CINXE.COM
Search results for: breaking strength
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: breaking strength</title> <meta name="description" content="Search results for: breaking strength"> <meta name="keywords" content="breaking strength"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="breaking strength" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="breaking strength"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4018</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: breaking strength</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4018</span> Horn Snail (Telescopium Telescopium) Shells Waste as an Alternative for Ceramic Tile Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patricia%20N.%20Baguio">Patricia N. Baguio</a>, <a href="https://publications.waset.org/abstracts/search?q=Angel%20Amy%20M.%20Bunag"> Angel Amy M. Bunag</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Bryan%20E.%20Ornopia"> Paul Bryan E. Ornopia</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Paul%20C.%20Suel"> John Paul C. Suel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigates the viability and efficiency of employing ceramic tile additives derived from horn snail shell material, specifically calcium carbonate (CaCO₃). The study aims to evaluate the mechanical properties of ceramic tiles with Calcium Carbonate with varying amounts of CaCO₃, focusing on breaking and flexural strength. The research employs a comprehensive methodology, including material collection, slurry forming, shaping, drying, firing, and statistical analysis using paired sample T-tests. The result indicates a positive correlation between calcium carbonate (CaCO₃) application and ceramic tile strength, revealing increased breaking strength from 29.41 N (non-calcium Carbonate) to 46.02 N (70g CaCO3) and a substantial enhancement to 82.61 N with 150g CaCO₃. Comparative analyses show higher breaking and flexural strength in tiles with Calcium Carbonate with 150g CaCO₃ analysis (p = 0.011), indicating its feasibility for ceramic tile manufacturing, while 70g CaCO₃ shows no significant difference from non-calcium Carbonate tiles (p = 0.135). The addition of horn snail shells shows potential for improving ceramic tile quality and contributes positively to waste management in standard tile production processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Horn%20snail%20shell" title="Horn snail shell">Horn snail shell</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbonate" title=" calcium carbonate"> calcium carbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=breaking%20strength" title=" breaking strength"> breaking strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a> </p> <a href="https://publications.waset.org/abstracts/182882/horn-snail-telescopium-telescopium-shells-waste-as-an-alternative-for-ceramic-tile-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4017</span> Horn Snail (Telescopium telescopium) Shells Waste as an Alternative for Ceramic Tile Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patricia%20N.%20Baguio">Patricia N. Baguio</a>, <a href="https://publications.waset.org/abstracts/search?q=Angel%20Amy%20M.%20Bu%C3%B1ag"> Angel Amy M. Buñag</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Bryan%20E.%20Ornopia"> Paul Bryan E. Ornopia</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Paul%20C.%20Suel"> John Paul C. Suel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigates the viability and efficiency of employing ceramic tile additives derived from horn snail shell material, specifically calcium carbonate (CaCO₃). The study aims to evaluate the mechanical properties of ceramic tiles with calcium carbonate with varying amounts of CaCO₃, focusing on breaking and flexural strength. The research employs a comprehensive methodology, including material collection, slurry forming, shaping, drying, firing, and statistical analysis using paired sample T-tests. The result indicates a positive correlation between calcium carbonate (CaCO₃) application and ceramic tile strength, revealing increased breaking strength from 29.41 N (non-calcium carbonate) to 46.02 N (70g CaCO₃) and a substantial enhancement to 82.61 N with 150g CaCO₃. Comparative analyses show higher breaking and flexural strength in tiles calcium carbonate with 150g CaCO₃ analysis (p = 0.011), indicating its feasibility for ceramic tile manufacturing, while 70g CaCO₃ shows no significant difference from non-calcium carbonate tiles (p = 0.135). The addition of horn snail shells shows potential for improving ceramic tile quality and contributes positively to waste management in standard tile production processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=horn%20snail%20shell" title="horn snail shell">horn snail shell</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbonate" title=" calcium carbonate"> calcium carbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=breaking%20strength" title=" breaking strength"> breaking strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a> </p> <a href="https://publications.waset.org/abstracts/182794/horn-snail-telescopium-telescopium-shells-waste-as-an-alternative-for-ceramic-tile-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4016</span> Overview About Sludge Produced From Treatment Plant of Bahr El-Baqar Drain and Reusing It With Cement in Outdoor Paving</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20M.Naguib">Khaled M.Naguib</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.Noureldin"> Ahmed M.Noureldin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to achieve many goals such as knowing (quantities produced- main properties- characteristics) of sludge produced from Bahr EL-Baqar drains treatment plant. This prediction or projection was made by laboratory analysis and modelling of Model samples from sludge depending on many studies that have previously done, second check the feasibility and do a risk analysis to know the best alternatives for reuse in producing secondary products that add value to sludge. Also, to know alternatives that have no value to add. All recovery methods are relatively very expensive and challenging to be done in this mega plant, so the recommendation from this study is to use the sludge as a coagulant to reduce some compounds or in secondary products. The study utilized sludge-cement replacement percentages of 10%, 20%, 30%, 40% and 50%. Produced tiles were tested for water absorption and breaking (bending) strength. The study showed that all produced tiles exhibited a water absorption ratio of around 10%. The study concluded that produced tiles, except for 50% sludge-cement replacement, comply with the breaking strength requirements of 2.8 MPa for tiles for external use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement" title="cement">cement</a>, <a href="https://publications.waset.org/abstracts/search?q=tiles" title=" tiles"> tiles</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment%20sludge" title=" water treatment sludge"> water treatment sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=breaking%20strength" title=" breaking strength"> breaking strength</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption" title=" absorption"> absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20analysis" title=" risk analysis"> risk analysis</a> </p> <a href="https://publications.waset.org/abstracts/167746/overview-about-sludge-produced-from-treatment-plant-of-bahr-el-baqar-drain-and-reusing-it-with-cement-in-outdoor-paving" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4015</span> The Causal Relationships between Educational Environments and Rule-Breaking Behavior Issues in Early Adolescence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhidong%20Zhang">Zhidong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi-Chao%20Zhang"> Zhi-Chao Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focused on early adolescent rule-breaking behavioral problems using the instrument of Achenbach System of Empirically Based Assessment (ASEBA). The purpose was to analyze the relationships between the rule-breaking behavioral problems and relevant background variables such as sports activities, hobbies, chores and the number of close friends. The stratified sampling method was used to collect data from 2532 participants. The results indicated that several background variables as predictors could significantly predict rule breaking behavior and aggressive behavior. Further, a path analysis method was used to explore the correlational and causal relationships among background variables and breaking behavior variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ASEBA" title="ASEBA">ASEBA</a>, <a href="https://publications.waset.org/abstracts/search?q=rule-breaking" title=" rule-breaking"> rule-breaking</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20analysis" title=" path analysis"> path analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20adolescent" title=" early adolescent"> early adolescent</a> </p> <a href="https://publications.waset.org/abstracts/64648/the-causal-relationships-between-educational-environments-and-rule-breaking-behavior-issues-in-early-adolescence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4014</span> The Simulation of Superfine Animal Fibre Fractionation: The Strength Variation of Fibre</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sepehr%20Moradi">Sepehr Moradi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the contribution of individual Australian Superfine Merino Wool (ASFW) and Inner Mongolia Cashmere (IMC) fibres strength behaviour to the breaking force variation (CVBF) and minimum fibre diameter (CVₘFD) induced by actual single fibre lengths and the combination of length and diameter groups. Mid-side samples were selected for the ASFW (n = 919) and IMC (n = 691) since it is assumed to represent the average of the whole fleece. The average (LₘFD) varied for ASFW and IMC by 36.6 % and 33.3 % from shortest to longest actual single fibre length and -21.2 % and -21.7 % between longest-coarsest and shortest-finest groups, respectively. The tensile properties of single animal fibres were characterised using Single Fibre Analyser (SIFAN 4). After normalising for diversity in fibre diameter at the position of breakage, the parameters, which explain the strength behaviour within actual fibre lengths and combination of length-diameter groups, were the Intrinsic Fibre Strength (IFS) (MPa), Min IFS (MPa), Max IFS (MPa) and Breaking force (BF) (cN). The average strength of single fibres varied extensively within actual length groups and within a combination of length-diameter groups. IFS ranged for ASFW and IMC from 419 to 355 MPa (-15.2 % range) and 353 to 319 (-9.6 % range) and BF from 2.2 to 3.6 (63.6 % range) and 3.2 to 5.3 cN (65.6 % range) from shortest to longest groups, respectively. Single fibre properties showed no differences within actual length groups and within a combination of length-diameter groups, or was there a strong interaction between the strength of single fibre (P > 0.05) within remaining and removing length-diameter groups. Longer-coarser fibre fractionation had a significant effect on BF and IFS and all of the length groups showed a considerable variance in single fibre strength that is accounted for by diversity in the diameter variation along the fibre. There are many concepts for the improvement of the stress-strain properties of animal fibres as a means of raising a single fibre strength by simultaneous changes in fibre length and diameter. Fibre fractionation over a given length directly for single fibre strength or using the variation traits of fibre diameter is an important process used to increase the strength of the single fibre. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20animal%20fibre%20fractionation" title="single animal fibre fractionation">single animal fibre fractionation</a>, <a href="https://publications.waset.org/abstracts/search?q=actual%20length%20groups" title=" actual length groups"> actual length groups</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20variation" title=" strength variation"> strength variation</a>, <a href="https://publications.waset.org/abstracts/search?q=length-diameter%20groups" title=" length-diameter groups"> length-diameter groups</a>, <a href="https://publications.waset.org/abstracts/search?q=diameter%20variation%20along%20fibre" title=" diameter variation along fibre"> diameter variation along fibre</a> </p> <a href="https://publications.waset.org/abstracts/82558/the-simulation-of-superfine-animal-fibre-fractionation-the-strength-variation-of-fibre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4013</span> Study of Dormancy-Breaking of Bitter Apple Seed (Citrullus Colocynthis L. Schard)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asghar%20Rahimi">Asghar Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Puryousef"> Majid Puryousef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to examine dormancy-breaking of bitter apple (Citrullus colocynthis) seed. Seeds of wild bitter apple collected from the Balochestan zone in east of Iran were subjected to different treatments including temperatures (20 and 30°C) and some dormancy breaking methods on breaking seed dormancy of bitter apple. Only 6 treatments from 12 dormancy breaking treatments were effective in dormancy breaking, therefore only effective treatments were analyzed. In general, germination percentage of cleaved seeds, soaked seeds in hot water (98°c) and soaking in H2SO4 in both temperatures was higher than other treatments and germination percentage of scarified seeds with sandy paper in both temperature was lower than other treatments. Also germination percentage of soaked seeds in hot water (98°c) and naturally cracked seeds in temperature 20°c was higher than 30°c. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foliar%20application" title="foliar application">foliar application</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20chelate" title=" nano chelate"> nano chelate</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=Safflower" title=" Safflower"> Safflower</a> </p> <a href="https://publications.waset.org/abstracts/69540/study-of-dormancy-breaking-of-bitter-apple-seed-citrullus-colocynthis-l-schard" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4012</span> Algae Biomass as Alternatives to Wood Pulp in Handmade Paper Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piyali%20Mukherjee">Piyali Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jai%20Prakash%20Keshri"> Jai Prakash Keshri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anticipated shortages of raw materials for paper industry have forged the entry of algae as alternatives to wood pulp. Five algal species: Pithophora sp., Lyngbya sp., Hydrodictyon sp., Cladophora sp. and Rhizoclonium sp. were collected from different parts of Burdwan town, West Bengal, India. Their biomass compositional values were determined with respect to eucalyptus wood pulp. Paper characteristics were studied in terms of breaking length, tensile strength, CI index, pH, brightness, recyclability, and durability. Hydrodictyon sp., besides Rhizoclonium sp. and Cladophora sp. were established as the most suitable candidates for paper pulp formulation in terms of high cellulose, hemicelluloses contents and low lignin and silica contents. Paper from pure Hydrodictyon sp. pulp was found to have statistically significant (p < 0.05) improved breaking-length and tensile strength properties compared to that obtained from Lyngbya sp. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=paper" title=" paper"> paper</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp" title=" pulp"> pulp</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a> </p> <a href="https://publications.waset.org/abstracts/101196/algae-biomass-as-alternatives-to-wood-pulp-in-handmade-paper-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4011</span> Experimental Investigation on the Effect of Prestress on the Dynamic Mechanical Properties of Conglomerate Based on 3D-SHPB System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Jun">Wei Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Liao%20Hualin"> Liao Hualin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Huajian"> Wang Huajian</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Jingkai"> Chen Jingkai</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Hongjun"> Liang Hongjun</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Chuanfu"> Liu Chuanfu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kuqa Piedmont is rich in oil and gas resources and has great development potential in Tarim Basin, China. However, there is a huge thick gravel layer developed with high content, wide distribution and variation in size of gravel, leading to the condition of strong heterogeneity. So that, the drill string is in a state of severe vibration and the drill bit is worn seriously while drilling, which greatly reduces the rock-breaking efficiency, and there is a complex load state of impact and three-dimensional in-situ stress acting on the rock in the bottom hole. The dynamic mechanical properties and the influencing factors of conglomerate, the main component of gravel layer, are the basis of engineering design and efficient rock breaking method and theoretical research. Limited by the previously experimental technique, there are few works published yet about conglomerate, especially rare in dynamic load. Based on this, a kind of 3D SHPB system, three-dimensional prestress, can be applied to simulate the in-situ stress characteristics, is adopted for the dynamic test of the conglomerate. The results show that the dynamic strength is higher than its static strength obviously, and while the three-dimensional prestress is 0 and the loading strain rate is 81.25~228.42 s-1, the true triaxial equivalent strength is 167.17~199.87 MPa, and the strong growth factor of dynamic and static is 1.61~1.92. And the higher the impact velocity, the greater the loading strain rate, the higher the dynamic strength and the greater the failure strain, which all increase linearly. There is a critical prestress in the impact direction and its vertical direction. In the impact direction, while the prestress is less than the critical one, the dynamic strength and the loading strain rate increase linearly; otherwise, the strength decreases slightly and the strain rate decreases rapidly. In the vertical direction of impact load, the strength increases and the strain rate decreases linearly before the critical prestress, after that, oppositely. The dynamic strength of the conglomerate can be reduced properly by reducing the amplitude of impact load so that the service life of rock-breaking tools can be prolonged while drilling in the stratum rich in gravel. The research has important reference significance for the speed-increasing technology and theoretical research while drilling in gravel layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=huge%20thick%20gravel%20layer" title="huge thick gravel layer">huge thick gravel layer</a>, <a href="https://publications.waset.org/abstracts/search?q=conglomerate" title=" conglomerate"> conglomerate</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20SHPB" title=" 3D SHPB"> 3D SHPB</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20strength" title=" dynamic strength"> dynamic strength</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20deformation%20characteristics" title=" the deformation characteristics"> the deformation characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=prestress" title=" prestress"> prestress</a> </p> <a href="https://publications.waset.org/abstracts/142294/experimental-investigation-on-the-effect-of-prestress-on-the-dynamic-mechanical-properties-of-conglomerate-based-on-3d-shpb-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4010</span> Improving Paper Mechanical Properties and Printing Quality by Using Carboxymethyl Cellulose as a Strength Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Simonian">G. N. Simonian</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20F.%20Basalah"> R. F. Basalah</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20T.%20Abd%20El%20Halim"> F. T. Abd El Halim</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20F.%20Abd%20El%20Latif"> F. F. Abd El Latif</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Adel"> A. M. Adel</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20El%20Shafey."> A. M. El Shafey. </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carboxymethyl cellulose (CMC) is an anionic water soluble polymer that has been introduced in paper coating as a strength agent. One of the main objectives of this research is to investigate the influence of CMC concentration in improving the strength properties of paper fiber. In this work, we coated the paper sheets; Xerox paper sheets by different concentration of carboxymethyl cellulose solution (0.1, 0.5, 1, 1.5, 2, 3%) w/v. The mechanical properties; breaking length and tearing resistance (tear factor) were measured for the treated and untreated paper specimens. The retained polymer in the coated paper samples were also calculated. The more the concentration of the coating material; CMC increases, the more the mechanical properties; breaking length and tear factor increases. It can be concluded that CMC enhance the improvement of the mechanical properties of paper sheets result in increasing paper stability. The aim of the present research was also to study the effects on the vessel element structure and vessel picking tendency of the coated paper sheets. In addition to the improved strength properties of the treated sheet, a significant decrease in the vessel picking tendency was expected whereas refining of the original paper sheets (untreated paper sheets) improved mainly the bonding ability of fibers, CMC effectively enhanced the bonding of vessels as well. Moreover, film structures were formed in the fibrillated areas of the coated paper specimens, and they were concluded to reinforce the bonding within the sheet. Also, fragmentation of vessel elements through CMC modification was found to be important and results in a decreasing picking tendency which reflects in a good printability. Moreover, Scanning – Electron Microscope (SEM) images are represented to specifically explain the improved bonding ability of vessels and fibers after CMC modification. Finally, CMC modification enhance paper mechanical properties and print quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carboxymethyl%20cellulose%20%28CMC%29" title="carboxymethyl cellulose (CMC)">carboxymethyl cellulose (CMC)</a>, <a href="https://publications.waset.org/abstracts/search?q=breaking%20length" title=" breaking length"> breaking length</a>, <a href="https://publications.waset.org/abstracts/search?q=tear%20factor" title=" tear factor"> tear factor</a>, <a href="https://publications.waset.org/abstracts/search?q=vessel%20picking" title=" vessel picking"> vessel picking</a>, <a href="https://publications.waset.org/abstracts/search?q=printing" title=" printing"> printing</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration "> concentration </a> </p> <a href="https://publications.waset.org/abstracts/18136/improving-paper-mechanical-properties-and-printing-quality-by-using-carboxymethyl-cellulose-as-a-strength-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4009</span> Externalizing Behavior Problems Influencing Social Behavior in Early Adolescence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhidong%20Zhang">Zhidong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi-Chao%20Zhang"> Zhi-Chao Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on early adolescent externalizing behavioral problems which specifically concentrate on rule breaking behavior and aggressive behavior using the instrument of Achenbach System of Empirically Based Assessment (ASEBA). The purpose was to analyze the relationships between the externalizing behavioral problems and relevant background variables such as sports activities, hobbies, chores and the number of close friends. The stratified sampling method was used to collect data from 1975 participants. The results indicated that several background variables as predictors could significantly predict rule breaking behavior and aggressive behavior. Further, a hierarchical modeling method was used to explore the causal relations among background variables, breaking behavior variables and aggressive behavior variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggressive%20behavior" title="aggressive behavior">aggressive behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=breaking%20behavior" title=" breaking behavior"> breaking behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20adolescence" title=" early adolescence"> early adolescence</a>, <a href="https://publications.waset.org/abstracts/search?q=externalizing%20problem" title=" externalizing problem"> externalizing problem</a> </p> <a href="https://publications.waset.org/abstracts/40188/externalizing-behavior-problems-influencing-social-behavior-in-early-adolescence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4008</span> 1D PIC Simulation of Cold Plasma Electrostatic Waves beyond Wave-Breaking Limit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prabal%20Singh%20Verma">Prabal Singh Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrostatic Waves in plasma have emerged as a new source for the acceleration of charged particles. The accelerated particles have a wide range of applications, for example in cancer therapy to cutting and melting of hard materials. The maximum acceleration can only be achieved when the amplitude of the plasma wave stays below a critical limit known as wave-breaking amplitude. Beyond this limit amplitude of the wave diminishes dramatically as the coherent energy of the wave starts to convert into random kinetic energy. In this work, spatiotemporal evolution of non-relativistic electrostatic waves in a cold plasma has been studied in the wave-breaking regime using a 1D particle-in-cell simulation (PIC). It is found that plasma gets heated after the wave-breaking but a fraction of initial energy always remains with the remnant wave in the form of Bernstein-Greene-Kruskal (BGK) mode in warm plasma. Another interesting finding of this work is that the frequency of the resultant BGK wave is found be below electron plasma frequency which decreases with increasing initial amplitude and the acceleration mechanism after the wave-breaking is also found to be different from the previous work. In order to explain the results observed in the numerical experiments, a simplified theoretical model is constructed which exhibits a good agreement with the simulation. In conclusion, it is shown in this work that electrostatic waves get shower after the wave-breaking and a fraction of initial coherent energy always remains with remnant wave. These investigations have direct relevance in wakefield acceleration experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20plasma%20waves" title="nonlinear plasma waves">nonlinear plasma waves</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal" title=" longitudinal"> longitudinal</a>, <a href="https://publications.waset.org/abstracts/search?q=wave-breaking" title=" wave-breaking"> wave-breaking</a>, <a href="https://publications.waset.org/abstracts/search?q=wake-field%20acceleration" title=" wake-field acceleration"> wake-field acceleration</a> </p> <a href="https://publications.waset.org/abstracts/77921/1d-pic-simulation-of-cold-plasma-electrostatic-waves-beyond-wave-breaking-limit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4007</span> Effect of Different Types of Washes on the Fabric Strength of Denim</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hina%20Gul%20Rajpoot">Hina Gul Rajpoot</a>, <a href="https://publications.waset.org/abstracts/search?q=Wazeer%20Hussain%20Solangi"> Wazeer Hussain Solangi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental Design (DOE) economically maximizes information; we deliberately change one or more process variables (looms) in order to observe the effect the changes have on one or more response fabric properties. In DOE obtained data can be analyzed to yield valid and objective conclusions. An Experimental Design is lying out of a detailed experimental plan in advance and maximizes the amount of "information" that can be obtained for a given amount of experimental. Fabric of 36 inches having following weaves was used. 3/1 twill, warp cotton (10.5 den), weft Lycra (16 spandex * 70 den) Ends per inch86, Picks per inch 52 and washes process includes Stone wash, Rinse wash, Bleaching and Enzyme wash. Once the samples were ready, they were subjected to tensile and tear strength tests, for these two kinds of samples were considered. One washed fabric samples of warp direction type and other type of the samples was weft direction. Then five samples from each were considered for tensile and teat strength tests separately then takes the mean value. The results found that the lowest strength damaged in the weft direction observed by tensile strength test & Enzyme wash. Maximum breaking load of the enzyme washed fabric sample was 42 kg. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=twill" title="twill">twill</a>, <a href="https://publications.waset.org/abstracts/search?q=indigo%20dye" title=" indigo dye"> indigo dye</a>, <a href="https://publications.waset.org/abstracts/search?q=tear%20strength" title=" tear strength"> tear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=loom" title=" loom"> loom</a>, <a href="https://publications.waset.org/abstracts/search?q=ball%20warp" title=" ball warp"> ball warp</a>, <a href="https://publications.waset.org/abstracts/search?q=denier%20or%20den" title=" denier or den"> denier or den</a>, <a href="https://publications.waset.org/abstracts/search?q=seam" title=" seam"> seam</a>, <a href="https://publications.waset.org/abstracts/search?q=waist%20band" title=" waist band"> waist band</a>, <a href="https://publications.waset.org/abstracts/search?q=pilling" title=" pilling"> pilling</a>, <a href="https://publications.waset.org/abstracts/search?q=selvage" title=" selvage"> selvage</a> </p> <a href="https://publications.waset.org/abstracts/91506/effect-of-different-types-of-washes-on-the-fabric-strength-of-denim" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4006</span> The Effect of Cassava Starch on Compressive Strength and Tear Strength of Alginate Impression Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirna%20Febriani">Mirna Febriani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Statement of problem. Alginate impression material is an imported material and a dentist always used this material to make impression of teeth and oral cavity tissues. Purpose. The aim of this study was to compare about compressive strength and tear strength of alginate impression material and alginate impression material combined with cassava. Material and methods.Property measured included compressive strength and tear strength. Results.The compressive strength and tear strength of the impression materials tested of a comparable ANSI/ADA standard no.18.The compressive strength and tear strength alginate impression material combined with cassava have lower than the compressive strength and tear strength alginate impression material. The alginate impression material combined with cassava has more water and silica content more decrease than alginate impression material. Conclusions.We concluded that compressive strength and tear strength of alginate impression material combined with cassava has lower than alginate impression material without cassava starch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=tear%20strength" title=" tear strength"> tear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassava%20starch" title=" Cassava starch"> Cassava starch</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate" title=" alginate"> alginate</a> </p> <a href="https://publications.waset.org/abstracts/64938/the-effect-of-cassava-starch-on-compressive-strength-and-tear-strength-of-alginate-impression-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4005</span> Effect of Threshold Corrections on Proton Lifetime and Emergence of Topological Defects in Grand Unified Theories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rinku%20Maji">Rinku Maji</a>, <a href="https://publications.waset.org/abstracts/search?q=Joydeep%20Chakrabortty"> Joydeep Chakrabortty</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20F.%20King"> Stephen F. King</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The grand unified theory (GUT) rationales the arbitrariness of the standard model (SM) and explains many enigmas of nature at the outset of a single gauge group. The GUTs predict the proton decay and, the spontaneous symmetry breaking (SSB) of the higher symmetry group may lead to the formation of topological defects, which are indispensable in the context of the cosmological observations. The Super-Kamiokande (Super-K) experiment sets sacrosanct bounds on the partial lifetime (τ) of the proton decay for different channels, e.g., τ(p → e+ π0) > 1.6×10³⁴ years which is the most relevant channel to test the viability of the nonsupersymmetric GUTs. The GUTs based on the gauge groups SO(10) and E(6) are broken to the SM spontaneously through one and two intermediate gauge symmetries with the manifestation of the left-right symmetry at least at a single intermediate stage and the proton lifetime for these breaking chains has been computed. The impact of the threshold corrections, as a consequence of integrating out the heavy fields at the breaking scale alter the running of the gauge couplings, which eventually, are found to keep many GUTs off the Super-K bound. The possible topological defects arising in the course of SSB at different breaking scales for all breaking chains have been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grand%20unified%20theories" title="grand unified theories">grand unified theories</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20decay" title=" proton decay"> proton decay</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20correction" title=" threshold correction"> threshold correction</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20defects" title=" topological defects"> topological defects</a> </p> <a href="https://publications.waset.org/abstracts/109130/effect-of-threshold-corrections-on-proton-lifetime-and-emergence-of-topological-defects-in-grand-unified-theories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4004</span> Confirmatory Analysis of Externalizing Issue Validity from an Adolescent Sample</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhidong%20Zhang">Zhidong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi-Chao%20Zhang"> Zhi-Chao Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the structural validity of externalizing issues of Achenbach System of Empirically Based Assessment (ASEBA) via a Chinese sample. The externalizing problems consist of two sub-problems: rule-breaking behavior and aggressive behavior. The rule-breaking behavior consists of 17 items, and aggressive behavior consists of 18 items. The factor analysis model was used to examine the structure validity. For the rule breaking behavior, at the first step, the most items weighted with component 2. After the rotation, there was a clear weight on both component 1 and 2. For the aggressive behavior, at the first step, there was no clear picture about the components. After the rotation, two clusters of items were closer to component 1 and 2 respectively. It seemed that both rule breaking behavior issue and aggressive behavior issue suggested two components. Further studies should be done to examine both samples and structures of externalizing problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=confirmatory%20analysis" title="confirmatory analysis">confirmatory analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=externalizing%20issue" title=" externalizing issue"> externalizing issue</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20validity" title=" structural validity"> structural validity</a>, <a href="https://publications.waset.org/abstracts/search?q=varimax%20rotations" title=" varimax rotations"> varimax rotations</a> </p> <a href="https://publications.waset.org/abstracts/82847/confirmatory-analysis-of-externalizing-issue-validity-from-an-adolescent-sample" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4003</span> Thickness Effect on Concrete Fracture Toughness K1c </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benzerara%20Mohammed">Benzerara Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Redjel%20Bachir"> Redjel Bachir</a>, <a href="https://publications.waset.org/abstracts/search?q=Kebaili%20Bachir"> Kebaili Bachir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cracking of the concrete is a more crucial problem with the development of the complex structures related to technological progress. The projections in the knowledge of the breaking process make it possible today for better prevention of the risk of the fracture. The breaking strength brutal of a quasi-fragile material like the concrete called Toughness, is measured by a breaking value of the factor of intensity of the constraints K1C for which the crack is propagated, it is an intrinsic property of material. Many studies reported in the literature treating of the concrete were carried out on specimens which are in fact inadequate compared to the intrinsic characteristic to identify. We started from this established fact, in order to compare the evolution of the parameter of toughness K1C measured by calling upon ordinary concrete specimens of three prismatics geometries different (10*10*84) cm³ and (5*20*120) cm³ &(12*20*120) cm³ containing from the side notches various depths simulating of the cracks was set up. The notches are carried out using triangular pyramidal plates into manufactured out of sheet coated placed at the centre of the specimens at the time of the casting, then withdrawn to leave the trace of a crack. The tests are carried out in 3 points bending test in mode 1 of fracture, by using the techniques of mechanical fracture. The evolution of the parameter of toughness K1C measured with the three geometries specimens gives almost the same results. They are acceptable and return in the beach of the results determined by various researchers (toughness of the ordinary concrete turns to the turn of the 1 MPa √m). These results inform us about the presence of an economy on the level of the geometrie specimen (5*20*120) cm³, therefore to use plates specimens later if one wants to master the toughness of this material complexes, astonishing but always essential that is the concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elementary%20representative%20volume" title="elementary representative volume">elementary representative volume</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=fissure" title=" fissure"> fissure</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a> </p> <a href="https://publications.waset.org/abstracts/47060/thickness-effect-on-concrete-fracture-toughness-k1c" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4002</span> Effect of Confinement on Flexural Tensile Strength of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ahmed">M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Javed%20Mallick"> Javed Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Abul%20Hasan"> Mohammad Abul Hasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flexural tensile strength of concrete is an important parameter for determining cracking behavior of concrete structure and to compute deflection under flexure. Many factors have been shown to influence the flexural tensile strength, particularly the level of concrete strength, size of member, age of concrete and confinement to flexure member etc. Empirical equations have been suggested to relate the flexural tensile strength and compressive strength. Limited literature is available for relationship between flexural tensile strength and compressive strength giving consideration to the factors affecting the flexural tensile strength specially the concrete confinement factor. The concrete member such as slabs, beams and columns critical locations are under confinement effects. The paper presents the experimental study to predict the flexural tensile strength and compressive strength empirical relations using statistical procedures considering the effect of confinement and age of concrete for wide range of concrete strength (from 35 to about 100 MPa). It is concluded from study that due consideration of confinement should be given in deriving the flexural tensile strength and compressive strength proportionality equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20tensile%20strength" title=" flexural tensile strength"> flexural tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20rupture" title=" modulus of rupture"> modulus of rupture</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20procedures" title=" statistical procedures"> statistical procedures</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20confinement" title=" concrete confinement"> concrete confinement</a> </p> <a href="https://publications.waset.org/abstracts/2078/effect-of-confinement-on-flexural-tensile-strength-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4001</span> Influence of Specimen Geometry (10*10*40), (12*12*60) and (5*20*120), on Determination of Toughness of Concrete Measurement of Critical Stress Intensity Factor: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Benzerara">M. Benzerara</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Redjel"> B. Redjel</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Kebaili"> B. Kebaili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cracking of the concrete is a more crucial problem with the development of the complex structures related to technological progress. The projections in the knowledge of the breaking process make it possible today for better prevention of the risk of the fracture. The breaking strength brutal of a quasi-fragile material like the concrete called Toughness is measured by a breaking value of the factor of the intensity of the constraints K1C for which the crack is propagated, it is an intrinsic property of the material. Many studies reported in the literature treating of the concrete were carried out on specimens which are in fact inadequate compared to the intrinsic characteristic to identify. We started from this established fact, in order to compare the evolution of the parameter of toughness K1C measured by calling upon ordinary concrete specimens of three prismatic geometries different (10*10*40) Cm3, (12*12*60) Cm3 & (5*20*120) Cm3 containing from the side notches various depths simulating of the cracks was set up.The notches are carried out using triangular pyramidal plates into manufactured out of sheet coated placed at the center of the specimens at the time of the casting, then withdrawn to leave the trace of a crack. The tests are carried out in 3 points bending test in mode 1 of fracture, by using the techniques of mechanical fracture. The evolution of the parameter of toughness K1C measured with the three geometries specimens gives almost the same results. They are acceptable and return in the beach of the results determined by various researchers (toughness of the ordinary concrete turns to the turn of the 1 MPa √m). These results inform us about the presence of an economy on the level of the geometry specimen (5*20*120) Cm3, therefore, to use plates specimens later if one wants to master the toughness of this material complexes, astonishing but always essential that is the concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=fissure" title=" fissure"> fissure</a>, <a href="https://publications.waset.org/abstracts/search?q=specimen" title=" specimen"> specimen</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a> </p> <a href="https://publications.waset.org/abstracts/45970/influence-of-specimen-geometry-101040-121260-and-520120-on-determination-of-toughness-of-concrete-measurement-of-critical-stress-intensity-factor-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4000</span> Evaluation of Hand Grip Strength and EMG Signal on Visual Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung-Wook%20Shin">Sung-Wook Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Taek%20Chung"> Sung-Taek Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hand grip strength has been utilized as an indicator to evaluate the motor ability of hands, responsible for performing multiple body functions. It is, however, difficult to evaluate other factors (other than hand muscular strength) utilizing the hand grip strength only. In this study, we analyzed the motor ability of hands using EMG and the hand grip strength, simultaneously in order to evaluate concentration, muscular strength reaction time, instantaneous muscular strength change, and agility in response to visual reaction. In results, the average time (and their standard deviations) of muscular strength reaction EMG signal and hand grip strength was found to be 209.6 ± 56.2 ms and 354.3 ± 54.6 ms, respectively. In addition, the onset time which represents acceleration time to reach 90% of maximum hand grip strength, was 382.9 ± 129.9 ms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hand%20grip%20strength" title="hand grip strength">hand grip strength</a>, <a href="https://publications.waset.org/abstracts/search?q=EMG" title=" EMG"> EMG</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20reaction" title=" visual reaction"> visual reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=endurance" title=" endurance"> endurance</a> </p> <a href="https://publications.waset.org/abstracts/11414/evaluation-of-hand-grip-strength-and-emg-signal-on-visual-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3999</span> Towards an Understanding of Breaking and Coalescence Process in Bitumen Emulsions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Khan">Abdullah Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Per%20Redelius"> Per Redelius</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Kringos"> Nicole Kringos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The breaking and coalescence process in bitumen emulsion strongly influence the performance of the cold mix asphalt (CMA) and this phase separation process is affected by the physio-chemical changes happening at the bitumen/water interface. In this paper, coalescence experiments of two bitumen droplets in an emulsion environment have been carried out by a newly developed test procedure. In this study, different types of emulsifiers were selected to understand the coalescence process with respect to changes in the water phase surface tension due to addition of different surfactants and other additives such as salts. The research showed that the relaxation kinetics of bitumen droplets varied with the type of emulsifier, its concentration as well as with and without presence of salt in the water phase. Moreover, kinetics of the coalescence process was also investigated with the temperature variation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitumen%20emulsions" title="bitumen emulsions">bitumen emulsions</a>, <a href="https://publications.waset.org/abstracts/search?q=breaking%20and%20coalescence" title=" breaking and coalescence"> breaking and coalescence</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20mix%20asphalt" title=" cold mix asphalt"> cold mix asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsifiers" title=" emulsifiers"> emulsifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation" title=" relaxation"> relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=salts" title=" salts"> salts</a> </p> <a href="https://publications.waset.org/abstracts/62893/towards-an-understanding-of-breaking-and-coalescence-process-in-bitumen-emulsions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3998</span> Impact of Early Father Involvement on Middle Childhood Cognitive and Behavioral Outcomes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamel%20Slaughter">Jamel Slaughter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Father involvement across the development of a child has been linked to children’s psychological adjustment, fewer behavioral problems, and higher educational attainment. Conversely, there is much less research that highlights father involvement in relation to childhood development during early childhood period prior to preschool age (ages 1-3 years). Most research on fathers and child outcomes have been limited by its focus on the stages of adolescence, middle childhood, and infancy. This study examined the influence of father involvement, during the toddler stage, on 5th grade cognitive development, rule-breaking, and behavior outcomes measured by Child Behavior Checklist (CBCL) scores. Using data from the Early Head Start Research and Evaluation (EHSRE) Study, 1996-2010: United States, a total of 3,001 children and families were identified in 17 sites (cities), representing a diverse demographic sample. An independent samples t-test was run to compare cognitive development, aggressive, and rule-breaking behavior mean scores among children who had early continuous father involvement for the first 14 – 36 months to children who did not have early continuous father involvement for the first 14 – 36 months. Multiple linear regression was conducted to determine if continuous, or non-continuous father involvement (14 month-36 months), can be used to predict outcome scores on the Child Behavior Checklist in aggressive behavior, rule-breaking behavior, and cognitive development, at 5th grade. A statistically significant mean difference in cognitive development scores were found for children who had continuous father involvement (M=1.92, SD=2.41, t (1009) =2.81, p =.005, 95% CI=.146 to .828) compared to those who did not (M=2.60, SD=3.06, t (1009) =-2.38, p=.017, 95% CI= -1.08 to -.105). There was also a statistically significant mean difference in rule-breaking behavior scores between children who had early continuous father involvement (M=1.95, SD=2.33, t (1009) = 3.69, p <.001, 95% CI= .287 to .940), compared to those that did not (M=2.87, SD=2.93, t (1009) = -3.49, p =.001, 95% CI= -1.30 to -.364). No statistically significant difference was found in aggressive behavior scores. Multiple linear regression was performed using continuous father involvement to determine which has the largest relationship to rule-breaking behavior and cognitive development based on CBCL scores. Rule-breaking behavior was found to be significant (F (2, 1008) = 8.353, p<.001), with an R2 of .016. Cognitive development was also significant (F (2, 1008) = 4.44, p=.012), with an R2 of .009. Early continuous father involvement was a significant predictor of rule-breaking behavior and cognitive development at middle childhood. Findings suggest early continuous father involvement during the first 14 – 36 months of their children’s life, may lead to lower levels of rule-breaking behaviors and thought problems at 5th grade. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20development" title="cognitive development">cognitive development</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20continuous%20father%20involvement" title=" early continuous father involvement"> early continuous father involvement</a>, <a href="https://publications.waset.org/abstracts/search?q=middle%20childhood" title=" middle childhood"> middle childhood</a>, <a href="https://publications.waset.org/abstracts/search?q=rule-breaking%20behavior" title=" rule-breaking behavior"> rule-breaking behavior</a> </p> <a href="https://publications.waset.org/abstracts/62535/impact-of-early-father-involvement-on-middle-childhood-cognitive-and-behavioral-outcomes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3997</span> Breaking Stress Criterion that Changes Everything We Know About Materials Failure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Nour%20El%20Hajj">Ali Nour El Hajj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The perennial deficiencies of the failure models in the materials field have profoundly and significantly impacted all associated technical fields that depend on accurate failure predictions. Many preeminent and well-known scientists from an earlier era of groundbreaking discoveries attempted to solve the issue of material failure. However, a thorough understanding of material failure has been frustratingly elusive. Objective: The heart of this study is the presentation of a methodology that identifies a newly derived one-parameter criterion as the only general failure theory for noncompressible, homogeneous, and isotropic materials subjected to multiaxial states of stress and various boundary conditions, providing the solution to this longstanding problem. This theory is the counterpart and companion piece to the theory of elasticity and is in a formalism that is suitable for broad application. Methods: Utilizing advanced finite-element analysis, the maximum internal breaking stress corresponding to the maximum applied external force is identified as a unified and universal material failure criterion for determining the structural capacity of any system, regardless of its geometry or architecture. Results: A comparison between the proposed criterion and methodology against design codes reveals that current provisions may underestimate the structural capacity by 2.17 times or overestimate the capacity by 2.096 times. It also shows that existing standards may underestimate the structural capacity by 1.4 times or overestimate the capacity by 2.49 times. Conclusion: The proposed failure criterion and methodology will pave the way for a new era in designing unconventional structural systems composed of unconventional materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure%20criteria" title="failure criteria">failure criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20theory" title=" strength theory"> strength theory</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20mechanics" title=" failure mechanics"> failure mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20mechanics" title=" materials mechanics"> materials mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20mechanics" title=" rock mechanics"> rock mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20strength" title=" concrete strength"> concrete strength</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-element%20analysis" title=" finite-element analysis"> finite-element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20engineering" title=" mechanical engineering"> mechanical engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=aeronautical%20engineering" title=" aeronautical engineering"> aeronautical engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20engineering" title=" civil engineering"> civil engineering</a> </p> <a href="https://publications.waset.org/abstracts/167552/breaking-stress-criterion-that-changes-everything-we-know-about-materials-failure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3996</span> Evaluation of Applicability of High Strength Stirrup for Prestressed Concrete Members </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.-Y.%20Lee">J.-Y. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=H.-S.%20Lim"> H.-S. Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.-E.%20Kim"> S.-E. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the use of high-strength materials is increasing as the construction of large structures and high-rise structures increases. This paper presents an analysis of the shear behavior of prestressed concrete members with various types of materials by simulating a finite element (FE) analysis. The analytical results indicated that the shear strength and shear failure mode were strongly influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. Though the yield strength of shear reinforcement increased the shear strength of prestressed concrete members, there was a limit to the increase in strength because of the change of shear failure modes. According to the results of FE analysis on various parameters, the maximum yield strength of the steel stirrup that can be applied to prestressed concrete members was about 860 MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prestressed%20concrete%20members" title="prestressed concrete members">prestressed concrete members</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20reinforcing%20bars" title=" high strength reinforcing bars"> high strength reinforcing bars</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title=" high strength concrete"> high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20behavior" title=" shear behavior"> shear behavior</a> </p> <a href="https://publications.waset.org/abstracts/65500/evaluation-of-applicability-of-high-strength-stirrup-for-prestressed-concrete-members" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3995</span> Comparison of Mechanical Properties of Three Different Orthodontic Latex Elastic Bands Leached with NaOH Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thipsupar%20Pureprasert">Thipsupar Pureprasert</a>, <a href="https://publications.waset.org/abstracts/search?q=Niwat%20Anuwongnukroh"> Niwat Anuwongnukroh</a>, <a href="https://publications.waset.org/abstracts/search?q=Surachai%20Dechkunakorn"> Surachai Dechkunakorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Surapich%20Loykulanant"> Surapich Loykulanant</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaveewan%20Kongkaew"> Chaveewan Kongkaew</a>, <a href="https://publications.waset.org/abstracts/search?q=Wassana%20Wichai"> Wassana Wichai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Orthodontic elastic bands made from natural rubber continue to be commonly used due to their favorable characteristics. However, there are concerns associated cytotoxicity due to harmful components released during conventional vulcanization (sulfur-based method). With the co-operation of The National Metal and Materials Technology Center (MTEC) and Faculty of Dentistry Mahidol University, a method was introduced to reduce toxic components by leaching the orthodontic elastic bands with NaOH solution. Objectives: To evaluate the mechanical properties of Thai and commercial orthodontic elastic brands (Ormco and W&H) leached with NaOH solution. Material and methods: Three elastic brands (N =30, size ¼ inch, 4.5 oz.) were tested for mechanical properties in terms of initial extension force, residual force, force loss, breaking strength and maximum displacement using a Universal Testing Machine. Results : Force loss significantly decreased in Thai-LEACH and W&H-LEACH, whereas the values increased in Ormco-LEACH (P < 0.05). The data exhibited a significantly decrease in breaking strength with Thai-LEACH and Ormco-LEACH, whereas all 3 brands revealed a significantly decrease in maximum displacement with the leaching process (P < 0.05). Conclusion: Leaching with NaOH solution is a new method, which can remove toxic components from orthodontic latex elastic bands. However, this process can affect their mechanical properties. Leached elastic bands from Thai had comparable properties with Ormco and have potential to be developed as a promising product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leaching" title="leaching">leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=orthodontic%20elastics" title=" orthodontic elastics"> orthodontic elastics</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20rubber%20latex" title=" natural rubber latex"> natural rubber latex</a>, <a href="https://publications.waset.org/abstracts/search?q=orthodontic" title=" orthodontic"> orthodontic</a> </p> <a href="https://publications.waset.org/abstracts/50229/comparison-of-mechanical-properties-of-three-different-orthodontic-latex-elastic-bands-leached-with-naoh-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3994</span> Influence of the Reliability Index on the Safety Factor of the Concrete Contribution to Shear Strength of HSC Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Sagiroglu">Ali Sagiroglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sema%20Noyan%20Alacali"> Sema Noyan Alacali</a>, <a href="https://publications.waset.org/abstracts/search?q=Guray%20Arslan"> Guray Arslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a study on the influence of the safety factor in the concrete contribution to shear strength of high-strength concrete (HSC) beams according to TS500. In TS500, the contribution of concrete to shear strength is obtained by reducing diagonal cracking strength with a safety factor of 0.8. It was investigated that the coefficient of 0.8 considered in determining the contribution of concrete to the shear strength corresponds to which value of failure probability. Also, the changes in the reduction factor depending on different coefficients of variation of concrete were examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title="reinforced concrete">reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=beam" title=" beam"> beam</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20probability" title=" failure probability"> failure probability</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20factor" title=" safety factor"> safety factor</a> </p> <a href="https://publications.waset.org/abstracts/22211/influence-of-the-reliability-index-on-the-safety-factor-of-the-concrete-contribution-to-shear-strength-of-hsc-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">830</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3993</span> Strength Translation from Spun Yarns to Woven Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anindya%20Ghosh">Anindya Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural parameters, yarn to yarn friction, strength of ring, rotor, air-jet and open-end friction spun yarns and the strength of fabrics made from these yarns are measured. The ratio of fabric strip strength per yarn and corresponding single yarn strength is considered as a measure of quantifying the fabric assistance. Mechanism of yarn failure inside the fabric is different as that of single yarn and the former exhibit more fibre rupture. Fabrics made from weaker yarns have higher ratio of strip strength to single yarn strength than that made from stronger yarns due to larger increase in the percentage of rupture fibres in the former. The fabric assistance also depends to some extent on the degree of gripping of the yarns that is influenced by the yarn to yarn friction, extent of yarn flattening and yarn diameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fabric%20assistance" title="fabric assistance">fabric assistance</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20strength" title=" fabric strength"> fabric strength</a>, <a href="https://publications.waset.org/abstracts/search?q=yarn%20diameter" title=" yarn diameter"> yarn diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=yarn%20friction" title=" yarn friction"> yarn friction</a>, <a href="https://publications.waset.org/abstracts/search?q=yarn%20strength" title=" yarn strength"> yarn strength</a> </p> <a href="https://publications.waset.org/abstracts/43748/strength-translation-from-spun-yarns-to-woven-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3992</span> Interrelationship of BMI with Strength, Speed and Flexibility in Different Age Groups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nimesh%20D.%20Chaudhari">Nimesh D. Chaudhari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to find out the interrelationship of BMI with strength, i.e. endurance strength of abdominal muscles and explosive strength of leg muscles, speed and flexibility which are respectively assessed by sit up, standing broad jump, 50 yard dash and sit and reach tests. 48 boys, aged 7 to 13 years as group A and 40 boys, aged 17 to 28 years asgroup B were selected as the subjects for the study. Product moment correlation coefficient test (r at 0.05 level of significance) was applied to test hypothesis. The findings of the study shows that there is significant relationship of BMI with endurance strength of abdominal muscles, explosive strength of leg muscles, and flexibility whereas a negative significant relationship was found between BMI and speed in group A, i.e. aged from 7 to 13 years. However, there was no significant relationship of BMI with endurance strength of abdominal muscles, explosive strength of leg muscles, speed and flexibility in higher age group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20mass%20index" title="body mass index">body mass index</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20of%20abdominal%20muscles" title=" strength of abdominal muscles"> strength of abdominal muscles</a>, <a href="https://publications.waset.org/abstracts/search?q=explosive%20strength%20of%20leg%20muscles" title=" explosive strength of leg muscles"> explosive strength of leg muscles</a>, <a href="https://publications.waset.org/abstracts/search?q=flexibility%20of%20lower%20back%20and%20hamstring%20muscles" title=" flexibility of lower back and hamstring muscles"> flexibility of lower back and hamstring muscles</a> </p> <a href="https://publications.waset.org/abstracts/3474/interrelationship-of-bmi-with-strength-speed-and-flexibility-in-different-age-groups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3991</span> Dominant Correlation Effects in Atomic Spectra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hubert%20Klar">Hubert Klar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High double excitation of two-electron atoms has been investigated using hyperpherical coordinates within a modified adiabatic expansion technique. This modification creates a novel fictitious force leading to a spontaneous exchange symmetry breaking at high double excitation. The Pauli principle must therefore be regarded as approximation valid only at low excitation energy. Threshold electron scattering from high Rydberg states shows an unexpected time reversal symmetry breaking. At threshold for double escape we discover a broad (few eV) Cooper pair. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=resonances" title=" resonances"> resonances</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20ionization" title=" threshold ionization"> threshold ionization</a>, <a href="https://publications.waset.org/abstracts/search?q=Cooper%20pair" title=" Cooper pair"> Cooper pair</a> </p> <a href="https://publications.waset.org/abstracts/42435/dominant-correlation-effects-in-atomic-spectra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3990</span> Prediction of Compressive Strength Using Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Pal%20Singh">Vijay Pal Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yogesh%20Chandra%20Kotiyal"> Yogesh Chandra Kotiyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-Destructive Techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rebound" title="rebound">rebound</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-sonic%20pulse" title=" ultra-sonic pulse"> ultra-sonic pulse</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration" title=" penetration"> penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT" title=" NDT"> NDT</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/2487/prediction-of-compressive-strength-using-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3989</span> Diagonal Crack Width of RC Members with High Strength Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Y.%20Lee">J. Y. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Lim"> H. S. Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Yoon"> S. H. Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an analysis of the diagonal crack widths of RC members with various types of materials by simulating a compatibility-aided truss model. The analytical results indicated that the diagonal crack width was influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. The yield strength of shear reinforcement and the compressive strength of concrete decreased the diagonal shear crack width of RC members for the same shear force because of the change of shear failure modes. However, regarding the maximum shear crack width at shear failure, the shear crack width of the beam with high strength materials was greater than that of the beam with normal strength materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagonal%20crack%20width" title="diagonal crack width">diagonal crack width</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20stirrups" title=" high strength stirrups"> high strength stirrups</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title=" high strength concrete"> high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20members" title=" RC members"> RC members</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20behavior" title=" shear behavior"> shear behavior</a> </p> <a href="https://publications.waset.org/abstracts/46565/diagonal-crack-width-of-rc-members-with-high-strength-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=breaking%20strength&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=breaking%20strength&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=breaking%20strength&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=breaking%20strength&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=breaking%20strength&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=breaking%20strength&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=breaking%20strength&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=breaking%20strength&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=breaking%20strength&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=breaking%20strength&page=133">133</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=breaking%20strength&page=134">134</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=breaking%20strength&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>