www.academia.edu/attachments/90519794/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_class_of_generating_functions_for_a_ne.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519794/1254eb97bf2dda6bf2ba55fb510c196ba70b-libre.pdf?1662016612=\u0026response-content-disposition=attachment%3B+filename%3DA_class_of_generating_functions_for_a_ne.pdf\u0026Expires=1732990258\u0026Signature=bks0FKbGr1PfEUKg8Mt68pGZX9NeFwLhoewedaNX7OJGUm2-lUnUreEY7gpLPYRgi2NeyH7OsSKI2QP7t1qCjL~CszBkRGYSkAGNqtYiPzT5njZ22CrhzZFQUf2q629gvlMmcJBojv0mmnpG5ljvAllfI4JoEJ5gYy95oVfKpsOKTl~t67nP95nyCcLl0sCxPNqMF0OEK9I8YTQbv9W4M0G-FO4vIEOVI-v0Z~w66WJr6QbM0L9PuRf8gNTgXNCuOOmeYd5ppNfaU9MlXtfBtkQfjzSWLMyYPGn~y3FgCKTSvFwP3rhcRMpdmSV5Mm9n26462miHGlOxWQiHRpmAyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962545"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962545/A_NOTE_ON_THE_q_ANALOGUE_OF_KIMS_p_ADIC_log_GAMMA_TYPE_FUNCTIONS_ASSOCIATED_WITH_q_EXTENSION_OF_GENOCCHI_AND_EULER_NUMBERS_WITH_WEIGHT_%CE%B1"><img alt="Research paper thumbnail of A NOTE ON THE q-ANALOGUE OF KIM&#39;S p-ADIC log GAMMA TYPE FUNCTIONS ASSOCIATED WITH q-EXTENSION OF GENOCCHI AND EULER NUMBERS WITH WEIGHT α" class="work-thumbnail" src="https://attachments.academia-assets.com/90519793/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962545/A_NOTE_ON_THE_q_ANALOGUE_OF_KIMS_p_ADIC_log_GAMMA_TYPE_FUNCTIONS_ASSOCIATED_WITH_q_EXTENSION_OF_GENOCCHI_AND_EULER_NUMBERS_WITH_WEIGHT_%CE%B1">A NOTE ON THE q-ANALOGUE OF KIM&#39;S p-ADIC log GAMMA TYPE FUNCTIONS ASSOCIATED WITH q-EXTENSION OF GENOCCHI AND EULER NUMBERS WITH WEIGHT α</a></div><div class="wp-workCard_item"><span>Bulletin of the Korean Mathematical Society</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ef8b2ad2dc016f02b562ca611c50ecaf" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519793,&quot;asset_id&quot;:85962545,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519793/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962545"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962545"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962545; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962545]").text(description); $(".js-view-count[data-work-id=85962545]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962545; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962545']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962545, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ef8b2ad2dc016f02b562ca611c50ecaf" } } $('.js-work-strip[data-work-id=85962545]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962545,"title":"A NOTE ON THE q-ANALOGUE OF KIM'S p-ADIC log GAMMA TYPE FUNCTIONS ASSOCIATED WITH q-EXTENSION OF GENOCCHI AND EULER NUMBERS WITH WEIGHT α","translated_title":"","metadata":{"publisher":"The Korean Mathematical Society","ai_title_tag":"q-Analogue of p-adic log Gamma Functions and Genocchi Numbers","grobid_abstract":"In this paper, we introduce the q-analogue of p-adic log gamma functions with weight alpha. Moreover, we give a relationship between weighted p-adic q-log gamma functions and q-extension of Genocchi and Euler numbers with weight alpha.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Bulletin of the Korean Mathematical Society","grobid_abstract_attachment_id":90519793},"translated_abstract":null,"internal_url":"https://www.academia.edu/85962545/A_NOTE_ON_THE_q_ANALOGUE_OF_KIMS_p_ADIC_log_GAMMA_TYPE_FUNCTIONS_ASSOCIATED_WITH_q_EXTENSION_OF_GENOCCHI_AND_EULER_NUMBERS_WITH_WEIGHT_%CE%B1","translated_internal_url":"","created_at":"2022-09-01T00:12:11.722-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519793,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519793/thumbnails/1.jpg","file_name":"E1BMAX_2013_v50n2_583.pdf","download_url":"https://www.academia.edu/attachments/90519793/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_NOTE_ON_THE_q_ANALOGUE_OF_KIMS_p_ADIC.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519793/E1BMAX_2013_v50n2_583-libre.pdf?1662016612=\u0026response-content-disposition=attachment%3B+filename%3DA_NOTE_ON_THE_q_ANALOGUE_OF_KIMS_p_ADIC.pdf\u0026Expires=1732990258\u0026Signature=Lz~JkTCQhygnXzBgFRY8cMQV2VOI1H9RlI1m86I-TeGlObvaioTmVAFTm9GJqmz7g-4qdg~sUL9Lp~fzZVQYjPJUN6b-SoU~JPTC4CgCX7rGX4otQZZbTTSVtdibV63iWuv1HcN6ChFmYYr2lFklqeIjyEtk8b4HzDKMe6rwbIh7gSOpyNvv8hP~GquZbXCFQ8sZyaDZmANXA-1nVNJkA2-esoCrTreDnwbMc3RascXkzn3QjNX5degg8gsJ~jLJaZLyJBNbh17ATFiXD2JzpXhS7twVqwdgS05GbFnk8TazAnQfEBVslLz0J-xODb6lQJC~whKEgtuOSm7iFkQzXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_NOTE_ON_THE_q_ANALOGUE_OF_KIMS_p_ADIC_log_GAMMA_TYPE_FUNCTIONS_ASSOCIATED_WITH_q_EXTENSION_OF_GENOCCHI_AND_EULER_NUMBERS_WITH_WEIGHT_α","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519793,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519793/thumbnails/1.jpg","file_name":"E1BMAX_2013_v50n2_583.pdf","download_url":"https://www.academia.edu/attachments/90519793/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_NOTE_ON_THE_q_ANALOGUE_OF_KIMS_p_ADIC.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519793/E1BMAX_2013_v50n2_583-libre.pdf?1662016612=\u0026response-content-disposition=attachment%3B+filename%3DA_NOTE_ON_THE_q_ANALOGUE_OF_KIMS_p_ADIC.pdf\u0026Expires=1732990258\u0026Signature=Lz~JkTCQhygnXzBgFRY8cMQV2VOI1H9RlI1m86I-TeGlObvaioTmVAFTm9GJqmz7g-4qdg~sUL9Lp~fzZVQYjPJUN6b-SoU~JPTC4CgCX7rGX4otQZZbTTSVtdibV63iWuv1HcN6ChFmYYr2lFklqeIjyEtk8b4HzDKMe6rwbIh7gSOpyNvv8hP~GquZbXCFQ8sZyaDZmANXA-1nVNJkA2-esoCrTreDnwbMc3RascXkzn3QjNX5degg8gsJ~jLJaZLyJBNbh17ATFiXD2JzpXhS7twVqwdgS05GbFnk8TazAnQfEBVslLz0J-xODb6lQJC~whKEgtuOSm7iFkQzXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":301,"name":"Number Theory","url":"https://www.academia.edu/Documents/in/Number_Theory"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962543"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962543/A_New_Family_of_q_analogue_of_Genocchi_Numbers_and_Polynomials_of_Higher_Order"><img alt="Research paper thumbnail of A New Family of q-analogue of Genocchi Numbers and Polynomials of Higher Order" class="work-thumbnail" src="https://attachments.academia-assets.com/90519792/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962543/A_New_Family_of_q_analogue_of_Genocchi_Numbers_and_Polynomials_of_Higher_Order">A New Family of q-analogue of Genocchi Numbers and Polynomials of Higher Order</a></div><div class="wp-workCard_item"><span>Kyungpook mathematical journal</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9e765319bb26d8bf75a258bfe8938097" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519792,&quot;asset_id&quot;:85962543,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519792/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962543"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962543"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962543; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962543]").text(description); $(".js-view-count[data-work-id=85962543]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962543; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962543']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962543, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9e765319bb26d8bf75a258bfe8938097" } } $('.js-work-strip[data-work-id=85962543]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962543,"title":"A New Family of q-analogue of Genocchi Numbers and Polynomials of Higher Order","translated_title":"","metadata":{"publisher":"Department of Mathematics, Kyungpook National University","grobid_abstract":"∞ j=0 z j [j] q ! Ej,q (x) = [2] q eq (z) + 1 eq (xz). In this work, we consider the generating function of Kim's q-Euler polynomials and introduce new generalization of q-Genocchi polynomials and numbers of higher order. Also, we give surprising identities for studying in Analytic Numbers Theory and especially in Mathematical Physics. Moreover, by applying q-Mellin transformation to generating function of q-Genocchi polynomials of higher order and so we define q-Hurwitz-Zeta type function which interpolates of this polynomials at negative integers.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Kyungpook mathematical journal","grobid_abstract_attachment_id":90519792},"translated_abstract":null,"internal_url":"https://www.academia.edu/85962543/A_New_Family_of_q_analogue_of_Genocchi_Numbers_and_Polynomials_of_Higher_Order","translated_internal_url":"","created_at":"2022-09-01T00:12:11.587-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519792,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519792/thumbnails/1.jpg","file_name":"1205.pdf","download_url":"https://www.academia.edu/attachments/90519792/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_New_Family_of_q_analogue_of_Genocchi_N.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519792/1205-libre.pdf?1662016616=\u0026response-content-disposition=attachment%3B+filename%3DA_New_Family_of_q_analogue_of_Genocchi_N.pdf\u0026Expires=1732990258\u0026Signature=Qjz9RZavawPCvmIutw8vua2qhzcxIsUmVvOqLvlp81IYZ0ObonMY6rt7NXIwUfyhPfP3DbnLzxjQ76ZplaBakddzWvZdbaFzipJSar83sVHA9Q~9pm9dAYWyTsVpbDZVzPs8bYwYPfoyh42FA3dHHOtBFfPS--kntnql3rQlCoqwOPaFutp~dVNVRlo7OwLdcQvh~bKhVHvMZIojLgz5O17dr~-IPrtAhn5dVSB-UMoUup-7AXgYk5lcbarZbXYTy4kmOT-8-XfDV6hbbsAkAuFPy1Jb3eCNh6wgELZhRmKXdmjOoVKMFLkM0vGBx~ogkY0Osu07edLmSxK3MY8xhQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_New_Family_of_q_analogue_of_Genocchi_Numbers_and_Polynomials_of_Higher_Order","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519792,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519792/thumbnails/1.jpg","file_name":"1205.pdf","download_url":"https://www.academia.edu/attachments/90519792/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_New_Family_of_q_analogue_of_Genocchi_N.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519792/1205-libre.pdf?1662016616=\u0026response-content-disposition=attachment%3B+filename%3DA_New_Family_of_q_analogue_of_Genocchi_N.pdf\u0026Expires=1732990258\u0026Signature=Qjz9RZavawPCvmIutw8vua2qhzcxIsUmVvOqLvlp81IYZ0ObonMY6rt7NXIwUfyhPfP3DbnLzxjQ76ZplaBakddzWvZdbaFzipJSar83sVHA9Q~9pm9dAYWyTsVpbDZVzPs8bYwYPfoyh42FA3dHHOtBFfPS--kntnql3rQlCoqwOPaFutp~dVNVRlo7OwLdcQvh~bKhVHvMZIojLgz5O17dr~-IPrtAhn5dVSB-UMoUup-7AXgYk5lcbarZbXYTy4kmOT-8-XfDV6hbbsAkAuFPy1Jb3eCNh6wgELZhRmKXdmjOoVKMFLkM0vGBx~ogkY0Osu07edLmSxK3MY8xhQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":301,"name":"Number Theory","url":"https://www.academia.edu/Documents/in/Number_Theory"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962540"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962540/A_new_generalization_of_Apostol_type_Hermite_Genocchi_polynomials_and_its_applications"><img alt="Research paper thumbnail of A new generalization of Apostol type Hermite-Genocchi polynomials and its applications" class="work-thumbnail" src="https://attachments.academia-assets.com/90519791/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962540/A_new_generalization_of_Apostol_type_Hermite_Genocchi_polynomials_and_its_applications">A new generalization of Apostol type Hermite-Genocchi polynomials and its applications</a></div><div class="wp-workCard_item"><span>SpringerPlus</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">By using the modified Milne-Thomson&amp;#39;s polynomial given in Araci et al. (Appl Math Inf Sci 8(6...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">By using the modified Milne-Thomson&amp;#39;s polynomial given in Araci et al. (Appl Math Inf Sci 8(6):2803-2808, 2014), we introduce a new concept of the Apostol Hermite-Genocchi polynomials. We also perform a further investigation for aforementioned polynomial and derive some implicit summation formulae and general symmetric identities arising from different analytical means and generating functions method. The results obtained here are an extension of Hermite-Bernoulli polynomials (Pathan and Khan in Mediterr J Math 12:679-695, 2015a) and Hermite-Euler polynomials (Pathan and Khan in Mediterr J Math 2015b, doi:10.1007/s00009-015-0551-1) to Apostol type Hermite-Genocchi polynomials defined in this paper.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1a693fe626b20e5d210272cc8a5a386b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519791,&quot;asset_id&quot;:85962540,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519791/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962540"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962540"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962540; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962540]").text(description); $(".js-view-count[data-work-id=85962540]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962540; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962540']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962540, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1a693fe626b20e5d210272cc8a5a386b" } } $('.js-work-strip[data-work-id=85962540]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962540,"title":"A new generalization of Apostol type Hermite-Genocchi polynomials and its applications","translated_title":"","metadata":{"abstract":"By using the modified Milne-Thomson\u0026#39;s polynomial given in Araci et al. (Appl Math Inf Sci 8(6):2803-2808, 2014), we introduce a new concept of the Apostol Hermite-Genocchi polynomials. We also perform a further investigation for aforementioned polynomial and derive some implicit summation formulae and general symmetric identities arising from different analytical means and generating functions method. The results obtained here are an extension of Hermite-Bernoulli polynomials (Pathan and Khan in Mediterr J Math 12:679-695, 2015a) and Hermite-Euler polynomials (Pathan and Khan in Mediterr J Math 2015b, doi:10.1007/s00009-015-0551-1) to Apostol type Hermite-Genocchi polynomials defined in this paper.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"SpringerPlus"},"translated_abstract":"By using the modified Milne-Thomson\u0026#39;s polynomial given in Araci et al. (Appl Math Inf Sci 8(6):2803-2808, 2014), we introduce a new concept of the Apostol Hermite-Genocchi polynomials. We also perform a further investigation for aforementioned polynomial and derive some implicit summation formulae and general symmetric identities arising from different analytical means and generating functions method. The results obtained here are an extension of Hermite-Bernoulli polynomials (Pathan and Khan in Mediterr J Math 12:679-695, 2015a) and Hermite-Euler polynomials (Pathan and Khan in Mediterr J Math 2015b, doi:10.1007/s00009-015-0551-1) to Apostol type Hermite-Genocchi polynomials defined in this paper.","internal_url":"https://www.academia.edu/85962540/A_new_generalization_of_Apostol_type_Hermite_Genocchi_polynomials_and_its_applications","translated_internal_url":"","created_at":"2022-09-01T00:12:11.308-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519791,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519791/thumbnails/1.jpg","file_name":"pmc4920752.pdf","download_url":"https://www.academia.edu/attachments/90519791/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_new_generalization_of_Apostol_type_Her.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519791/pmc4920752-libre.pdf?1662016624=\u0026response-content-disposition=attachment%3B+filename%3DA_new_generalization_of_Apostol_type_Her.pdf\u0026Expires=1732990258\u0026Signature=DFftwwy4mJqfgFpI2~EhKHCRL1zV7bF5fMOS-UOMDVMfXJgJcpuSO6iU72xPA6T0Th-vAptZe-tEy23tlBZ0Z7N~60Pqa5kZNbErxIKp9x~M3nBgZNfCYkkA7KkFpuSkK35wRAtjrjs4vPfDB5m~m9Kcc7gFX26ocDktcHbWQb5Q8dGHqNiKyzCj8v8L3RTwCpXlRAjZZNTDzaoJwkGQLZYu88E65ibF3CxkgvdyruToSIN72FNStNVODeWLtRR5D5163Jb-Lqm9FhmolxXTajpU5X~UmYUuJ5e8-pp-VnlX4vHA0dt~15zlMmiwl0aGYToGfrnli-ELaHAOyWq0bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_new_generalization_of_Apostol_type_Hermite_Genocchi_polynomials_and_its_applications","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519791,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519791/thumbnails/1.jpg","file_name":"pmc4920752.pdf","download_url":"https://www.academia.edu/attachments/90519791/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_new_generalization_of_Apostol_type_Her.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519791/pmc4920752-libre.pdf?1662016624=\u0026response-content-disposition=attachment%3B+filename%3DA_new_generalization_of_Apostol_type_Her.pdf\u0026Expires=1732990258\u0026Signature=DFftwwy4mJqfgFpI2~EhKHCRL1zV7bF5fMOS-UOMDVMfXJgJcpuSO6iU72xPA6T0Th-vAptZe-tEy23tlBZ0Z7N~60Pqa5kZNbErxIKp9x~M3nBgZNfCYkkA7KkFpuSkK35wRAtjrjs4vPfDB5m~m9Kcc7gFX26ocDktcHbWQb5Q8dGHqNiKyzCj8v8L3RTwCpXlRAjZZNTDzaoJwkGQLZYu88E65ibF3CxkgvdyruToSIN72FNStNVODeWLtRR5D5163Jb-Lqm9FhmolxXTajpU5X~UmYUuJ5e8-pp-VnlX4vHA0dt~15zlMmiwl0aGYToGfrnli-ELaHAOyWq0bg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":12026,"name":"Orthogonal polynomials","url":"https://www.academia.edu/Documents/in/Orthogonal_polynomials"},{"id":346242,"name":"Hermite Polynomials","url":"https://www.academia.edu/Documents/in/Hermite_Polynomials"},{"id":1479428,"name":"Laguerre Polynomials","url":"https://www.academia.edu/Documents/in/Laguerre_Polynomials"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962538"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962538/q_Analogue_of_p_Adic_log_and_915_Type_Functions_Associated_with_Modified_q_Extension_of_Genocchi_Numbers_with_Weight_and_945_and_and_946"><img alt="Research paper thumbnail of q-Analogue of p-Adic log &amp;#915; Type Functions Associated with Modified q-Extension of Genocchi Numbers with Weight &amp;#945; and &amp;#946" class="work-thumbnail" src="https://attachments.academia-assets.com/90519788/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962538/q_Analogue_of_p_Adic_log_and_915_Type_Functions_Associated_with_Modified_q_Extension_of_Genocchi_Numbers_with_Weight_and_945_and_and_946">q-Analogue of p-Adic log &amp;#915; Type Functions Associated with Modified q-Extension of Genocchi Numbers with Weight &amp;#945; and &amp;#946</a></div><div class="wp-workCard_item"><span>Turkish Journal of Analysis and Number Theory</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="df896e512a2da9c8bad068d5f777c18b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519788,&quot;asset_id&quot;:85962538,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519788/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962538"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962538"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962538; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962538]").text(description); $(".js-view-count[data-work-id=85962538]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962538; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962538']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962538, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "df896e512a2da9c8bad068d5f777c18b" } } $('.js-work-strip[data-work-id=85962538]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962538,"title":"q-Analogue of p-Adic log \u0026#915; Type Functions Associated with Modified q-Extension of Genocchi Numbers with Weight \u0026#945; and \u0026#946","translated_title":"","metadata":{"publisher":"Science and Education Publishing Co., Ltd.","grobid_abstract":"The p-adic log gamma functions associated with q-extensions of Genocchi and Euler polynomials with weight α were recently studied [6]. By the same motivation, we aim in this paper to describe q-analogue of p-adic log gamma functions with weight alpha and beta. Moreover, we give relationship between p-adic q-log gamma functions with weight (α,β) and q-extension of Genocchi numbers with weight alpha and beta and modified q-Euler numbers with weight α.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Turkish Journal of Analysis and Number Theory","grobid_abstract_attachment_id":90519788},"translated_abstract":null,"internal_url":"https://www.academia.edu/85962538/q_Analogue_of_p_Adic_log_and_915_Type_Functions_Associated_with_Modified_q_Extension_of_Genocchi_Numbers_with_Weight_and_945_and_and_946","translated_internal_url":"","created_at":"2022-09-01T00:12:10.793-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519788,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519788/thumbnails/1.jpg","file_name":"tjant-1-1-3.pdf","download_url":"https://www.academia.edu/attachments/90519788/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"q_Analogue_of_p_Adic_log_and_915_Type_Fu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519788/tjant-1-1-3-libre.pdf?1662016616=\u0026response-content-disposition=attachment%3B+filename%3Dq_Analogue_of_p_Adic_log_and_915_Type_Fu.pdf\u0026Expires=1732990258\u0026Signature=NUF98b3d0N3D2YLhX5myugzeNPWK2jEajx-z4MiIiqW9CwHDjeBTC3D3nRx4QZFgu1AVvyYgmnBJlwkGlL7JuF~3numjbPV42PVj7M4tj8xTGo-FId0oLr2MSK24skf8N4Ms2kNQDWGd~yqpAst~zvPnaKcSXhYTZC0xGscNgd-2RsKE5fnTqVHUBRaDXigxDrR0XxWeeE97KLsmgdD-BN2Qemn9vVuHgR-apCnOIZSsp~3FEZ2TfZvAmilj2rhI9xQuUppiTo~Maxseh6Ff1GouPrV3cXlr2IAXirI4ugM4CgJNzsy4fHQvB4Ib0hXxHwMPWc1Yuj9j606leVjZow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"q_Analogue_of_p_Adic_log_and_915_Type_Functions_Associated_with_Modified_q_Extension_of_Genocchi_Numbers_with_Weight_and_945_and_and_946","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519788,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519788/thumbnails/1.jpg","file_name":"tjant-1-1-3.pdf","download_url":"https://www.academia.edu/attachments/90519788/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"q_Analogue_of_p_Adic_log_and_915_Type_Fu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519788/tjant-1-1-3-libre.pdf?1662016616=\u0026response-content-disposition=attachment%3B+filename%3Dq_Analogue_of_p_Adic_log_and_915_Type_Fu.pdf\u0026Expires=1732990258\u0026Signature=NUF98b3d0N3D2YLhX5myugzeNPWK2jEajx-z4MiIiqW9CwHDjeBTC3D3nRx4QZFgu1AVvyYgmnBJlwkGlL7JuF~3numjbPV42PVj7M4tj8xTGo-FId0oLr2MSK24skf8N4Ms2kNQDWGd~yqpAst~zvPnaKcSXhYTZC0xGscNgd-2RsKE5fnTqVHUBRaDXigxDrR0XxWeeE97KLsmgdD-BN2Qemn9vVuHgR-apCnOIZSsp~3FEZ2TfZvAmilj2rhI9xQuUppiTo~Maxseh6Ff1GouPrV3cXlr2IAXirI4ugM4CgJNzsy4fHQvB4Ib0hXxHwMPWc1Yuj9j606leVjZow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962536"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962536/On_the_families_of_q_Euler_polynomials_and_their_applications"><img alt="Research paper thumbnail of On the families of q-Euler polynomials and their applications" class="work-thumbnail" src="https://attachments.academia-assets.com/90519787/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962536/On_the_families_of_q_Euler_polynomials_and_their_applications">On the families of q-Euler polynomials and their applications</a></div><div class="wp-workCard_item"><span>Journal of the Egyptian Mathematical Society</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="755151937858014afc20567b244e884a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519787,&quot;asset_id&quot;:85962536,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519787/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962536"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962536"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962536; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962536]").text(description); $(".js-view-count[data-work-id=85962536]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962536; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962536']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962536, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "755151937858014afc20567b244e884a" } } $('.js-work-strip[data-work-id=85962536]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962536,"title":"On the families of q-Euler polynomials and their applications","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"In the present paper, we investigate special generalized q-Euler numbers and polynomials. Some earlier results of T. Kim in terms of q-Euler polynomials with weight α can be deduced. For presentation of our formulas we apply the method of generating function and p-adic q-integral representation on Zp. We summarize our results as follows. In section 2, by using combinatorial techniques we present two formulas for q-Euler numbers with weight α. In section 3, we derive distribution formula (Multiplication Theorem) for Dirichlet type of q-Euler numbers and polynomials with weight α. Moreover we define partial Dirichlet type zeta function and Dirichlet q-L-function, and obtain some interesting combinatorial identities for interpolating our new definitions. In addition, we derive behavior of the Dirichlet type of q-Euler L-function with weight α, L χ q (s, x | α) at s = 0. Furthermore by using second kind stirling numbers, we obtain an explicit formula for Dirichlet type q-Euler numbers with weight α, and β. Moreover a novel formula for q-Euler-Zeta function with weight α in terms of nested series of ζ E,q (n | α) is derived. In section 4, by introducing p-adic Dirichlet type of q-Euler measure with weight α, and β, we obtain some combinatorial relations, which interpolate our previous results. In section 5, which is the main section of our paper. As an application, we introduce a novel concept of dynamics of the zeros of analytically continued q-Euler polynomials with weight α.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Journal of the Egyptian Mathematical Society","grobid_abstract_attachment_id":90519787},"translated_abstract":null,"internal_url":"https://www.academia.edu/85962536/On_the_families_of_q_Euler_polynomials_and_their_applications","translated_internal_url":"","created_at":"2022-09-01T00:12:10.397-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519787,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519787/thumbnails/1.jpg","file_name":"1206.5433v1.pdf","download_url":"https://www.academia.edu/attachments/90519787/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_families_of_q_Euler_polynomials_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519787/1206.5433v1-libre.pdf?1662016614=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_families_of_q_Euler_polynomials_a.pdf\u0026Expires=1732990258\u0026Signature=NJwORVdgh29hqSFWDRgSm9ERoOFUqfeijdeE9b0Fx79qYKjib3ztn~t9bA7LV0Nz86uoAKrw9Tjamo~Aj0jSLfOGOETmrYN4PvXTu31lqLJgWdLxXkTEDaMn41SKrzotyZ7B7czS5iHd9OXFvqmcjz3bvP4oDfOK7Ur9wZhzLQQQGgBuufhwtriSU83rG5IoTYLJwkHRV0JPznJRcJYD7uOAhbhrU0PEdP3P0vjE61unXDhl-lBoAMmwn95UHoiCimtHzIDjGvsS3lftcLMFEnru4qFaIXiijxtPJOFsbmuT7wjb1KidAz-RWexg4EkzBSaIM6dqvzSSt58qq83LdQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_families_of_q_Euler_polynomials_and_their_applications","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519787,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519787/thumbnails/1.jpg","file_name":"1206.5433v1.pdf","download_url":"https://www.academia.edu/attachments/90519787/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_families_of_q_Euler_polynomials_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519787/1206.5433v1-libre.pdf?1662016614=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_families_of_q_Euler_polynomials_a.pdf\u0026Expires=1732990258\u0026Signature=NJwORVdgh29hqSFWDRgSm9ERoOFUqfeijdeE9b0Fx79qYKjib3ztn~t9bA7LV0Nz86uoAKrw9Tjamo~Aj0jSLfOGOETmrYN4PvXTu31lqLJgWdLxXkTEDaMn41SKrzotyZ7B7czS5iHd9OXFvqmcjz3bvP4oDfOK7Ur9wZhzLQQQGgBuufhwtriSU83rG5IoTYLJwkHRV0JPznJRcJYD7uOAhbhrU0PEdP3P0vjE61unXDhl-lBoAMmwn95UHoiCimtHzIDjGvsS3lftcLMFEnru4qFaIXiijxtPJOFsbmuT7wjb1KidAz-RWexg4EkzBSaIM6dqvzSSt58qq83LdQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962533"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962533/Identities_involving_the_h_q_Genocchi_polynomials_and_h_q_Zeta_type_function"><img alt="Research paper thumbnail of Identities involving the (h,q)-Genocchi polynomials and (h,q)-Zeta-type function" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962533/Identities_involving_the_h_q_Genocchi_polynomials_and_h_q_Zeta_type_function">Identities involving the (h,q)-Genocchi polynomials and (h,q)-Zeta-type function</a></div><div class="wp-workCard_item"><span>Advanced Studies in Contemporary Mathematics (Kyungshang)</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The aim of this paper is to obtain some properties of (h,q)-Genocchi numbers and polynomials by u...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The aim of this paper is to obtain some properties of (h,q)-Genocchi numbers and polynomials by using the fermionic p-adic q-integral on Z_p and mentioned in the paper q-Bernstein polynomials. By considering the q-Euler zeta function defined by T. Kim, which can also be obtained by applying the Mellin transformation to the generating function of (h,q)-Genocchi polynomials, we study (h,q)-Zeta-type function. We derive symmetric properties of (h,q)-Zeta function and from these properties we give symmetric property of (h,q)-Genocchi polynomials.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962533"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962533"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962533; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962533]").text(description); $(".js-view-count[data-work-id=85962533]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962533; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962533']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962533, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=85962533]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962533,"title":"Identities involving the (h,q)-Genocchi polynomials and (h,q)-Zeta-type function","translated_title":"","metadata":{"abstract":"The aim of this paper is to obtain some properties of (h,q)-Genocchi numbers and polynomials by using the fermionic p-adic q-integral on Z_p and mentioned in the paper q-Bernstein polynomials. By considering the q-Euler zeta function defined by T. Kim, which can also be obtained by applying the Mellin transformation to the generating function of (h,q)-Genocchi polynomials, we study (h,q)-Zeta-type function. We derive symmetric properties of (h,q)-Zeta function and from these properties we give symmetric property of (h,q)-Genocchi polynomials.","publication_name":"Advanced Studies in Contemporary Mathematics (Kyungshang)"},"translated_abstract":"The aim of this paper is to obtain some properties of (h,q)-Genocchi numbers and polynomials by using the fermionic p-adic q-integral on Z_p and mentioned in the paper q-Bernstein polynomials. By considering the q-Euler zeta function defined by T. Kim, which can also be obtained by applying the Mellin transformation to the generating function of (h,q)-Genocchi polynomials, we study (h,q)-Zeta-type function. We derive symmetric properties of (h,q)-Zeta function and from these properties we give symmetric property of (h,q)-Genocchi polynomials.","internal_url":"https://www.academia.edu/85962533/Identities_involving_the_h_q_Genocchi_polynomials_and_h_q_Zeta_type_function","translated_internal_url":"","created_at":"2022-09-01T00:12:10.297-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Identities_involving_the_h_q_Genocchi_polynomials_and_h_q_Zeta_type_function","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[],"research_interests":[{"id":1185612,"name":"H","url":"https://www.academia.edu/Documents/in/H"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962531"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962531/On_the_modified_q_Genocchi_numbers_and_polynomials_and_their_applications"><img alt="Research paper thumbnail of On the modified q-Genocchi numbers and polynomials and their applications" class="work-thumbnail" src="https://attachments.academia-assets.com/90519789/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962531/On_the_modified_q_Genocchi_numbers_and_polynomials_and_their_applications">On the modified q-Genocchi numbers and polynomials and their applications</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="72f0a6c993d4c9475e9437c9596f79ad" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519789,&quot;asset_id&quot;:85962531,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519789/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962531"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962531"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962531; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962531]").text(description); $(".js-view-count[data-work-id=85962531]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962531; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962531']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962531, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "72f0a6c993d4c9475e9437c9596f79ad" } } $('.js-work-strip[data-work-id=85962531]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962531,"title":"On the modified q-Genocchi numbers and polynomials and their applications","translated_title":"","metadata":{"grobid_abstract":"The main objective of this paper is to introduce the modified q-Genocchi polynomials and to define their generating function. In the paper, we show new relations, which are explicit formula, derivative formula, multiplication formula, and some others, for mentioned q-Genocchi polynomials. By applying Mellin transformation to the generating function of the modified q-Genocchi polynomials, we define q-Genocchi zeta-type functions which are interpolated by the modified q-Genocchi polynomials at negative integers.","grobid_abstract_attachment_id":90519789},"translated_abstract":null,"internal_url":"https://www.academia.edu/85962531/On_the_modified_q_Genocchi_numbers_and_polynomials_and_their_applications","translated_internal_url":"","created_at":"2022-09-01T00:12:10.061-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519789,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519789/thumbnails/1.jpg","file_name":"1311.5992.pdf","download_url":"https://www.academia.edu/attachments/90519789/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_modified_q_Genocchi_numbers_and_p.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519789/1311.5992-libre.pdf?1662016613=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_modified_q_Genocchi_numbers_and_p.pdf\u0026Expires=1732990258\u0026Signature=BqgWxAm-3kJJ8XFR7xVA1v1m62zL0tpnu8a-BZMWQOW9UDB3xbjV11VUqhYNAUyPImzcxiESKP0Kaf33Gq3zZaL26gZeFiWb5XZVhXYXEKh63TeLX17lFa8FcoDcDjkAbHaST05BPP2jbeGTaJLjMeNOy2pxnnYE-2RJYP-eZso6aIVIUwUmqMMF1st9L6iUAdxc7AOkshWmj52221v47YPd~zKh9mitsi7q6bVvjaken0~LvCWv7ejSmSWRX0xBbJEYUvE-zZI2DW59CZ9uPwoJL1b7MKgOnraUqORYQ7e8wMsH01RvnTEGlynK6-EfE0qQAnPACYnbNhqphVNIAw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_modified_q_Genocchi_numbers_and_polynomials_and_their_applications","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519789,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519789/thumbnails/1.jpg","file_name":"1311.5992.pdf","download_url":"https://www.academia.edu/attachments/90519789/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_modified_q_Genocchi_numbers_and_p.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519789/1311.5992-libre.pdf?1662016613=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_modified_q_Genocchi_numbers_and_p.pdf\u0026Expires=1732990258\u0026Signature=BqgWxAm-3kJJ8XFR7xVA1v1m62zL0tpnu8a-BZMWQOW9UDB3xbjV11VUqhYNAUyPImzcxiESKP0Kaf33Gq3zZaL26gZeFiWb5XZVhXYXEKh63TeLX17lFa8FcoDcDjkAbHaST05BPP2jbeGTaJLjMeNOy2pxnnYE-2RJYP-eZso6aIVIUwUmqMMF1st9L6iUAdxc7AOkshWmj52221v47YPd~zKh9mitsi7q6bVvjaken0~LvCWv7ejSmSWRX0xBbJEYUvE-zZI2DW59CZ9uPwoJL1b7MKgOnraUqORYQ7e8wMsH01RvnTEGlynK6-EfE0qQAnPACYnbNhqphVNIAw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":301,"name":"Number Theory","url":"https://www.academia.edu/Documents/in/Number_Theory"},{"id":375,"name":"P Adic Analysis","url":"https://www.academia.edu/Documents/in/P_Adic_Analysis"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962529"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962529/A_NOTE_ON_THE_GENERALIZED_q_GENOCCHI_MEASURES_WITH_WEIGHT"><img alt="Research paper thumbnail of A NOTE ON THE GENERALIZED q-GENOCCHI MEASURES WITH WEIGHT" class="work-thumbnail" src="https://attachments.academia-assets.com/90519780/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962529/A_NOTE_ON_THE_GENERALIZED_q_GENOCCHI_MEASURES_WITH_WEIGHT">A NOTE ON THE GENERALIZED q-GENOCCHI MEASURES WITH WEIGHT</a></div><div class="wp-workCard_item"><span>Boletim da Sociedade Paranaense de Matemática</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we investigate special generalized q-Genocchi measures. We introduce q-Genocchi mea...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we investigate special generalized q-Genocchi measures. We introduce q-Genocchi measures with weight alpha. The present paper deals with q-extension of Genocchi measure. Some earlier results of T. Kim in terms of q-Genocchi polynomials can be deduced. We apply the method of generating function, which are exploited to derive further classes of q-Genocchi polynomials and develop q-Genocchi measures. To be more precise, we present the integral representation of p-adic q-Genocchi measure with weight alpha which yields a deeper insight into the effectiveness of this type of generalizations. Generalized q-Genocchi numbers with weight alpha possess a number of interesting properties which we state in this paper.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="744d529a4b6c2c2123069c01b4714acd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519780,&quot;asset_id&quot;:85962529,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519780/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962529"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962529"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962529; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962529]").text(description); $(".js-view-count[data-work-id=85962529]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962529; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962529']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962529, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "744d529a4b6c2c2123069c01b4714acd" } } $('.js-work-strip[data-work-id=85962529]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962529,"title":"A NOTE ON THE GENERALIZED q-GENOCCHI MEASURES WITH WEIGHT","translated_title":"","metadata":{"abstract":"In this paper we investigate special generalized q-Genocchi measures. We introduce q-Genocchi measures with weight alpha. The present paper deals with q-extension of Genocchi measure. Some earlier results of T. Kim in terms of q-Genocchi polynomials can be deduced. We apply the method of generating function, which are exploited to derive further classes of q-Genocchi polynomials and develop q-Genocchi measures. To be more precise, we present the integral representation of p-adic q-Genocchi measure with weight alpha which yields a deeper insight into the effectiveness of this type of generalizations. Generalized q-Genocchi numbers with weight alpha possess a number of interesting properties which we state in this paper.","publisher":"Sociedade Paranaense de Matematica","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Boletim da Sociedade Paranaense de Matemática"},"translated_abstract":"In this paper we investigate special generalized q-Genocchi measures. We introduce q-Genocchi measures with weight alpha. The present paper deals with q-extension of Genocchi measure. Some earlier results of T. Kim in terms of q-Genocchi polynomials can be deduced. We apply the method of generating function, which are exploited to derive further classes of q-Genocchi polynomials and develop q-Genocchi measures. To be more precise, we present the integral representation of p-adic q-Genocchi measure with weight alpha which yields a deeper insight into the effectiveness of this type of generalizations. Generalized q-Genocchi numbers with weight alpha possess a number of interesting properties which we state in this paper.","internal_url":"https://www.academia.edu/85962529/A_NOTE_ON_THE_GENERALIZED_q_GENOCCHI_MEASURES_WITH_WEIGHT","translated_internal_url":"","created_at":"2022-09-01T00:12:09.954-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519780,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519780/thumbnails/1.jpg","file_name":"cda2ab89d6b27b80aad390817183b0c2585f.pdf","download_url":"https://www.academia.edu/attachments/90519780/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_NOTE_ON_THE_GENERALIZED_q_GENOCCHI_MEA.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519780/cda2ab89d6b27b80aad390817183b0c2585f-libre.pdf?1662016615=\u0026response-content-disposition=attachment%3B+filename%3DA_NOTE_ON_THE_GENERALIZED_q_GENOCCHI_MEA.pdf\u0026Expires=1732990258\u0026Signature=Z2NTUKgbKgoOYJaox2bksRPOHBE-kxsT5FWWATXes~QULi1AHr-u-asv6TRAD3t8ZXMRkQTYV9aZeTP0HrZ~0aMU88BgcMYQlFbYQBqerhOp588pA7rmZZ99OlaKrtVbr4ObBfYKUwVTt5WRq5~-x883~h~HreNtOMJhn~He6AHe9hO6GL-H426baJ7QYNEMRsiMxi1QXj7OdVh~e~BPYIilNvimconlxx2QPsXeajUO-lgpJ8FgPqmERxA9bVSaUvEwpOx-FBsXQPI-if8OfqHUZZjAzppMspAj0WowrePrP-x5gvyTkuRpUViAS~jY6F0L3n~rirgJm1uy40ZioA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_NOTE_ON_THE_GENERALIZED_q_GENOCCHI_MEASURES_WITH_WEIGHT","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519780,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519780/thumbnails/1.jpg","file_name":"cda2ab89d6b27b80aad390817183b0c2585f.pdf","download_url":"https://www.academia.edu/attachments/90519780/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_NOTE_ON_THE_GENERALIZED_q_GENOCCHI_MEA.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519780/cda2ab89d6b27b80aad390817183b0c2585f-libre.pdf?1662016615=\u0026response-content-disposition=attachment%3B+filename%3DA_NOTE_ON_THE_GENERALIZED_q_GENOCCHI_MEA.pdf\u0026Expires=1732990258\u0026Signature=Z2NTUKgbKgoOYJaox2bksRPOHBE-kxsT5FWWATXes~QULi1AHr-u-asv6TRAD3t8ZXMRkQTYV9aZeTP0HrZ~0aMU88BgcMYQlFbYQBqerhOp588pA7rmZZ99OlaKrtVbr4ObBfYKUwVTt5WRq5~-x883~h~HreNtOMJhn~He6AHe9hO6GL-H426baJ7QYNEMRsiMxi1QXj7OdVh~e~BPYIilNvimconlxx2QPsXeajUO-lgpJ8FgPqmERxA9bVSaUvEwpOx-FBsXQPI-if8OfqHUZZjAzppMspAj0WowrePrP-x5gvyTkuRpUViAS~jY6F0L3n~rirgJm1uy40ZioA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962527"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962527/A_note_on_the_values_of_weighted_q_Bernstein_polynomials_and_weighted_q_Genocchi_numbers"><img alt="Research paper thumbnail of A note on the values of weighted q-Bernstein polynomials and weighted q-Genocchi numbers" class="work-thumbnail" src="https://attachments.academia-assets.com/90519786/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962527/A_note_on_the_values_of_weighted_q_Bernstein_polynomials_and_weighted_q_Genocchi_numbers">A note on the values of weighted q-Bernstein polynomials and weighted q-Genocchi numbers</a></div><div class="wp-workCard_item"><span>Advances in Difference Equations</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c027070394467e78dd95dcb1a713b7be" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519786,&quot;asset_id&quot;:85962527,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519786/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962527"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962527"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962527; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962527]").text(description); $(".js-view-count[data-work-id=85962527]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962527; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962527']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962527, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c027070394467e78dd95dcb1a713b7be" } } $('.js-work-strip[data-work-id=85962527]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962527,"title":"A note on the values of weighted q-Bernstein polynomials and weighted q-Genocchi numbers","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"The rapid development of q-calculus has led to the discovery of new generalizations of Bernstein polynomials and Genocchi polynomials involving q-integers. The present paper deals with weighted q-Bernstein polynomials (or called q-Bernstein polynomials with weight α) and weighted q-Genocchi numbers (or called q-Genocchi numbers with weight α and β). We apply the method of generating function and p-adic q-integral representation on Z p , which are exploited to derive further classes of Bernstein polynomials and q-Genocchi numbers and polynomials. To be more precise, we summarize our results as follows: we obtain some combinatorial relations between q-Genocchi numbers and polynomials with weight α and β. Furthermore, we derive an integral representation of weighted q-Bernstein polynomials of degree n based on Z p. Also we deduce a fermionic p-adic q-integral representation of products of weighted q-Bernstein polynomials of different degrees n 1 , n 2 ,. .. on Z p and show that it can be in terms of q-Genocchi numbers with weight α and β, which yields a deeper insight into the effectiveness of this type of generalizations. We derive a new generating function which possesses a number of interesting properties which we state in this paper.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Advances in Difference Equations","grobid_abstract_attachment_id":90519786},"translated_abstract":null,"internal_url":"https://www.academia.edu/85962527/A_note_on_the_values_of_weighted_q_Bernstein_polynomials_and_weighted_q_Genocchi_numbers","translated_internal_url":"","created_at":"2022-09-01T00:12:09.727-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519786,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519786/thumbnails/1.jpg","file_name":"s13662-015-0369-y.pdf","download_url":"https://www.academia.edu/attachments/90519786/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_note_on_the_values_of_weighted_q_Berns.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519786/s13662-015-0369-y-libre.pdf?1662016615=\u0026response-content-disposition=attachment%3B+filename%3DA_note_on_the_values_of_weighted_q_Berns.pdf\u0026Expires=1732990258\u0026Signature=Dxd60QTM~GQjweFWmLvrqtj7QKcy-Ee9tPA~nHmes-z2ueQS~L06hAgXj-5Wnndscgu21zwTvLuTkpuQ4SvkMQV5Ap7PPQsbcKtTa5cC2jY3d0N0DgdDDGmi4VeciC1GXt~6YwFOUQogaj96vUXxqgoB50X7n0curJmhAMzpmoCyJdIyqCkPlJag-MkqbBhujoIFj3noTm0f8~Fi3ylyzReycHK7ygp5BPtVbtR~to6n2zQ-981avp2M--1m84dqDUZ1tdm~ECOqIOmLfMKf4PBK7i9l41gIRSGpALVggvsdbbgIEPZIbnxWHtOcSL51kiiyvNq4nn3tt~9kxBpTRw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_note_on_the_values_of_weighted_q_Bernstein_polynomials_and_weighted_q_Genocchi_numbers","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519786,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519786/thumbnails/1.jpg","file_name":"s13662-015-0369-y.pdf","download_url":"https://www.academia.edu/attachments/90519786/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_note_on_the_values_of_weighted_q_Berns.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519786/s13662-015-0369-y-libre.pdf?1662016615=\u0026response-content-disposition=attachment%3B+filename%3DA_note_on_the_values_of_weighted_q_Berns.pdf\u0026Expires=1732990258\u0026Signature=Dxd60QTM~GQjweFWmLvrqtj7QKcy-Ee9tPA~nHmes-z2ueQS~L06hAgXj-5Wnndscgu21zwTvLuTkpuQ4SvkMQV5Ap7PPQsbcKtTa5cC2jY3d0N0DgdDDGmi4VeciC1GXt~6YwFOUQogaj96vUXxqgoB50X7n0curJmhAMzpmoCyJdIyqCkPlJag-MkqbBhujoIFj3noTm0f8~Fi3ylyzReycHK7ygp5BPtVbtR~to6n2zQ-981avp2M--1m84dqDUZ1tdm~ECOqIOmLfMKf4PBK7i9l41gIRSGpALVggvsdbbgIEPZIbnxWHtOcSL51kiiyvNq4nn3tt~9kxBpTRw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":302,"name":"Analytic Number Theory","url":"https://www.academia.edu/Documents/in/Analytic_Number_Theory"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":672441,"name":"Difference Equations","url":"https://www.academia.edu/Documents/in/Difference_Equations"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962525"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962525/On_the_Dirichlet_s_type_of_Eulerian_polynomials"><img alt="Research paper thumbnail of On the Dirichlet’s type of Eulerian polynomials" class="work-thumbnail" src="https://attachments.academia-assets.com/90519778/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962525/On_the_Dirichlet_s_type_of_Eulerian_polynomials">On the Dirichlet’s type of Eulerian polynomials</a></div><div class="wp-workCard_item"><span>Mathematical Sciences</span><span>, 2014</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0a41ac5ffb66927d90b49d28cb847713" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519778,&quot;asset_id&quot;:85962525,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519778/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962525"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962525"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962525; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962525]").text(description); $(".js-view-count[data-work-id=85962525]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962525; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962525']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962525, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0a41ac5ffb66927d90b49d28cb847713" } } $('.js-work-strip[data-work-id=85962525]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962525,"title":"On the Dirichlet’s type of Eulerian polynomials","translated_title":"","metadata":{"publisher":"Springer Nature","grobid_abstract":"In the present paper, we introduce Eulerian polynomials attached to χ by using p-adic q-integral on Zp. Also, we give new interesting identities via the generating functions of Dirichlet's type of Eulerian polynomials. After, by applying Mellin transformation to this generating function of Dirichlet's type of Eulerian polynomials, we derive L-function for Eulerian polynomials which interpolates of Dirichlet's type of Eulerian polynomials at negative integers.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Mathematical Sciences","grobid_abstract_attachment_id":90519778},"translated_abstract":null,"internal_url":"https://www.academia.edu/85962525/On_the_Dirichlet_s_type_of_Eulerian_polynomials","translated_internal_url":"","created_at":"2022-09-01T00:12:09.599-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519778,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519778/thumbnails/1.jpg","file_name":"1207.pdf","download_url":"https://www.academia.edu/attachments/90519778/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Dirichlet_s_type_of_Eulerian_poly.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519778/1207-libre.pdf?1662016619=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Dirichlet_s_type_of_Eulerian_poly.pdf\u0026Expires=1732990258\u0026Signature=O~Ngkom2Ket~PtxECsbBrqNMNBHLeqxE8QxONsPFn9VQA2fEBsSuFxjW0Qqoso3lS4oy2W4iricEPnks6g7dFl4k9BkS5rS6H1QJlL1n5~JVtgevYULc4wWyUVusKRXVnlM2KRAG9xEpZ3hzLwRLnvvXQZsOhGTOLc7PLr3S~euf5ToIxPkCrNq1pSChSENtGlk2S1ylnJtuHcDl3~Cmaz0SoMc1Nq1GDZ3exdwK5EMabOrnroUmxH2eC-HirhwT-6OHaOCnJ-TL-awQysMZYtrFa5CzaBrPCVCMMJl0b8347f6FG1ICHbGOTybpUEHtfwS9NAA-dsmpdEK~Y2gqIQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_Dirichlet_s_type_of_Eulerian_polynomials","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519778,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519778/thumbnails/1.jpg","file_name":"1207.pdf","download_url":"https://www.academia.edu/attachments/90519778/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Dirichlet_s_type_of_Eulerian_poly.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519778/1207-libre.pdf?1662016619=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Dirichlet_s_type_of_Eulerian_poly.pdf\u0026Expires=1732990258\u0026Signature=O~Ngkom2Ket~PtxECsbBrqNMNBHLeqxE8QxONsPFn9VQA2fEBsSuFxjW0Qqoso3lS4oy2W4iricEPnks6g7dFl4k9BkS5rS6H1QJlL1n5~JVtgevYULc4wWyUVusKRXVnlM2KRAG9xEpZ3hzLwRLnvvXQZsOhGTOLc7PLr3S~euf5ToIxPkCrNq1pSChSENtGlk2S1ylnJtuHcDl3~Cmaz0SoMc1Nq1GDZ3exdwK5EMabOrnroUmxH2eC-HirhwT-6OHaOCnJ-TL-awQysMZYtrFa5CzaBrPCVCMMJl0b8347f6FG1ICHbGOTybpUEHtfwS9NAA-dsmpdEK~Y2gqIQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":301,"name":"Number Theory","url":"https://www.academia.edu/Documents/in/Number_Theory"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962522"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962522/A_note_on_the_h_q_zeta_type_function_with_weight_%CE%B1"><img alt="Research paper thumbnail of A note on the (h,q)-zeta-type function with weight α" class="work-thumbnail" src="https://attachments.academia-assets.com/90519782/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962522/A_note_on_the_h_q_zeta_type_function_with_weight_%CE%B1">A note on the (h,q)-zeta-type function with weight α</a></div><div class="wp-workCard_item"><span>Journal of Inequalities and Applications</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The objective of this paper is to derive the symmetric property of an ( h , q ) -zeta function wi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The objective of this paper is to derive the symmetric property of an ( h , q ) -zeta function with weight α. By using this property, we give some interesting identities for ( h , q ) -Genocchi polynomials with weight α. As a result, our applications possess a number of interesting properties which we state in this paper. MSC:11S80, 11B68.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4835cee208710f866aa04b94b9a1a9d0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519782,&quot;asset_id&quot;:85962522,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519782/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962522"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962522"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962522; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962522]").text(description); $(".js-view-count[data-work-id=85962522]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962522; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962522']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962522, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4835cee208710f866aa04b94b9a1a9d0" } } $('.js-work-strip[data-work-id=85962522]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962522,"title":"A note on the (h,q)-zeta-type function with weight α","translated_title":"","metadata":{"abstract":"The objective of this paper is to derive the symmetric property of an ( h , q ) -zeta function with weight α. By using this property, we give some interesting identities for ( h , q ) -Genocchi polynomials with weight α. As a result, our applications possess a number of interesting properties which we state in this paper. MSC:11S80, 11B68.","publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Journal of Inequalities and Applications"},"translated_abstract":"The objective of this paper is to derive the symmetric property of an ( h , q ) -zeta function with weight α. By using this property, we give some interesting identities for ( h , q ) -Genocchi polynomials with weight α. As a result, our applications possess a number of interesting properties which we state in this paper. MSC:11S80, 11B68.","internal_url":"https://www.academia.edu/85962522/A_note_on_the_h_q_zeta_type_function_with_weight_%CE%B1","translated_internal_url":"","created_at":"2022-09-01T00:12:09.394-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519782,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519782/thumbnails/1.jpg","file_name":"1029-242X-2013-100.pdf","download_url":"https://www.academia.edu/attachments/90519782/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_note_on_the_h_q_zeta_type_function_wit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519782/1029-242X-2013-100-libre.pdf?1662016614=\u0026response-content-disposition=attachment%3B+filename%3DA_note_on_the_h_q_zeta_type_function_wit.pdf\u0026Expires=1732990258\u0026Signature=JLEsfsIJhfq8BY3USoFBq7nRBtrEZyp-Uj0x9ierASGllD48jvH5NYQxt8MbonOdIjOL5lB9RSgB1cCKEAJdyoxEu5LHxn-pc3b4StmEwa7-5w-3E2jIi-eGglbm1o2v17BnE8TAkFm3O9jEakuj~tfW-uZ9bJqPW~~fHJFP8WeiuEZT1~kecPri1x~iPI~4v~qwn19gcN67N6DbDVFqAEBKuEts6ocB6d4v9kKguR3xwjkEx0Yfydml4FBJpuel-djIHJ-O-POVSTPyVT-vL~nMFzlqJuTuP~haPpAlOjQCNQcMT2zwrruo1I5YYXbOoUB2oyQaqyw-3RfrkxrWwA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_note_on_the_h_q_zeta_type_function_with_weight_α","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519782,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519782/thumbnails/1.jpg","file_name":"1029-242X-2013-100.pdf","download_url":"https://www.academia.edu/attachments/90519782/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_note_on_the_h_q_zeta_type_function_wit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519782/1029-242X-2013-100-libre.pdf?1662016614=\u0026response-content-disposition=attachment%3B+filename%3DA_note_on_the_h_q_zeta_type_function_wit.pdf\u0026Expires=1732990258\u0026Signature=JLEsfsIJhfq8BY3USoFBq7nRBtrEZyp-Uj0x9ierASGllD48jvH5NYQxt8MbonOdIjOL5lB9RSgB1cCKEAJdyoxEu5LHxn-pc3b4StmEwa7-5w-3E2jIi-eGglbm1o2v17BnE8TAkFm3O9jEakuj~tfW-uZ9bJqPW~~fHJFP8WeiuEZT1~kecPri1x~iPI~4v~qwn19gcN67N6DbDVFqAEBKuEts6ocB6d4v9kKguR3xwjkEx0Yfydml4FBJpuel-djIHJ-O-POVSTPyVT-vL~nMFzlqJuTuP~haPpAlOjQCNQcMT2zwrruo1I5YYXbOoUB2oyQaqyw-3RfrkxrWwA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":932075,"name":"Mathematical Inequalities and Applications","url":"https://www.academia.edu/Documents/in/Mathematical_Inequalities_and_Applications"},{"id":1185612,"name":"H","url":"https://www.academia.edu/Documents/in/H"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962519"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962519/Some_New_Formulae_for_Genocchi_Numbers_and_Polynomials_Involving_Bernoulli_and_Euler_Polynomials"><img alt="Research paper thumbnail of Some New Formulae for Genocchi Numbers and Polynomials Involving Bernoulli and Euler Polynomials" class="work-thumbnail" src="https://attachments.academia-assets.com/90519732/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962519/Some_New_Formulae_for_Genocchi_Numbers_and_Polynomials_Involving_Bernoulli_and_Euler_Polynomials">Some New Formulae for Genocchi Numbers and Polynomials Involving Bernoulli and Euler Polynomials</a></div><div class="wp-workCard_item"><span>International Journal of Mathematics and Mathematical Sciences</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We give some new formulae for product of two Genocchi polynomials including Euler polynomials and...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We give some new formulae for product of two Genocchi polynomials including Euler polynomials and Bernoulli polynomials. Moreover, we derive some applications for Genocchi polynomials to study a matrix formulation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="065baabd428ff66a577a4d9bd6213ce7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519732,&quot;asset_id&quot;:85962519,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519732/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962519"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962519"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962519; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962519]").text(description); $(".js-view-count[data-work-id=85962519]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962519; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962519']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962519, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "065baabd428ff66a577a4d9bd6213ce7" } } $('.js-work-strip[data-work-id=85962519]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962519,"title":"Some New Formulae for Genocchi Numbers and Polynomials Involving Bernoulli and Euler Polynomials","translated_title":"","metadata":{"abstract":"We give some new formulae for product of two Genocchi polynomials including Euler polynomials and Bernoulli polynomials. Moreover, we derive some applications for Genocchi polynomials to study a matrix formulation.","publisher":"Hindawi Limited","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"International Journal of Mathematics and Mathematical Sciences"},"translated_abstract":"We give some new formulae for product of two Genocchi polynomials including Euler polynomials and Bernoulli polynomials. Moreover, we derive some applications for Genocchi polynomials to study a matrix formulation.","internal_url":"https://www.academia.edu/85962519/Some_New_Formulae_for_Genocchi_Numbers_and_Polynomials_Involving_Bernoulli_and_Euler_Polynomials","translated_internal_url":"","created_at":"2022-09-01T00:12:09.120-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519732,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519732/thumbnails/1.jpg","file_name":"760613.pdf","download_url":"https://www.academia.edu/attachments/90519732/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_New_Formulae_for_Genocchi_Numbers_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519732/760613-libre.pdf?1662016633=\u0026response-content-disposition=attachment%3B+filename%3DSome_New_Formulae_for_Genocchi_Numbers_a.pdf\u0026Expires=1732990259\u0026Signature=EGDKgaaHPSul9CdAiuFWkKO0NrObq~w36wLMBw8wc1ajMJBDsjgvmr-Jsavz1omwRU9LpCp40BzACUqGqJ-4Up5aux8BdnfUYCpfafQ4IucYqj5QviOWVxRmcuhyIWfTp1iEibl~NVWOA3tWUgL~YK4yuJgKLYaQtL3qCkF-CVKS0PTtHLIBJw~np~k2eZgV2Tv2lL9pi45O45AS6X~lpeIjH1aEzIL7ACPG4BTGrbvXY3t4aDVR3NcQk61nDvNZjTC0zKRyu~bfBhVD4gxRucrfwigTMCZezCOMKljOda7wxJalNuH-hqwkEJzdySS5hR2f2NZQICgw5bnnYx9O7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Some_New_Formulae_for_Genocchi_Numbers_and_Polynomials_Involving_Bernoulli_and_Euler_Polynomials","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519732,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519732/thumbnails/1.jpg","file_name":"760613.pdf","download_url":"https://www.academia.edu/attachments/90519732/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Some_New_Formulae_for_Genocchi_Numbers_a.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519732/760613-libre.pdf?1662016633=\u0026response-content-disposition=attachment%3B+filename%3DSome_New_Formulae_for_Genocchi_Numbers_a.pdf\u0026Expires=1732990259\u0026Signature=EGDKgaaHPSul9CdAiuFWkKO0NrObq~w36wLMBw8wc1ajMJBDsjgvmr-Jsavz1omwRU9LpCp40BzACUqGqJ-4Up5aux8BdnfUYCpfafQ4IucYqj5QviOWVxRmcuhyIWfTp1iEibl~NVWOA3tWUgL~YK4yuJgKLYaQtL3qCkF-CVKS0PTtHLIBJw~np~k2eZgV2Tv2lL9pi45O45AS6X~lpeIjH1aEzIL7ACPG4BTGrbvXY3t4aDVR3NcQk61nDvNZjTC0zKRyu~bfBhVD4gxRucrfwigTMCZezCOMKljOda7wxJalNuH-hqwkEJzdySS5hR2f2NZQICgw5bnnYx9O7A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":301,"name":"Number Theory","url":"https://www.academia.edu/Documents/in/Number_Theory"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":318,"name":"Mathematical Physics","url":"https://www.academia.edu/Documents/in/Mathematical_Physics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":12026,"name":"Orthogonal polynomials","url":"https://www.academia.edu/Documents/in/Orthogonal_polynomials"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[{"id":23520925,"url":"http://downloads.hindawi.com/journals/ijmms/2014/760613.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962516"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962516/q_Analogue_of_p_adic_log_gamma_functions_associated_with_modified_q_extension_of_Genocchi_numbers_with_weight_alpha_and_beta"><img alt="Research paper thumbnail of q Analogue of p adic log gamma functions associated with modified q extension of Genocchi numbers with weight alpha and beta" class="work-thumbnail" src="https://attachments.academia-assets.com/90519733/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962516/q_Analogue_of_p_adic_log_gamma_functions_associated_with_modified_q_extension_of_Genocchi_numbers_with_weight_alpha_and_beta">q Analogue of p adic log gamma functions associated with modified q extension of Genocchi numbers with weight alpha and beta</a></div><div class="wp-workCard_item"><span>arXiv preprint arXiv:1201.1309</span><span>, Jan 5, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract: The fundamental aim of this paper is to describe q-Analogue of p-adic log gamma functio...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract: The fundamental aim of this paper is to describe q-Analogue of p-adic log gamma functions with weight alpha and beta. Moreover, we give relationship between p-adic q-log gamma funtions with weight ({\ alpha},{\ beta}) and q-extension of Genocchi numbers with weight alpha and beta and modified q Euler numbers with weight {\ alpha}</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cabeb1fea90c7ce12d4aa028b2711d43" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519733,&quot;asset_id&quot;:85962516,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519733/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962516"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962516"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962516; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962516]").text(description); $(".js-view-count[data-work-id=85962516]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962516; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962516']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962516, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cabeb1fea90c7ce12d4aa028b2711d43" } } $('.js-work-strip[data-work-id=85962516]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962516,"title":"q Analogue of p adic log gamma functions associated with modified q extension of Genocchi numbers with weight alpha and beta","translated_title":"","metadata":{"abstract":"Abstract: The fundamental aim of this paper is to describe q-Analogue of p-adic log gamma functions with weight alpha and beta. Moreover, we give relationship between p-adic q-log gamma funtions with weight ({\\ alpha},{\\ beta}) and q-extension of Genocchi numbers with weight alpha and beta and modified q Euler numbers with weight {\\ alpha}","publisher":"arxiv.org","ai_title_tag":"q-Analogue of p-adic Log Gamma Functions and Genocchi Numbers","publication_date":{"day":5,"month":1,"year":2012,"errors":{}},"publication_name":"arXiv preprint arXiv:1201.1309"},"translated_abstract":"Abstract: The fundamental aim of this paper is to describe q-Analogue of p-adic log gamma functions with weight alpha and beta. Moreover, we give relationship between p-adic q-log gamma funtions with weight ({\\ alpha},{\\ beta}) and q-extension of Genocchi numbers with weight alpha and beta and modified q Euler numbers with weight {\\ alpha}","internal_url":"https://www.academia.edu/85962516/q_Analogue_of_p_adic_log_gamma_functions_associated_with_modified_q_extension_of_Genocchi_numbers_with_weight_alpha_and_beta","translated_internal_url":"","created_at":"2022-09-01T00:12:08.849-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519733,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519733/thumbnails/1.jpg","file_name":"1201.pdf","download_url":"https://www.academia.edu/attachments/90519733/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"q_Analogue_of_p_adic_log_gamma_functions.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519733/1201-libre.pdf?1662016620=\u0026response-content-disposition=attachment%3B+filename%3Dq_Analogue_of_p_adic_log_gamma_functions.pdf\u0026Expires=1732990259\u0026Signature=CxXFMUjTnfqIBHrgX81izJtYcefUfT-0SQhao0mZX1myr4gB0KsbRP7Rl-CVXlNpLfFiDlPqi9XOFIiA8UY5dVyGWfFKlXCIa0qQOypMuCNVMxo9OU7I5Svh7fSv9fNy3~1jltMS~qlJmMZaGOoCc9mw2YdxBrK1ahImixlTlVQEN2NNBi2FmUISPKJkRi6UM4jXSglofXE~QhqY9t~HtB7P7n1w4JlfU3RnfX6mEMZj2mMmSU9nfo83Xu97FdZ3SlcVDW2JuaAKxu~T6j1Vjxc2dQt1Kfu6kAPEidfMmcuTuEwihquC65xwTfHGxwBkxn6iUUcpHALeH2Z0GtHjeQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"q_Analogue_of_p_adic_log_gamma_functions_associated_with_modified_q_extension_of_Genocchi_numbers_with_weight_alpha_and_beta","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519733,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519733/thumbnails/1.jpg","file_name":"1201.pdf","download_url":"https://www.academia.edu/attachments/90519733/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"q_Analogue_of_p_adic_log_gamma_functions.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519733/1201-libre.pdf?1662016620=\u0026response-content-disposition=attachment%3B+filename%3Dq_Analogue_of_p_adic_log_gamma_functions.pdf\u0026Expires=1732990259\u0026Signature=CxXFMUjTnfqIBHrgX81izJtYcefUfT-0SQhao0mZX1myr4gB0KsbRP7Rl-CVXlNpLfFiDlPqi9XOFIiA8UY5dVyGWfFKlXCIa0qQOypMuCNVMxo9OU7I5Svh7fSv9fNy3~1jltMS~qlJmMZaGOoCc9mw2YdxBrK1ahImixlTlVQEN2NNBi2FmUISPKJkRi6UM4jXSglofXE~QhqY9t~HtB7P7n1w4JlfU3RnfX6mEMZj2mMmSU9nfo83Xu97FdZ3SlcVDW2JuaAKxu~T6j1Vjxc2dQt1Kfu6kAPEidfMmcuTuEwihquC65xwTfHGxwBkxn6iUUcpHALeH2Z0GtHjeQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":23520924,"url":"http://arxiv.org/pdf/1201.1309"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85962515"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85962515/p_adic_interpolation_function_related_to_multiple_generalized_Genocchi_numbers"><img alt="Research paper thumbnail of p-adic interpolation function related to multiple generalized Genocchi numbers" class="work-thumbnail" src="https://attachments.academia-assets.com/90519731/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85962515/p_adic_interpolation_function_related_to_multiple_generalized_Genocchi_numbers">p-adic interpolation function related to multiple generalized Genocchi numbers</a></div><div class="wp-workCard_item"><span>arXiv preprint arXiv:1301.4367</span><span>, Jan 15, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract: In the present paper, we deal with multiple generalized Genocchi numbers and polynomial...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract: In the present paper, we deal with multiple generalized Genocchi numbers and polynomials. Also, we introduce analytic interpolating function for the multiple generalized Genocchi numbers attached to\ c {hi} at negative integers in complex plane and we define the multiple Genocchi p-adic L-function. Finally, we derive the value of the partial derivative of our multiple p-adic l-function at s= 0.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b5c14ebf63492c139a9a5126a4d8be69" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:90519731,&quot;asset_id&quot;:85962515,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/90519731/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85962515"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85962515"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85962515; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85962515]").text(description); $(".js-view-count[data-work-id=85962515]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85962515; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85962515']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 85962515, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b5c14ebf63492c139a9a5126a4d8be69" } } $('.js-work-strip[data-work-id=85962515]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85962515,"title":"p-adic interpolation function related to multiple generalized Genocchi numbers","translated_title":"","metadata":{"abstract":"Abstract: In the present paper, we deal with multiple generalized Genocchi numbers and polynomials. Also, we introduce analytic interpolating function for the multiple generalized Genocchi numbers attached to\\ c {hi} at negative integers in complex plane and we define the multiple Genocchi p-adic L-function. Finally, we derive the value of the partial derivative of our multiple p-adic l-function at s= 0.","publication_date":{"day":15,"month":1,"year":2013,"errors":{}},"publication_name":"arXiv preprint arXiv:1301.4367"},"translated_abstract":"Abstract: In the present paper, we deal with multiple generalized Genocchi numbers and polynomials. Also, we introduce analytic interpolating function for the multiple generalized Genocchi numbers attached to\\ c {hi} at negative integers in complex plane and we define the multiple Genocchi p-adic L-function. Finally, we derive the value of the partial derivative of our multiple p-adic l-function at s= 0.","internal_url":"https://www.academia.edu/85962515/p_adic_interpolation_function_related_to_multiple_generalized_Genocchi_numbers","translated_internal_url":"","created_at":"2022-09-01T00:12:08.358-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":90519731,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519731/thumbnails/1.jpg","file_name":"1301.pdf","download_url":"https://www.academia.edu/attachments/90519731/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"p_adic_interpolation_function_related_to.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519731/1301-libre.pdf?1662016628=\u0026response-content-disposition=attachment%3B+filename%3Dp_adic_interpolation_function_related_to.pdf\u0026Expires=1732990259\u0026Signature=fTrudmRwUv2KlxmQucigPE7WIthbJThgayjJpWw~OqHh85HC-FtCfeNQqPP89Og1BTziDib2ch4nV5xGtH5v25rP~2-QxALZXwE7UuEiWKTUfBm4WL5wfzW6sc-G5tzrdma5SAC8xQLFqhqvSJ1yc7d0lsVi7-ePQ6Rq7YDBt0cC~i1iSifrr0TftDBZJp5XOJBx-KKvOSHEE9FUWnwjy2SZTzWI8QD1AaDl8b3y-QF7C-NSQ4XExb5BKALXs~KomuTOelEYcM5cM84NMl8kTLkqNCVVQ8~IzYuRm8A3-Q7o-VVcaLskr36y4879Sgoik6lR0yLuRsYO4~~tugjbCQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"p_adic_interpolation_function_related_to_multiple_generalized_Genocchi_numbers","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":90519731,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90519731/thumbnails/1.jpg","file_name":"1301.pdf","download_url":"https://www.academia.edu/attachments/90519731/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"p_adic_interpolation_function_related_to.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90519731/1301-libre.pdf?1662016628=\u0026response-content-disposition=attachment%3B+filename%3Dp_adic_interpolation_function_related_to.pdf\u0026Expires=1732990259\u0026Signature=fTrudmRwUv2KlxmQucigPE7WIthbJThgayjJpWw~OqHh85HC-FtCfeNQqPP89Og1BTziDib2ch4nV5xGtH5v25rP~2-QxALZXwE7UuEiWKTUfBm4WL5wfzW6sc-G5tzrdma5SAC8xQLFqhqvSJ1yc7d0lsVi7-ePQ6Rq7YDBt0cC~i1iSifrr0TftDBZJp5XOJBx-KKvOSHEE9FUWnwjy2SZTzWI8QD1AaDl8b3y-QF7C-NSQ4XExb5BKALXs~KomuTOelEYcM5cM84NMl8kTLkqNCVVQ8~IzYuRm8A3-Q7o-VVcaLskr36y4879Sgoik6lR0yLuRsYO4~~tugjbCQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":23520923,"url":"http://arxiv.org/pdf/1301.4367"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="525296" id="myrefereeingsininternationaljournals"><div class="js-work-strip profile--work_container" data-work-id="3539579"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/3539579/Referee_work"><img alt="Research paper thumbnail of Referee work" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/3539579/Referee_work">Referee work</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">&quot;&quot;&quot;1) Ars Combinatoria (SCI) 2) Ain Shams engineering Journal (SCOPUS) 3) Advanced Studies ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">&quot;&quot;&quot;1) Ars Combinatoria (SCI) <br /> <br />2) Ain Shams engineering Journal (SCOPUS) <br /> <br />3) Advanced Studies in Contemporary Mathematics (SCOPUS) <br /> <br />4) Proceedings Jangjeon Mathematical Society (SCOPUS) <br /> <br />5) Journal of Inequalities and Application (SCI) <br /> <br />6) Numerical Analysis and Applied Mathematics (SCI) <br /> <br />7) International Journal of Mathematics and Mathematical Sciences (SCOPUS) <br /> <br />8) Advances in Difference Equations (SCI) <br /> <br />9) Abstract and Applied Analysis (SCI) <br /> <br />10) Fixed Point Theory and Applications (SCI) <br /> <br />11) Journal of Analysis &amp; Number Theory <br /> <br />12) Journal of Mathematical Sciences and Appl. <br /> <br />13) Journal of Function Spaces and Applications (SCI) <br /> <br />14) Universal Journal of Computational Mathematics <br /> <br />15) Science-China Mathematics (SCI) <br /> <br />16) Asian Journal of Applied Science <br /> <br />17) Journal of Chungcheon Mathematical Society <br /> <br />18) ORN Journal of Mathematics and Computer Science and Research <br /> <br />19) Advances in Pure Mathematics <br /> <br />20) Turkish Journal of Analysis and Number Theory <br /> <br />21) Open Journal of Applied Science <br /> <br />22) British Journal of Mathematics and Computer Science(ISI) <br /> <br />23) Maejo Int. J. Sci. Technol. (SCI-E)&quot;&quot;&quot;</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="3539579"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="3539579"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 3539579; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=3539579]").text(description); $(".js-view-count[data-work-id=3539579]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 3539579; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='3539579']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 3539579, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=3539579]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":3539579,"title":"Referee work","translated_title":"","metadata":{"abstract":"\"\"\"1) Ars Combinatoria (SCI)\r\n\r\n2) Ain Shams engineering Journal (SCOPUS)\r\n\r\n3) Advanced Studies in Contemporary Mathematics (SCOPUS)\r\n\r\n4) Proceedings Jangjeon Mathematical Society (SCOPUS)\r\n\r\n5) Journal of Inequalities and Application (SCI)\r\n\r\n6) Numerical Analysis and Applied Mathematics (SCI)\r\n\r\n7) International Journal of Mathematics and Mathematical Sciences (SCOPUS)\r\n\r\n8) Advances in Difference Equations (SCI)\r\n\r\n9) Abstract and Applied Analysis (SCI)\r\n\r\n10) Fixed Point Theory and Applications (SCI)\r\n\r\n11) Journal of Analysis \u0026 Number Theory\r\n\r\n12) Journal of Mathematical Sciences and Appl.\r\n\r\n13) Journal of Function Spaces and Applications (SCI)\r\n\r\n14) Universal Journal of Computational Mathematics\r\n\r\n15) Science-China Mathematics (SCI)\r\n\r\n16) Asian Journal of Applied Science\r\n\r\n17) Journal of Chungcheon Mathematical Society\r\n\r\n18) ORN Journal of Mathematics and Computer Science and Research\r\n\r\n19) Advances in Pure Mathematics\r\n\r\n20) Turkish Journal of Analysis and Number Theory\r\n\r\n21) Open Journal of Applied Science\r\n\r\n22) British Journal of Mathematics and Computer Science(ISI)\r\n\r\n23) Maejo Int. J. Sci. Technol. (SCI-E)\"\"\""},"translated_abstract":"\"\"\"1) Ars Combinatoria (SCI)\r\n\r\n2) Ain Shams engineering Journal (SCOPUS)\r\n\r\n3) Advanced Studies in Contemporary Mathematics (SCOPUS)\r\n\r\n4) Proceedings Jangjeon Mathematical Society (SCOPUS)\r\n\r\n5) Journal of Inequalities and Application (SCI)\r\n\r\n6) Numerical Analysis and Applied Mathematics (SCI)\r\n\r\n7) International Journal of Mathematics and Mathematical Sciences (SCOPUS)\r\n\r\n8) Advances in Difference Equations (SCI)\r\n\r\n9) Abstract and Applied Analysis (SCI)\r\n\r\n10) Fixed Point Theory and Applications (SCI)\r\n\r\n11) Journal of Analysis \u0026 Number Theory\r\n\r\n12) Journal of Mathematical Sciences and Appl.\r\n\r\n13) Journal of Function Spaces and Applications (SCI)\r\n\r\n14) Universal Journal of Computational Mathematics\r\n\r\n15) Science-China Mathematics (SCI)\r\n\r\n16) Asian Journal of Applied Science\r\n\r\n17) Journal of Chungcheon Mathematical Society\r\n\r\n18) ORN Journal of Mathematics and Computer Science and Research\r\n\r\n19) Advances in Pure Mathematics\r\n\r\n20) Turkish Journal of Analysis and Number Theory\r\n\r\n21) Open Journal of Applied Science\r\n\r\n22) British Journal of Mathematics and Computer Science(ISI)\r\n\r\n23) Maejo Int. J. Sci. Technol. (SCI-E)\"\"\"","internal_url":"https://www.academia.edu/3539579/Referee_work","translated_internal_url":"","created_at":"2013-05-15T09:50:14.194-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[],"downloadable_attachments":[],"slug":"Referee_work","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="525302" id="memberoftheeditorialboards"><div class="js-work-strip profile--work_container" data-work-id="3539603"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/3539603/A_member_of_editorial_board_for_the_journals_"><img alt="Research paper thumbnail of A member of editorial board for the journals:" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/3539603/A_member_of_editorial_board_for_the_journals_">A member of editorial board for the journals:</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">&quot;&quot;&quot;&quot;&quot;&quot;&quot;1) Editorial in Chief for Journal of Analysis &amp; Number Theory, http://www.naturalspublishi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">&quot;&quot;&quot;&quot;&quot;&quot;&quot;1) Editorial in Chief for Journal of Analysis &amp; Number Theory, <a href="http://www.naturalspublishing.com/show.asp?JorID=5&amp;pgid=37" rel="nofollow">http://www.naturalspublishing.com/show.asp?JorID=5&amp;pgid=37</a> <br /> <br />2) Editorial Board, Journal of Mathematical Science and Appl. <a href="http://www.sciepub.com/journal/JMSA/EditorialBoard" rel="nofollow">http://www.sciepub.com/journal/JMSA/EditorialBoard</a> <br /> <br />3) Editorial Board, Universal Journal of Computational Mathematics, <a href="http://www.hrpub.org/journals/jour_editorialboard.php?id=24" rel="nofollow">http://www.hrpub.org/journals/jour_editorialboard.php?id=24</a> <br /> <br />4) Editorial Board, Scientific Research and Impact, <a href="http://scienceparkjournals.org/sri/board.htm" rel="nofollow">http://scienceparkjournals.org/sri/board.htm</a> <br /> <br />5) Editor Review committee, International Journal of Scientific and Engineering Research, <a href="http://www.ijser.org/editorial-board.aspx#" rel="nofollow">http://www.ijser.org/editorial-board.aspx#</a>. <br /> <br />6) Editor-in Chief of Turkish Journal of Analysis and Number Theory, <a href="http://www.sciepub.com/journal/TJANT/EditorialBoard" rel="nofollow">http://www.sciepub.com/journal/TJANT/EditorialBoard</a> <br /> <br />7) Editor-in-Chief, Journal for algebra and number theory academia, <a href="http://www.mililink.com/journals_eb.php?id=62" rel="nofollow">http://www.mililink.com/journals_eb.php?id=62</a> <br /> <br />8) Editorial Board, ORN Journal of Mathematics and Computer Science and Research, <a href="http://www.openresearchnetwork.org/ORNJMCSR/editors" rel="nofollow">http://www.openresearchnetwork.org/ORNJMCSR/editors</a> <br /> <br />9) Editorial Board, Computer Science Theories, Methods and Applications, <br /><a href="http://www.mililink.com/journals_eb.php?id=66" rel="nofollow">http://www.mililink.com/journals_eb.php?id=66</a> <br /> <br />10) Editorial Board, Research Journal of Computation and Mathematics, <a href="http://www.sciknow.org/journals/show/id/rjcm" rel="nofollow">http://www.sciknow.org/journals/show/id/rjcm</a> <br /> <br />11) Editorial Board, Open Journal of Mathematical Modeling, <a href="http://www.sciknow.org/journals/show/id/ojmmo" rel="nofollow">http://www.sciknow.org/journals/show/id/ojmmo</a> <br /> <br />12-) Editorial Board Member, International Journal of Mathematical Analysis and Applications, <a href="http://www.aascit.org/journal/editorial?journalId=921" rel="nofollow">http://www.aascit.org/journal/editorial?journalId=921</a> <br /> <br />13-) Lead Guest Editor of the special issue titled &quot;Recent Trends in Special Numbers and Special Functions and Polynomials, <a href="http://www.hindawi.com/journals/ijmms/si/515648/cfp/" rel="nofollow">http://www.hindawi.com/journals/ijmms/si/515648/cfp/</a> <br /> <br />14-) In the Editorial Board for &quot;Maejo Int. J. Sci. Technol.&quot; indexed by SCI-E (IF: 0.456), <br /><a href="http://www.mijst.mju.ac.th/board.htm" rel="nofollow">http://www.mijst.mju.ac.th/board.htm</a>&quot;&quot;&quot;&quot;&quot;</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="3539603"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="3539603"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 3539603; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=3539603]").text(description); $(".js-view-count[data-work-id=3539603]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 3539603; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='3539603']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 3539603, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=3539603]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":3539603,"title":"A member of editorial board for the journals:","translated_title":"","metadata":{"abstract":"\"\"\"\"\"\"\"1) Editorial in Chief for Journal of Analysis \u0026 Number Theory, http://www.naturalspublishing.com/show.asp?JorID=5\u0026pgid=37\r\n\r\n2) Editorial Board, Journal of Mathematical Science and Appl. http://www.sciepub.com/journal/JMSA/EditorialBoard\r\n\r\n3) Editorial Board, Universal Journal of Computational Mathematics, http://www.hrpub.org/journals/jour_editorialboard.php?id=24\r\n\r\n4) Editorial Board, Scientific Research and Impact, http://scienceparkjournals.org/sri/board.htm\r\n\r\n5) Editor Review committee, International Journal of Scientific and Engineering Research, http://www.ijser.org/editorial-board.aspx#.\r\n\r\n6) Editor-in Chief of Turkish Journal of Analysis and Number Theory, http://www.sciepub.com/journal/TJANT/EditorialBoard\r\n\r\n7) Editor-in-Chief, Journal for algebra and number theory academia, http://www.mililink.com/journals_eb.php?id=62\r\n\r\n8) Editorial Board, ORN Journal of Mathematics and Computer Science and Research, http://www.openresearchnetwork.org/ORNJMCSR/editors \r\n\r\n9) Editorial Board, Computer Science Theories, Methods and Applications, \r\nhttp://www.mililink.com/journals_eb.php?id=66\r\n\r\n10) Editorial Board, Research Journal of Computation and Mathematics, http://www.sciknow.org/journals/show/id/rjcm\r\n\r\n11) Editorial Board, Open Journal of Mathematical Modeling, http://www.sciknow.org/journals/show/id/ojmmo\r\n\r\n12-) Editorial Board Member, International Journal of Mathematical Analysis and Applications, http://www.aascit.org/journal/editorial?journalId=921\r\n\r\n13-) Lead Guest Editor of the special issue titled \"Recent Trends in Special Numbers and Special Functions and Polynomials, http://www.hindawi.com/journals/ijmms/si/515648/cfp/ \r\n\r\n14-) In the Editorial Board for \"Maejo Int. J. Sci. Technol.\" indexed by SCI-E (IF: 0.456),\r\nhttp://www.mijst.mju.ac.th/board.htm\"\"\"\"\""},"translated_abstract":"\"\"\"\"\"\"\"1) Editorial in Chief for Journal of Analysis \u0026 Number Theory, http://www.naturalspublishing.com/show.asp?JorID=5\u0026pgid=37\r\n\r\n2) Editorial Board, Journal of Mathematical Science and Appl. http://www.sciepub.com/journal/JMSA/EditorialBoard\r\n\r\n3) Editorial Board, Universal Journal of Computational Mathematics, http://www.hrpub.org/journals/jour_editorialboard.php?id=24\r\n\r\n4) Editorial Board, Scientific Research and Impact, http://scienceparkjournals.org/sri/board.htm\r\n\r\n5) Editor Review committee, International Journal of Scientific and Engineering Research, http://www.ijser.org/editorial-board.aspx#.\r\n\r\n6) Editor-in Chief of Turkish Journal of Analysis and Number Theory, http://www.sciepub.com/journal/TJANT/EditorialBoard\r\n\r\n7) Editor-in-Chief, Journal for algebra and number theory academia, http://www.mililink.com/journals_eb.php?id=62\r\n\r\n8) Editorial Board, ORN Journal of Mathematics and Computer Science and Research, http://www.openresearchnetwork.org/ORNJMCSR/editors \r\n\r\n9) Editorial Board, Computer Science Theories, Methods and Applications, \r\nhttp://www.mililink.com/journals_eb.php?id=66\r\n\r\n10) Editorial Board, Research Journal of Computation and Mathematics, http://www.sciknow.org/journals/show/id/rjcm\r\n\r\n11) Editorial Board, Open Journal of Mathematical Modeling, http://www.sciknow.org/journals/show/id/ojmmo\r\n\r\n12-) Editorial Board Member, International Journal of Mathematical Analysis and Applications, http://www.aascit.org/journal/editorial?journalId=921\r\n\r\n13-) Lead Guest Editor of the special issue titled \"Recent Trends in Special Numbers and Special Functions and Polynomials, http://www.hindawi.com/journals/ijmms/si/515648/cfp/ \r\n\r\n14-) In the Editorial Board for \"Maejo Int. J. Sci. Technol.\" indexed by SCI-E (IF: 0.456),\r\nhttp://www.mijst.mju.ac.th/board.htm\"\"\"\"\"","internal_url":"https://www.academia.edu/3539603/A_member_of_editorial_board_for_the_journals_","translated_internal_url":"","created_at":"2013-05-15T10:00:01.159-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[],"downloadable_attachments":[],"slug":"A_member_of_editorial_board_for_the_journals_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="2331502" id="conferencebrochurs"><div class="js-work-strip profile--work_container" data-work-id="9884422"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/9884422/Innovative_Trends_in_Computing_Technology_and_Mathematica"><img alt="Research paper thumbnail of Innovative Trends in Computing Technology &amp; Mathematica" class="work-thumbnail" src="https://attachments.academia-assets.com/36043864/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/9884422/Innovative_Trends_in_Computing_Technology_and_Mathematica">Innovative Trends in Computing Technology &amp; Mathematica</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c28336682407681bff55322a11a81b08" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:36043864,&quot;asset_id&quot;:9884422,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/36043864/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="9884422"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="9884422"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 9884422; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=9884422]").text(description); $(".js-view-count[data-work-id=9884422]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 9884422; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='9884422']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 9884422, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c28336682407681bff55322a11a81b08" } } $('.js-work-strip[data-work-id=9884422]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":9884422,"title":"Innovative Trends in Computing Technology \u0026 Mathematica","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/9884422/Innovative_Trends_in_Computing_Technology_and_Mathematica","translated_internal_url":"","created_at":"2014-12-23T23:40:31.664-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":990498,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[],"downloadable_attachments":[{"id":36043864,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36043864/thumbnails/1.jpg","file_name":"conference2015.pdf","download_url":"https://www.academia.edu/attachments/36043864/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Innovative_Trends_in_Computing_Technolog.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36043864/conference2015-libre.pdf?1419471395=\u0026response-content-disposition=attachment%3B+filename%3DInnovative_Trends_in_Computing_Technolog.pdf\u0026Expires=1732990259\u0026Signature=RxHHwEu8VrMkpolQdrqTwuqEwOoRrGqi7Z4hwOWyjPPxi9WY8zDAz65INmpV1ZTlLE9OF7GemTuhJbNcgMfEQ7251-4kNYfee-ljHzHIzCkPTKzIV2Nfge4S7fIRKCxEpZM0PsvGe041TVpKYSSXi29fWaFXWr1uO-VqANoR9npexeJjuPD19GZ7B-tIqb2CBBhPSVwZw4nhxAlgQbW4tcf0u1Ao1bfRDZtzTRenfj3ApuaM2Mw~EhUFViWAx-gWbITyj-monpV3dBvEZbhdAZhvu8PLL~nINhOqsD-G~SJQf731rQFIjy5QkfZUee25NtXb2F4jioBbfXac3R0QQA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Innovative_Trends_in_Computing_Technology_and_Mathematica","translated_slug":"","page_count":2,"language":"en","content_type":"Work","owner":{"id":990498,"first_name":"Serkan","middle_initials":null,"last_name":"Araci","page_name":"saraci","domain_name":"hku-tr","created_at":"2011-11-28T03:39:27.796-08:00","display_name":"Serkan Araci","url":"https://hku-tr.academia.edu/saraci"},"attachments":[{"id":36043864,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/36043864/thumbnails/1.jpg","file_name":"conference2015.pdf","download_url":"https://www.academia.edu/attachments/36043864/download_file?st=MTczMzAwMTk5Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Innovative_Trends_in_Computing_Technolog.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/36043864/conference2015-libre.pdf?1419471395=\u0026response-content-disposition=attachment%3B+filename%3DInnovative_Trends_in_Computing_Technolog.pdf\u0026Expires=1732990259\u0026Signature=RxHHwEu8VrMkpolQdrqTwuqEwOoRrGqi7Z4hwOWyjPPxi9WY8zDAz65INmpV1ZTlLE9OF7GemTuhJbNcgMfEQ7251-4kNYfee-ljHzHIzCkPTKzIV2Nfge4S7fIRKCxEpZM0PsvGe041TVpKYSSXi29fWaFXWr1uO-VqANoR9npexeJjuPD19GZ7B-tIqb2CBBhPSVwZw4nhxAlgQbW4tcf0u1Ao1bfRDZtzTRenfj3ApuaM2Mw~EhUFViWAx-gWbITyj-monpV3dBvEZbhdAZhvu8PLL~nINhOqsD-G~SJQf731rQFIjy5QkfZUee25NtXb2F4jioBbfXac3R0QQA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":295037,"name":"Information Techology","url":"https://www.academia.edu/Documents/in/Information_Techology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 2 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "eae84543ae4d09d99f360c2cad157508ee51507f9a6d934e693e29790aba79f1", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="2Ka1gy8XAApQe/3v83yPBPfYguV+fJiwgu8MQTUhZoODRUU3S8DQmlWRoIN0GW3dX+e2A2G9h6/EeR3NP/CXpQ==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://hku-tr.academia.edu/saraci" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="px6Kw1I0EQieYoD8Gn3OoaIXPHfsLi9l93GZYhwI4mX8/Xp3NuPBmJuI3ZCdGCx4CigIkfPvMHqx54juFtkTQw==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10