CINXE.COM

Compression and Transmission of Big AI Model Based on Deep Learning: Compression and Transmission of Big AI Model Based on Deep Learning | EAI Endorsed Transactions on Scalable Information Systems

<!DOCTYPE html> <html lang="en-US" xml:lang="en-US"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title> Compression and Transmission of Big AI Model Based on Deep Learning: Compression and Transmission of Big AI Model Based on Deep Learning | EAI Endorsed Transactions on Scalable Information Systems </title> <link rel="icon" href="https://publications.eai.eu/public/journals/8/favicon_en_US.png"> <meta name="generator" content="Open Journal Systems 3.3.0.18"> <meta property="og:site_name" content="EAI Endorsed Transactions on Scalable Information Systems"/> <meta property="og:type" content="article"/> <meta property="og:title" content="Compression and Transmission of Big AI Model Based on Deep Learning: Compression and Transmission of Big AI Model Based on Deep Learning"/> <meta name="description" property="og:description" content=" In recent years, big AI models have demonstrated remarkable performance in various artificial intelligence (AI) tasks. However, their widespread use has introduced significant challenges in terms of model transmission and training. This paper addresses these challenges by proposing a solution that involves the compression and transmission of large models using deep learning techniques, thereby ensuring the efficiency of model training. To achieve this objective, we leverage deep convolutional networks to design a novel approach for compressing and transmitting large models. Specifically, deep convolutional networks are employed for model compression, providing an effective means to reduce the size of large models without compromising their representational capacity. The proposed framework also includes carefully devised encoding and decoding strategies to guarantee the restoration of model integrity after transmission. Furthermore, a tailored loss function is designed for model training, facilitating the optimization of both the transmission and training performance within the system. Through experimental evaluation, we demonstrate the efficacy of the proposed approach in addressing the challenges associated with large model transmission and training. The results showcase the successful compression and subsequent accurate reconstruction of large models, while maintaining their performance across various AI tasks. This work contributes to the ongoing research in enhancing the practicality and efficiency of deploying large models in real-world AI applications. "/> <meta property="og:url" content="https://publications.eai.eu/index.php/sis/article/view/3803"/> <meta name="og:locale" content="en_US"/> <meta name="image" property="og:image" content=""/> <meta name="article:published_time" content="2023-12-11"/> <meta name="article:tag" content="Big AI model"/> <meta name="article:tag" content="compression and transmission"/> <meta name="article:tag" content="deep learning"/> <meta name="article:tag" content="convolutional networks"/> <link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" /> <meta name="DC.Creator.PersonalName" content="Zhengping Lin"/> <meta name="DC.Creator.PersonalName" content="Yuzhong Zhou"/> <meta name="DC.Creator.PersonalName" content="Yuliang Yang"/> <meta name="DC.Creator.PersonalName" content="Jiahao Shi"/> <meta name="DC.Creator.PersonalName" content="Jie Lin"/> <meta name="DC.Date.created" scheme="ISO8601" content="2023-12-11"/> <meta name="DC.Date.dateSubmitted" scheme="ISO8601" content="2023-08-28"/> <meta name="DC.Date.issued" scheme="ISO8601" content="2024-01-11"/> <meta name="DC.Date.modified" scheme="ISO8601" content="2024-01-11"/> <meta name="DC.Description" xml:lang="en" content="In recent years, big AI models have demonstrated remarkable performance in various artificial intelligence (AI) tasks. However, their widespread use has introduced significant challenges in terms of model transmission and training. This paper addresses these challenges by proposing a solution that involves the compression and transmission of large models using deep learning techniques, thereby ensuring the efficiency of model training. To achieve this objective, we leverage deep convolutional networks to design a novel approach for compressing and transmitting large models. Specifically, deep convolutional networks are employed for model compression, providing an effective means to reduce the size of large models without compromising their representational capacity. The proposed framework also includes carefully devised encoding and decoding strategies to guarantee the restoration of model integrity after transmission. Furthermore, a tailored loss function is designed for model training, facilitating the optimization of both the transmission and training performance within the system. Through experimental evaluation, we demonstrate the efficacy of the proposed approach in addressing the challenges associated with large model transmission and training. The results showcase the successful compression and subsequent accurate reconstruction of large models, while maintaining their performance across various AI tasks. This work contributes to the ongoing research in enhancing the practicality and efficiency of deploying large models in real-world AI applications."/> <meta name="DC.Format" scheme="IMT" content="application/pdf"/> <meta name="DC.Identifier" content="3803"/> <meta name="DC.Identifier.DOI" content="10.4108/eetsis.3803"/> <meta name="DC.Identifier.URI" content="https://publications.eai.eu/index.php/sis/article/view/3803"/> <meta name="DC.Language" scheme="ISO639-1" content="en"/> <meta name="DC.Rights" content="Copyright (c) 2023 Zhengping Lin, Yuzhong Zhou, Yuliang Yang, Jiahao Shi, Jie Lin"/> <meta name="DC.Rights" content="https://creativecommons.org/licenses/by-nc-sa/4.0"/> <meta name="DC.Source" content="EAI Endorsed Transactions on Scalable Information Systems"/> <meta name="DC.Source.ISSN" content="2032-9407"/> <meta name="DC.Source.Issue" content="2"/> <meta name="DC.Source.Volume" content="11"/> <meta name="DC.Source.URI" content="https://publications.eai.eu/index.php/sis"/> <meta name="DC.Subject" xml:lang="en" content="convolutional networks"/> <meta name="DC.Title" content="Compression and Transmission of Big AI Model Based on Deep Learning"/> <meta name="DC.Type" content="Text.Serial.Journal"/> <meta name="DC.Type.articleType" content="Research articles"/> <meta name="gs_meta_revision" content="1.1"/> <meta name="citation_journal_title" content="EAI Endorsed Transactions on Scalable Information Systems"/> <meta name="citation_journal_abbrev" content="EAI Endorsed Scal Inf Syst"/> <meta name="citation_issn" content="2032-9407"/> <meta name="citation_author" content="Zhengping Lin"/> <meta name="citation_author_institution" content="China Southern Power Grid (China) "/> <meta name="citation_author" content="Yuzhong Zhou"/> <meta name="citation_author_institution" content="China Southern Power Grid (China) "/> <meta name="citation_author" content="Yuliang Yang"/> <meta name="citation_author_institution" content="China Southern Power Grid (China) "/> <meta name="citation_author" content="Jiahao Shi"/> <meta name="citation_author_institution" content="China Southern Power Grid (China) "/> <meta name="citation_author" content="Jie Lin"/> <meta name="citation_author_institution" content="China Southern Power Grid (China) "/> <meta name="citation_title" content="Compression and Transmission of Big AI Model Based on Deep Learning: Compression and Transmission of Big AI Model Based on Deep Learning"/> <meta name="citation_language" content="en"/> <meta name="citation_date" content="2024"/> <meta name="citation_volume" content="11"/> <meta name="citation_issue" content="2"/> <meta name="citation_doi" content="10.4108/eetsis.3803"/> <meta name="citation_abstract_html_url" content="https://publications.eai.eu/index.php/sis/article/view/3803"/> <meta name="citation_keywords" xml:lang="en" content="Big AI model"/> <meta name="citation_keywords" xml:lang="en" content="compression and transmission"/> <meta name="citation_keywords" xml:lang="en" content="deep learning"/> <meta name="citation_keywords" xml:lang="en" content="convolutional networks"/> <meta name="citation_pdf_url" content="https://publications.eai.eu/index.php/sis/article/download/3803/2746"/> <meta name="citation_reference" content="A. E. Haddad and L. Najafizadeh, “The discriminative discrete basis problem: Definitions, algorithms, benchmarking, and application to brain’s functional dynamics,” IEEE Trans. Signal Process., vol. 71, pp. 1–16, 2023."/> <meta name="citation_reference" content="R. Gabrys, S. Pattabiraman, and O. Milenkovic, “Reconstruction of sets of strings from prefix/suffix compositions,” IEEE Trans. Commun., vol. 71, no. 1, pp. 3–12, 2023."/> <meta name="citation_reference" content="L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Hierarchical federated learning with quantization: Convergence analysis and system design,” IEEE Trans. Wirel. Commun., vol. 22, no. 1, pp. 2–18, 2023."/> <meta name="citation_reference" content="F. L. Andrade, M. A. T. Figueiredo, and J. Xavier, “Distributed banach-picard iteration: Application to distributed parameter estimation and PCA,” IEEE Trans. Signal Process., vol. 71, pp. 17–30, 2023."/> <meta name="citation_reference" content="Q.Wang, S. Cai, Y.Wang, and X. Ma, “Free-ride feedback and superposition retransmission over LDPC coded links,” IEEE Trans. Commun., vol. 71, no. 1, pp. 13–25, 2023."/> <meta name="citation_reference" content="Z. Xie, W. Chen, and H. V. Poor, “A unified framework for pushing in two-tier heterogeneous networks with mmwave hotspots,” IEEE Trans. Wirel. Commun., vol. 22, no. 1, pp. 19–31, 2023."/> <meta name="citation_reference" content="O. Lang, C. Hofbauer, R. Feger, and M. Huemer, “Rangedivision multiplexing for MIMO OFDM joint radar and communications,” IEEE Trans. Veh. Technol., vol. 72, no. 1, pp. 52–65, 2023."/> <meta name="citation_reference" content="M. Hellkvist, A. Özçelikkale, and A. Ahlén, “Estimation under model misspecification with fake features,” IEEE Trans. Signal Process., vol. 71, pp. 47–60, 2023."/> <meta name="citation_reference" content="Z. Xuan and K. Narayanan, “Low-delay analog joint source-channel coding with deep learning,” IEEE Trans. Commun., vol. 71, no. 1, pp. 40–51, 2023."/> <meta name="citation_reference" content="F. Hu, Y. Deng, and A. H. Aghvami, “Scalable multiagent reinforcement learning for dynamic coordinated multipoint clustering,” IEEE Trans. Commun., vol. 71, no. 1, pp. 101–114, 2023."/> <meta name="citation_reference" content="H. Hui and W. Chen, “Joint scheduling of proactive pushing and on-demand transmission over shared spectrum for profit maximization,” IEEE Trans. Wirel. Commun., vol. 22, no. 1, pp. 107–121, 2023."/> <meta name="citation_reference" content="S. Liu and L. Ji, “Double multilevel constructions for constant dimension codes,” IEEE Trans. Inf. Theory, vol. 69, no. 1, pp. 157–168, 2023."/> <meta name="citation_reference" content="Q. Pan, Z. Qiu, Y. Xu, and G. Yao, “Predicting the price of second-hand housing based on lambda architecture and kd tree,” Infocommunications Journal, vol. 14, no. 1, pp. 2–10, 2022."/> <meta name="citation_reference" content="Z. Zhang, Z. Shi, and Y. Gu, “Ziv-zakai bound for doas estimation,” IEEE Trans. Signal Process., vol. 71, pp. 136–149, 2023."/> <meta name="citation_reference" content="S. Guo and X. Zhao, “Multi-agent deep reinforcement learning based transmission latency minimization for delay-sensitive cognitive satellite-uav networks,” IEEE Trans. Commun., vol. 71, no. 1, pp. 131–144, 2023."/> <meta name="citation_reference" content="X. Fang, W. Feng, Y. Wang, Y. Chen, N. Ge, Z. Ding, and H. Zhu, “Noma-based hybrid satellite-uav-terrestrial networks for 6g maritime coverage,” IEEE Trans. Wirel. Commun., vol. 22, no. 1, pp. 138–152, 2023."/> <meta name="citation_reference" content="R. Gabrys, V. Guruswami, J. L. Ribeiro, and K. Wu, “Beyond single-deletion correcting codes: Substitutions and transpositions,” IEEE Trans. Inf. Theory, vol. 69, no. 1, pp. 169–186, 2023."/> <meta name="citation_reference" content="X. Niu and E. Wei, “Fedhybrid: A hybrid federated optimization method for heterogeneous clients,” IEEE Trans. Signal Process., vol. 71, pp. 150–163, 2023."/> <meta name="citation_reference" content="R. Yang, Z. Zhang, X. Zhang, C. Li, Y. Huang, and L. Yang, “Meta-learning for beam prediction in a dualband communication system,” IEEE Trans. Commun., vol. 71, no. 1, pp. 145–157, 2023."/> <meta name="citation_reference" content="X. Chen, W. Wei, Q. Yan, N. Yang, and J. Huang, “Timedelay deep q-network based retarder torque tracking control framework for heavy-duty vehicles,” IEEE Trans. Veh. Technol., vol. 72, no. 1, pp. 149–161, 2023."/> <meta name="citation_reference" content="Z. Yang, F. Li, and D. Zhang, “A joint model extraction and data detection framework for IRS-NOMA system,” IEEE Trans. Signal Process., vol. 71, pp. 164–177, 2023."/> <meta name="citation_reference" content="T. Zhang, K. Zhu, S. Zheng, D. Niyato, and N. C. Luong, “Trajectory design and power control for joint radar and communication enabled multi-uav cooperative detection systems,” IEEE Trans. Commun., vol. 71, no. 1, pp. 158–172, 2023."/> <meta name="citation_reference" content="N. Zhang, M. Tao, J.Wang, and F. Xu, “Fundamental limits of communication efficiency for model aggregation in distributed learning: A rate-distortion approach,” IEEE Trans. Commun., vol. 71, no. 1, pp. 173–186, 2023."/> <meta name="citation_reference" content="X. Yue, J. Xie, Y. Liu, Z. Han, R. Liu, and Z. Ding, “Simultaneously transmitting and reflecting reconfigurable intelligent surface assisted NOMA networks,” IEEE Trans. Wirel. Commun., vol. 22, no. 1, pp. 189–204, 2023."/> <meta name="citation_reference" content="M. Zhang, H. Zhang, Y. Fang, and D. Yuan, “Learning based data transmissions for future 6g enabled industrial iot: A data compression perspective,” IEEE Network, vol. 36, no. 5, pp. 180–187, 2022."/> <meta name="citation_reference" content="X. Zhang, X. Zhu, J. Wang, H. Yan, H. Chen, and W. Bao, “Federated learning with adaptive communication compression under dynamic bandwidth and unreliable networks,” Information Sciences, vol. 540, pp. 242–262, 2020."/> <link rel="alternate" type="application/atom+xml" href="https://publications.eai.eu/index.php/sis/gateway/plugin/AnnouncementFeedGatewayPlugin/atom"> <link rel="alternate" type="application/rdf+xml" href="https://publications.eai.eu/index.php/sis/gateway/plugin/AnnouncementFeedGatewayPlugin/rss"> <link rel="alternate" type="application/rss+xml" href="https://publications.eai.eu/index.php/sis/gateway/plugin/AnnouncementFeedGatewayPlugin/rss2"> <link rel="stylesheet" href="https://publications.eai.eu/index.php/sis/$$$call$$$/page/page/css?name=stylesheet" type="text/css" /><link rel="stylesheet" href="https://publications.eai.eu/index.php/sis/$$$call$$$/page/page/css?name=font" type="text/css" /><link rel="stylesheet" href="https://publications.eai.eu/lib/pkp/styles/fontawesome/fontawesome.css?v=3.3.0.18" type="text/css" /><style type="text/css">.pkp_structure_head { background: center / cover no-repeat url("https://publications.eai.eu/public/journals/8/homepageImage_en_US.png");}</style><link rel="stylesheet" href="https://publications.eai.eu/plugins/generic/citations/css/citations.css?v=3.3.0.18" type="text/css" /> </head> <body class="pkp_page_article pkp_op_view" dir="ltr"> <div class="pkp_structure_page"> <header class="pkp_structure_head" id="headerNavigationContainer" role="banner"> <nav class="cmp_skip_to_content" aria-label="Jump to content links"> <a href="#pkp_content_main">Skip to main content</a> <a href="#siteNav">Skip to main navigation menu</a> <a href="#pkp_content_footer">Skip to site footer</a> </nav> <div class="pkp_head_wrapper"> <div class="pkp_site_name_wrapper"> <button class="pkp_site_nav_toggle"> <span>Open Menu</span> </button> <div class="pkp_site_name"> <a href=" https://publications.eai.eu/index.php/sis/index " class="is_text">EAI Endorsed Transactions on Scalable Information Systems</a> </div> </div> <nav class="pkp_site_nav_menu" aria-label="Site Navigation"> <a id="siteNav"></a> <div class="pkp_navigation_primary_row"> <div class="pkp_navigation_primary_wrapper"> <ul id="navigationPrimary" class="pkp_navigation_primary pkp_nav_list"> <li class=""> <a href="https://publications.eai.eu/index.php/sis/index"> Home </a> </li> <li class=""> <a href="https://publications.eai.eu/index.php/sis/about"> About </a> <ul> <li class=""> <a href="https://publications.eai.eu/index.php/sis/about"> About the Journal </a> </li> <li class=""> <a href="https://publications.eai.eu/index.php/sis/about/submissions"> Submissions </a> </li> <li class=""> <a href="https://publications.eai.eu/index.php/sis/about/editorialTeam"> Editorial Team </a> </li> <li class=""> <a href="https://publications.eai.eu/index.php/sis/indexing"> Indexing </a> </li> <li class=""> <a href="https://publications.eai.eu/index.php/sis/open-access"> Open Access Information </a> </li> <li class=""> <a href="https://publications.eai.eu/index.php/sis/benefits"> Benefits of EAI Transactions </a> </li> <li class=""> <a href="https://publications.eai.eu/index.php/sis/about/privacy"> Privacy Statement </a> </li> <li class=""> <a href="https://publications.eai.eu/index.php/sis/about/contact"> Contact </a> </li> </ul> </li> <li class=""> <a href="https://publications.eai.eu/index.php/sis/issue/current"> Current </a> </li> <li class=""> <a href="https://publications.eai.eu/index.php/sis/issue/archive"> Archives </a> </li> <li class=""> <a href="https://publications.eai.eu/index.php/sis/ethics"> Publication Ethics </a> </li> <li class=""> <a href="https://publications.eai.eu/index.php/sis/special-issues"> Special Issues </a> </li> <li class=""> <a href="https://publications.eai.eu/index.php/sis/announcement"> Announcements </a> </li> </ul> <div class="pkp_navigation_search_wrapper"> <a href="https://publications.eai.eu/index.php/sis/search" class="pkp_search pkp_search_desktop"> <span class="fa fa-search" aria-hidden="true"></span> Search </a> </div> </div> </div> <div class="pkp_navigation_user_wrapper" id="navigationUserWrapper"> <ul id="navigationUser" class="pkp_navigation_user pkp_nav_list"> <li class="profile"> <a href="https://publications.eai.eu/index.php/sis/user/register"> Register </a> </li> <li class="profile"> <a href="https://publications.eai.eu/index.php/sis/login"> Login </a> </li> </ul> </div> </nav> </div><!-- .pkp_head_wrapper --> </header><!-- .pkp_structure_head --> <div class="pkp_structure_content has_sidebar"> <div class="pkp_structure_main" role="main"> <a id="pkp_content_main"></a> <div class="page page_article"> <nav class="cmp_breadcrumbs" role="navigation" aria-label="You are here:"> <ol> <li> <a href="https://publications.eai.eu/index.php/sis/index"> Home </a> <span class="separator">/</span> </li> <li> <a href="https://publications.eai.eu/index.php/sis/issue/archive"> Archives </a> <span class="separator">/</span> </li> <li> <a href="https://publications.eai.eu/index.php/sis/issue/view/420"> Vol. 11 No. 2 (2024): EAI Endorsed Transactions on Scalable Information Systems </a> <span class="separator">/</span> </li> <li class="current" aria-current="page"> <span aria-current="page"> Research articles </span> </li> </ol> </nav> <article class="obj_article_details"> <h1 class="page_title"> Compression and Transmission of Big AI Model Based on Deep Learning </h1> <h2 class="subtitle"> Compression and Transmission of Big AI Model Based on Deep Learning </h2> <div class="row"> <div class="main_entry"> <section class="item authors"> <h2 class="pkp_screen_reader">Authors</h2> <ul class="authors"> <li> <span class="name"> Zhengping Lin </span> <span class="affiliation"> China Southern Power Grid (China) <a href="https://ror.org/03hkh9419"><?xml version="1.0" encoding="UTF-8" standalone="no"?> <!-- Generator: Adobe Illustrator 23.0.1, SVG Export Plug-In . SVG Version: 6.00 Build 0) --> <svg xmlns:i="&amp;ns_ai;" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:svg="http://www.w3.org/2000/svg" xmlns="http://www.w3.org/2000/svg" xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" version="1.1" id="Layer_1" x="0px" y="0px" viewBox="0 0 23.4225 16.696501" xml:space="preserve" sodipodi:docname="rorId.svg" inkscape:version="0.92.5 (2060ec1f9f, 2020-04-08)" width="23.422501" height="16.696501"><metadata id="metadata93"><rdf:RDF><cc:Work rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage" /></cc:Work></rdf:RDF></metadata><defs id="defs91" /><sodipodi:namedview pagecolor="#ffffff" bordercolor="#666666" borderopacity="1" objecttolerance="10" gridtolerance="10" guidetolerance="10" inkscape:pageopacity="0" inkscape:pageshadow="2" inkscape:window-width="1880" inkscape:window-height="1016" id="namedview89" showgrid="true" showguides="false" inkscape:zoom="1" inkscape:cx="-177.76975" inkscape:cy="13.962506" inkscape:window-x="40" inkscape:window-y="27" inkscape:window-maximized="1" inkscape:current-layer="Layer_1" /> <switch id="switch86" transform="matrix(0.15,0,0,0.15,-0.7305,-0.624)"> <foreignObject requiredExtensions="http://ns.adobe.com/AdobeIllustrator/10.0/" x="0" y="0" width="1" height="1"> </foreignObject> <g i:extraneous="self" id="g84"> <polygon class="strorId0" points="68.65,4.16 56.52,22.74 44.38,4.16 " id="polygon72" style="fill:#53baa1" /> <polygon class="strorId0" points="119.41,4.16 107.28,22.74 95.14,4.16 " id="polygon74" style="fill:#53baa1" /> <polygon class="strorId0" points="44.38,115.47 56.52,96.88 68.65,115.47 " id="polygon76" style="fill:#53baa1" /> <polygon class="strorId0" points="95.14,115.47 107.28,96.88 119.41,115.47 " id="polygon78" style="fill:#53baa1" /> <g id="g82"> <path class="st1" d="m 145.53,63.71 c 4.3,-0.8 7.57,-2.71 9.8,-5.72 2.24,-3.01 3.35,-6.67 3.35,-10.96 0,-3.56 -0.62,-6.52 -1.85,-8.9 -1.23,-2.38 -2.9,-4.27 -4.99,-5.68 -2.09,-1.4 -4.53,-2.41 -7.31,-3.01 -2.78,-0.6 -5.72,-0.9 -8.81,-0.9 h -23.56 v 18.83 c -0.19,-0.55 -0.39,-1.09 -0.61,-1.63 -1.63,-3.95 -3.91,-7.32 -6.84,-10.1 -2.93,-2.78 -6.39,-4.92 -10.41,-6.41 -4.01,-1.49 -8.4,-2.24 -13.16,-2.24 -4.76,0 -9.14,0.75 -13.16,2.24 -4.01,1.49 -7.48,3.63 -10.41,6.41 -2.62,2.49 -4.72,5.46 -6.3,8.9 -0.23,-2.47 -0.81,-4.61 -1.74,-6.41 -1.23,-2.38 -2.9,-4.27 -4.99,-5.68 -2.09,-1.4 -4.53,-2.41 -7.31,-3.01 -2.78,-0.6 -5.72,-0.9 -8.81,-0.9 H 4.87 V 89.42 H 18.28 V 65.08 H 24.9 L 37.63,89.42 H 53.71 L 38.24,63.71 c 4.3,-0.8 7.57,-2.71 9.8,-5.72 0.1,-0.14 0.19,-0.29 0.29,-0.43 -0.02,0.47 -0.03,0.94 -0.03,1.42 0,4.87 0.82,9.29 2.45,13.24 1.63,3.95 3.91,7.32 6.84,10.1 2.92,2.78 6.39,4.92 10.41,6.41 4.01,1.49 8.4,2.24 13.16,2.24 4.76,0 9.14,-0.75 13.16,-2.24 4.01,-1.49 7.48,-3.63 10.41,-6.41 2.92,-2.78 5.2,-6.15 6.84,-10.1 0.22,-0.53 0.42,-1.08 0.61,-1.63 v 18.83 h 13.41 V 65.08 h 6.62 l 12.73,24.34 h 16.08 z M 36.39,50.81 c -0.72,0.92 -1.62,1.59 -2.71,2.02 -1.09,0.43 -2.31,0.69 -3.65,0.77 -1.35,0.09 -2.62,0.13 -3.83,0.13 H 18.29 V 39.89 h 8.77 c 1.2,0 2.44,0.09 3.7,0.26 1.26,0.17 2.38,0.5 3.35,0.99 0.97,0.49 1.78,1.19 2.41,2.11 0.63,0.92 0.95,2.15 0.95,3.7 0,1.65 -0.36,2.94 -1.08,3.86 z m 62.35,16.04 c -0.89,2.38 -2.16,4.44 -3.83,6.19 -1.66,1.75 -3.65,3.11 -5.98,4.09 -2.32,0.98 -4.92,1.46 -7.78,1.46 -2.87,0 -5.46,-0.49 -7.78,-1.46 -2.32,-0.97 -4.31,-2.34 -5.98,-4.09 -1.66,-1.75 -2.94,-3.81 -3.83,-6.19 -0.89,-2.38 -1.33,-5 -1.33,-7.87 0,-2.81 0.44,-5.42 1.33,-7.83 0.89,-2.41 2.16,-4.48 3.83,-6.23 1.66,-1.75 3.65,-3.11 5.98,-4.09 2.32,-0.97 4.91,-1.46 7.78,-1.46 2.87,0 5.46,0.49 7.78,1.46 2.32,0.97 4.31,2.34 5.98,4.09 1.66,1.75 2.94,3.83 3.83,6.23 0.89,2.41 1.33,5.02 1.33,7.83 0,2.87 -0.44,5.49 -1.33,7.87 z m 44.94,-16.04 c -0.72,0.92 -1.62,1.59 -2.71,2.02 -1.09,0.43 -2.31,0.69 -3.65,0.77 -1.35,0.09 -2.62,0.13 -3.83,0.13 h -7.91 V 39.89 h 8.77 c 1.2,0 2.44,0.09 3.7,0.26 1.26,0.17 2.38,0.5 3.35,0.99 0.97,0.49 1.78,1.19 2.41,2.11 0.63,0.92 0.95,2.15 0.95,3.7 0,1.65 -0.36,2.94 -1.08,3.86 z" id="path80" inkscape:connector-curvature="0" style="fill:#202826" /> </g> </g> </switch> </svg> </a> </span> </li> <li> <span class="name"> Yuzhong Zhou </span> <span class="affiliation"> China Southern Power Grid (China) <a href="https://ror.org/03hkh9419"><?xml version="1.0" encoding="UTF-8" standalone="no"?> <!-- Generator: Adobe Illustrator 23.0.1, SVG Export Plug-In . SVG Version: 6.00 Build 0) --> <svg xmlns:i="&amp;ns_ai;" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:svg="http://www.w3.org/2000/svg" xmlns="http://www.w3.org/2000/svg" xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" version="1.1" id="Layer_1" x="0px" y="0px" viewBox="0 0 23.4225 16.696501" xml:space="preserve" sodipodi:docname="rorId.svg" inkscape:version="0.92.5 (2060ec1f9f, 2020-04-08)" width="23.422501" height="16.696501"><metadata id="metadata93"><rdf:RDF><cc:Work rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage" /></cc:Work></rdf:RDF></metadata><defs id="defs91" /><sodipodi:namedview pagecolor="#ffffff" bordercolor="#666666" borderopacity="1" objecttolerance="10" gridtolerance="10" guidetolerance="10" inkscape:pageopacity="0" inkscape:pageshadow="2" inkscape:window-width="1880" inkscape:window-height="1016" id="namedview89" showgrid="true" showguides="false" inkscape:zoom="1" inkscape:cx="-177.76975" inkscape:cy="13.962506" inkscape:window-x="40" inkscape:window-y="27" inkscape:window-maximized="1" inkscape:current-layer="Layer_1" /> <switch id="switch86" transform="matrix(0.15,0,0,0.15,-0.7305,-0.624)"> <foreignObject requiredExtensions="http://ns.adobe.com/AdobeIllustrator/10.0/" x="0" y="0" width="1" height="1"> </foreignObject> <g i:extraneous="self" id="g84"> <polygon class="strorId0" points="68.65,4.16 56.52,22.74 44.38,4.16 " id="polygon72" style="fill:#53baa1" /> <polygon class="strorId0" points="119.41,4.16 107.28,22.74 95.14,4.16 " id="polygon74" style="fill:#53baa1" /> <polygon class="strorId0" points="44.38,115.47 56.52,96.88 68.65,115.47 " id="polygon76" style="fill:#53baa1" /> <polygon class="strorId0" points="95.14,115.47 107.28,96.88 119.41,115.47 " id="polygon78" style="fill:#53baa1" /> <g id="g82"> <path class="st1" d="m 145.53,63.71 c 4.3,-0.8 7.57,-2.71 9.8,-5.72 2.24,-3.01 3.35,-6.67 3.35,-10.96 0,-3.56 -0.62,-6.52 -1.85,-8.9 -1.23,-2.38 -2.9,-4.27 -4.99,-5.68 -2.09,-1.4 -4.53,-2.41 -7.31,-3.01 -2.78,-0.6 -5.72,-0.9 -8.81,-0.9 h -23.56 v 18.83 c -0.19,-0.55 -0.39,-1.09 -0.61,-1.63 -1.63,-3.95 -3.91,-7.32 -6.84,-10.1 -2.93,-2.78 -6.39,-4.92 -10.41,-6.41 -4.01,-1.49 -8.4,-2.24 -13.16,-2.24 -4.76,0 -9.14,0.75 -13.16,2.24 -4.01,1.49 -7.48,3.63 -10.41,6.41 -2.62,2.49 -4.72,5.46 -6.3,8.9 -0.23,-2.47 -0.81,-4.61 -1.74,-6.41 -1.23,-2.38 -2.9,-4.27 -4.99,-5.68 -2.09,-1.4 -4.53,-2.41 -7.31,-3.01 -2.78,-0.6 -5.72,-0.9 -8.81,-0.9 H 4.87 V 89.42 H 18.28 V 65.08 H 24.9 L 37.63,89.42 H 53.71 L 38.24,63.71 c 4.3,-0.8 7.57,-2.71 9.8,-5.72 0.1,-0.14 0.19,-0.29 0.29,-0.43 -0.02,0.47 -0.03,0.94 -0.03,1.42 0,4.87 0.82,9.29 2.45,13.24 1.63,3.95 3.91,7.32 6.84,10.1 2.92,2.78 6.39,4.92 10.41,6.41 4.01,1.49 8.4,2.24 13.16,2.24 4.76,0 9.14,-0.75 13.16,-2.24 4.01,-1.49 7.48,-3.63 10.41,-6.41 2.92,-2.78 5.2,-6.15 6.84,-10.1 0.22,-0.53 0.42,-1.08 0.61,-1.63 v 18.83 h 13.41 V 65.08 h 6.62 l 12.73,24.34 h 16.08 z M 36.39,50.81 c -0.72,0.92 -1.62,1.59 -2.71,2.02 -1.09,0.43 -2.31,0.69 -3.65,0.77 -1.35,0.09 -2.62,0.13 -3.83,0.13 H 18.29 V 39.89 h 8.77 c 1.2,0 2.44,0.09 3.7,0.26 1.26,0.17 2.38,0.5 3.35,0.99 0.97,0.49 1.78,1.19 2.41,2.11 0.63,0.92 0.95,2.15 0.95,3.7 0,1.65 -0.36,2.94 -1.08,3.86 z m 62.35,16.04 c -0.89,2.38 -2.16,4.44 -3.83,6.19 -1.66,1.75 -3.65,3.11 -5.98,4.09 -2.32,0.98 -4.92,1.46 -7.78,1.46 -2.87,0 -5.46,-0.49 -7.78,-1.46 -2.32,-0.97 -4.31,-2.34 -5.98,-4.09 -1.66,-1.75 -2.94,-3.81 -3.83,-6.19 -0.89,-2.38 -1.33,-5 -1.33,-7.87 0,-2.81 0.44,-5.42 1.33,-7.83 0.89,-2.41 2.16,-4.48 3.83,-6.23 1.66,-1.75 3.65,-3.11 5.98,-4.09 2.32,-0.97 4.91,-1.46 7.78,-1.46 2.87,0 5.46,0.49 7.78,1.46 2.32,0.97 4.31,2.34 5.98,4.09 1.66,1.75 2.94,3.83 3.83,6.23 0.89,2.41 1.33,5.02 1.33,7.83 0,2.87 -0.44,5.49 -1.33,7.87 z m 44.94,-16.04 c -0.72,0.92 -1.62,1.59 -2.71,2.02 -1.09,0.43 -2.31,0.69 -3.65,0.77 -1.35,0.09 -2.62,0.13 -3.83,0.13 h -7.91 V 39.89 h 8.77 c 1.2,0 2.44,0.09 3.7,0.26 1.26,0.17 2.38,0.5 3.35,0.99 0.97,0.49 1.78,1.19 2.41,2.11 0.63,0.92 0.95,2.15 0.95,3.7 0,1.65 -0.36,2.94 -1.08,3.86 z" id="path80" inkscape:connector-curvature="0" style="fill:#202826" /> </g> </g> </switch> </svg> </a> </span> </li> <li> <span class="name"> Yuliang Yang </span> <span class="affiliation"> China Southern Power Grid (China) <a href="https://ror.org/03hkh9419"><?xml version="1.0" encoding="UTF-8" standalone="no"?> <!-- Generator: Adobe Illustrator 23.0.1, SVG Export Plug-In . SVG Version: 6.00 Build 0) --> <svg xmlns:i="&amp;ns_ai;" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:svg="http://www.w3.org/2000/svg" xmlns="http://www.w3.org/2000/svg" xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" version="1.1" id="Layer_1" x="0px" y="0px" viewBox="0 0 23.4225 16.696501" xml:space="preserve" sodipodi:docname="rorId.svg" inkscape:version="0.92.5 (2060ec1f9f, 2020-04-08)" width="23.422501" height="16.696501"><metadata id="metadata93"><rdf:RDF><cc:Work rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage" /></cc:Work></rdf:RDF></metadata><defs id="defs91" /><sodipodi:namedview pagecolor="#ffffff" bordercolor="#666666" borderopacity="1" objecttolerance="10" gridtolerance="10" guidetolerance="10" inkscape:pageopacity="0" inkscape:pageshadow="2" inkscape:window-width="1880" inkscape:window-height="1016" id="namedview89" showgrid="true" showguides="false" inkscape:zoom="1" inkscape:cx="-177.76975" inkscape:cy="13.962506" inkscape:window-x="40" inkscape:window-y="27" inkscape:window-maximized="1" inkscape:current-layer="Layer_1" /> <switch id="switch86" transform="matrix(0.15,0,0,0.15,-0.7305,-0.624)"> <foreignObject requiredExtensions="http://ns.adobe.com/AdobeIllustrator/10.0/" x="0" y="0" width="1" height="1"> </foreignObject> <g i:extraneous="self" id="g84"> <polygon class="strorId0" points="68.65,4.16 56.52,22.74 44.38,4.16 " id="polygon72" style="fill:#53baa1" /> <polygon class="strorId0" points="119.41,4.16 107.28,22.74 95.14,4.16 " id="polygon74" style="fill:#53baa1" /> <polygon class="strorId0" points="44.38,115.47 56.52,96.88 68.65,115.47 " id="polygon76" style="fill:#53baa1" /> <polygon class="strorId0" points="95.14,115.47 107.28,96.88 119.41,115.47 " id="polygon78" style="fill:#53baa1" /> <g id="g82"> <path class="st1" d="m 145.53,63.71 c 4.3,-0.8 7.57,-2.71 9.8,-5.72 2.24,-3.01 3.35,-6.67 3.35,-10.96 0,-3.56 -0.62,-6.52 -1.85,-8.9 -1.23,-2.38 -2.9,-4.27 -4.99,-5.68 -2.09,-1.4 -4.53,-2.41 -7.31,-3.01 -2.78,-0.6 -5.72,-0.9 -8.81,-0.9 h -23.56 v 18.83 c -0.19,-0.55 -0.39,-1.09 -0.61,-1.63 -1.63,-3.95 -3.91,-7.32 -6.84,-10.1 -2.93,-2.78 -6.39,-4.92 -10.41,-6.41 -4.01,-1.49 -8.4,-2.24 -13.16,-2.24 -4.76,0 -9.14,0.75 -13.16,2.24 -4.01,1.49 -7.48,3.63 -10.41,6.41 -2.62,2.49 -4.72,5.46 -6.3,8.9 -0.23,-2.47 -0.81,-4.61 -1.74,-6.41 -1.23,-2.38 -2.9,-4.27 -4.99,-5.68 -2.09,-1.4 -4.53,-2.41 -7.31,-3.01 -2.78,-0.6 -5.72,-0.9 -8.81,-0.9 H 4.87 V 89.42 H 18.28 V 65.08 H 24.9 L 37.63,89.42 H 53.71 L 38.24,63.71 c 4.3,-0.8 7.57,-2.71 9.8,-5.72 0.1,-0.14 0.19,-0.29 0.29,-0.43 -0.02,0.47 -0.03,0.94 -0.03,1.42 0,4.87 0.82,9.29 2.45,13.24 1.63,3.95 3.91,7.32 6.84,10.1 2.92,2.78 6.39,4.92 10.41,6.41 4.01,1.49 8.4,2.24 13.16,2.24 4.76,0 9.14,-0.75 13.16,-2.24 4.01,-1.49 7.48,-3.63 10.41,-6.41 2.92,-2.78 5.2,-6.15 6.84,-10.1 0.22,-0.53 0.42,-1.08 0.61,-1.63 v 18.83 h 13.41 V 65.08 h 6.62 l 12.73,24.34 h 16.08 z M 36.39,50.81 c -0.72,0.92 -1.62,1.59 -2.71,2.02 -1.09,0.43 -2.31,0.69 -3.65,0.77 -1.35,0.09 -2.62,0.13 -3.83,0.13 H 18.29 V 39.89 h 8.77 c 1.2,0 2.44,0.09 3.7,0.26 1.26,0.17 2.38,0.5 3.35,0.99 0.97,0.49 1.78,1.19 2.41,2.11 0.63,0.92 0.95,2.15 0.95,3.7 0,1.65 -0.36,2.94 -1.08,3.86 z m 62.35,16.04 c -0.89,2.38 -2.16,4.44 -3.83,6.19 -1.66,1.75 -3.65,3.11 -5.98,4.09 -2.32,0.98 -4.92,1.46 -7.78,1.46 -2.87,0 -5.46,-0.49 -7.78,-1.46 -2.32,-0.97 -4.31,-2.34 -5.98,-4.09 -1.66,-1.75 -2.94,-3.81 -3.83,-6.19 -0.89,-2.38 -1.33,-5 -1.33,-7.87 0,-2.81 0.44,-5.42 1.33,-7.83 0.89,-2.41 2.16,-4.48 3.83,-6.23 1.66,-1.75 3.65,-3.11 5.98,-4.09 2.32,-0.97 4.91,-1.46 7.78,-1.46 2.87,0 5.46,0.49 7.78,1.46 2.32,0.97 4.31,2.34 5.98,4.09 1.66,1.75 2.94,3.83 3.83,6.23 0.89,2.41 1.33,5.02 1.33,7.83 0,2.87 -0.44,5.49 -1.33,7.87 z m 44.94,-16.04 c -0.72,0.92 -1.62,1.59 -2.71,2.02 -1.09,0.43 -2.31,0.69 -3.65,0.77 -1.35,0.09 -2.62,0.13 -3.83,0.13 h -7.91 V 39.89 h 8.77 c 1.2,0 2.44,0.09 3.7,0.26 1.26,0.17 2.38,0.5 3.35,0.99 0.97,0.49 1.78,1.19 2.41,2.11 0.63,0.92 0.95,2.15 0.95,3.7 0,1.65 -0.36,2.94 -1.08,3.86 z" id="path80" inkscape:connector-curvature="0" style="fill:#202826" /> </g> </g> </switch> </svg> </a> </span> </li> <li> <span class="name"> Jiahao Shi </span> <span class="affiliation"> China Southern Power Grid (China) <a href="https://ror.org/03hkh9419"><?xml version="1.0" encoding="UTF-8" standalone="no"?> <!-- Generator: Adobe Illustrator 23.0.1, SVG Export Plug-In . SVG Version: 6.00 Build 0) --> <svg xmlns:i="&amp;ns_ai;" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:svg="http://www.w3.org/2000/svg" xmlns="http://www.w3.org/2000/svg" xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" version="1.1" id="Layer_1" x="0px" y="0px" viewBox="0 0 23.4225 16.696501" xml:space="preserve" sodipodi:docname="rorId.svg" inkscape:version="0.92.5 (2060ec1f9f, 2020-04-08)" width="23.422501" height="16.696501"><metadata id="metadata93"><rdf:RDF><cc:Work rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage" /></cc:Work></rdf:RDF></metadata><defs id="defs91" /><sodipodi:namedview pagecolor="#ffffff" bordercolor="#666666" borderopacity="1" objecttolerance="10" gridtolerance="10" guidetolerance="10" inkscape:pageopacity="0" inkscape:pageshadow="2" inkscape:window-width="1880" inkscape:window-height="1016" id="namedview89" showgrid="true" showguides="false" inkscape:zoom="1" inkscape:cx="-177.76975" inkscape:cy="13.962506" inkscape:window-x="40" inkscape:window-y="27" inkscape:window-maximized="1" inkscape:current-layer="Layer_1" /> <switch id="switch86" transform="matrix(0.15,0,0,0.15,-0.7305,-0.624)"> <foreignObject requiredExtensions="http://ns.adobe.com/AdobeIllustrator/10.0/" x="0" y="0" width="1" height="1"> </foreignObject> <g i:extraneous="self" id="g84"> <polygon class="strorId0" points="68.65,4.16 56.52,22.74 44.38,4.16 " id="polygon72" style="fill:#53baa1" /> <polygon class="strorId0" points="119.41,4.16 107.28,22.74 95.14,4.16 " id="polygon74" style="fill:#53baa1" /> <polygon class="strorId0" points="44.38,115.47 56.52,96.88 68.65,115.47 " id="polygon76" style="fill:#53baa1" /> <polygon class="strorId0" points="95.14,115.47 107.28,96.88 119.41,115.47 " id="polygon78" style="fill:#53baa1" /> <g id="g82"> <path class="st1" d="m 145.53,63.71 c 4.3,-0.8 7.57,-2.71 9.8,-5.72 2.24,-3.01 3.35,-6.67 3.35,-10.96 0,-3.56 -0.62,-6.52 -1.85,-8.9 -1.23,-2.38 -2.9,-4.27 -4.99,-5.68 -2.09,-1.4 -4.53,-2.41 -7.31,-3.01 -2.78,-0.6 -5.72,-0.9 -8.81,-0.9 h -23.56 v 18.83 c -0.19,-0.55 -0.39,-1.09 -0.61,-1.63 -1.63,-3.95 -3.91,-7.32 -6.84,-10.1 -2.93,-2.78 -6.39,-4.92 -10.41,-6.41 -4.01,-1.49 -8.4,-2.24 -13.16,-2.24 -4.76,0 -9.14,0.75 -13.16,2.24 -4.01,1.49 -7.48,3.63 -10.41,6.41 -2.62,2.49 -4.72,5.46 -6.3,8.9 -0.23,-2.47 -0.81,-4.61 -1.74,-6.41 -1.23,-2.38 -2.9,-4.27 -4.99,-5.68 -2.09,-1.4 -4.53,-2.41 -7.31,-3.01 -2.78,-0.6 -5.72,-0.9 -8.81,-0.9 H 4.87 V 89.42 H 18.28 V 65.08 H 24.9 L 37.63,89.42 H 53.71 L 38.24,63.71 c 4.3,-0.8 7.57,-2.71 9.8,-5.72 0.1,-0.14 0.19,-0.29 0.29,-0.43 -0.02,0.47 -0.03,0.94 -0.03,1.42 0,4.87 0.82,9.29 2.45,13.24 1.63,3.95 3.91,7.32 6.84,10.1 2.92,2.78 6.39,4.92 10.41,6.41 4.01,1.49 8.4,2.24 13.16,2.24 4.76,0 9.14,-0.75 13.16,-2.24 4.01,-1.49 7.48,-3.63 10.41,-6.41 2.92,-2.78 5.2,-6.15 6.84,-10.1 0.22,-0.53 0.42,-1.08 0.61,-1.63 v 18.83 h 13.41 V 65.08 h 6.62 l 12.73,24.34 h 16.08 z M 36.39,50.81 c -0.72,0.92 -1.62,1.59 -2.71,2.02 -1.09,0.43 -2.31,0.69 -3.65,0.77 -1.35,0.09 -2.62,0.13 -3.83,0.13 H 18.29 V 39.89 h 8.77 c 1.2,0 2.44,0.09 3.7,0.26 1.26,0.17 2.38,0.5 3.35,0.99 0.97,0.49 1.78,1.19 2.41,2.11 0.63,0.92 0.95,2.15 0.95,3.7 0,1.65 -0.36,2.94 -1.08,3.86 z m 62.35,16.04 c -0.89,2.38 -2.16,4.44 -3.83,6.19 -1.66,1.75 -3.65,3.11 -5.98,4.09 -2.32,0.98 -4.92,1.46 -7.78,1.46 -2.87,0 -5.46,-0.49 -7.78,-1.46 -2.32,-0.97 -4.31,-2.34 -5.98,-4.09 -1.66,-1.75 -2.94,-3.81 -3.83,-6.19 -0.89,-2.38 -1.33,-5 -1.33,-7.87 0,-2.81 0.44,-5.42 1.33,-7.83 0.89,-2.41 2.16,-4.48 3.83,-6.23 1.66,-1.75 3.65,-3.11 5.98,-4.09 2.32,-0.97 4.91,-1.46 7.78,-1.46 2.87,0 5.46,0.49 7.78,1.46 2.32,0.97 4.31,2.34 5.98,4.09 1.66,1.75 2.94,3.83 3.83,6.23 0.89,2.41 1.33,5.02 1.33,7.83 0,2.87 -0.44,5.49 -1.33,7.87 z m 44.94,-16.04 c -0.72,0.92 -1.62,1.59 -2.71,2.02 -1.09,0.43 -2.31,0.69 -3.65,0.77 -1.35,0.09 -2.62,0.13 -3.83,0.13 h -7.91 V 39.89 h 8.77 c 1.2,0 2.44,0.09 3.7,0.26 1.26,0.17 2.38,0.5 3.35,0.99 0.97,0.49 1.78,1.19 2.41,2.11 0.63,0.92 0.95,2.15 0.95,3.7 0,1.65 -0.36,2.94 -1.08,3.86 z" id="path80" inkscape:connector-curvature="0" style="fill:#202826" /> </g> </g> </switch> </svg> </a> </span> </li> <li> <span class="name"> Jie Lin </span> <span class="affiliation"> China Southern Power Grid (China) <a href="https://ror.org/03hkh9419"><?xml version="1.0" encoding="UTF-8" standalone="no"?> <!-- Generator: Adobe Illustrator 23.0.1, SVG Export Plug-In . SVG Version: 6.00 Build 0) --> <svg xmlns:i="&amp;ns_ai;" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:svg="http://www.w3.org/2000/svg" xmlns="http://www.w3.org/2000/svg" xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" version="1.1" id="Layer_1" x="0px" y="0px" viewBox="0 0 23.4225 16.696501" xml:space="preserve" sodipodi:docname="rorId.svg" inkscape:version="0.92.5 (2060ec1f9f, 2020-04-08)" width="23.422501" height="16.696501"><metadata id="metadata93"><rdf:RDF><cc:Work rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage" /></cc:Work></rdf:RDF></metadata><defs id="defs91" /><sodipodi:namedview pagecolor="#ffffff" bordercolor="#666666" borderopacity="1" objecttolerance="10" gridtolerance="10" guidetolerance="10" inkscape:pageopacity="0" inkscape:pageshadow="2" inkscape:window-width="1880" inkscape:window-height="1016" id="namedview89" showgrid="true" showguides="false" inkscape:zoom="1" inkscape:cx="-177.76975" inkscape:cy="13.962506" inkscape:window-x="40" inkscape:window-y="27" inkscape:window-maximized="1" inkscape:current-layer="Layer_1" /> <switch id="switch86" transform="matrix(0.15,0,0,0.15,-0.7305,-0.624)"> <foreignObject requiredExtensions="http://ns.adobe.com/AdobeIllustrator/10.0/" x="0" y="0" width="1" height="1"> </foreignObject> <g i:extraneous="self" id="g84"> <polygon class="strorId0" points="68.65,4.16 56.52,22.74 44.38,4.16 " id="polygon72" style="fill:#53baa1" /> <polygon class="strorId0" points="119.41,4.16 107.28,22.74 95.14,4.16 " id="polygon74" style="fill:#53baa1" /> <polygon class="strorId0" points="44.38,115.47 56.52,96.88 68.65,115.47 " id="polygon76" style="fill:#53baa1" /> <polygon class="strorId0" points="95.14,115.47 107.28,96.88 119.41,115.47 " id="polygon78" style="fill:#53baa1" /> <g id="g82"> <path class="st1" d="m 145.53,63.71 c 4.3,-0.8 7.57,-2.71 9.8,-5.72 2.24,-3.01 3.35,-6.67 3.35,-10.96 0,-3.56 -0.62,-6.52 -1.85,-8.9 -1.23,-2.38 -2.9,-4.27 -4.99,-5.68 -2.09,-1.4 -4.53,-2.41 -7.31,-3.01 -2.78,-0.6 -5.72,-0.9 -8.81,-0.9 h -23.56 v 18.83 c -0.19,-0.55 -0.39,-1.09 -0.61,-1.63 -1.63,-3.95 -3.91,-7.32 -6.84,-10.1 -2.93,-2.78 -6.39,-4.92 -10.41,-6.41 -4.01,-1.49 -8.4,-2.24 -13.16,-2.24 -4.76,0 -9.14,0.75 -13.16,2.24 -4.01,1.49 -7.48,3.63 -10.41,6.41 -2.62,2.49 -4.72,5.46 -6.3,8.9 -0.23,-2.47 -0.81,-4.61 -1.74,-6.41 -1.23,-2.38 -2.9,-4.27 -4.99,-5.68 -2.09,-1.4 -4.53,-2.41 -7.31,-3.01 -2.78,-0.6 -5.72,-0.9 -8.81,-0.9 H 4.87 V 89.42 H 18.28 V 65.08 H 24.9 L 37.63,89.42 H 53.71 L 38.24,63.71 c 4.3,-0.8 7.57,-2.71 9.8,-5.72 0.1,-0.14 0.19,-0.29 0.29,-0.43 -0.02,0.47 -0.03,0.94 -0.03,1.42 0,4.87 0.82,9.29 2.45,13.24 1.63,3.95 3.91,7.32 6.84,10.1 2.92,2.78 6.39,4.92 10.41,6.41 4.01,1.49 8.4,2.24 13.16,2.24 4.76,0 9.14,-0.75 13.16,-2.24 4.01,-1.49 7.48,-3.63 10.41,-6.41 2.92,-2.78 5.2,-6.15 6.84,-10.1 0.22,-0.53 0.42,-1.08 0.61,-1.63 v 18.83 h 13.41 V 65.08 h 6.62 l 12.73,24.34 h 16.08 z M 36.39,50.81 c -0.72,0.92 -1.62,1.59 -2.71,2.02 -1.09,0.43 -2.31,0.69 -3.65,0.77 -1.35,0.09 -2.62,0.13 -3.83,0.13 H 18.29 V 39.89 h 8.77 c 1.2,0 2.44,0.09 3.7,0.26 1.26,0.17 2.38,0.5 3.35,0.99 0.97,0.49 1.78,1.19 2.41,2.11 0.63,0.92 0.95,2.15 0.95,3.7 0,1.65 -0.36,2.94 -1.08,3.86 z m 62.35,16.04 c -0.89,2.38 -2.16,4.44 -3.83,6.19 -1.66,1.75 -3.65,3.11 -5.98,4.09 -2.32,0.98 -4.92,1.46 -7.78,1.46 -2.87,0 -5.46,-0.49 -7.78,-1.46 -2.32,-0.97 -4.31,-2.34 -5.98,-4.09 -1.66,-1.75 -2.94,-3.81 -3.83,-6.19 -0.89,-2.38 -1.33,-5 -1.33,-7.87 0,-2.81 0.44,-5.42 1.33,-7.83 0.89,-2.41 2.16,-4.48 3.83,-6.23 1.66,-1.75 3.65,-3.11 5.98,-4.09 2.32,-0.97 4.91,-1.46 7.78,-1.46 2.87,0 5.46,0.49 7.78,1.46 2.32,0.97 4.31,2.34 5.98,4.09 1.66,1.75 2.94,3.83 3.83,6.23 0.89,2.41 1.33,5.02 1.33,7.83 0,2.87 -0.44,5.49 -1.33,7.87 z m 44.94,-16.04 c -0.72,0.92 -1.62,1.59 -2.71,2.02 -1.09,0.43 -2.31,0.69 -3.65,0.77 -1.35,0.09 -2.62,0.13 -3.83,0.13 h -7.91 V 39.89 h 8.77 c 1.2,0 2.44,0.09 3.7,0.26 1.26,0.17 2.38,0.5 3.35,0.99 0.97,0.49 1.78,1.19 2.41,2.11 0.63,0.92 0.95,2.15 0.95,3.7 0,1.65 -0.36,2.94 -1.08,3.86 z" id="path80" inkscape:connector-curvature="0" style="fill:#202826" /> </g> </g> </switch> </svg> </a> </span> </li> </ul> </section> <section class="item doi"> <h2 class="label"> DOI: </h2> <span class="value"> <a href="https://doi.org/10.4108/eetsis.3803"> https://doi.org/10.4108/eetsis.3803 </a> </span> </section> <section class="item keywords"> <h2 class="label"> Keywords: </h2> <span class="value"> Big AI model, compression and transmission, deep learning, convolutional networks </span> </section> <section class="item abstract"> <h2 class="label">Abstract</h2> <p>In recent years, big AI models have demonstrated remarkable performance in various artificial intelligence (AI) tasks. However, their widespread use has introduced significant challenges in terms of model transmission and training. This paper addresses these challenges by proposing a solution that involves the compression and transmission of large models using deep learning techniques, thereby ensuring the efficiency of model training. To achieve this objective, we leverage deep convolutional networks to design a novel approach for compressing and transmitting large models. Specifically, deep convolutional networks are employed for model compression, providing an effective means to reduce the size of large models without compromising their representational capacity. The proposed framework also includes carefully devised encoding and decoding strategies to guarantee the restoration of model integrity after transmission. Furthermore, a tailored loss function is designed for model training, facilitating the optimization of both the transmission and training performance within the system. Through experimental evaluation, we demonstrate the efficacy of the proposed approach in addressing the challenges associated with large model transmission and training. The results showcase the successful compression and subsequent accurate reconstruction of large models, while maintaining their performance across various AI tasks. This work contributes to the ongoing research in enhancing the practicality and efficiency of deploying large models in real-world AI applications.</p> </section> <!-- Plum Analytics --> <a href="https://plu.mx/plum/a/?doi=10.4108/eetsis.3803" class="plumx-summary" data-hide-when-empty="true" data-orientation="vertical" ></a> <!-- /Plum Analytics --> <section class="item references"> <h2 class="label"> References </h2> <div class="value"> <p>A. E. Haddad and L. Najafizadeh, “The discriminative discrete basis problem: Definitions, algorithms, benchmarking, and application to brain’s functional dynamics,” IEEE Trans. Signal Process., vol. 71, pp. 1–16, 2023. </p> <p>R. Gabrys, S. Pattabiraman, and O. Milenkovic, “Reconstruction of sets of strings from prefix/suffix compositions,” IEEE Trans. Commun., vol. 71, no. 1, pp. 3–12, 2023. </p> <p>L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Hierarchical federated learning with quantization: Convergence analysis and system design,” IEEE Trans. Wirel. Commun., vol. 22, no. 1, pp. 2–18, 2023. </p> <p>F. L. Andrade, M. A. T. Figueiredo, and J. Xavier, “Distributed banach-picard iteration: Application to distributed parameter estimation and PCA,” IEEE Trans. Signal Process., vol. 71, pp. 17–30, 2023. </p> <p>Q.Wang, S. Cai, Y.Wang, and X. Ma, “Free-ride feedback and superposition retransmission over LDPC coded links,” IEEE Trans. Commun., vol. 71, no. 1, pp. 13–25, 2023. </p> <p>Z. Xie, W. Chen, and H. V. Poor, “A unified framework for pushing in two-tier heterogeneous networks with mmwave hotspots,” IEEE Trans. Wirel. Commun., vol. 22, no. 1, pp. 19–31, 2023. </p> <p>O. Lang, C. Hofbauer, R. Feger, and M. Huemer, “Rangedivision multiplexing for MIMO OFDM joint radar and communications,” IEEE Trans. Veh. Technol., vol. 72, no. 1, pp. 52–65, 2023. </p> <p>M. Hellkvist, A. Özçelikkale, and A. Ahlén, “Estimation under model misspecification with fake features,” IEEE Trans. Signal Process., vol. 71, pp. 47–60, 2023. </p> <p>Z. Xuan and K. Narayanan, “Low-delay analog joint source-channel coding with deep learning,” IEEE Trans. Commun., vol. 71, no. 1, pp. 40–51, 2023. </p> <p>F. Hu, Y. Deng, and A. H. Aghvami, “Scalable multiagent reinforcement learning for dynamic coordinated multipoint clustering,” IEEE Trans. Commun., vol. 71, no. 1, pp. 101–114, 2023. </p> <p>H. Hui and W. Chen, “Joint scheduling of proactive pushing and on-demand transmission over shared spectrum for profit maximization,” IEEE Trans. Wirel. Commun., vol. 22, no. 1, pp. 107–121, 2023. </p> <p>S. Liu and L. Ji, “Double multilevel constructions for constant dimension codes,” IEEE Trans. Inf. Theory, vol. 69, no. 1, pp. 157–168, 2023. </p> <p>Q. Pan, Z. Qiu, Y. Xu, and G. Yao, “Predicting the price of second-hand housing based on lambda architecture and kd tree,” Infocommunications Journal, vol. 14, no. 1, pp. 2–10, 2022. </p> <p>Z. Zhang, Z. Shi, and Y. Gu, “Ziv-zakai bound for doas estimation,” IEEE Trans. Signal Process., vol. 71, pp. 136–149, 2023. </p> <p>S. Guo and X. Zhao, “Multi-agent deep reinforcement learning based transmission latency minimization for delay-sensitive cognitive satellite-uav networks,” IEEE Trans. Commun., vol. 71, no. 1, pp. 131–144, 2023. </p> <p>X. Fang, W. Feng, Y. Wang, Y. Chen, N. Ge, Z. Ding, and H. Zhu, “Noma-based hybrid satellite-uav-terrestrial networks for 6g maritime coverage,” IEEE Trans. Wirel. Commun., vol. 22, no. 1, pp. 138–152, 2023. </p> <p>R. Gabrys, V. Guruswami, J. L. Ribeiro, and K. Wu, “Beyond single-deletion correcting codes: Substitutions and transpositions,” IEEE Trans. Inf. Theory, vol. 69, no. 1, pp. 169–186, 2023. </p> <p>X. Niu and E. Wei, “Fedhybrid: A hybrid federated optimization method for heterogeneous clients,” IEEE Trans. Signal Process., vol. 71, pp. 150–163, 2023. </p> <p>R. Yang, Z. Zhang, X. Zhang, C. Li, Y. Huang, and L. Yang, “Meta-learning for beam prediction in a dualband communication system,” IEEE Trans. Commun., vol. 71, no. 1, pp. 145–157, 2023. </p> <p>X. Chen, W. Wei, Q. Yan, N. Yang, and J. Huang, “Timedelay deep q-network based retarder torque tracking control framework for heavy-duty vehicles,” IEEE Trans. Veh. Technol., vol. 72, no. 1, pp. 149–161, 2023. </p> <p>Z. Yang, F. Li, and D. Zhang, “A joint model extraction and data detection framework for IRS-NOMA system,” IEEE Trans. Signal Process., vol. 71, pp. 164–177, 2023. </p> <p>T. Zhang, K. Zhu, S. Zheng, D. Niyato, and N. C. Luong, “Trajectory design and power control for joint radar and communication enabled multi-uav cooperative detection systems,” IEEE Trans. Commun., vol. 71, no. 1, pp. 158–172, 2023. </p> <p>N. Zhang, M. Tao, J.Wang, and F. Xu, “Fundamental limits of communication efficiency for model aggregation in distributed learning: A rate-distortion approach,” IEEE Trans. Commun., vol. 71, no. 1, pp. 173–186, 2023. </p> <p>X. Yue, J. Xie, Y. Liu, Z. Han, R. Liu, and Z. Ding, “Simultaneously transmitting and reflecting reconfigurable intelligent surface assisted NOMA networks,” IEEE Trans. Wirel. Commun., vol. 22, no. 1, pp. 189–204, 2023. </p> <p>M. Zhang, H. Zhang, Y. Fang, and D. Yuan, “Learning based data transmissions for future 6g enabled industrial iot: A data compression perspective,” IEEE Network, vol. 36, no. 5, pp. 180–187, 2022. </p> <p>X. Zhang, X. Zhu, J. Wang, H. Yan, H. Chen, and W. Bao, “Federated learning with adaptive communication compression under dynamic bandwidth and unreliable networks,” Information Sciences, vol. 540, pp. 242–262, 2020. </p> </div> </section> </div><!-- .main_entry --> <div class="entry_details"> <div class="item galleys"> <h2 class="pkp_screen_reader"> Downloads </h2> <ul class="value galleys_links"> <li> <a class="obj_galley_link pdf" href="https://publications.eai.eu/index.php/sis/article/view/3803/2746"> PDF </a> </li> </ul> </div> <div class="item published"> <section class="sub_item"> <h2 class="label"> Published </h2> <div class="value"> <span>11-12-2023</span> </div> </section> </div> <div class="item citation"> <section class="sub_item citation_display"> <h2 class="label"> How to Cite </h2> <div class="value"> <div id="citationOutput" role="region" aria-live="polite"> <div class="csl-bib-body"> <div class="csl-entry"><div class="csl-left-margin">1.</div><div class="csl-right-inline">Lin Z, Zhou Y, Yang Y, Shi J, Lin J. Compression and Transmission of Big AI Model Based on Deep Learning: Compression and Transmission of Big AI Model Based on Deep Learning. EAI Endorsed Scal Inf Syst [Internet]. 2023 Dec. 11 [cited 2025 Apr. 10];11(2). Available from: https://publications.eai.eu/index.php/sis/article/view/3803</div></div> </div> </div> <div class="citation_formats"> <button class="cmp_button citation_formats_button" aria-controls="cslCitationFormats" aria-expanded="false" data-csl-dropdown="true"> More Citation Formats </button> <div id="cslCitationFormats" class="citation_formats_list" aria-hidden="true"> <ul class="citation_formats_styles"> <li> <a aria-controls="citationOutput" href="https://publications.eai.eu/index.php/sis/citationstylelanguage/get/acm-sig-proceedings?submissionId=3803&amp;publicationId=3806" data-load-citation data-json-href="https://publications.eai.eu/index.php/sis/citationstylelanguage/get/acm-sig-proceedings?submissionId=3803&amp;publicationId=3806&amp;return=json" > ACM </a> </li> <li> <a aria-controls="citationOutput" href="https://publications.eai.eu/index.php/sis/citationstylelanguage/get/acs-nano?submissionId=3803&amp;publicationId=3806" data-load-citation data-json-href="https://publications.eai.eu/index.php/sis/citationstylelanguage/get/acs-nano?submissionId=3803&amp;publicationId=3806&amp;return=json" > ACS </a> </li> <li> <a aria-controls="citationOutput" href="https://publications.eai.eu/index.php/sis/citationstylelanguage/get/apa?submissionId=3803&amp;publicationId=3806" data-load-citation data-json-href="https://publications.eai.eu/index.php/sis/citationstylelanguage/get/apa?submissionId=3803&amp;publicationId=3806&amp;return=json" > APA </a> </li> <li> <a aria-controls="citationOutput" href="https://publications.eai.eu/index.php/sis/citationstylelanguage/get/associacao-brasileira-de-normas-tecnicas?submissionId=3803&amp;publicationId=3806" data-load-citation data-json-href="https://publications.eai.eu/index.php/sis/citationstylelanguage/get/associacao-brasileira-de-normas-tecnicas?submissionId=3803&amp;publicationId=3806&amp;return=json" > ABNT </a> </li> <li> <a aria-controls="citationOutput" href="https://publications.eai.eu/index.php/sis/citationstylelanguage/get/chicago-author-date?submissionId=3803&amp;publicationId=3806" data-load-citation data-json-href="https://publications.eai.eu/index.php/sis/citationstylelanguage/get/chicago-author-date?submissionId=3803&amp;publicationId=3806&amp;return=json" > Chicago </a> </li> <li> <a aria-controls="citationOutput" href="https://publications.eai.eu/index.php/sis/citationstylelanguage/get/harvard-cite-them-right?submissionId=3803&amp;publicationId=3806" data-load-citation data-json-href="https://publications.eai.eu/index.php/sis/citationstylelanguage/get/harvard-cite-them-right?submissionId=3803&amp;publicationId=3806&amp;return=json" > Harvard </a> </li> <li> <a aria-controls="citationOutput" href="https://publications.eai.eu/index.php/sis/citationstylelanguage/get/ieee?submissionId=3803&amp;publicationId=3806" data-load-citation data-json-href="https://publications.eai.eu/index.php/sis/citationstylelanguage/get/ieee?submissionId=3803&amp;publicationId=3806&amp;return=json" > IEEE </a> </li> <li> <a aria-controls="citationOutput" href="https://publications.eai.eu/index.php/sis/citationstylelanguage/get/modern-language-association?submissionId=3803&amp;publicationId=3806" data-load-citation data-json-href="https://publications.eai.eu/index.php/sis/citationstylelanguage/get/modern-language-association?submissionId=3803&amp;publicationId=3806&amp;return=json" > MLA </a> </li> <li> <a aria-controls="citationOutput" href="https://publications.eai.eu/index.php/sis/citationstylelanguage/get/turabian-fullnote-bibliography?submissionId=3803&amp;publicationId=3806" data-load-citation data-json-href="https://publications.eai.eu/index.php/sis/citationstylelanguage/get/turabian-fullnote-bibliography?submissionId=3803&amp;publicationId=3806&amp;return=json" > Turabian </a> </li> <li> <a aria-controls="citationOutput" href="https://publications.eai.eu/index.php/sis/citationstylelanguage/get/vancouver?submissionId=3803&amp;publicationId=3806" data-load-citation data-json-href="https://publications.eai.eu/index.php/sis/citationstylelanguage/get/vancouver?submissionId=3803&amp;publicationId=3806&amp;return=json" > Vancouver </a> </li> </ul> <div class="label"> Download Citation </div> <ul class="citation_formats_styles"> <li> <a href="https://publications.eai.eu/index.php/sis/citationstylelanguage/download/ris?submissionId=3803&amp;publicationId=3806"> <span class="fa fa-download"></span> Endnote/Zotero/Mendeley (RIS) </a> </li> <li> <a href="https://publications.eai.eu/index.php/sis/citationstylelanguage/download/bibtex?submissionId=3803&amp;publicationId=3806"> <span class="fa fa-download"></span> BibTeX </a> </li> </ul> </div> </div> </div> </section> </div> <div class="item issue"> <section class="sub_item"> <h2 class="label"> Issue </h2> <div class="value"> <a class="title" href="https://publications.eai.eu/index.php/sis/issue/view/420"> Vol. 11 No. 2 (2024): EAI Endorsed Transactions on Scalable Information Systems </a> </div> </section> <section class="sub_item"> <h2 class="label"> Section </h2> <div class="value"> Research articles </div> </section> </div> <div class="item copyright"> <h2 class="label"> License </h2> <p>Copyright (c) 2023 Zhengping Lin, Yuzhong Zhou, Yuliang Yang, Jiahao Shi, Jie Lin</p> <a rel="license" href="https://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative Commons License" src="//i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a><p>This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.</p> <p>This is an open access article distributed under the terms of the <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">CC BY-NC-SA 4.0</a>, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original work is properly cited.</p> </div> <div class="item addthis"> <div class="value"> <!-- AddThis Button BEGIN --> <div class="addthis_toolbox addthis_default_style "> <a class="addthis_button_preferred_1"></a> <a class="addthis_button_preferred_2"></a> <a class="addthis_button_preferred_3"></a> <a class="addthis_button_preferred_4"></a> <a class="addthis_button_compact"></a> <a class="addthis_counter addthis_bubble_style"></a> </div> <script type="text/javascript" src="//s7.addthis.com/js/250/addthis_widget.js#pubid="></script> <!-- AddThis Button END --> </div> </div> <div class="item citations-container" data-image-path="https://publications.eai.eu/plugins/generic/citations/images/" data-citations-url="https://publications.eai.eu/index.php/sis/citations/get?citationsId=10.4108%2Feetsis.3803&amp;citationsShowList=1&amp;citationsProvider=all" data-citations-provider="all" data-citations-total="1" data-citations-list="1" data-show-google="1" data-show-pmc="1"> <div id="citations-loader"></div> <div class="citations-count"> <div class="citations-count-crossref"> <img class="img-fluid" src="https://publications.eai.eu/plugins/generic/citations/images/crossref.png" alt="Crossref"/> <div class="badge_total"></div> </div> <div class="citations-count-scopus"> <img src="https://publications.eai.eu/plugins/generic/citations/images/scopus.png" alt="Scopus"/> <br/> <span class="badge_total"></span> </div> <div class="citations-count-google"> <a href="https://scholar.google.com/scholar?q=10.4108/eetsis.3803" target="_blank" rel="noreferrer"> <img src="https://publications.eai.eu/plugins/generic/citations/images/scholar.png" alt="Google Scholar"/> </a> </div> <div class="citations-count-pmc"> <a href="http://europepmc.org/search?scope=fulltext&query=(REF:10.4108/eetsis.3803)" target="_blank" rel="noreferrer"> <img src="https://publications.eai.eu/plugins/generic/citations/images/pmc.png" alt="Europe PMC"/> <br/> <span class="badge_total"></span> </a> </div> </div> <div class="citations-list"></div> </div> </div><!-- .entry_details --> </div><!-- .row --> </article> <div id="articlesBySameAuthorList"> <h3>Most read articles by the same author(s)</h3> <ul> <li> Yuliang Yang, Zhengping Lin, Yuzhong Zhou, Jiahao Shi, Jie Lin, <a href="https://publications.eai.eu/index.php/sis/article/view/3805"> Textual Information Processing Based on Multi-Dimensional Indicator Weights </a>, <a href="https://publications.eai.eu/index.php/sis/issue/view/420"> EAI Endorsed Transactions on Scalable Information Systems: Vol. 11 No. 2 (2024): EAI Endorsed Transactions on Scalable Information Systems </a> </li> <li> Yuzhong Zhou, Zhengping Lin, Yuan La, Junkai Huang, Xin Wang, <a href="https://publications.eai.eu/index.php/sis/article/view/2642"> Analysis and Design of Power System Transformer Standard Based on Knowledge Graph </a>, <a href="https://publications.eai.eu/index.php/sis/issue/view/42"> EAI Endorsed Transactions on Scalable Information Systems: Vol. 10 No. 2 (2023): EAI Endorsed Transactions on Scalable Information Systems </a> </li> <li> Yuzhong Zhou, Zhengping Lin, Liang Tu, Junkai Huang, Zifeng Zhang, <a href="https://publications.eai.eu/index.php/sis/article/view/2637"> Analysis and Design of Standard Knowledge Service System based on Deep Learning </a>, <a href="https://publications.eai.eu/index.php/sis/issue/view/42"> EAI Endorsed Transactions on Scalable Information Systems: Vol. 10 No. 2 (2023): EAI Endorsed Transactions on Scalable Information Systems </a> </li> <li> Zhengping Lin, Jiaxin Lin, <a href="https://publications.eai.eu/index.php/sis/article/view/2634"> Research on Knowledge Management of Novel Power System Based on Deep Learning </a>, <a href="https://publications.eai.eu/index.php/sis/issue/view/42"> EAI Endorsed Transactions on Scalable Information Systems: Vol. 10 No. 2 (2023): EAI Endorsed Transactions on Scalable Information Systems </a> </li> <li> Yuzhong Zhou, Zhengping Lin, Liang Tu, Qiansu Lv, <a href="https://publications.eai.eu/index.php/sis/article/view/2831"> Online Document Transmission and Recognition of Digital Power Grid with Knowledge Graph </a>, <a href="https://publications.eai.eu/index.php/sis/issue/view/384"> EAI Endorsed Transactions on Scalable Information Systems: Vol. 10 No. 3 (2023): EAI Endorsed Transactions on Scalable Information Systems </a> </li> <li> Yuzhong Zhou, Zhengping Lin, Liang Tu, Jiahao Shi, Yuliang Yang, <a href="https://publications.eai.eu/index.php/sis/article/view/3094"> Research on the Performance of Text Mining and Processing in Power Grid Networks </a>, <a href="https://publications.eai.eu/index.php/sis/issue/view/400"> EAI Endorsed Transactions on Scalable Information Systems: Vol. 10 No. 5 (2023): EAI Endorsed Transactions on Scalable Information Systems </a> </li> <li> Yuzhong Zhou, Jiahao Shi, Yuliang Yang, Zhengping Lin, <a href="https://publications.eai.eu/index.php/sis/article/view/3098"> Performance Analysis and Research of Knowledge Sharing System for Power Grid Networks </a>, <a href="https://publications.eai.eu/index.php/sis/issue/view/386"> EAI Endorsed Transactions on Scalable Information Systems: Vol. 10 No. 4 (2023): EAI Endorsed Transactions on Scalable Information Systems </a> </li> </ul> <div id="articlesBySameAuthorPages"> </div> </div> <div id="articlesBySimilarityList"> </div> <!-- Plum Analytics --> <script type="text/javascript" src="//cdn.plu.mx/widget-all.js"></script> <!-- /Plum Analytics --> </div><!-- .page --> </div><!-- pkp_structure_main --> <div class="pkp_structure_sidebar left" role="complementary" aria-label="Sidebar"> <div class="pkp_block block_make_submission"> <h2 class="pkp_screen_reader"> Make a Submission </h2> <div class="content"> <a class="block_make_submission_link" href="https://publications.eai.eu/index.php/sis/about/submissions"> Make a Submission </a> </div> </div> <div class="pkp_block block_custom" id="customblock-if"> <h2 class="title pkp_screen_reader">IF</h2> <div class="content"> <p><img src="https://publications.eai.eu/public/site/images/admin/sis-if.png" alt="" width="155" height="64"></p> </div> </div> <div class="pkp_block block_custom" id="customblock-scimago"> <h2 class="title pkp_screen_reader">scimago</h2> <div class="content"> <p><a title="SCImago Journal &amp; Country Rank" href="https://www.scimagojr.com/journalsearch.php?q=21101072199&amp;tip=sid&amp;exact=no"><img src="https://www.scimagojr.com/journal_img.php?id=21101072199" alt="SCImago Journal &amp; Country Rank" border="0"></a></p> </div> </div> <div class="pkp_block block_custom" id="customblock-si-proposal"> <h2 class="title pkp_screen_reader">citescore</h2> <div class="content"> <p>&nbsp;</p> <div style="height: 100px; width: 180px; font-family: Arial, Verdana, helvetica, sans-serif; background-color: #ffffff; display: inline-block;"> <div style="padding: 0px 16px;"> <div style="padding-top: 3px; line-height: 1;"> <div style="float: left; font-size: 28px;"><span id="citescoreVal" style="letter-spacing: -2px; display: inline-block; padding-top: 7px; line-height: .75;">2.6</span></div> <div style="float: right; font-size: 14px; padding-top: 3px; text-align: right;"><span id="citescoreYearVal" style="display: block;">2022</span>CiteScore</div> </div> <div style="clear: both;">&nbsp;</div> <div style="padding-top: 3px;"> <div style="height: 4px; background-color: #dcdcdc;"> <div id="percentActBar" style="height: 4px; background-color: #007398;">&nbsp;</div> </div> <div style="font-size: 11px;"><span id="citescorePerVal">48th percentile</span></div> </div> <div style="font-size: 12px; text-align: right;">Powered by &nbsp;<img style="width: 50px; height: 15px;" src="https://www.scopus.com/static/images/scopusLogoOrange.svg" alt="Scopus"></div> </div> </div> <p>&nbsp;</p> </div> </div> <div class="pkp_block block_Keywordcloud"> <h2 class="title">Keywords</h2> <div class="content" id='wordcloud'></div> <script> function randomColor() { var colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']; return colors[Math.floor(Math.random()*colors.length)]; } document.addEventListener("DOMContentLoaded", function() { var keywords = [{"text":"mobile identity management","size":1},{"text":"event-driven","size":1},{"text":"vanets","size":1},{"text":"broadcast storm","size":1},{"text":"multi-hop messages dissemination","size":1},{"text":"traffic management","size":1},{"text":"big data analytics","size":1},{"text":"process monitoring","size":1},{"text":"decision support systems","size":1},{"text":"urdu text processing","size":1},{"text":"wsdl","size":1},{"text":"qos prediction","size":1},{"text":"service provider reputation","size":1},{"text":"software quality","size":1},{"text":"auto recalls","size":1},{"text":"automotive sector","size":1},{"text":"domestic violence","size":1},{"text":"natural language processing(nlp)","size":1},{"text":"transmission loss","size":1},{"text":"mapreduce","size":1},{"text":"virtual security","size":1},{"text":"model-driven engineering","size":1},{"text":"unified modeling language","size":1},{"text":"vlc","size":1},{"text":"ioe","size":1},{"text":"oos","size":1},{"text":"dimensions of leds","size":1},{"text":"motion detection","size":1},{"text":"throughput","size":1},{"text":"blob detection","size":1},{"text":"wcm (web content mining)","size":1},{"text":"online shopping","size":1},{"text":"data mining techniques","size":1},{"text":"na\u00efve bayes","size":1},{"text":"stability period","size":1},{"text":"uwsn","size":1},{"text":"pattern mining","size":1},{"text":"topic model","size":1},{"text":"recruitments","size":1},{"text":"mobile data mining","size":1},{"text":"documents clustering","size":1},{"text":"similarity measures","size":1},{"text":"k-means algorithm","size":1},{"text":"mobile phone user","size":1},{"text":"smartphone data","size":1},{"text":"behavioral analytics","size":1},{"text":"data-driven decision making","size":1},{"text":"node.js","size":1},{"text":"contexts","size":1},{"text":"context-awareness","size":1}]; var totalWeight = 0; var width = 300; var height = 200; var transitionDuration = 200; var length_keywords = keywords.length; var layout = d3.layout.cloud(); layout.size([width, height]) .words(keywords) .fontSize(function(d) { return fontSize(+d.size); }) .on('end', draw); var svg = d3.select("#wordcloud").append("svg") .attr("viewBox", "0 0 " + width + " " + height) .attr("width", '100%'); function update() { var words = layout.words(); fontSize = d3.scaleLinear().range([16, 34]); if (words.length) { fontSize.domain([+words[words.length - 1].size || 1, +words[0].size]); } } keywords.forEach(function(item,index){totalWeight += item.size;}); update(); function draw(words, bounds) { var w = layout.size()[0], h = layout.size()[1]; scaling = bounds ? Math.min( w / Math.abs(bounds[1].x - w / 2), w / Math.abs(bounds[0].x - w / 2), h / Math.abs(bounds[1].y - h / 2), h / Math.abs(bounds[0].y - h / 2), ) / 2 : 1; svg .append("g") .attr( "transform", "translate(" + [w >> 1, h >> 1] + ")scale(" + scaling + ")", ) .selectAll("text") .data(words) .enter().append("text") .style("font-size", function(d) { return d.size + "px"; }) .style("font-family", 'serif') .style("fill", randomColor) .style('cursor', 'pointer') .style('opacity', 0.7) .attr('class', 'keyword') .attr("text-anchor", "middle") .attr("transform", function(d) { return "translate(" + [d.x, d.y] + ")rotate(" + d.rotate + ")"; }) .text(function(d) { return d.text; }) .on("click", function(d, i){ window.location = "https://publications.eai.eu/index.php/sis/search?query=QUERY_SLUG".replace(/QUERY_SLUG/, encodeURIComponent(''+d.text+'')); }) .on("mouseover", function(d, i) { d3.select(this).transition() .duration(transitionDuration) .style('font-size',function(d) { return (d.size + 3) + "px"; }) .style('opacity', 1); }) .on("mouseout", function(d, i) { d3.select(this).transition() .duration(transitionDuration) .style('font-size',function(d) { return d.size + "px"; }) .style('opacity', 0.7); }) .on('resize', function() { update() }); } layout.start(); }); </script> </div> </div><!-- pkp_sidebar.left --> </div><!-- pkp_structure_content --> <div class="pkp_structure_footer_wrapper" role="contentinfo"> <a id="pkp_content_footer"></a> <div class="pkp_structure_footer"> <div class="pkp_footer_content"> <p><a href="https://eai.eu/" target="_blank" rel="noopener"><strong>European Alliance for Innovation (EAI)</strong></a> is a non-profit organization and a professional community empowering global research and innovation, promoting cooperation between European and International ICT communities around the globe.</p> </div> <div class="pkp_brand_footer" role="complementary"> <a href="https://publications.eai.eu/index.php/sis/about/aboutThisPublishingSystem"> <img alt="More information about the publishing system, Platform and Workflow by OJS/PKP." src="https://publications.eai.eu/templates/images/ojs_brand.png"> </a> </div> </div> </div><!-- pkp_structure_footer_wrapper --> </div><!-- pkp_structure_page --> <script src="https://publications.eai.eu/lib/pkp/lib/vendor/components/jquery/jquery.min.js?v=3.3.0.18" type="text/javascript"></script><script src="https://publications.eai.eu/lib/pkp/lib/vendor/components/jqueryui/jquery-ui.min.js?v=3.3.0.18" type="text/javascript"></script><script src="https://publications.eai.eu/plugins/themes/default/js/lib/popper/popper.js?v=3.3.0.18" type="text/javascript"></script><script src="https://publications.eai.eu/plugins/themes/default/js/lib/bootstrap/util.js?v=3.3.0.18" type="text/javascript"></script><script src="https://publications.eai.eu/plugins/themes/default/js/lib/bootstrap/dropdown.js?v=3.3.0.18" type="text/javascript"></script><script src="https://publications.eai.eu/plugins/themes/default/js/main.js?v=3.3.0.18" type="text/javascript"></script><script src="https://publications.eai.eu/plugins/generic/citationStyleLanguage/js/articleCitation.js?v=3.3.0.18" type="text/javascript"></script><script src="https://publications.eai.eu/plugins/generic/citations/js/citations.js?v=3.3.0.18" type="text/javascript"></script><script src="https://d3js.org/d3.v4.js?v=3.3.0.18" type="text/javascript"></script><script src="https://cdn.jsdelivr.net/gh/holtzy/D3-graph-gallery@master/LIB/d3.layout.cloud.js?v=3.3.0.18" type="text/javascript"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10